Water Ordering on the Magnetite Fe₃O₄ Surfaces

Eman Zaki, Zdenek Jakub, Francesca Mirabella, Gareth S. Parkinson, and Hans-Joachim Freund

ABSTRACT: The interaction of water with the most prominent surfaces of Fe₃O₄ (001) and (111), is directly compared using a combination of temperature-programmed desorption, temperature-programmed low energy electron diffraction (TP LEED), and scanning probe microscopies. Adsorption on the ($\sqrt{2} \times \sqrt{2}$)R45° reconstructed surface of Fe₃O₄(001) is strongly influenced by the surface reconstruction, which remains intact at all coverages. Close to the completion of the first monolayer, however, the ad-layer adopts a longer-range (2×2) superstructure. This finding is discussed in the context of a similar (2×2) superstructure recently observed on the (111) facet, which exists over a significantly larger range of temperatures and coverages. In both cases, the long-range order is evidence that water–water interactions exert a significant influence on the structure already prior to the nucleation of the second layer. We conclude that the stability differences stem from the smaller unit cell on the (111) surface, and the ability of water to more easily form stable hexagonal ice-like structures on the hexagonal substrate.

The interaction of water with oxides, in particular with iron oxides, plays an important role in geology, electrochemistry, corrosion, and catalysis. Magnetite (Fe₃O₄) is one of the most explored oxide materials that have been studied using a “surface-science” approach. Prepared either as single crystals or thin films, the (111) and (001) surfaces of Fe₃O₄ were investigated intensively, primarily by scanning tunneling microscopy (STM) and low energy electron diffraction (LEED), in combination with density functional theory (DFT) calculations. For the (111) surface (Figure 1b), the results favor the single metal surface termination, i.e., the outermost layer consists of the tetrahedrally coordinated Fe₄tet ions placed with a (2×2) periodicity in the 3-fold hollow sites over the close packed O-layer. For this (2 x 2) structure, the water ad-layer forms an ordered Fe₃O₄(111)-(2×2) superstructure, as directly observed by LEED. The observation of water ordering was, in fact, inspired by the TPD spectra showing sharp desorption peaks at relatively high coverages (Figure 2a). In these experiments, water was dosed at 140 K solely to minimize the contribution of the ASW signal in TPD spectra. All three peaks followed first order desorption kinetics indicating the presence of water molecules having discrete binding energies and desorbing almost simultaneously at certain temperature (i.e., 200, 220, and 255 K), hence implying a certain degree of ordering. LEED movies recorded while heating the sample with the same heating rate as for TPD measurements (henceforth referred to as temperature-programmed (TP) LEED) allowed to link water ordering and the corresponding temperature, hence water coverage. This is illustrated in Figure 2b, where the intensity of the (2×2) superstructure spots is shown as a function of temperature together with the water desorption profile. Clearly, the (2×2) structure only forms after water desorbs via the peak at 200 K. Importantly, its formation only

Received: March 18, 2019
Accepted: April 30, 2019
Published: April 30, 2019
depends on water coverage and not on the adsorption temperature: the (2 × 2) LEED pattern appears on samples kept at all temperatures between 200 and 250 K at water exposures resulting in coverages above some threshold, although close to saturation coverage at this temperature. Therefore, the observed long-range ordering is thermodynamically driven and not kinetically limited and only occurs at average coverages between 1.2 and 1.8 ML as determined by calibration of a mass spectrometer.15 (Here, 1 ML is defined as one H2O molecule per Fe3O4(111) unit cell exposing one Fe ion, i.e., 3.2 × 1014 at cm−2.)

In addition, Figure 2b shows integral intensities of selected diffraction spots taken from the TP LEED movie (at 64 eV) on the sample exposed to 1 L of D2O at 140 K. The snapshot at 220 K is shown in the inset, and the unit cells are indicated. The 1 L TPD spectrum is shown as dashed line.

Figure 1. (a) Unit cell of Fe3O4 has the spinel structure. The lattice is based on a close packed oxygen lattice with octahedrally coordinated Fe (Feoct) and tetrahedrally coordinated (Fetet) cations. (b) Fe3O4(111) surface is terminated by Fetet cations above a close packed layer of oxygen. (c) Fe3O4(001) surface terminated with an intact layer of oxygen and Feoct atoms. However, a rearrangement of the subsurface cations distorts the structure leading to a (√2 × √2)R45° superstructure. The surface oxygen atoms marked with a yellow star differ from the others as they have no subsurface Fetet neighbor.

Figure 2. (a) TPD spectra of D2O (20 amu) adsorbed on the Fe3O4(111) surface at 140 K at increasing exposures. The heating rate was 3 K/s. (b) Intensity of the selected diffraction spots taken from the TP LEED movie (at 64 eV) on the sample exposed to 1 L of D2O at 140 K. The snapshot at 220 K is shown in the inset, and the unit cells are indicated. The 1 L TPD spectrum is shown as dashed line.

and its intensity, thus leading to intensity changes at the energy monitored. Accordingly, thermal desorption results in reverse changes. Figure 2b shows that the intensity of the (0,1) spot gradually increases upon heating. This can reasonably be explained by water desorption from the surface. Meanwhile, the intensity of the (0,1/2) spot, related to the Fe sublattice and mostly to the Fe topmost layer, exhibits nonmonotonic behavior and somewhat “mirrors” the TPD curve. It rapidly decreases with the onset of the water desorption and starts to increase at temperatures above 250 K, following recombinative desorption of hydroxyl species that are only remaining at the surface at these temperatures. Clearly, the intensity drop obtained at 150−250 K is linked to the shift of the I–V curve in the region close to the energy used here (64 eV), which suggests substantial changes in the Fetet−O interlayer distance at the oxide surface. This is likely due to the bond of the terminal hydroxyl to the Fetet ion. To date, acquisition of the whole I–V data set during sample heating, which would shed more light on the TP LEED results, remains technically challenging.

To examine whether water adsorption on magnetite depends on the surface plane, we have carried out similar experiments on the Fe3O4(001) films grown on Pt(001).12 The prepared films all showed sharp LEED patterns of the Fe3O4(001)-(√2
temperature region as compared to the Fe₃O₄(111) surface (i.e., 200–250 K, see Figure 2b). This renders its observation rather difficult and easy to overlook. Indeed, initial water coverage considerably affects the appearance of the (2 × 2) structure. At 1.5 L exposure and below, no such structure was detected, suggesting the water coverage is not sufficient to form it. The (2 × 2) structure is most markedly observed on heating of the sample exposed to 1.75 L water. At 2 L exposure, the (2 × 2) spot intensity is considerably reduced, and it further decreases at increasing exposures from 2.5 to 4, and 5 L. No LEED pattern could be observed on the 6 L sample. Comparison with the corresponding TPD spectra shows that the (2 × 2) pattern only appears after multilayer desorption and disappears before water starts to desorb via the β peak at 200 K (Figure 3c), which is in the region of the α° state. As a result, a temperature window for its observation becomes smaller at higher water coverages since the ASW desorption follows zero-order desorption kinetics, with the peak shifting toward higher temperatures. In comparison, long-range water ordering on the Fe₃O₄(111) surface occurs at considerably higher temperatures (Figure 2b), and its observation is therefore less sensitive to the initial water coverage above a certain threshold.

Figure 3c also shows a temperature profile for the intensity of the diffraction spots reflecting the reconstructed surface (R-spots), which seems to be even more complex than for the (111) surface. Nevertheless, it is clear that the (√2 × √2)R45° surface reconstruction is maintained on the water covered surface at our conditions. For comparison, previous LEED studies have reported that the reconstruction is lifted, either upon exposure to 2 × 10⁻⁶ mbar of H₂O at 273 K for 2 min (i.e., ~300 L) in ref 19 on a single crystal or even to 0.01 L at 165 K in ref 20 on thin films grown on Mo(001). This was interpreted as indirect evidence for water dissociation. Note, however, that the surface termination was not determined precisely in these studies. Turning back to Figure 3c, it is interesting that the intensity of the “reconstruction” spots maximizes simultaneously with the appearance of the (2 × 2) water ad-layer structure.

To shed light on the nature (thermodynamic vs kinetic) of the (2 × 2) structure observed during TP LEED measurements, we also looked at whether it may be obtained...
immediately upon water exposure. The results only showed faint \((2 \times 2)\) diffraction spots at low energies \((25 \text{ eV})\) in a small range of water exposures between 1.5 and 2 L. According to the TPD results (Figure 3a), at this coverage the “monolayer” water film completes, and the formation of the ASW film sets in. However, the intensity of the \((2 \times 2)\) spots remarkably increases upon heating and subsequent desorption of ASW-related species. This finding suggests that (i) water ordering is promoted by surface diffusion and that (ii) the formation of the ASW film is not the prerequisite for the \((2 \times 2)\) ad-layer formation.

The formation of a \((2 \times 2)\) water ad-layer structure on the \(\text{Fe}_3\text{O}_4(001)-(\sqrt{2} \times \sqrt{2})\text{R}45^\circ\) surface observed here by LEED is further substantiated by scanning probe microscopy. Figure 4a shows scanning tunneling microscopy (STM) and non-contact atomic force microscopy (nc-AFM) images for a water coverage close to 6 \(\text{H}_2\text{O/u.c.}\) \((\sqrt{2} \times \sqrt{2})\text{R}45^\circ\) unit cell \((u.c.)\) (coverage calibration based on the previously reported quantitative TPD and DFT15). The STM image is dominated by rows running in the \((110)\) directions, consistent with molecules being adsorbed at the surface \(\text{Fe}\) cations. nc-AFM using a CO-functionalized tip achieves superior resolution, and individual protrusions are discernible along the rows, along with additional protrusions located between the rows. The spacing of \(\sim 11.8 \text{ Å}\) is the repeat distance of the \((\sqrt{2} \times \sqrt{2})\text{R}45^\circ\) unit cell in this direction, suggesting the water adlayer structure is defined by the surface reconstruction at this coverage. A DFT-based search17 has previously shown that the most stable configuration at 6 \(\text{H}_2\text{O/u.c.}\) is a ring-like structure containing both molecular and dissociated water, with four species bound to the surface \(\text{Fe}\) cations, with a further two molecules stabilized at the bridge sites solely by hydrogen bonds. Figure 4b shows STM and AFM images when the coverage is increased slightly to 7–9 \(\text{H}_2\text{O/u.c.}\). Patches of the surface exhibit the \((2 \times 2)\) periodicity in STM and nc-AFM, as observed in LEED. Note that an additional protrusion is significantly offset from the center of the \((2 \times 2)\) cell. If it were in the center, this would correspond to \((\sqrt{2} \times \sqrt{2})\text{R}45^\circ\) order. We infer that the new structure is not simply formed by the addition of water molecules to the existing 6 \(\text{H}_2\text{O/u.c.}\) structure and that additional reconfiguration must take place to optimize the hydrogen bonding network. Together with the TP LEED data, we conclude that the structure of the water adlayer is highly sensitive to the coverage.

STM and AFM studies of water adsorption on the \((111)\) surface at low temperatures (to achieve high coverages corresponding to the ordered structure) are still missing. Such studies could verify the DFT-derived model of the water ad-layer, which is based on the cooperative formation of two-dimensional network of \(\text{H}\)-bonded dimers.15 Nonetheless, in the light of the \((2 \times 2)\) structure formation, we mention previously reported STM images21 obtained at room temperature on an \(\text{Fe}_3\text{O}_4(111)\) single crystal exposed to \(\sim 100 \text{ L}\) at 110 K, which showed random short rows of water related protrusions separated by 12 Å, i.e., double the surface lattice constant. In addition, our own room-temperature STM images of \(\text{Fe}_3\text{O}_4(111)\) films revealed water-related protrusions often showing a 12 Å periodicity (see Supporting Information). Therefore, it cannot be excluded that such structures, already formed in the initial stages of water adsorption, behave as the template for the long-range water ordering observed by LEED only at considerably higher coverages.

All in all, our results show that water forms ordered structures on both the \(\text{Fe}_3\text{O}_4(111)\) and the \(\text{Fe}_3\text{O}_4(001)-(\sqrt{2} \times \sqrt{2})\text{R}45^\circ\) surfaces. Although ordered structures have been reported for a few water/oxide interfaces,22–25 our study is the first to demonstrate the same phenomena on two major surfaces of the same oxide. While qualitative analysis of the LEED pattern allows us to identify structures with a surface symmetry different from the underlying oxide surface, we note that the intensity of the diffraction spots from the bare oxide surface (i.e., the \((1 \times 1)\) spots in Figure 2b and the \(R\)-spots in Figure 3c) remain almost the same at water coverage close to the onset of the ASW formation. This suggests that the final water adlayer most likely exhibits a “\((1 \times 1)\)” ordering at the highest coverages before multilayer growth sets in. Such structure have been predicted by DFT to be stable on the \((111)\) surface.15

The \((2 \times 2)\) ad-layer structures observed on these two surfaces differ depending on the coverage and temperature at which they form. Apparently, the \((2 \times 2)\) structure on the \(\text{Fe}_3\text{O}_4(001)-(\sqrt{2} \times \sqrt{2})\text{R}45^\circ\) surface is less stable than on \(\text{Fe}_3\text{O}_4(111)\) in terms of temperature window, i.e., 175–185 K versus 200–250 K, measured under the same experimental conditions. According to water coverage calibration done in ref 17, the \(\text{Fe}_3\text{O}_4(001)-(2 \times 2)\) structure is observed at a coverage of about 8 \(\text{H}_2\text{O/u.c.}\), or 1.2 \(\times 10^{15} \text{H}_2\text{O/cm}^2\). For comparison, the \(\text{Fe}_3\text{O}_4(111)-(2 \times 2)\) surface possesses about 1.75...
molecules per (1 × 1) unit cell, or 5.6 × 10^{14} \text{H}_2\text{O}/\text{cm}^2, i.e., about two times smaller.

Water adsorption on solids is usually rationalized in terms of competition between bonding to a (metal, oxide) surface and intermolecular H-bonding. Strong adsorption is often accompanied by water dissociation as in the case of Fe3O4(111), for which both microcalorimetry and TPD results measured the adsorption energy about 100 kJ/mol.16 Further adsorption occurs essentially on the hydroxyl precovered surface and results in half-dissociated dimers. According to the DFT calculations, H-bonding between water dimers further stabilizes the structure through the formation of a two-dimensional network, ultimately completing the first layer (monolayer). In top view, the network structure resembles the basal plane of hexagonal ice, observed on several (111)-oriented noble metal surfaces.26–28 Note that on metal substrates the ice-like layer formation occurs from the onset as water adsorbs weakly, at least at low temperatures, so that H-bonding dominates in the formed structure.

According to the TPD results and also microcalorimetry data (to be published), initial water adsorption on the Fe3O4(001)-(\sqrt{2} \times \sqrt{2})R45° surface is much weaker, about 70 kJ/mol, suggesting that water may adsorb molecularly at first. This would be consistent with the most recent DFT calculations,37 which utilize the subsurface cation vacancy model for the surface structure. Isolated molecules were predicted to be slightly favored (by about 5 kJ/mol) over a dissociated molecule (E_diss = −57 kJ/mol). Moreover, the DFT analysis favors a partially dissociated water dimer (and trimer) when two (three) water molecules meet at the surface. Partial dissociation causes even stronger interaction with the metal cations such that the formation of a hexagonal ice layer on this surface seems unfavorable due to the square symmetry of the underlying oxide surface. Instead, a ring-like structure covering the surface follows the periodicity of the surface, suggesting water bonding to the metal dominates over H-bonding. According to the DFT-derived structures at the highest coverages, where (2 × 2) ordering is observed (see Figure 4), many water molecules coordinate without forming direct bonds to a substrate. It seems, therefore, that the observed ordered structure is metastable and intermediate between mono- and multilayer water films and forms when hydrogen bonds begin to dominate over the water—surface interaction.

In contrast, the formation of ice-like layer is rather natural on the Fe3O4(111) surface having a proper surface symmetry. However, recent DFT calculations suggest that neither the symmetry of the OH patterns nor the similarity between a substrate and ice correlate well with the ice nucleation ability.29 Instead, the OH density and the substrate—water interaction strength can be used as descriptors for ice to nucleate on a solid surface. Our results may shed some light on this issue.

EXPERIMENTAL SECTION

For studying reactivity of magnetite surfaces, we made use of well-ordered Fe3O4(111)6,7,30 and Fe3O4(001)12 thin films grown on Pt(111) and Pt(001), respectively. The experiments were performed in several ultrahigh vacuum (UHV) chambers (background pressures were below 2 × 10^{-10} mbar) in FHI (Berlin) and TU (Wien). In Berlin, the setup was equipped with standard facilities necessary to grow oxide films. TPD spectra were recorded using a quadrupole mass spectrometer (Hiden 301 3F) having a gold-plated cone shield in order to minimize signals from the heating stage. Water (D2O, Sigma-Aldrich) was dosed using a directional doser. All samples were flashed in UHV to 900 K prior to water exposure.

The STM/nc-AFM experiments were performed on Fe3O4(001) single crystals of natural origin (SurfaceNet GmbH). The samples were prepared by cycles of sputtering (1 keV Ar+, 10 min) and annealing (900 K in UHV, with every other annealing step in a partial pressure of 1 × 10^{-8} mbar O2 for 20 min). The STM image shown in Figure 4a and all nc-AFM images were acquired at 78 K using an Omicron LT STM equipped with a qPlus sensor. The STM image shown in Figure 4b was acquired in a different vacuum system using an Omicron LT STM with a standard STM setup. In both cases, sample preparation and water exposure were performed in a separate preparation chamber with a base pressure below 1 × 10^{-10} mbar. Water (H2O) was exposed by backfilling the chamber using a high precision leak valve with the sample held at 150 K. Functionalization of the AFM tip with CO was performed in the manner described in ref 17.

ASSOCIATED CONTENT

* Supporting Information

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.jpcllett.9b00773.

STM images recorded at 300 K of water-contaminated Fe3O4(111) surfaces (PDF)

AUTHOR INFORMATION

Corresponding Author

*E-mail: shaihutdinov@fhi-berlin.mpg.de.

ORCID

Zdenek Jakub: 0000-0001-9538-9087
Francesca Mirabella: 0000-0001-8443-3652
Gareth S. Parkinson: 0000-0003-2457-8977
Shamil Shaikhutdinov: 0000-0001-9612-9949
Hans-Joachim Freund: 0000-0001-5188-852X

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

This work has been supported by the Deutsche Forschungsgemeinschaft through SFB 1109 and by the Fonds der Chemischen Industrie. E.Z. thanks the International Max-Planck Research School "Functional Interfaces in Physics and Chemistry" for a fellowship. G.S.P. and Z.J. gratefully acknowledge funding from the Austrian Science Fund FWF (START-Prize Y 847-N20) and the Doctoral College TU-D (to Z.J.).

REFERENCES
