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Spontaneous random mutations are an important source of variation in populations. Many evo-
lutionary models consider mutants with a fixed fitness chosen from a certain fitness distribution
without considering any interactions among the residents and mutants. Here, we go beyond this
and consider “mutant interactors”, which lead to new interactions between the residents and in-
vading mutants that can affect the carrying capacity and the extinction risk of populations. We
model microscopic interactions between individuals by using a dynamical payoff matrix and analyze
the stochastic dynamics of such populations. New interactions drawn from invading mutants can
drive the population away from the previous equilibrium, and lead to changes in the population size
— the population size is an evolving property rather than a fixed number or externally controlled
variable. We present analytical results for the average population size over time and quantify the
extinction risk of the population by the mean time to extinction.

I. INTRODUCTION

Evolutionary game theory has been widely used to de-
scribe the evolution of populations under frequency de-
pendent selection [1, 2]. Conventionally, most evolution-
ary game theoretical models are based on fixed or infi-
nite population size and thus only reflect changes in the
frequencies of types. As an increasing body of research
has shown that evolutionary and ecological processes can
happen on comparable time scales [3–10], considering
both the evolutionary processes arising from mutations
[11] and the ecological effects due to an associated change
of the total population size is important [12–20]. Most
eco-evolutionary dynamics has been explored theoreti-
cally based on deterministic equations such as the com-
petitive Lotka-Volterra equation [21] or extensions of the
replicator dynamics [22]. These approaches describe the
changes of abundances in time, but they cannot naturally
describe possible stochastic events such as a population
extinction. Instead, individual-level models can capture
the stochastic nature of the population dynamics bet-
ter by using microscopic approaches based on reaction
rules [20, 23–25]. Although stochastic systems driven by
such microscopic reaction rules have been traditionally
studied in mathematical biology [26], the stochastic dy-
namics of an evolving population driven by mutants has
not been studied so far.

Based on a game theoretical approach with a dynamic
payoff matrix [11], we consider both mutations leading to
new interactions and the changes in the population size
caused by those interacting types; Mutations and extinc-
tions of types are captured by the extension or reduction
of the payoff matrix, where the new entries related to
the mutant are randomly drawn from the corresponding
entries of the maternal type [11]. By introducing death
through competition between individuals [20], the pop-

ulation is naturally controlled by individual interactions
and evolves over time. This framework provides us a
general framework to study the long term evolution of
interacting populations through the analysis of present
interactions.

In this manuscript, we especially focus on the evolu-
tion of the population size over time, as it has an im-
portant impact on the eco-evolutionary dynamics. The
emergence of a new mutant can lead to an increase or
a decrease of the population size depending on the new
interactions between residents and mutants. If a mutant
type with a smaller payoff outcompetes the resident type
with a higher payoff, a so-called social dilemma situa-
tion, the population size decreases. If the population size
consecutively decreases due to the invasion of such mu-
tants, the population may even go extinct. We analyze
the changes of the carrying capacity, which is defined as
the average population size when the population compo-
sition reaches a stable state. Thus, the carrying capacity
is an evolving rather than a predefined property of our
stochastic processes.

We also obtain the long time behavior of the popula-
tion size and estimate the mean time to extinction by
mapping the problem to a random walk. Counterintu-
itively, we find that the carrying capacity and the mean
time to extinction do not monotonically increase with the
probability θ that a new payoff for the mutant is larger
than the maternal payoff. Especially, for small proba-
bility θ there is a tradeoff between a large decrease in
the population size and a small chance of such a mutant
reaching fixation.

This manuscript is structured in the following way: we
introduce our model in detail in Sec. II and present an
analysis of the properties of the model in Sec. III. First,
we calculate the population size changes induced by one
mutation event in a single-type population. Then, we
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assess the evolution of the carrying capacity in the long
run and estimate the extinction risk based on the mean
time to extinction. Finally, we summarize and discuss
our results in Sec. IV.

II. MODEL

We study the stochastic population dynamics with a
mutation process that constantly creates new types in the
population. A mutation occurs with probability µ during
reproduction. Reproduction and intrinsic death occur at
constant rates, λb and λd, respectively (λb > λd). In-
dividuals also die due to the competition for a limited
resource. These competitive interactions are modelled
based on a game theoretical approach, where the death
rates from competition are the inverse of individual’s pay-
offs. All these microscopic reaction rules are summarized
in Table I.

TABLE I. Reaction rules with corresponding rates. The pa-
rameter M controls the scale of the population size. The
payoff of a type i interacting with a type j is denoted as aij .
Mutation occurs with probability µ during reproduction and
leads to an extended payoff matrix.

Reactions Rates

Reproduction
I → I + I λb(1− µ)
I → I +K λbµ

Intrinsic death I → 0 λd

Death from Competition I + J → J 1
aijM

For large populations without mutations, a determin-
istic equation describes the change of the abundance of
type i, xi,

dxi
dt

= (λb − λd︸ ︷︷ ︸
λ

)xi −
1

M

n∑
j=1

xixj
aij

, (1)

where n is the current number of types in the population
and aij is the payoff of a type i from the interaction with
a type j. When the population size is of the order of M ,
the reproduction and death occur at similar rates, such
that the population neither grows nor shrinks. Accord-
ingly, the population size scales in M . For single-type
populations with the single payoff a, population size is
fluctuating around the fixed point K = aMλ. The pop-
ulation size K at the stable fixed point of Eq. (1) is con-
sidered as the carrying capacity of the population.

We assume that mutations occur sufficiently rarely.
The equilibration time of the population composition af-
ter the emergence of a mutant is much shorter than the
waiting time between consecutive mutations, see Fig 1.
Thus, the population either stays close to one of the
monomorphic populations or becomes polymorphic and
fluctuates around a coexistence equilibrium in between
two successive mutation events. The population size be-
tween two successive mutation events is characterized by

the carrying capacity calculated from interactions be-
tween individuals. We use a discretized time t based on
mutation events. Once a new mutant emerges, the mu-
tant event time t increases by one. Then, we use K, the
carrying capacity at the equilibrium, as the characteristic
population size.

t = 0 t = 1 t = 2

Coexistence

Extinction of mutants

Equilibration

Fixation of mutants
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FIG. 1. There are three possible outcomes from a muta-
tion event: (i) the mutant spreads through the population
and replaces the residents, (ii) the mutants coexist with the
residents, or (iii) the mutants go extinct. When the wait-
ing time for the emergence of the next mutant is long, the
population has enough time to reach one of these outcomes.
After equilibration, the population size fluctuates around the
new carrying capacity before the next new mutation event.
Hence, the population size between two successive mutation
events is characterized by the carrying capacity calculated
from interactions between individuals. We discretize time by
mutation events and use the carrying capacity as a charac-
teristic population size in the weak mutation regime. While
most of our analytical results are carried out under the weak
mutation assumption, equilibration before the next mutation
is not necessary for stochastic simulations. Details for the
stochastic simulations are available in Appendix A.

Once a mutant emerges in a population with n types,
the payoff matrix extends its size from n×n to (n+ 1)×
(n+ 1). For example, if the mutant emerges in a single-
type population with payoff a11, we can write down the
change of the payoff matrix as

(
a11
)
→
(
a11 a12
a21 a22

)
. (2)

The payoff a11 is for the interaction between residents,
and a22 is for the interaction between mutants. The pay-
offs a12 and a21 are for the interaction between a resident
and s mutant. New payoffs are randomly drawn from a
distribution controlled by the probability θ that a new
payoff is larger than the maternal payoff. In principal,
we can use any distribution here [27], but for simplicity
we focus on the exponential distribution. In the example
Eq. (2), there is only one maternal payoff a11, and hence,
new payoffs a12, a21 and a22 are independently drawn
from the same distribution pa11(x) given by

pa11(x) = − ln(θ)

a11
θ

x
a11 , (3)
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which satisfies θ =
∫∞
a11

pa11(x)dx.

When a mutant emerges in populations with several
types (n > 1), it is denoted as the (n + 1)th type. The
payoffs ai,n+1 of a resident type i from the interaction
with this mutant type are based on the payoffs aim from
the interaction of the same resident type with the ma-
ternal type m [11]. In other words, the last row entries
ai,n+1 are drawn from the distribution p

aim
(x) and the

last column entries an+1,i are drawn from p
ami

(x). The
emergence of a mutant may lead to a change in an equi-
librium, and the population size fluctuates around a new
carrying capacity if the mutant establishes itself in the
population.

III. RESULTS

Each time a mutant emerges in the population, the
mutation event time t increases by one, and either new
mutants establish themselves in the population or they
die out, see Fig. 2. Due to the new interactions from
mutants, fixation of mutants or coexistence between mu-
tants and residents induce a change of the carrying capac-
ity. Here, we focus on the short and long time dynamics
of the carrying capacity, which is induced by such new in-
teractions. Since the probability θ is directly connected
to the new payoffs, we use θ as a key control parame-
ter. For the short time evolution, we look at the average
carrying capacity changes from the emergence of a sin-
gle mutant type in III A. For the long time evolution,
we get asymptotic behavior of the carrying capacity and
calculate the mean time to extinction in III B.

A. Changes of carrying capacity induced by a
single mutation event

In a large population containing a single resident type
with the payoff a11, the population size fluctuates around
K = a11Mλ. Once a mutant emerges, new equilibria
may arise depending on the payoffs, see Eq. (4). For
the possible new carrying capacities, we look at the sta-
bility of new equilibria. For a21 < a11, a mutant re-
ceive smaller payoff than the resident, while the mutant
is rare. Thus, either the resident type dominates the mu-
tant type (a12 > a22, resident dominance game) or both
homogeneous populations are stable (a21 < a22, coordi-
nation game). In these two cases, a mutant typically gets
lost. For a21 > a11, the mutant type is likely to invade
from rare. Here, the mutant either dominates the resi-
dent type (a12 < a22, mutant dominance game) or they
coexist (a12 > a22, coexistence game), and a new equi-
librium is achieved [20]. In summary, if the population
successfully reaches their new stable equilibrium, the new

carrying capacity after the mutation becomes

K ′ =


a11Mλ, if a21 < a11 and a12 > a22,

a22Mλ, if a12 < a22,

acoexMλ, if a21 > a11 and a12 > a22,

(4)

where acoex = a11a21(a12−a22)+a12a22(a21−a11)
a12a21−a11a22 is the aver-

age payoff in the coexistence equilibrium.

Note that these equilibria are not guaranteed to be
reached. In a stochastic process, the abundance of the
mutant type can have large random fluctuations espe-
cially at the beginning because it starts from a single
individual. These fluctuations can lead to the extinc-
tion of the mutant type even if it has dominating payoffs
(a21 > a11 and a22 > a12). Therefore, to calculate the
carrying capacity changes, we have to estimate the prob-
ability φ of a mutant to successfully establish itself in the
population. Once φ is known, the average change of the
carrying capacity is given by

∆K = 〈φ(K ′ −K)〉 , (5)

where K = a11Mλ and bracket 〈. . .〉 represents the aver-
aging over all mutant types which are distinguished by a
different payoff matrix.

The risk of stochastic extinction becomes negligible
when the mutant type reaches a large abundance. Thus,
φ is determined mainly in the early stage of an invasion.
For a21 > a11, the extinction risk of mutants is quickly
reduced with increasing abundance of the mutants, y .
We assume that the mutants successfully escape from
stochastic extinction and settle in the population if their
abundance reaches y∗, 1� y∗ �M . During this change,
we also assume that the total population size and the
abundance x of the resident type do not change signif-
icantly, x ≈ a11Mλ = O(M). Therefore, we use the
fixation probability of mutants in a population with a
constant size to estimate φ as [28, 29],

φ =
1

1 +
∑y∗−1
i=1

∏i
y=1

T−
y

T+
y

(6)

where T−y and T+
y are the rates of decrease or increase

the number of mutants by one, starting in y. For large
M and small y, y �M , these can be approximated by

T−y = λd +
1

a21

x

M
+

1

a22

y

M
≈ λd + λ

a11
a21

= λb

(
1− a21 − a11

a21

λ

λb

)
,

T+
y = λb,

(7)

such that r =
T−
y

T+
y

becomes independent of y and con-

stant. From this, we obtain an approximated expression
of the probability φ for a21 > a11,

φ ≈ 1

1 +
∑y∗−1
i=1 ri

=
1− r

1− ry∗
≈ 1− r =

λ

λb

a21 − a11
a21

,

(8)
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FIG. 2. One realization of the stochastic simulation show-
ing abundances xi in mutation event time t. We measure
abundances in real time T and then convert T to t making
one mutation event increase t by one. We use a single-type
population as an initial condition. Lines of different colors
indicate abundances of different types. Here, we only shown
successful mutants which establish themselves in the popu-
lation. The abundances xi fluctuate around the equilibrium
before the successful invasion. There are three possible situ-
ations after a mutant emerges from a single-type population.
(1) mutants die out, as in the majority of shown events. (2)
mutants take over the whole population, as the green type
emerging at t = 19. (3) mutants and residents coexist, as
the green and cyan types after t = 32. We used a11 = 1,
M = 1000, λb = 0.9, λd = 0.4, θ = 0.2, and µ = 5× 10−5.

where in the last step we took into account that y∗ � 1
and r < 1.

For a21 < a11 and a12 > a22, the homogeneous resident
population is stable against invasions, and the mutant
cannot settle in the population. However, for a21 < a11
and a12 < a22, both single-type populations are stable
and have their own basins of attraction [30, 31]. Taking
a closer look at Eq. (1) and its vector field, we find that
when a12 is sufficiently small, an emergence of a single
mutant is enough to put the population into the basin
of attraction of another equilibrium – the homogeneous
mutant population.

In coordination games, T−y is greater than T+
y at the

beginning (x ≈ a11Mλ and y ≈ 1), so the mutant pop-
ulation y is more likely to shrink rather than increase
in numbers. If a12 is small enough, the same is true for
the resident population and the abundance of residents
will decrease much faster than the abundance of mutants.
Once x becomes smaller than a21Mλ, T+

y becomes larger

than T−y , and after this point the mutant population be-
gins to grow. Hence, if the mutants survive until the
abundance of residents x decreases to a21Mλ, they will
fixate in the population.

The probability that the single mutant does not die

during the time ts, while x decreases from a11Mλ to

a21Mλ, can be approximated by e−tsT
−
y . We calculate

the time ts by looking at the rates of increasing or de-
creasing the abundance of the resident type,

T−x = λd +
1

a11

x

M
+

1

a12

y

M
,

T+
x = λb.

(9)

When a12 is very small, a12 = O(1/M), the third term
in T−x is not negligible even if y is small. Given the large
initial abundance of the resident type, its dynamics can
be described by the deterministic Eq. (1). Then, we get
the decrease rate of the resident’s population size

dx

dt
≈ λx

(
1− 1

a11

x

Mλ
− 1

a12

y

Mλ

)∣∣∣∣
x=a11Mλ,y=1

=−a11
a12

λ.

(10)

From the estimation, we calculate the time ts it
takes from a11Mλ to a21Mλ as ts = −(a21Mλ −
a11Mλ)a12a11

1
λ = Ma12

a11−a21
a11

. Thus, the fixation prob-
ability of mutants in a coordination game can be approx-
imated by

φ ≈ e−T
−
y ts = e−

(a11−a21)(a11λ+a21λd)

a11a21
Ma12 . (11)

Note that although these mutants have a very small
chance to reach fixation in the population, the coordi-
nation game (a21 < a11 and a12 < a22) plays an im-
portant role for small θ. In this regime, the fixation of
dominant mutants in the population is becoming very un-
likely – instead fixation in coordination games becomes
the dominant factor of evolution. Most importantly, this
small probability strongly influences the long time be-
havior for small θ. In summary, the probability φ can be
approximated as

φ≈


λ
λb

(
1− a11

a21

)
, a11<a21,

e−
(a11−a21)(a11λ+a21λd)

a11a21
Ma12 , a11>a21 and a12<a22,

0, otherwise.

(12)

As the probability φ of the mutant in coordination
games becomes relevant only if a12 ∼ 1/M , we only con-
sider mutant dominance and coexistence games in cal-
culating ∆K for the short time behavior. Hereafter, we
refer to the mutant dominance game as dominance game
because the resident dominance game does not play a
role for changing the carrying capacity. In Fig. 3 (a), we
numerically show that an invasion of a coexisting mutant
leads to much smaller changes in the carrying capacity
than a fixation of a dominant mutant without stochastic-
ity. Hence, we make a further approximation assuming
that only dominant mutants contribute to the change
of the carrying capacity. Under this approximation, the
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change in the carrying capacity after a single mutation
event can be calculated analytically

∆K = 〈φ(K ′ −K)〉
≈ 〈φ(K ′ −K)〉dm

= Mλ

∫ ∞
0

da12

∫ ∞
a11

da21

∫ ∞
a12

da22 [(a22 − a11)φPa11(a)]

=
Kλ

2λb

[
θ − ln(θ−1)Γ(0, ln(θ−1))

] [ 3

2 ln(θ−1)
− 1

]
,

(13)
where subscript “dm” indicates that the averaging is per-
formed only across dominance games, and Pa11(a) =
pa11(a12)pa11(a21)pa11(a22) with a = (a12, a21, a22). The
incomplete Gamma function is given by Γ(a, z) =∫∞
z
ta−1e−tdt. Our stochastic simulations agree with this

approximation, see Fig. 3 (b).
For a given game type, once mutants that decrease

the population size settle in the population, the smaller
θ, the larger the drop of the population size as shown
in Fig. 3 (a). Interestingly, however, the change of the
relative average carrying capacity of mutants does not
monotonically increase with θ, see Fig. 3 (b). Smaller θ
induces larger decreases of the population size, but these
changes also become exceedingly rare. From those two
effects of small θ, we observe a large drop of an average
population size for intermediate θ.

B. Evolution of the carrying capacity in the long
run

In the previous subsection, we have studied the carry-
ing capacity changes induced by a single mutation event.
Coexistence games do not change the population carry-
ing capacity K much, while the fixation of the mutants
more dramatically change K. Usually, the change of K
from the coexistence game is negligible and thus we only
consider fixation of mutants in our analytical calculation
for the long time behavior. As a consequence, the dynam-
ics of the population can be approximated as a sequence
of single payoffs which induce changes in the population
size. In this subsection, we map our problem to a ran-
dom walk in the payoff space to obtain the evolution of
the carrying capacity and approximate the mean time to
extinction.

If a new mutant type fixates in the population, a22
becomes the new single payoff. The distribution of a22
as a new single payoff in the dominance game is given by

fa11(a22) =

∫ a22
0

da12
∫∞
a11

da21φPa11(a)∫∞
0
da22

∫ a22
0

da12
∫∞
a11

da21φPa11(a)

= 2θ
a22
a11 (1− θ

a22
a11 ) ln(θ−1)/a11,

(14)

which depends on both a11 and a22. By defining l =

ln
(
a22
a11

)
, we can convert the distribution fa11(a22) into
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FIG. 3. Relative changes in carrying capacity induced by
a single mutation event. (a) the changes ∆KG of relative
carrying capacity without stochasticity at a given game type
are shown, in the dominance game (solid line) or the coexis-
tence game (dashed line). The changes induced by coexisting
mutants are much smaller in magnitude than changes from
dominant mutants. (b) the average change of the carrying
capacity after a single mutation event in stochastic simula-
tions (brown circles), a numerical integration of Eq. (5) (green
triangles), and our analytical approximation Eq. (13) (solid
line) are shown. The results of stochastic simulations are well
matched by our approximation. We used an initial payoff
a11 = 1, M = 1000, λb = 0.9, and λd = 0.4. For stochastic
simulations, we used 50000 realizations.

a jump distribution f(l), which is a function of a single
variable,

f(l) = 2 ln(θ−1)θexp(l)(1− θexp(l)) exp(l). (15)

We define a(τ) as the payoff of τ -th successful fixating mu-
tant type. After every successful fixation event, the log-
arithm of the payoff jumps by a distance l, ln

(
a(τ+1)

)
=

ln
(
a(τ)

)
+l. Hence, the evolution of the logarithm of pay-

off maps into the random walk problem with the jump
distribution Eq. (15). When the context is clear, we omit
the superscript τ . Once the population size goes down (a
is decreasing), fixations from mutants playing coordina-
tion games become more relevant because a chance to get
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a small enough a12 increases. Hence, we also consider the
coordination game as well as the dominance game in the
long time evolution. The jump distributions derived from
dominance and coordination games become more similar
as a11 decreases, so Eq. (15) continues to be applicable
for the coordination game.

For the sake of simplicity, we use the fixation time τ , a
unit of the single fixation event, and treat it as continuous
variable. Then, we can write down the diffusion equation
to describe the dynamics of u(τ) = ln(a(τ))

∂c(u, τ)

∂τ
= D

∂c(u, τ)

∂u2
− V ∂c(u, τ)

∂u
, (16)

where c(u, τ) is the probability density of a random
walker at position u at time τ . The diffusion coefficient
D and the drift velocity V are given by the moments of
distribution (15), D = σ2

l /2 = π2/12 − (ln(2))2 ≈ 0.342
and V = 〈l〉 = −γ + ln(2)− ln(ln(θ−1)) where γ ≈ 0.544
is Euler’s constant.

The boundary condition to this equation is given by
the stochastic extinctions of population. Since the pop-
ulation is likely to go extinct when the population size
is small, there is a threshold payoff which can be defined
as an absorbing boundary. Based on simulation results,
we measure the threshold payoff ã(θ) under which popu-
lations go extinct before the next fixation event (see Ap-
pendix D). Under this boundary condition c(ln(ã), τ) = 0
and the initial condition c(u, 0) = δ(u, 0), the solution of
Eq. (16) yields (see [32], p. 87),

c(u, τ) =
1√

4πDτ

[
e−

(u−V τ)2
4Dτ − e VD ln(ã)− (u−2 ln(ã)−V τ)2

4Dτ

]
.

(17)
Using this solution, we obtain the expectation value of
the carrying capacity in the long run (see Appendix E
for details)

〈K〉 ∝
τ→∞

{
1√
τ
e−

V 2τ
4D , 2D + V < 0,

e(D+V )τ , 2D + V > 0.
(18)

The expected value increases for D + V > 0 (θ > 0.206)
and decreases for D + V < 0 (θ < 0.206).

If the population size increases, it eventually becomes
too large to satisfy the weak mutation assumption. The
large population size decreases the time interval between
consecutive mutation events and increases the time to
equilibration. In this case, a new mutant emerges before
the equilibration of the population. Thus, the population
size does not reach the new carrying capacity calculated
from the payoff matrix, and the population size N can-
not be characterized by the carrying capacity anymore.
Since the interactions play the role if the population size
is close to the carrying capacity, the competition becomes
negligible and the population grows at a maximum rate
of the order of λ, see Eq (1). The average population
growth rates in this regime agree well with our predic-
tion, as shown in Fig. 4, see Appendix F for details. Note
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θ=0.23
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FIG. 4. Simulation results of the average population size 〈N〉
in mutation events t for θ > 0.206. We used dashed and solid
lines for showing trajectories where the the population sizes
decrease or increase at the end of the simulations. We use
log scales for both axes, and the thick black solid line is a
linear function in time t for comparing the trend of popu-
lation size changes and the linear function. As we can see,
the asymptotic behavior of the population growth is linear in
time t which is expected out of the weak mutation regime,
see Appendix F for details. We used an initial payoff a11 = 1,
M = 1000, λb = 0.9, λd = 0.4, and µ = 10−5 (500 realizations
for each θ).

that the average population size 〈N〉 does not always in-
crease for θ > 0.206 in simulations. This may arise from
the emergence of mutants who play coexistence games
with resident. The changes of population size induced
from dominance games are much larger than that of co-
existence games, except in the vicinity of θ which induces
zero change of the population size in dominance games,
θ ≈ 0.223 (see Fig. 3). As mutants who play coexistence
games decrease the population size for θ > 0.206 while
dominance games induce very small changes in the popu-
lation size as shown in Fig. 3 (a), the average population
sizes are reduced even for θ > 0.206.

If the population size decreases, the population will
eventually go extinct. However, the time to reach the
extinction differs for different θ. We calculate the mean
time to extinction, text, for θ < 0.206 to estimate the
extinction risk. The extinction rate kext(τ) at τ is the
density current passing through the absorbing state (u =
ln(ã)),

kext(τ) = D
∂c(u, τ)

∂u

∣∣∣∣
u=ln(ã)

=
D ln(ã−1)

2
√
φ(Dτ)3/2

e−
(ln(ã)−V τ)2

4Dτ .

(19)
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FIG. 5. The mean time to extinction text in θ. Stochastic
simulation results are shown as open circles. The solid line
is our theoretical prediction (24). Similar to the short time
behaviour, the mean time to extinction also shows a minimum
at the intermediate θ due to the small θ properties. Smaller
θ induces larger decreases of the population size, while it also
delays such decreases. Our analytical approximation predicts
the mean time to extinction well. We used M = 1000, λb =
0.9, λd = 0.4, and µ = 10−5 with an initial payoff a11 = 1.

Hence, we can get the mean time to extinction τext

τext =

∫ ∞
0

τkext(τ)dτ

=
ln(ã)

V
≡ S (for θ < 0.206).

(20)

This is exactly the same as the necessary time to move
the distance ln(ã) with velocity V . This result is based on
the fixation time unit, and thus S stands for the expected
number of random walker’s jumps before extinction.

The random walker jumps only if the mutants success-
fully fixate in the population, and not every mutation
leads to a successful fixation. Now, we find the expected
number of mutations before extinction. The jump rate
ξ of the random walker is determined by the combined
probabilities φ for dominance and coordination games

ξ =
1

〈φ〉dm + 〈φ〉 cd
, (21)

where

〈φ〉dm =
θ + Γ(0, ln θ−1) ln θ

2λb/λ
,

〈φ〉cd ≈
θ(ln θ)2

a11Mλb
ln

(
a11Mλb
2 ln(θ−1)

)
.

(22)

The probability 〈φ〉dm only depends on θ while 〈φ〉cd is a
function of both θ and the payoff a11 (see Appendix B for
the exact expression). On average, ξ mutations happen
until one successfully fixates.

As ξ mutation events are needed on average for each
jump, the mean time to extinction in the unit of t is

text =

∫ S

0

ξdτ. (23)

We use the relation ln(a(τ)) = ln(a(0)) + V τ and calcu-
late the mean number of mutations before extinction as
follows,

text =

∫ S

0

ξdτ =

∫ ã

a0

ξ(a)

aV
da. (24)

The expression for ξ is available in Eqs. (21-22). We
numerically compute text according to Eq. (24) and com-
pare the results with stochastic simulations in Fig. 5. Our
analytical results well predict the simulation outcomes.
Interestingly, again the mean time to extinction does not
monotonically increase with θ. As the same with the
short time changes of the carrying capacity, a minimum
text is observed in the intermediate θ due to the small
θ properties. Smaller θ implies a larger decrease of the
population size. At the same time, small θ leads to long
waiting time for changes in the carrying capacity. Hence,
there is a trade-off between large jumps to the small pop-
ulation size and long waiting time for such a jump.

IV. SUMMARY AND DISCUSSION

We implement a stochastic model with mutations lead-
ing to novel interactions and changes of the population
size. We focus on the evolution of the population size and
the mean time to extinction. Since we interpret compe-
tition as a game theoretical interaction, the relation be-
tween types and thus the population size are determined
by payoffs. In a social dilemma, the population size de-
creases if a mutant type outcompetes the resident type –
but the mutants have stronger competition among them-
selves. This phenomenon is similar to mutational melt-
down from deleterious mutations [33–35]. In our model,
the distribution of new payoffs is important, because it
controls how often such deleterious mutations happen. If
the probability θ to have a larger payoff than the ma-
ternal payoff is too small, populations are endangered
by deleterious mutations. On the contrary, when θ is
large enough, the population size constantly increases.
For short and long time evolution, we find a trade-off
between large decreases of the population size and the
rareness of such events.

Although the model is governed by simple reaction
rules, intriguing phenomena emerge. The investigation
of different distributions of new payoffs and its correla-
tion is a challenging problem to be addressed in future
work. While we only focus on monomorphic populations
in the main text, our model can be used also to investi-
gate polymorphisms [11].

In long-term experiments of microorganisms, parallel
mutations are often seen in populations derived from a
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common ancestor [36–41]. By tracking the point muta-
tions in single nucleosides over thousands of generations,
e.g. in the seminal experiments by Lenski et al., rich pop-
ulation dynamics including selection sweeps by mutations
with fitness advantages, are observed [42], but the exper-
imental conditions preclude loss of the population. For
this, a more complex setup is necessary [43]. Also quasi-
stable coexistences of multiple types have been observed
in recent experiments [40, 41].

Our model provides a general framework to model gen-
eral eco-evolutionary processes in natural populations, as
it has no artificial restriction on the population dynamics,
i.e., the population size and composition evolve solely de-
pending on random mutations and simple dynamic rules.
We hope that this model will inspire other researchers to
work on evolutionary models in which interactions are
not pre-defined but evolve de novo with a natural link to
demographic fluctuations.

APPENDICES

Appendix A: Stochastic simulations

To implement the reaction rules in Table I, we use an
algorithm developed in [44] which is similar to the Gille-
spie algorithm [45]. In the algorithm, one of the reaction
rules is attempted at a given small enough time interval,
and the simulation time proceeds based on this try lead-
ing continuous time. We call this simulation time the real
time T and can trace changes in the population size in
T . When the mutation rate is small enough, however, the
population size is fluctuating around the carrying capac-
ity determined by Eq. (1). Then, almost all simulation
time after equilibration of the population does not con-
tain new information. Hence, we use a discretized time
t based on the mutation events and only take the popu-
lation size right before the emergence of the new mutant
type as the representative population size at a given t. In
general, the waiting time for the new mutant type is long
enough when the mutation rate is small, and thus the
carrying capacity can be representative for the popula-
tion size. However, according to the reaction rates, a new
mutant type can arise before the equilibration of the pop-
ulation. In this case, the carrying capacity may not rep-
resent typical population size. Core codes are available
at https://github.com/Park-HyeJin/MutantInteractors.

Appendix B: The exact expression of ξ

The probability 〈φ〉dm that a mutation will result in a
fixation of dominating mutant is

〈φ〉dm =

∫ ∞
a11

da21

∫ ∞
0

da12

∫ ∞
a12

da22φPa11(a)

=
θ + Γ(0, ln θ−1) ln θ

2λb/(λb − λd)
.

(B1)

The probability does not depend on the resident payoff
value a11 while the contribution 〈φ〉cd from the coordina-
tion game depends on a11 as well as θ. The probability
φ integrated in coordination game is

〈φ〉cd =

∫ a11

0

da21

∫ ∞
0

da12

∫ ∞
a12

da22φPa11(a)

=
(ln θ)2

a11

∫ a11

0

(a21)2θ
a21
a11

α(a21)2 + βa21 + γ
da21,

(B2)

where α = a11Mλ − a11Mλb − 2 ln θ, β = −2a211Mλ +
a211Mλb, and γ = a311Mλ. For our parameters of interest,
the above integration can be solved,

〈φ〉cd =
(θ − 1) ln θ

α
+
e−(A+B) ln θ

(A−B)α
[g(A,B)− g(B,A)] ,

(B3)
where g(A,B) = A2eB [Ei(A) − Ei(A + ln θ)] with A =(
β−
√
β2−4αγ

)
ln θ

2a11α
and B =

(
β+
√
β2−4αγ

)
ln θ

2a11α
. The func-

tion Ei(z) is the exponential integral function Ei(z) =∫∞
−z e

−t/tdt. Thus, the average probability is depending
on the current payoff a11.

Furthermore, we get the approximated expression of
the probability 〈φ〉cd from Eq. (B2), which leads to the
integral

〈φ〉cd =
(ln θ)2

a11

∫ a11

0

(a21)2θ
a21
a11

α(a21 − c1)(a21 − c2)
da21, (B4)

where

c1 ≡
−β −

√
β2 − 4αγ

2α
,

c2 ≡
−β +

√
β2 − 4αγ

2α
.

(B5)

For large M , we obtain the approximated expressions

c1 ≈a11 −
2 ln θ

Mλb
+O((ln θ)2),

c2 ≈
a11λ

λ− λb
+O(ln θ).

(B6)

Note that the function inside of the integration diverges
at a21 = c1 and a21 = c2. Since c1 is close to a11, an
upper limit of integration, the major contribution of the
integration comes from the vicinity of this upper limit.
We utilize this diverging behavior to simplify the expres-
sion of Eq. (B4). We do a partial fraction decomposition
and neglect non-diverging term

1

α(c1 − a21)(c2 − a21)
=

1

α(c2 − c1)

(
1

c1 − a21
− 1

c2 − a21

)
≈ 1

α(c2 − c1)

1

c1 − a21
.

(B7)
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FIG. B1. We show the average settling probability 〈φ〉 for
(a) dominance game and (b) coordination game. The the-
oretical prediction Eqs. (B1) and (B3) are shown as purple
lines. For the coordination game, we show the approximation
given by Eq. (B10) (solid line). For stochastic simulations,
we use 20000 trials of the dominance or coordination games
with a11 = 1 in each point. Especially, the probability in
the dominance game agrees well with the theory. For the co-
ordination game, our approximation does not work well but
reproduces the right trend in the right order of magnitude.
We used M = 1000, λb = 0.9, and λd = 0.4.

Similarly, we approximate the nominator in integration

as a221θ
a21
a11 ≈ a211θ. Hence, we get the expression

〈φ〉cd ≈
a11θ(ln θ)

2

α(c2 − c1)

∫ a11

0

1

c1 − a21
da21 (B8)

The prefactor can be approximated by

θ(ln θ)2

a11α(c2 − c1)
=

θ(ln θ)2

a11
√
β2 − 4αγ

≈ θ(ln θ)2

a311Mλb
(B9)

for large M . Finally, we get

〈φ〉cd ≈
θ(ln θ)2

a11Mλb
ln

(
a11Mλb
2 ln(θ−1)

)
. (B10)

We compare the stochastic simulation results and theo-
retical prediction for a11 = 1 in Fig. B1.

Appendix C: Jump distribution for the coordination
game

We obtain the jump distribution f cda11(a22) from mu-
tants who playing the coordination game, and compare
it to the jump distribution from dominant mutants. The
jump distribution for the coordination game can be ob-
tained from the same form of Eq. (14) with a different
integrating range

f cda11(a22) =

∫ a22
0

da12
∫ a11
0

da21φPa11(a)∫∞
0
da22

∫ a22
0

da12
∫ a11
0

da21φPa11(a)

=
θ
a22
a11 (ln θ−1)3

a211 〈φ〉cd

∫ a11

0

χ(a11, a21, a22)da21,

(C1)

where χ(a11, a21, a22) =
a221θ

a21
a11

(
1−θ

a22
a11 e

− a22
a221

q(a11,a21)
)

a11q(a11,a21)−a221 ln θ

with q(a11, a21) = M(a11 − a21)(a11λ + a21λd). Due to
the form of φ for the coordination game, the integration
is more complex than dominance game case. We numer-
ically integrate Eq. (C1) and draw the distributions for
various parameters together with the jump distribution
for the dominance game, see Fig C1. As we can see in the
figure, the distribution f cda11(a22) becomes more closer to
fa11(a22) as a11 becomes smaller. As both distributions
become with decreasing a11, we use the same jump dis-
tribution written in Eq. (15) for both games in the main
text.

dm

cd (a11=1)

cd (a11=0.1)

cd (a11=0.01)
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FIG. C1. Jump distributions for mutants who playing dom-
inance and coordination games, Eq. (14) and Eq. (C1), re-
spectively. We used θ = 0.1 for different a11 values: a11 = 1,
a11 = 0.1, and a11 = 0.01. For the rescalied variable a22

a11
, the

jump distributions for the dominance game are collapsed in
one curve. For the coordination game, the distribution be-
comes more closer to the jump distribution of the dominance
game as a11 decreases. We used M = 100, λd = 0.4, and
λb = 0.9.
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Appendix D: Threshold payoff ã

Single-type populations with a small payoff a11 are
prone to go extinct due to stochastic fluctuations of the
population size. We define the threshold payoff ã as a
payoff at which the system typically goes extinct before
a change of the carrying capacity. Hence, at ã, the mean
time to extinction of single-type populations is equal to
the mean time to the next successful fixation of mutants.
Note that we deal with real time T (continuous) instead
of mutant event time t (discontinuous). By simulating
an ensemble of populations, we numerically compute the
characteristic time to extinction Text of single-type pop-
ulations without mutation (see Fig. D1). The results of
stochastic simulations show a clear exponential pattern.
By fitting we obtained Text(a11) ≈ 5 exp(165a11) at a
given parameter set, see Fig. D1. A successful invading
mutant appears in Tmut = ξ/Kλbµ where K = a11Mλ.
If Text is smaller than Tmut, populations typically go to
extinction before the next chance to rescue their popula-
tion. Hence, the threshold value ã can be evaluated by
equating both time scales, Text = Tmut. If we assume
that only dominant mutants contribute to ξ, we can ob-
tain the analytical expression of ã,

ã ≈ 1

165
W

(
66

Mµ(λb − λd)2
· 1

θ + Γ(0, ln θ−1) ln θ

)
,

(D1)
where W (z) is the Lambert-W function which gives the
solution for w in z = wew.

Figure. D2 shows ã in θ with and without the coordina-
tion game in ξ. We numerically solving Text = Tmut and
get the results with coordination game. The order is the
same for both cases, O(10−2). Despite the discrepancy
between two results for ã, it does not significantly affect
the mean time to extinction (see Fig D2 (b)). Therefore,
we use ã as expressed in Eq. (D1) for the main text.

Appendix E: Asymptotic behavior of the average
carrying capacity

To calculate the carrying capacity changes in the long
run, we need the distribution of payoff a11 in time. The
solution (17) provides us the distribution of u = ln(a11),
which leads to

c̃(a11, τ) =

1

a11
√

4πDτ

[
e−

(ln(a11)−V τ)2
4Dτ −e VD ln(ã)e−

(ln(a11)−2 ln(ã)−V τ)2
4Dτ

]
.

(E1)
Note that the pre-factor 1/a11 originates from the vari-
able change. Then, the expectation value of the carrying
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FIG. D1. Mean time to extinction Text measured in real time
unit for single-type populations without mutation. As we ex-
pected, Text increases in a11 with an exponent 165. The fit-
ting function f(a11) is f(a11) = 5 exp(165a11) for M = 1000.
For all simulations, we use λb = 0.9 and λd = 0.4. Since
the time scale for a new mutant is ξ/Kλbµ, most popula-
tions go to extinct when T < ξ/Kλbµ. Hence, we define the
threshold payoff ã by equating two time scales ξ/a11Mµ and
5 exp(165a11). For the mutation rate, we used µ = 10−5.

capacity is

〈K〉 = Mλ

∫ ∞
ã

a11c̃(a11, τ)da11

= Mλ
e(D+V )τ

2

[
1 + Erf

(
(2D + V )τ − ln(ã)√

4Dτ

)
−

− e
2D+V
D ln(ã)

(
1 + Erf

(
(2D + V )τ + ln(ã)√

4Dτ

))]
, (E2)

where Erf(x) = 2√
π

∫ x
0
e−z

2

dz.

To describe the long time behavior (τ → ∞), we use
the common approximations

Erf(x) −−−−→
x→∞

1− e−x
2

x
√
π
,

Erf(x) −−−−−→
x→−∞

−1 +
e−x

2

x
√
π
. (E3)

Hence, we get

〈K〉 →
τ→∞


Mλ√
τ
e−

V 2τ
4D

√
D

(
e
2D+V
D

ln(ã)−1
)

√
π(2D+V )2

, 2D + V < 0,

Mλe(D+V )τ
(

1− e 2D+V
D ln(ã)

)
, 2D + V > 0.

(E4)
The expected carrying capacity of surviving popula-

tions is given by

〈K〉surv =
〈K〉
Psurv

=
Mλ

∫∞
ã
a11c̃(a11, τ)da11∫∞

ã
c̃(a11, τ)da11

, (E5)
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FIG. D2. Threshold payoffs decreases in θ, and the order of
magnitude is 10−2. The time scale ξ can be calculated from
dominance and coordination games. We examine the effect of
coordination game on ã. As shows in (a), the change of ξ from
the coordination game does not change order of ã. As we can
see in (b), the changes of ã by the coordination game is not
crucial for the results of text. Hence, we keep the expression
of ã from only taking into account dominance game. We used
M = 1000, λb = 0.9, λd = 0.4, and µ = 10−5.

where

Psurv =

∫ ∞
ã

c̃(a11, τ)da11

=
1

2

[
1− Erf

(
ln(ã)− V τ√

4Dτ

)
−

−e VD ln(ã)

(
1 + Erf

(
ln(ã) + V τ√

4Dτ

))]
. (E6)

Using Eq. (E3), we get

Psurv →
τ→∞


1√
τ
e−

V 2τ
4D

√
D

V
√
π

(
1− e VD ln(ã)

)
, V < 0,

1− e VD ln(ã), V > 0.

(E7)

Substituting Eqs. (E4) and (E7) into Eq. (E5), we get

〈K〉surv →τ→∞

Mλ −V√
(2D+V )2

1−e
2D+V
D

ln(ã)

1−e
V
D

ln(ã)
, V < −2D,

Mλ
√
τe

(2D+V )2τ
4D

−V
√
π√

D
1−e

2D+V
D

ln(ã)

1−e
V
D

ln(ã)
, −2D < V < 0,

Mλe(D+V )τ 1−e
2D+V
D

ln(ã)

1−e
V
D

ln(ã)
, 0 < V.

(E8)

Focussing on the time dependence, we obtain

〈K〉surv ∝
τ→∞


const, V < −2D,
√
τe

(2D+V )2τ
4D , −2D < V < 0,

e(D+V )τ , 0 < V.

(E9)

The borders between regimes are at V = −2D and V =

0. These correspond to θ = e
− 2

4ln(2)
eπ

2/6−γ
≈ 0.108 and

θ = e−2e
−γ ≈ 0.325, respectively. The border between

exponential decline and exponential growth of 〈K〉 is

achieved at V = −D, equivalent to θ = e
− 2

4ln(2)/2
e
π2

12
−γ

≈
0.206.

Appendix F: Out of weak mutation regime

If the next successful mutant emerges before its ma-
ternal population reaches its carrying capacity, the weak
mutation assumption is violated. We call this regime the
diluted regime, because the population size N is much
smaller than its carrying capacity K. Hence, the compe-
tition may not play a major role in this regime. Here, we
estimate the population size Nc and the time τc to enter
the diluted regime. Usually, populations grow to large
sizes when V > 0, and thus we only focus on V > 0.
In this parameter range, the coordination game is neg-
ligible. Thus we only consider the dominance game for
ξ.

The average time interval between two successful fixa-
tion of mutants is Tmut in real time unit. On the other
hand, the time that mutants reach its carrying capacity
can be estimated as Tgrowth ≈ ln(N)/λ. The population
enters the diluted regime when Tmut ≤ Tgrowth. This

happens at the population size Nc = W (eξλ/λbµ). We
can obtain the necessary time τc to reach the population
size Nc from the Eq. (E4),

Nc ≈Mλe(D+V )τc , (F1)

where we neglected the term e
2D+V
D ln(ã). Hence,

τc =
1

D + V
ln

(
W
(
eξλ/λbµ

)
Mλ

)

≈ 1

D + V
ln

(
ξ

λbµM

)
. (F2)

.CC-BY-NC-ND 4.0 International licenseIt is made available under a 
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/397810doi: bioRxiv preprint first posted online Aug. 22, 2018; 

http://dx.doi.org/10.1101/397810
http://creativecommons.org/licenses/by-nc-nd/4.0/


12

10
3

10
4

10
5

10
6

10
7

10
8

10
9

 0  0.2  0.4  0.6  0.8  1

(a)
N

c

θ

µ=10
-5

µ=10
-4

µ=10
-3

10
-1

10
0

10
1

10
2

10
3

 0.2  0.4  0.6  0.8  1

(a)

(b)

τ c

θ

µ=10
-5

µ=10
-4

µ=10
-3

FIG. F1. The criteria of population sizes Nc in which the
population enter the dilute regime is shown in (a). The time
τc to reach this population size is drawn in (b). The average
population size decreases for θ < 0.206, and thus the pop-
ulation does not reach Nc unless otherwise they start from
N ≥ Nc. Hence, we only show τc for θ > 0.206. Both Nc

and τc are decreasing in θ. We used M = 1000, λb = 0.9,
λd = 0.4, and µ = 10−5 for calculations.

In the above approximation, we used W (x)|x→∞ =
ln(x)− ln(ln(x)).

In this regime, the population size is far from the car-

rying capacity, and death from competition does not play
an important role. Hence, the constant death and birth
rates are determining the population size N ,

dN

dT
= λN. (F3)

The mutation event time per real time is

dt

dT
= µλbN, (F4)

where λbN gives the number of divisions per real time
unit. Combining above two equations, we can obtain

dN

dt
=

λ

µλb
. (F5)

Thus, the population size N is linearly increasing in t

N(t) = N(0) +
λ

µλb
t. (F6)

A new mutant emerges after 1/µ births, and during one
birth, a death happens with probability λd/λb. In a unit
time of one birth, the population size changes 1−λd/λb.
Hence, following every mutation event, the population
size linearly increases by λ

λbµ
. The results also agree well

with our prediction, as shown in Fig. 4. The results show
a linear growth of population size even when the popula-
tion size is smaller than Nc. This implies that the growth
of populations slows down in the long time regime for
large θ.
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