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SUPPLEMENTAL MATERIALS AND METHODS 1 

Discovery Analysis  2 

Genes, Reading, and Dyslexia Study  3 

The Genes, Reading, and Dyslexia (GRaD) study, is a multisite case-control study of RD 4 

in minority youth across the United States, Canada, and Puerto Rico. Detailed descriptions of 5 

recruitment, inclusion, and exclusion criteria for the sample are reported elsewhere [1]. Briefly, 6 

male and female children age 8-15 years of African American and/or Hispanic American 7 

ancestry were recruited for study (Table S1). Children were excluded if they were not of African 8 

American or Hispanic American ancestry, had less than 3 years of primary educational 9 

instruction in English, placed in foster care, had a medical history or neurological condition that 10 

could affect cognitive or neural development (i.e. preterm birth, prolonged stay in the NICU, 11 

seizures, acquired brain injuries), diagnosis of any cognitive or neuropsychiatric disorder (i.e. 12 

intellectual disability, autism spectrum disorder, depression), or documented hearing or vision 13 

impairment. Inclusion criteria for participants likely to have a reading disability included either 14 

history of poor reading skills (as documented by prior school or clinical testing), report of skills 15 

falling below expected level for age or grade, and/or provision of special services in the area of 16 

reading. For inclusion of participants likely to be controls, inclusion criteria were “competent 17 

reading skills” as identified by reading skills at or above current expectations for grade and 18 

performance above the 40th percentile on standardized school or clinical testing. A total of 1,432 19 

unrelated children were recruited into the GRaD study. Of these subjects, 1,331 children with 20 

high-quality DNA samples were included in the analysis. Informed consent was obtained for all 21 

participants and parents or legal guardians of subjects. Ethical approval of study protocols and 22 

recruitment was obtained by Institutional Review Boards at each recruiting site (University of 23 
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Colorado-Boulder, University of Denver, Tufts University, University of New Mexico, Kennedy 1 

Krieger Institute, Hospital for Sick Children-Toronto, and Yale University). 2 

Rapid Automatized Naming (RAN) and Rapid Automatized Stimulus Measures (RAS) 3 

RAN and RAS performance in the GRaD sample was evaluated using the RAN Objects, 4 

RAN Letters, and RAS Letters/Numbers tasks developed by Wolf and Denckla [2]. For RAN 5 

Objects and RAN Letters, subjects name aloud 50 familiar, high frequency objects or letters, 6 

respectively, arranged in a 5 × 10 array as quickly and accurately as possible. The format of RAS 7 

Letters/Numbers is similar to RAN Objects and RAN Letters, except that items in the array are 8 

from alternating stimulus categories (e.g. letters and numbers). Time to complete each task is 9 

recorded and converted to age-standardized scores. Age-standardized scores (mean of 100, SD of 10 

15) were then converted to z-scores (mean of 0, SD of 1) used for downstream genetic analyses 11 

(Table S2).   12 

Test of Word Reading Efficiency (TOWRE) 13 

 The TOWRE Total Word Reading Efficiency is a composite of both Sight Word 14 

Efficiency and Phonetic Decoding Efficiency scores and is an assessment of reading fluency (the 15 

ability to read words quickly and accurately) under timed conditions [3]. For this assessment, the 16 

subject is evaluated on the number of individual words (Sight Word Efficiency) and nonwords 17 

(Phonetic Decoding Efficiency) correctly read in 45 seconds. For each subtest, the total number 18 

of words read correctly is converted into a standard score based on age norms and then converted 19 

to a z-score (Table S2). The TOWRE Total Word Reading Efficiency composite was used for 20 

downstream analysis.  21 

Woodcock–Johnson Tests of Achievement, Third Edition (WJ-III) 22 



3 
 

The WJ-III Basic Reading Score is a composite of the WJ-III Letter-Word Identification 1 

and WJ-III Word Attack subtests [4]. The WJ-III Letter Word Identification subtest is an 2 

untimed measure of reading increasingly complex English words aloud. The Word Attack 3 

subtest is a decoding measure of nonwords or pseudowords in isolation. For each subtest, the 4 

total number of words read correctly is converted into a standard score based on age norms and 5 

then converted to a z-score (Table S2). The WJ-III Basic Reading composite was used for 6 

downstream analysis. 7 

DNA Collection, Genotyping, and Analysis  8 

Saliva was collected from each GRaD subject using the Oragene-DNA self-collection kit 9 

(OG-500; DNA Genotek Inc, Ottawa, Ontario, Canada). DNA was extracted using prepIT-L2P 10 

(DNA Genotek Inc, Ottawa, Ontario, Canada). Subjects were successfully genotyped for 11 

2,391,739 single nucleotide polymorphisms (SNPs) using the Illumina Infinium Omni2.5-8 12 

BeadChip at the Yale Center for Genome Analysis (Orange, CT). Initial genotyping quality 13 

control and SNP genotype calls were conducted using GenomeStudio (Illumina, San Diego, CA) 14 

and standard Infinium genotyping data analysis parameters to optimize genotyping accuracy. 15 

SNPs were removed from downstream analysis if they had missingness greater than 5% 16 

(n=22,849), Hardy-Weinberg equilibrium p<0.0001 (n=116,259), were not autosomal 17 

(n=60,551), or had a minor allele frequency (MAF) less than 5% (n=926,457). Samples were 18 

removed if they were missing more than 3% of their genotypes (n=39), if there were 19 

discrepancies between reported and inferred sex based on X chromosome heterozygosity (n=52), 20 

and IBD > 0.125 calculated using REAP (n=10) [5]. After quality control, there were a total 21 

1,331 samples genotyped with 1,265,623 SNPs.   22 

Population Stratification 23 
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Principal components (PCs) derived from genome-wide SNP data were used to correct 1 

for genomic inflation due to allele frequency differences across different ancestries (population 2 

stratification) were computed using EIGENSTRAT [6] (Figure S1). Visual inspection of a scree 3 

plot depicting the cumulative percent explained by each successive PC was used to determine the 4 

number of PCs needed for ancestry correction (Figure S2). A bend in the plot plus the 5 

subsequent PC dictated the number of PCs used. Adequate correction for population 6 

stratification was evaluated using a genomic inflation factor (λ) calculated using the R package 7 

GenABEL and PLINK v1.9 [7]. A λ factor below the standard threshold of 1.05 indicates 8 

sufficient correction for population stratification. For the full GRaD sample, three PCs were used 9 

as covariates to correct for population stratification (Figure S1 and S2A). 10 

Hispanic American and African American ancestry in the GRaD sample was determined 11 

based on genetic similarity to 1000 genomes reference populations ASW (Americans of African 12 

Ancestry in Southwest USA) and AMR (Ad Mixed American), which consists of individuals 13 

with Mexican Ancestry from Los Angeles USA (MXL), Puerto Ricans from Puerto Rico (PUR), 14 

Colombians from Medellin, Colombia (CLM), and Peruvians from Lima, Peru (PEL). A PC 15 

analysis in EIGENSTRAT was conducted on a combined AMR and ASW sample set using SNPs 16 

that intersected with the GRaD sample. Calculated eigenvectors were then projected on to the 17 

GRaD sample. Resultant eigenvectors from the AMR, ASW, and GRaD Study subjects were 18 

then clustered by k-means clustering into two groups using the first three PCs. Clusters were 19 

labeled by visually comparing centroids against the projection of the AMR and ASW reference 20 

populations. GRaD subjects that clustered with the AMR reference population were considered 21 

Hispanic American, while subjects clustering with the ASW reference population were African 22 

American (Figure S3).          23 
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An independent set of genetic ancestry specific PCs in the GRaD sample, stratified based 1 

on cluster identity with 1000 genomes populations AMR and ASW, were generated using 2 

EIGENSTRAT. The first three and first two PCs were used to correct for population 3 

stratification for the Hispanic American and African American clusters, respectfully, for 4 

downstream analyses (Figure S2B and S2C). 5 

Statistical Analysis: Multivariate Genome-wide Association Study 6 

 Multivariate genetic analysis jointly analyzing RAN Objects, RAN Letters, and RAS 7 

Letters/Numbers for pleiotropic effects was conducted using the R package MultiPhen [8]. 8 

MultiPhen allows for the simultaneous examination of multiple correlated traits using a reversed 9 

gaussian regression to determine the linear combination of traits most associated with specific 10 

genotypes at each SNP. It then performs a log likelihood ratio test on the joint model against the 11 

null model to evaluate association. All statistical models using the full GRaD sample were 12 

corrected for the first three PCs to correct for population stratification, sex, age, and 13 

socioeconomic status (SES). In this study, SES was assessed as a binary variable that describes 14 

whether the subject is enrolled in at least 1 government assistance program with a gross (pre-tax) 15 

income eligibility requirement of no more than 130% of the US federal poverty level (e.g. food 16 

stamps, Medicaid, housing choice voucher program, and/or Women, Infants, and Children 17 

program). Age, sex, and SES all account for significant trait variance in RAN Objects, RAN 18 

Letters, and RAS Letters/Numbers using a linear regression model in the full GRaD sample (p < 19 

0.05). Spanish language use in the home environment was considered as a potential covariate in 20 

the final model, but was removed because it did not significantly explain additional trait variance 21 

the in the full GRaD or Hispanic American subjects. To correct for multiple testing in the 22 
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genome-wide multivariate GWAS, we used the standard threshold of 5 × 10-8 (Bonferroni 1 

correction for 1 million tests) to determine genome-wide significance.  2 

Statistical Analysis: Genome-wide Meta-analysis 3 

Follow-up univariate GWAS on a latent variable of RAN Objects, RAN Letters, and 4 

RAS Letters/Numbers was conducted in the GRaD sample stratified by cluster identity to AMR 5 

or ASW reference populations (Hispanic American and African American, respectfully) and then 6 

used in a meta-analysis (Figure S3). The latent variable reflects an unobservable factor that 7 

influences more than one observed measure and can account for the correlation and covariation 8 

among observed measures [9]. This allows for the examination of genetic factors that contributes 9 

to a “shared” cognitive component of RAN and RAS tasks in a univariate framework. The latent 10 

RAN Objects, RAN Letters, and RAS Letters/Numbers variable was generated using a 11 

confirmatory factor analysis to fit a measurement model, with the goal of explicitly modeling 12 

and segregating measurement error to allow the formation of a single latent naming speed 13 

variable [10]. Mplus version 8 was used, and standard scores on the three RAN tasks were 14 

incorporated as indicators [11]. The model was initially fit for the entire sample, fixing factor 15 

loadings to be equal across ethnic groups. Then, model invariance across ethnic divisions within 16 

the overall sample was evaluated by freeing factor loadings across samples/groups. The resultant 17 

latent naming speed variable was used in a univariate GWAS for Hispanic American and African 18 

American samples, respectively, in PLINK v1.9, while correcting for the effects of age, sex, 19 

SES, and ethnic specific PCs (three for Hispanic American, two for African American) to correct 20 

for intra-ethnic stratification (Figure S2B and S2C). Summary statistics from the ethnic specific 21 

GWASs of the latent naming speed variable were then used in a meta-analysis using a sample 22 
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size weighted design in METAL [12]. A heterogeneity analysis was also conducted in METAL 1 

to determine whether observed effect sizes were consistent across ethnic samples.       2 

Statistical Analysis: Univariate ANCOVA 3 

Univariate ANCOVA testing the top SNP in the multivariate GWAS or RAN Objects, 4 

RAN Letters, and RAS Letters/Numbers, and GWAS meta-analysis of a latent naming speed 5 

variable against measures of reading fluency (TOWRE and WJ-III) in the full GRaD cohort was 6 

conducted in SPSS v.24. Models corrected for the effects of age, sex, SES, and the first three 7 

genome-wide PCs (Figure S2A).    8 

Replication Analysis  9 

Colorado Learning Disability Research Center (CLDRC) Cohort  10 

Replication was conducted on samples from the CLDRC. Methods related to recruitment, 11 

ascertainment, data collection (neurocognitive and genetic), and data processing are described in 12 

detail elsewhere [13 14]. Briefly, the CLDRC sample is a selected twin cohort for RD, ADHD, 13 

and other learning disabilities recruited from 27 school districts in Colorado [14 15]. Subjects 14 

were assessed with RAN Colors, RAN Objects, RAN Letters, and RAN Numbers [16]. For this 15 

task, participants named as many items in a 15 x 5 array as quickly and accurately as possible. 16 

The number of correctly named items in 15 seconds was recorded. Raw scores were standardized 17 

and age-regressed for each of the tasks based on a separate control sample consisting of typically 18 

developing children. All experimental procedures and written informed consent forms were 19 

approved by the institutional review boards (IRB) at University of Colorado-Boulder and 20 

University of Denver. 21 
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DNA was collected and extracted from saliva and genotyped using the Illumina Human 1 

OmniExpress genotyping panel (713,599 SNPs). Initial genotyping quality control and SNP 2 

genotype calls were conducted using GenomeStudio (Illumina, San Diego, CA). Initial quality 3 

control filters included the removal of samples with a call rate <98% and SNPs with a call rate 4 

<95%, HWE <0.0001, and MAF < 5%. SNPs on chromosome 10 identified in the GRaD 5 

discovery analysis that were not genotyped were imputed with genipe—an automated genome-6 

wide imputation pipeline that executes PLINK 1.07 [7], SHAPEIT [17], and IMPUTE2 [18] for 7 

data imputation to the 1000 Genomes Project, Phase 3 reference [19 20]. All imputed SNPs had 8 

an info score (IMPUTE2 imputation quality metric) greater than 0.9, indicating that all 9 

replication SNPs were imputed with high confidence. 10 

The sample of twins and siblings available for this study comprised 749 participants in 11 

total, mean age 11.7 years, age range 8–19, from 343 unrelated twinships/sibships (Table S1). 12 

For the present study, only participants of European descent were analyzed and one child per 13 

twinship/sibship were randomly selected for analysis based on the availability of RAN and 14 

genetic data. The total sample size for replication analysis was 318 unrelated individuals.  15 

Multivariate genetic analysis jointly analyzing RAN Colors, RAN Pictures, RAN Letters, 16 

and RAN Numbers standard scores for association at SNPs identified in the GRaD discovery 17 

analyses was conducted using MultiPhen while covarying for the effects of age, sex, and the first 18 

genome-wide PC calculated using EIGENSTRAT to correct for population stratification (Figure 19 

S2D).  20 

Bioinformatic Analysis 21 

 All analyses were conducted using positions mapping to genome build GRCh37/hg19. 22 
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GenoSkyline is an unsupervised learning framework that predicts tissue-specific 1 

functionality in non-coding regions of the genome by integrating genome-wide epigenetic data 2 

from the Roadmap Epigenomics Project and ENCODE [21-23]. Detailed description of tissue 3 

specific functionality has been previously described [21]. Briefly, GenoSkyline uses an 4 

unsupervised-learning technique that evaluates the presence of well characterized DNase 1 5 

hypersensitivity sites and histone marks (H3k4me1, H3k4me3, H3k36me3, H3k27me3, 6 

H3k9me3, H3k27ac, H3k9ac) and calculates a posterior probability score (GS score) that a given 7 

genetic coordinate is functional. A GS score of “1” suggests that the genomic region of interest is 8 

functional within the given tissue type, while a score of “0” suggests no functional significance. 9 

Pre-calculated, genome-wide, tissue-specific GS scores for whole brain and sub-regions of the 10 

brain (angular gyrus, prefrontal cortex, cingulate gyrus, anterior caudate, hippocampus, inferior 11 

temporal gyrus, and substantia nigra) were obtained from the GenoSkyline database.  12 

 Follow-up analysis of epigenetic data from the Roadmap Epigenomics Project was 13 

conducted to identify predicted chromatin state in a genomic region of interest across specific 14 

tissue types. We evaluated the 18-state model previously generated by the Roadmap 15 

Epigenomics Project. Briefly, a model was derived from a multivariate hidden Markov model 16 

that considers the combinatorial interactions of 6 histone marks (H3K4me3, H3K4me1, 17 

H3K36me3, H3K27me3, H3K9me3, and H3K27ac) across 127 epigenomes and predicts the 18 

chromatin state within a genomic region within 18 different classifications [22]. Brain specific 19 

regions sampled were angular gyrus, prefrontal cortex, cingulate gyrus, anterior caudate, 20 

hippocampus, inferior temporal gyrus, and substantia nigra. Data were visualized using the 21 

Washington University in St. Louis (WashU) EpiGenome Browser v.42.  22 
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 Linkage disequilibrium (LD) blocks were calculated using confidence intervals for CEU, 1 

AMR and YRI populations in 1000 Genomes Project Phase 3 [20 24]. SNPs with MAF < 0.1 2 

were removed prior to calculation of LD blocks. D’ values were extracted using the web program 3 

LDlink.     4 

 The 3D genome browser was used to visualize publicly available chromatin contact maps 5 

at 10 kb resolution from adult hippocampal tissue [25-27].  6 

Neuroimaging Genetic Analysis 7 

Pediatric, Imaging, Neurocognition, and Genetics (PING) Study 8 

Neuroimaging genetics analysis of volumes of cortical ROIs was conducted in the PING 9 

sample. Methods related to recruitment, ascertainment, data collection (neuroimaging, 10 

neurocognitive, genetic), and data processing are described in detail elsewhere [28]. Briefly, the 11 

PING study is a cross sectional sample of typically developing children ranging in age from 3-20 12 

years old (Table S1). Individuals were excluded from participating if they had a history of major 13 

developmental, psychiatric, or neurological disorders, brain injury, prematurity (i.e., born at less 14 

than 36 weeks gestational age), prenatal exposure to illicit drugs or alcohol, history of head 15 

trauma, or other medical conditions that could affect development. Subjects with learning 16 

disability or ADHD were not excluded. All experimental procedures and written informed 17 

consent forms were approved by the institutional review boards (IRB) at each of the 10 18 

participating PING study recruitment sites (University of California at San Diego, University of 19 

Hawaii, University of California at Los Angeles, Children’s Hospital of Los Angeles of the 20 

University of Southern California, University of California at Davis, Kennedy Krieger Institute 21 

of Johns Hopkins University, Sackler Institute of Weill Cornell Medical College, University of 22 
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Massachusetts, Massachusetts General Hospital at Harvard University, and Yale University). 1 

Parental informed consent was obtained for participants less than 18 years of age with child 2 

assent (ages 7-17). For individuals 18 years of age and older, written informed consent was 3 

obtained.   4 

DNA was extracted from saliva and genotyped on the Illumina Human660W Quad 5 

BeadChip (655,214 SNPs) for 1391 subjects in the PING study. Initial genotyping quality 6 

control and SNP genotype calls was conducted using GenomeStudio (Illumina, San Diego, CA) 7 

by the PING genomics core at the Scripps Translational Science Institute (La Jolla, CA). Initial 8 

quality control filters included the removal of samples with a call rate <98% and SNPs with a 9 

call rate <95%, HWE <0.0001, and MAF < 5%.  10 

In depth descriptions of methods for neuroimaging data acquisition and processing for the 11 

PING study are described elsewhere [28]. Briefly, structural MRI data were collected from all 12 

individuals using a standardized multiple-modality high-resolution structural MRI protocol 13 

involving 3D T1-weighted volumes across sites to maintain consistency across data collection. 14 

Image files in DICOM format were processed by the neuroimaging post-processing core at the 15 

University of California at San Diego using an automated processing stream written in 16 

MATLAB and C++. Cortical surface reconstruction and subcortical segmentation were 17 

performed using a fully automated set of tools available in the Freesurfer software suite. Cortical 18 

parcellation of sulci and gyri were automatically defined using the Desikan-Killiany Atlas 19 

integrated within the FreeSurfer suite [29]. All data (genetic and neuroanatomical) were obtained 20 

from the PING portal. 21 

Cortical volume regions of interest selection and statistical analysis      22 
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Left and right hemisphere cortical regions spanning the inferior frontal gyrus, 1 

temporoparietal region, and occipitotemporal area were selected for candidate region of interest 2 

analysis (Table S3). Left hemisphere structures spanning the inferior frontal gyrus, 3 

temporoparietal region, and occipitotemporal area comprise the canonical reading network, and  4 

show atypical patterns of functional activation in reading disabled children relative to typically 5 

developing children [30]. Respective right hemisphere regions were also included in the analysis 6 

since evidence suggests that naming speed is also associated with grey matter volume differences 7 

in right hemisphere frontal, temporoparietal and occipital regions [30 31]. Although 8 

hippocampus is not part of the canonical cortical reading network, the left and right hippocampus 9 

was included in the analysis to follow-up on tissue specific epigenetic and chromatin interaction 10 

findings in the present study.    11 

Imaging genetics analysis was conducted on 690 subjects with complete phenotype and 12 

genotype data that passed both neuroimaging and genotype QC. All analyses were corrected for 13 

the effects of age, sex, handedness, scanner device [32], intracranial volume, highest parental 14 

education, family income, and the first four genome-wide PCs calculated using EIGENSTRAT 15 

to correct for population stratification (Figure S2E). The SNP rs1555839 was genotyped using 16 

the Illumina Human660W Quad BeadChip in the PING sample and used for neuroimaging 17 

genetics analysis. Cortical volumes across 16 ROIs were tested for association with rs1555839 18 

using linear regression under an additive genetic model in PLINK 1.9 [33].  19 

 20 

 21 

 22 

 23 

 24 
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Figure S1: Results of principal components analysis (PCA) depicting the first 10 PCs plotted against one another in the full 
GRaD sample. Visual inspection of PC plots 1-3 reflect population structure, while PC 4-10 do not. Light grey dots = self-reported 
African American ethnicity; Dark grey dots = self-reported Hispanic American ethnicity; Black dots = self-reported Hispanic 
American and African American ethnicity.   
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Figure S2: Scree plots depicting cumulative variance explained with each additional consecutive principal component (PC) for A) the full 
GRaD sample, B) Hispanic American cluster subset of GRaD, C) African American cluster subset of GRaD, D) CLDRC, and E) PING. A 
bend in the plot represents the point at which each additional PC contributes to incremental gains in variance explained. PCs located to the left of 
the bend, plus one, are included in the final statistical models as covariates to correct for population stratification. For example, in the GRaD 
sample, the first three PCs, accounting for 6.6% of the variance, are used as covariates in the final models to correct for population stratification.      

 

 

 

 

A) GRaD B) Hispanic American C) African American D) CLDRC E) PING 



Figure S3: Results of PCA with PC projection of AMR and ASW reference populations on the full GRaD sample with K-
means clustering using two centroids. PC1 plotted against PC2. GRaD subjects clustering with the majority of AMR reference 
samples were identified as Hispanic American, while GRaD subjects clustering with the majority of ASW reference samples were 
identified as African American. With K-means clustering, there was 82.4% correspondence between self-reported African Americans 
in GRaD and cluster identification with the ASW reference population. For self-reported Hispanic Americans in GRaD, there was 
95.9% correspondence with AMR cluster identification    



Figure S4: Q-Q plot showing expected distribution of test statistics over observed for the 
multivariate GWAS analysis in the GRaD sample. 

λ = 1.047 



Figure S5: A) Manhattan and B) Q-Q plots summarizing results from univariate GWAS of 
RAN Objects.   

Bonferroni correction = 5 × 10-8 

A)  

B)  

λ = 1.00642 



Figure S6: A) Manhattan and B) Q-Q plots summarizing results from univariate GWAS of 
RAN Letters  

Bonferroni correction = 5 × 10-8 

A)  

B)  

λ = 1.00257 



Figure S7: A) Manhattan and B) Q-Q plots summarizing results from univariate GWAS of 
RAS Letters/Numbers  

Bonferroni correction = 5 × 10-8 

A)  

B)  

λ = 1.01514 



Figure S8: A) Manhattan and B) Q-Q plots summarizing results from meta-analysis of a 
latent naming speed variable in GRaD.   

Bonferroni correction = 5 × 10-8 

A)  

B)  

λ = 1.01313 



Figure S9: Pre-calculated GS scores (blue) from GenoSkyline for whole brain, angular gyrus, prefrontal cortex, cingulate 
gyrus, anterior caudate, hippocampus, inferior temporal gyrus, and substantia nigra. A GS score of “1” suggests that the 
genomic region of interest is functional within the given tissue type, while a score of “0” suggests no functional significance. 



Table S1: Demographic information for GRaD, CLDRC, and PING samples 

 

 Self-Reported Ancestry Child's Age in 
Years, range 

(mean) 

Sex  

Male:Female 

Sample Size 

GRaD Hispanic American 7.8-15.9 (11.3) 379:433 812 

 African American 8-15.8 (11.5) 212:233 445 

 Hispanic and African American 8.1-15.8 (12.1) 33:34 67 

 Total 7.8-15.9 (11.4) 624:700 1324 

CLDRC European 8-19 (11.6) 165:153 318 

PING aWhite 3.7-20.8 (12.1) 241:226 467 

 aAfrican American or Black 3.5-20.8 (13.2) 56:40 96 

 aAmerican Indian or Alaska Native 3.7-20.8 (12.1) 5:0 5 

 aAsian 3.6-21 (14.5) 16:48 64 

 Report More Than One 3.5-20.9 (11.8) 25:33 58 

 Total 3.5-21 (12.4) 343:347 690 
aUS census category  

 

 

 

 

 

 



Table S2: GRaD Assessments Descriptives: Descriptive statistics for assessments evaluated in 
the GRaD sample. Means reflect the z-score (mean = 0, standard deviation (SD) = 1) of the 
population standard score (mean = 100, SD = 15) available for each psychometric analysis.   

 

 Mean (SD) Skew Kurtosis 

RanObjects -0.198 (1.044) 0.341 0.055 

RanLetters 0.063 (0.938) 0.059 -0.081 

RasLettNum 0.050 (0.943) -0.128 -0.068 

TOWRE -0.489 (1.118) 0.019 -0.200 

WJ-III Basic Reading -0.365 (0.924) -0.473 1.279 



Table S3: Cortical regions of interest associated with reading ability and disability 

 

Inferior Frontal 
Gyrus  

Pars Opercularis 
Pars Orbitalis  
Pars Triangularis  

Temporo-parietal Supramarginal Gyrus 
Inferior Parietal Cortex 

Occipito-temporal Inferior Temporal Gyrus  
Fusiform Gyrus  

 



Table S4: Pearson correlation coefficients across RAN Objects, RAN Letters, RAS Letters/Numbers, Test of Word Reading 
Efficiency (TOWRE), and Woodcock-Johnson Basic Reading (WJ-III Basic Reading).  

 

 

 

**p < 1 × 10-32 (two-tailed)  

 

 RAN Objects RAN Letters RAS 
Letters/Numbers TOWRE WJ-III Basic 

Reading 

RAN Objects 1 0.621** 0.624** 0.413** 0.325** 

RAN Letters  1 0.781** 0.547** 0.464** 
RAS 

Letters/Numbers   1 0.578** 0.488** 

TOWRE    1 0.846** 
WJ-III Basic 

Reading     1 



Table S5: Meta-analysis results on latent naming speed variable derived from RAN and RAS performance in GRaD. 

 

 

Top 10 markers from a meta-analysis of ethnicity specific GWAS on a latent naming speed variable for RAN Objects, RAN 
Letters, and RAS Letters and Numbers in Hispanic American and African American participants in the GRaD study. Markers were 
assigned to genes if they fell within the canonical gene body as described by 1000 Genomes Project, Phase 3 (v80 GRCh37). CHR 
= chromosome, BP = Base Position, MAF = Minor Allele Frequency, Z-score = combined z-statistic, P-value = meta-analysis p-
value, Direction = summary of effect direction for each sample, HetISq = I2 statistic which measures heterogeneity on scale of 0-
100% across samples, HetPVal = P-value for heterogeneity statistic. 

 

 

MARKER CHR BP Minor 
Allele 

Z-score P-value Direction HetISq HetPVal GENE 

rs1555839 10 90382820 C 5.225 1.74 × 10-7 ++ 31.1 0.228 RPL7P34 
rs9540938 13 67441725 A -5.025 5.03 × 10-7 -- 0 0.779 PCDH9 
rs8188533 8 43586240 T -4.976 6.48 × 10-7 -- 0 0.580 -- 
rs6963842 7 107634989 G 4.953 7.29 × 10-7 ++ 63.1 0.099 LAMB1 
rs7463498 8 43447235 G 4.896 9.77 × 10-7 ++ 59 0.118 -- 
rs16870453 5 2795776 T 4.738 2.15 × 10-6 ++ 0 0.943 -- 
rs4320486 7 107643977 T 4.733 2.21 × 10-6 ++ 73.2 0.053 LAMB1 
rs701825 10 90417547 G 4.718 2.39 × 10-6 ++ 85.7 8.28 × 10-3 -- 

rs11177505 12 69516642 G -4.694 2.68 × 10-6 -- 54.4 0.139 -- 
rs8175494 8 43621389 C 4.628 3.69 × 10-6 ++ 0 0.401 -- 



 

Table S6: Univariate association analysis of RAN Letters in the CLDRC cohort displaying results from top markers identified 
in the GRaD multivariate GWAS and latent naming speed GWAS meta-analysis.  

 

MARKER CHR BP 
Minor 
Allele MAF BETA SE STAT P 

rs6963842 7 107634989 T 0.495 0.020  0.110 0.182 0.856 

rs1555839 10 90382820 C 0.319 -0.311 0.101 -3.063 2.38 × 10-3* 

rs701825 10 90417547 G 0.282 -0.345 0.103 -3.34 9.32 × 10-4* 
*Survives Bonferroni correction for multiple testing (p < 0.0161) 

         

         

         
 



Table S7: Genetic coordinates for LD blocks within chr10:90325000-90427000 

 

1000 genomes population Genetic Coordinates on Chromosome 10 
CEU 90325770-90334313 

90334338-90418065 
90422136-90426612 

AMR 90325133-90339593 
90340747-90341049 
90343398-90418065 
90422136-90426612 

YRI 90327653-90329787 
90331816-90334835 
90340747-90341049 
90342837-90381875 
90386161-90417499 
90422136-90425327 
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