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Humans learn to represent complex structures (e.g. natural

language, music, mathematics) from experience with their

environments. Often such structures are latent, hidden, or not

encoded in statistics about sensory representations alone.

Accounts of human cognition have long emphasized the

importance of structured representations, yet the majority of

contemporary neural networks do not learn structure from

experience. Here, we describe one way that structured,

functionally symbolic representations can be instantiated in an

artificial neural network. Then, we describe how such latent

structures (viz. predicates) can be learned from experience with

unstructured data. Our approach exploits two principles from

psychology and neuroscience: comparison of representations,

and the naturally occurring dynamic properties of distributed

computing across neuronal assemblies (viz. neural

oscillations). We discuss how the ability to learn predicates

from experience, to represent information compositionally, and

to extrapolate knowledge to unseen data is core to

understanding and modeling the most complex human

behaviors (e.g. relational reasoning, analogy, language

processing, game play).
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Introduction
As humans, we recognize our home, pet, or partner

regardless of our viewing angle and the concomitant

variation in the 2-D image on our retinas (e.g. Ref.

[1]). Similarly, when we listen to speech or view sign,

we understand linguistic structures that go far beyond

any physical description of the stimulus (e.g. Refs.

[2,3,4�]). Furthermore, we have the capacity to promis-

cuously apply what we know to new situations, for
www.sciencedirect.com 
example, if we have to improvise a recipe with novel

ingredients, we would never entertain cooking some-

thing by refrigerating it.3 These examples emphasize

several things. First, the ability to use ‘incomplete’ or

partial sensory experience to infer the latent structures in

the environment [5], and then reason and generalize

based on these structures [6], appears to be crucial for

everyday human behavior. Second, the domains where

humans outperform artificial intelligence systems (AI)

seem to involve inference beyond lower order statistical

relationships [7]. While it is clear that, in the limit, AI can

outmatch human performance on pure computation and

statistical tasks (e.g. medical imaging), it is not clear how

domains that require inference (e.g. analogy, scene

comprehension), decision making (e.g. diagnosis, game

play), or abstract rule generation (e.g. natural language)

can be approached without a profound change in the

principles of computation currently being espoused in

the mainstream of both cognitive science and AI (for

discussion see Refs. [4�,5–7]).

Here, we argue that the capacity to learn structured (i.e.
symbolic) representations from experience underlies the flexi-

ble, extrapolatory nature of human behavior [6,8��,9]. We

summarize the computational principles needed to

instantiate structured representations (viz. predicates)

in an artificial neural network [see also Ref. 10�],
and we describe how predicates can be learned from

unstructured data in an approach we call predicate
learning. Predicate learning represents the integration

of formal symbolic models with traditional neural com-

puting principles and capitalizes on the information car-

ried by oscillatory rhythms of neuronal computation.

The generalization problem and structured
representations
Advances in AI and machine learning [11] have produced

deep neural network (DNN) systems that reach and even

exceed human levels of performance on a range of cogni-

tive tasks [12]. DNNs can learn to perform a variety of

tasks without any prior representations or knowledge (e.g.

to play an Atari video game from pixel data and game

scores, see Ref. [12]), but it is well-known that DNNs

struggle with tasks that require generalization to input

from outside the bounds of the training set (c.f. ranging

from object recognition, inference, analogy, natural
Current Opinion in Behavioral Sciences 2019, 29:77–83
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language; [7,8��]). DNNs’ explicit (and intentional) lack

of structured representations likely plays a role in this

struggle, because accounts of how humans generalize

tend to rely on powerful symbolic languages [6,10�,13].
An important reason these languages are so powerful is

that they include predicates. A predicate is a data struc-

ture that can take (i.e. be bound to) arguments. Formally,

a predicate is a function that takes some argument(s) and

returns a truth value (e.g. specifying whether the argu-

ment(s) are members of a set). Functionally, a predicate

can be understood as specifying a property about its

arguments. For example, the predicate red(x) specifies

the property of redness about the argument x.

Predicates are suitable means for the flexible transfer of

information across contexts because the same represen-

tation can be used to effectively characterize wildly

different input data (e.g. the predicate contains can be

applied to broccoli and iron, but also to houses and rooms,

or to first-order logic and quantification). However, the

contemporary models that instantiate structured repre-

sentations face a complementary challenge compared to

DNNs: these structured models require specification, by

the modeler, of a collection of necessary representational

structures in advance of any actual learning; in other

words, they do not learn the contents of their structures

directly from the environment without the use of pre-

specified representations and rules [cf. 9,14�,15,16]. That

is, while structure-based models generalize more flexibly

than DNNs, they do not perform general ‘from scratch’

learning because they feature symbolic representations

that are specified a priori by the modeler [e.g. Refs.

9,15,16]. As a result, structured models often make strong

nativist claims, for example, that a large set of represen-

tational elements and the rules for building compositions

of these elements must be innate [17]. From a practical

point of view, structured models that do no learn their

structures can only be applied to problems for which a

solution is already known because the relevant structures

must be specified before the model runs.

Instantiation of predicates in artificial neural
networks
A key notion for the instantiation of structured represen-

tations is binding. Importantly, the mechanism for binding

predicates to arguments must meet two requirements

[18,19��]. First, the mechanism that carries binding infor-

mation must be completely independent of the represen-

tational elements that specify the identity of the active

objects and predicates. For example, the representational

elements long-haired and cat, and short-haired and dog
might be bound to form the propositions long-haired
(cat) and short-haired(dog). While the statement long-
haired(cat) has meaning (a cat that has the property of

having long hair) the elements long-hair and cat remain

independent when so bound. That is, the predicate long-
hair means the same thing whether it is bound to ‘cat’,
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‘dog’, or ‘automobile’. Second, the binding tag (the signal

carrying the binding information) must be dynamic. That

is, it must allow bindings to be created and destroyed on

the fly. For instance, if the cat in the above example gets a

short hair-cut, the binding of long-haired and cat must be

broken, and the very-same representation of cat must be

bound to the short-haired predicate to form short-haired
(cat) where the same representational element coding for

short-haired in short-haired(dog) is bound to exactly the

same representational element coding for the cat in long-
haired(cat).

Binding of structured representations has been instanti-

ated in neural networks in various forms since the early

1990s [19��,20–22]. The majority of approaches have used

synchrony of firing to bind an argument [19��,20–22],
though, we note synchrony-based systems do not learn

predicates from unstructured data because they cannot

separate predicates from their arguments without imple-

menting separate data types a priori. Below we describe a

predicate instantiation that exploits the asynchrony of

unit firing (for the computing relevance of asynchrony see

also Ref. [23]) in order to represent a predicate, role, and

argument. The architecture, called DORA (Discovery of
Relations by Analogy; [4�,8��,24�]), is descended from the

symbolic-connectionist system LISA [Learning and Infer-
ence with Schemas and Analogies; 21,22]. DORA is based

on two fundamental concepts from cognitive science

and neuroscience: (1) that learning and generalization

depend upon a process of comparison [25], and (2) that

information in neural computing systems can be carried

by the oscillations that emerge as its component units

fire [19��,25,26�].

A model for predicate learning
DORA (Discovery of Relations by Analogy; Doumas et al.
[24�]) is a neural network model that learns to represent

structured (i.e. functionally symbolic) representations

from unstructured examples without feedback. DORA

is descended from of the symbolic-connectionist system

LISA (Learning and Inference with Schemas and Analogies;
[20,21]). DORA Below we describe DORA’s architecture

and operations only in functional terms for the purposes of

brevity. The complete model including all implementa-

tional details can be found in Refs. [8��,24�].

The basic network macrostructure is presented in

Figure 1. DORA consists of a long-term memory (LTM)

composed of layers of bidirectionally connected units—we

refer to these units as tokens. Token units are yoked to

integrative inhibitors that integrate input from their yoked

unit and active token units in higher layers, and fire after

reaching a threshold. The yoked inhibitors serve the

purpose of supporting phasic firing and implementing

refractory periods in the token units. The bottom layer

of token units is connected to a pool of feature units, which

serve as distributed representations of objects in the world
www.sciencedirect.com
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Figure 1
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Macrostructure of the DORA model. Adopted from Ref. [8��].
(initially), and (after learning) predicates. Features can be

any kind of vector-based representations specified by the

modeler, to raw pixels from an image.

Units in LTM become potentiated, and enter floating

memory sets, which can be interpreted as analogues of

attention and working memory (WM; [27,28]). One such

set, the driver, corresponds to DORA’s current focus of

attention (e.g. a proposition in a story, or an image). A

second set, the recipient, corresponds to DORA’s active

memory (AM; e.g. items from LTM that the DORA has

retrieved based on its current focus of attention). A third

set, the emerging memory (EM), corresponds to new or

refined representations that the model learns (e.g. sche-

mas; see Ref. [24�]). Token units within driver, recipient,

and EM are laterally inhibitive (units in the same layer

inhibit one another). The above is a way to interpret the

function of these sets in the common jargon of cognitive

psychology.

Activation in DORA flows from the driver to the recipient

and the rest of LTM via the shared feature units. DORA’s

basic processing is summarized in Table 1. In brief,

DORA starts with some representation in the driver.
Table 1

Basic processing in the model (adopted from Doumas et al. [24�], Ap

1. Representations (objects or entire propositions) enter the driver.

2. Activation flows from the driver to the rest of the network via shared fe

3. If nothing in recipient:

a. DORA attempts retrieval via Luce choice rule.

4. If representations in recipient:

a. If no mapping connections:

i. Mapping via modified Hebbian algorithm (Hummel and Holyoak [14�]).
b. If mapping connections:

i. Learns new representations or refines representations via comparison-b

ii. Generalizes via relational generalization algorithm (Doumas et al. [24�]; H

www.sciencedirect.com 
Activation flows from the driver to the rest of LTM via

the shared feature units, and DORA will retrieve repre-

sentations into AM (i.e. units from LTM become poten-

tiated and enter AM; retrieval occurs via a Luce choice

rule [29]). After retrieval, as units in the driver become

active, they will produce patterns of activation on units in

AM (again, via shared feature units). Excitatory connec-

tions, called mapping connections, are learned within-

layer between co-active units in driver and recipient via a

modified Hebbian algorithm [20,24�]. In accordance with

any mapping connections DORA discovers, it will learn

new representations or schemas, or it will perform rela-

tional generalization, the application of structure to

another situation or set of inputs based on systematic

correspondence between mapping connections.

Below we describe some of the key elements of DORA’s

processing in more detail. We focus on two key mecha-

nisms, time-based binding, and new representation learn-

ing. We begin by describing the end state of DORA’s

learning: fully instantiated relational propositions. We

then describe how DORA learns these representations

from unstructured representations of objects. Full details

of these operations are reported in [8��,24�].
pendix A)

ature units.

ased learning (Doumas et al. [24�]).
ummel and Holyoak [21]).
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Time-based binding
After learning, symbolic propositions are represented by a

hierarchy of distributed and localist codes (see Figure 2a).

At the lowest layer, feature units code the features of

objects and roles in a distributed fashion. In the next

layer, localist predicate–object units (POs) conjunctively

code for individual predicates (or roles) and objects. In the

next layer, localist role-binding units (RBs) link object

and relational role PO units into specific role-filler pairs.

Finally, localist P units link RBs into whole relational

propositions. For example, a proposition like contain
(obj1, obj2) is represented as the container role linked

to obj1 via an RB unit, and the contained role to obj2 via an

RB unit, and both of these RBs linked via a P unit to form

the relational proposition contain (obj1, obj2).

While this encoding is sufficient for long-term storage, it

fails as an instantiation of dynamic binding: Binding

information is carried by conjunctive units that defini-

tionally defy predicate argument independence. In order

to successfully instantiate functional predicates, the

model must be able to dynamically bind predicates to

arguments. In DORA, dynamic binding information is

carried using time.

When a proposition like the one in Figure 2a is in the

driver and becomes active, lateral inhibition and the

yoked inhibitors will produce a systematic and repeating

firing pattern. In brief, bound predicates and arguments
Figure 2
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will fire in direct sequence and out of synchrony with

other bound predicates and arguments (Figure 2b). As the

proposition becomes active (i.e. the P unit is activated),

activation spreads to RB units which compete to become

active. One of the RB units will win the competition,

becoming more active and inhibiting the other

(Figure 2bi). The active RB unit will activate its PO

units, which will similarly compete to become active.

The predicate might become active first (Figure 2bi),

and after its yoked inhibitor fires, the bound argument

will become active (Figure 2bii). When the active RB’s

yoked inhibitor fires, the next RB unit will become active

(Figure 2biii) and will similarly activate its predicate

and argument in sequence (Figure 2biii–iv). In short,

binding information is carried dynamically in the units

that maintain role-filler independence (the PO and fea-

ture units) by the sequence of firing (the same units could

represent the inverse role-binding—container to obj2 and

contained to obj1—simply by changing the order of firing).

Figure 2c presents the same information in a wave dia-

gram. These activation patterns give rise of oscillatory

activity of units throughout the network, forming ‘neural’

oscillations.

Learning predicates using neural oscillations
At a basic level, DORA uses comparison to isolate shared

properties of objects (represented in the feature unit

layer) and to represent them as explicit structures. DORA

starts with representations of objects encoded as simple
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resented in the DORA architecture. (b) Time-based binding

nd feature units representing the container role become active. (ii) The

, marking it as bound to the container role (as they fire in direct

he contained role become active. (iv) The representation the token and

ontained role (as they fire in direct sequence). (c) Binding information
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feature-vectors (i.e. a token unit connected to set of

features describing that object). If DORA successfully

maps an object in the driver to an object in the recipient,

then these representations will become co-active, and

corresponding features of the two representations will fire

simultaneously, effectively comparing or superimposing

the activation pattern of their features in the feature layer.

For example, when DORA compares a square that is

inside some object to a triangle that is inside some other

object (e.g. the square inside the shield and triangle

inside the circle in the first row of Figure 1), then the

nodes representing the square and triangle fire together

(Figure 3a). Any features that are shared by both com-

pared objects (i.e. features common to both the square

and the triangle) receive twice as much input and thus

become roughly twice as active as features connected to

one but not the other (Figure 3a). DORA uses a self-

supervised learning algorithm we call comparison-based

learning (CBL) to learn an explicit predicate representa-

tion of the featural overlap of the co-active objects.

During CBL, for any layer above a layer with active

tokens, DORA recruits and activates a token unit if none

are already active (Figure 3b). When only single PO units

are active, DORA also recruits and activates a PO token

unit (Figure 3b). Connections between token units in

adjacent layers are updated via a simple Hebbian rule.

Because the strength of connections learned via Hebbian

learning is a function of the units’ activations, DORA

learns stronger connections between the new PO unit and

more active feature units (Figure 3c). The new PO thus

becomes an explicit representation of the featural overlap

of the compared objects (in this case the invariant prop-

erties of a ‘container’; see Refs. [8��,23] for discussion of

what these properties might be). In addition, DORA

learns a conjunctive link between the recruited PO and

the object in AM. The new PO unit serves as an explicit

and functional single-place predicate (Figure 3d),
Figure 3
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dynamically bound to its object when if it enters the

driver in the future (see above).

The same algorithm also allows DORA to link sets of co-

occurring predicate-argument pairs into multi-place rela-

tions. If a set of predicate–object pairs co-occur they will

be in the driver together. If DORA has previously

encountered the same set of predicate–object pairs and

encoded them in LTM, they can be retrieved into AM.

When these representations are then mapped, CBL will

result in a recruited P unit, which will learn connections to

the RB units of the predicate–object pairs. The result is a

multi-place symbolic relation similar to the one described

in the previous section. Note that predicates and objects

are not different datatypes in this architecture.

The DORA learning algorithm makes two interesting

predictions about human mental representations. First,

and most importantly, it suggests that we represent multi-

place relations as linked sets of single-place predicates.

Such a representational system is known as a role-binding

calculus, and there exists a large body of evidence that

human mental representations might indeed conform to it

[18,20,30]. Second, it makes the prediction that humans

should represent the constituent roles of a relation before

they represent the relation as a unified whole. This

prediction appears true of children (e.g. Ref. [31]).

DORA and the predicate learning approach account for a

wide-range of phenomena in relational reasoning, analogy,

cognitive development, and language processing (for a

review, see Doumas and Martin [18]). Most recently, we

have used the approach to demonstrate human level extra-

polatory generalization in artificial environments [8��]. We

augmented DORA with a simple visual pre-processor to

perform object detection and allowed it to learn predicates

from screen shots of the Atari game Breakout. We then used

tabular q-learning to teach DORA to use the representations
“container”

container+obj2

eatures

Recipientriver

Features

RecipientDriver

(d)

obj1 obj2
“container”

container+obj2

obj1 obj2
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d obj2) are compared (i.e. co-activated) and mapped (solid red

 layer (see text). (c) DORA learned connections between active units

d lines = stronger connections, dashed lines = weaker connections).

d to obj2 via time-based binding.
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that it had previously learned to play Breakout successfully.

Breakout requires the player to move a paddle on the

horizontally  in order to hit a ball at bricks at the top of the

screen. DORA was then able to transfer its knowledge of

Breakout to the Atari game Pong, in which the player moves

a paddle vertically to play a simple tennis-like game. Using

the predicate representations that it had learned playing

Breakout, DORA discovered the systematic correspon-

dences between the two games (both involve keeping a ball

in play using a paddle)and was able to successfully play Pong

at above human levels with no additional training. By

contrast, state of the art DNNs (e.g. a DQN based on

Ref. [12]) completely failed to generalize to Pong based

on training in Breakout. Our system was able to match

and surpass human performance on Breakout and Pong,

and importantly, it was also able to successfully return to

playing Breakout after it played Pong, a simple task for

humans that current non-structured systems fail at without

specialized interleaved training routines.

Neural oscillations as the rhythms of
computation
Predicate learning exploits a core set of neurophysiologi-

cal computing principles, namely that computation in a

neural network is rhythmic. Most crucially, predicates,

once learned, are dynamically bound to their arguments

by phase-lag, which is expressed as systematic asynchrony

of unit firing [19��,23,26�], or desynchronization between

the activation cycles of the nodes coding predicates and

arguments (Figure 2). During asynchrony-based—or

phase-lag-1—binding, as a predicate or proposition

becomes active, bound arguments and predicates fire

in direct sequence, and out of synchrony with other

bound predicate-arguments sets. This feature is what

allows the system to maintain independence between a

predicate and its argument(s) and achieve variable-value

independence [4�,10�,18]. At the same time, binding

information is carried in the proximity of firing (e.g. with

predicates firing directly before their arguments),

meaning that representing predicates in a neural

system relies critically on sensitivity to time, and rhythm,

as dimensions of computation. Synchrony-based—or

phase-lag-0—binding also occurs in the system depend-

ing on the computational goal, for example, a proposition

can be activated by having its bound arguments and

predicate fire together, but out of synchrony with other

bound role-filler sets, in order to perform propositional-

level computation of higher arities. By grouping repre-

sentations into phase sets, or what is in and out of phase in

the network, the system uses the rhythms of computation

to both separate and combine information as needed.

Cortical oscillations have long been implicated as the

indices of neural information processing [32]. Predicate

learning in an artificial neural network relies on exploiting

the naturally occurring ‘neural’ oscillations of distributed

computation over time. Being sensitive to how information
Current Opinion in Behavioral Sciences 2019, 29:77–83 
is carried in time in a neural system implies that the

dynamics of the system can themselves be learned from.

A similar principle appears in the dynamic reorganization of

cortical networks during learning in humans (e.g. in Ref.

[33]). Using oscillatory assembly activation to compute and

to learn is potentially transformative, not only for its

computational power (e.g. being able to learn from past

states and learn relations over multiple time points and

states), but also for the mechanistic link to neuroscientific

theory and data (neural oscillations), and to formal accounts

of cognition, including formalisms of natural language

and predicate calculi [4�,6,15,16,18,34].Computing with

neural oscillations represents a fundamental formal and

neurophysiological synthesis between how human-like

representations can be achieved in an artificial system that

learns, and how distributed neural computing systems,

including neuronal assemblies in biological brains, process

information.

Predicate learning offers an account of how complex

concepts might develop in neural computation systems

without the need to hardwire or encode a priori structure,

a theoretical and implementational limitation of current

structure-based accounts of cognition (e.g. in Refs.

[6,9,15,16]), and offers a solution to the classic generali-

zation problem that unstructured deep-learning systems

face (e.g. in Ref. [11,12]). A system that uses predicate

learning can discover, and predicate, what is latent in the

environment, and discover what is relevant for behavior.

Predicate learning ultimately relies on the capacity of a

system to be compositional — to host representations that

can be combined without changing core representations

in order to flexibly generate new representations as the

environment and behavior require.

In sum, we have described in brief how predicates can

be learned from unstructured data using rhythmic,

desynchronized neural oscillations. Learning symbolic

structure from signals that naturally occur in distributed

computing systems offers a promising approach whereby

the computational principles that can yield the highest

forms of the human mind (e.g. relational reasoning, formal

and natural language processing) can also be realized in

systems based on the computational primitives of neuro-

physiology.
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