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Abstract
We present a critical review of computational models of generalization of simple grammar-like rules, such as ABA and
ABB. In particular, we focus on models attempting to account for the empirical results of Marcus et al. (Science, 283(5398),
77–80 1999). In that study, evidence is reported of generalization behavior by 7-month-old infants, using an Artificial
Language Learning paradigm. The authors fail to replicate this behavior in neural network simulations, and claim that this
failure reveals inherent limitations of a whole class of neural networks: those that do not incorporate symbolic operations. A
great number of computational models were proposed in follow-up studies, fuelling a heated debate about what is required
for a model to generalize. Twenty years later, this debate is still not settled. In this paper, we review a large number of the
proposed models. We present a critical analysis of those models, in terms of how they contribute to answer the most relevant
questions raised by the experiment. After identifying which aspects require further research, we propose a list of desiderata
for advancing our understanding on generalization.

Keywords Rule learning · Statistical learning · Computational models · Neural-symbolic learning

Introduction

One key feature of human cognition is our capacity to
discover regularities in the environment and to generalize
them to novel cases. Crucially, generalization goes beyond
exploiting perceptual similarities. A well-known example,
introduced by Fodor and Pylyshyn (1988), is that an
individual who understands the sentence John loves Mary
can also understand Mary loves John1. To achieve that, an

1Fodor and Pylyshyn refer to this property of human thought as
systematicity.

Most of this work was carried out while the first author was
affiliated to the Institute for Logic, Language and Computation,
University of Amsterdam.
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individual must abstract from the concrete properties in the
input, and decide the extension of novel items to which the
abstracted regularity or rule applies.

In experimental linguistics, and concretely in the tradi-
tion of Artificial Language Learning (ALL), generalization
of structural combinatorial relations from language-like
input is known as rule learning2. In the last two decades, a
great body of experimental work has emerged, focusing on
how humans discover relations that range from identity rules
(Marcus et al., 1999; Gerken, 2006; Endress et al., 2007b) to
nonadjacent dependencies (Peña et al., 2002; Gómez, 2002,
2005; Endress & Bonatti, 2007a; Frost & Monaghan, 2016)
and even finite state grammars (Gomez & Gerken, 1999).

This experimental work is complemented with computa-
tional modeling studies, which use computational methods
to formalize, implement, and simulate hypotheses about the

2The term rule learning can be easily misinterpreted, since it appears
with different meanings in the literature. In particular, it has also been
used to postulate a specific theory of generalization (which we present
later), according to which the knowledge extracted in such experiments
must be explicitly represented as an algebraic symbolic rule. Unless
otherwise specified, our use of rule learning is interchangeable with
generalization; and rule is by default used to convey the same meaning
as pattern or regularity unless it appears in the context of the specific
theory that postulates algebraic rules.
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Table 1 Overview of the reviewed models

Neural networks Simple recurrent networks Baseline: Simple recurrent network (Marcus et al., 1999)

Analog encoding (Negishi, 1999)

Segmentation (Christiansen & Curtin, 1999)

Categorization (Seidenberg & Elman, 1999a)

Transfer Learning (Altmann & Dienes, 1999)

Prior experience (Altmann, 2002)

Non-sequential Autoencoder with Cascade Correlation (Shultz, 1999)

Autoassociator (Sirois et al., 2000)

With repetition detector Positional Binding (Shastri & Chang, 1999)

PLAYPEN (Gasser & Colunga, 2000)

Abstract Recurrent Network (Dominey & Ramus, 2000)

Symbolic Models Bayesian Lexical Model (Frank & Tenenbaum, 2011)

cognitive mechanisms that operate during the experiments.
One study that has become a particular focus for computa-
tional modeling work is that of Marcus et al. (1999): while
reporting successful generalization of grammar-like rules by
7-month-old infants, it claimed that a large class of con-
nectionist models, which were widely used for the study of
language learning (and cognition more generally), could not
solve this simple task.

Marcus et al.’s paper immediately caught the attention
of the field, and a great number of computational modeling
studies were presented in the years that followed the original
publication. These models aimed to explain the original
results, but in addition, they addressed the key question
of what is required in order to generalize to novel items.
Thus, a heated but contentive debate arose, and today, in
spite of the recent revival of neural network models, this
fundamental question is still not settled (e.g., see Calvo and
Symons 2014; Lake & Baroni 2018; Marcus 2018).

Motivation, goals, and scope

In the debate about whether connectionist models can
reproduce these results, important questions about how
children solved the task received less attention. The goal
of this paper is to revisit this debate, distill what the
presented studies have shown about rule learning, and
identify what still requires more investigation. It is not our
goal to conclude the review with a choice for the “best”
model(s); instead, we aim to learn lessons from the variety
of presented models3.

3The idea of revisiting this unsettled debate was partly inspired by the
unpublished MSc thesis of Woensdregt (2014).

Despite the vast existing literature on experimental work
on rule learning, in this paper we focus exclusively on the
Marcus et al. study, for several reasons. First, this study uses
very simple rules, involving a repetition on a certain position
in a syllable sequence, which can be thought of as basic
to accomplish generalization in any domain. Second, even
though these rules are very naturally formalized in symbolic
models, neural network modelers did not find consensus on
what is needed for the latter class of models to learn these
rules.

Our work should facilitate navigating the abundant
literature following up on the Marcus et al. study, and
analyzing the main contributions therein. To that aim, we
identify the main categories of models (Table 1). Note that
some models could be classified in more than one category;
we have chosen to classify the models according to the
properties that allow for the clearest presentation of the
similarities and contrasts between models, and of the types
the arguments put forth in the debate.

As can be seen in Table 1, the number of models of
each class is very uneven, with neural networks dominating
the discussion—although some of these neural models may
be considered hybrid symbolic-connectionist. This is not
a choice, but a reflection of the existing literature. This is
probably due to the simplicity of the Marcus task, which is
almost trivial for symbolic models (although symbolic models
can help address relevant questions, as we argue later).

In the remainder of this paper, we describe the empirical
findings from the experiment by Marcus and colleagues,
and then jump to describing and critically analyzing the
existing models. We then identify the contributions of
the modeling work and organize them around four main
questions. Our overview allows us to determine the progress
made on different aspects of perception, representations and
learning, but also to recognize that the evaluation criteria
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Table 2 Stimuli used in experiment 1 in Marcus et al. (1999)

Familiarization Test

ABA ga ti ga li ti li ni ti ni ta la ta wo fe wo

ga na ga li na li ni na ni ta ti ta de ko de

ga gi ga li gi li ni gi ni ta na ta

ga la ga li la li ni la ni ta gi ta

ABB ga ti ti li ti ti ni ti ti ta la la wo fe fe

ga na na li na na ni na na ta ti ti de ko ko

ga gi gi li gi gi ni gi gi ta na na

ga la la li la la ni la la ta gi gi

3x triplet (random order)

used in the different studies hamper model comparison
and occasionally fail to show success in the task. Finally,
we outline an agenda for further research, with concrete
desiderata for future models.

The original study

The experimental study presented by Marcus et al. (1999)
investigated the acquisition of grammar-like rules by 7-
month-old infants. Designed as an ALL experiment, this
work uses language-like stimuli consisting of ‘words’
sampled from a manually designed artificial language.
The strength of this method is that the properties of the
artificial language can be carefully manipulated by the
researchers, and thus languages are created conforming to
the regularities that are being investigated—which can be
statistical relations between syllables, prosodic patterns,
dependencies, or any other type of structural information
of interest. In this way, researchers can incorporate the
structures under study in the stimuli while minimizing the
presence of other cues, in order to avoid confounds.

The authors ran a total of three experiments, in
which the participants were first familiarized with a short
speech stream, and then tested on a different set of
speech stimuli. The familiarization stimuli were created
according to a certain ‘rule’ (which we will also call
‘pattern’ or ‘grammar’). For instance, in one condition,
the familiarization stimuli consisted of triplets of syllables
underlying the “ABA” rule. A possible speech stream would
thus be li na li – ta la ta – ni la ni – ga gi ga – ..., where
the dashes denote silence gaps of 1 second). Crucially, all
the grammars used for generating the stimuli (ABA, ABB
and AAB) involve syllable repetition. Formally, this is an
identity rule: what matters is not which particular syllables
are used, but the fact that two syllables in certain positions
are identical.

Participants were subsequently tested with mixed stimuli,
containing triplets consistent either with the familiarization
grammar or with another control grammar (e.g., ABB). This
was done with the Head-turn Preference Procedure (HTPP),
which takes as dependent measure the amount of time that
infants direct their gaze to the sound speaker playing each
test stimulus (for details, see Nelson et al. 1995). Thus, if
infants learn the difference between the two grammars, the
expected outcome is a significant difference in the looking
times between the two grammar conditions. In order to
test whether infants could learn an abstract rule (instead of
memorizing the particular lexical syllables), the test stimuli
were deliberately chosen to contain syllables that never
appeared in the familiarization stream (e.g., de ko de for
ABA, or de ko ko for ABB).

The first experiment familiarized a group of infants with
speech stimuli generated with an ABA grammar, while
another group was familiarized with an ABB pattern. The
test stimuli were common to both groups of infants, and
involved triplets from both grammars, but containing novel
syllables. The complete stimulus set used in the experiment
is listed in Table 2.

The authors found a statistically significant difference in
the amount of time that infants directed their attention to
each test stimulus between grammar conditions: the stim-
ulus items that were inconsistent with the familiarization
grammar received more attention. At the very minimum,
these results suggest that infants picked up some regular-
ity that allowed them discriminate between items of each
grammar. 4

4One possible explanation for the novelty preference is the Goldilocks
effect: infants dedicate more cognitive processing to items that are
neither too predictable, nor too unpredictable (Kidd et al., 2012). The
inconsistent triplets in the test set can be thought of as items that meet
this criteria, since they differ from the familiarization grammar but all
follow the same, alternative pattern (the alternate grammar).
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Table 3 Stimuli used in experiment 2 in Marcus et al. (1999)

Familiarization Test

ABA le di le wi di wi ji di ji de di de ba po ba

le je le wi je wi ji je ji de je de ko ga ko

le li le wi li wi ji li ji de li de

le we le wi we wi ji we ji de we de

ABB le di di wi di di ji di di de di di ba po po

le je je wi je je ji je je de je je ko ga ga

le li li wi li li ji li li de li li

le we we wi we we ji we we de we we

3x triplet (random order)

However, the authors themselves identified a possible
confound: the consonants in the stimuli appear always in
voiced–unvoiced–voiced combinations. Since infants seem
to be sensitive to voicing distinctions from the first months
of life (Eimas et al., 1971), it is possible that the participants
learned the voicing pattern instead of the abstract ABA
or ABB rule. This pattern would certainly be a type of
generalization, although it would relate phonetic features
rather than ‘lexical’ items (syllables)5 . In order to rule
out this possibility, a second experiment was performed
with stimuli that controlled for these patterns, as shown
in Table 3. The responses of this second experiment again
showed a significant novelty preference, so the authors
conclude that infants learnt the abstract rules.

In spite of this control, yet another interpretation was
possible: infants could have distinguished the two types
of stimulus items based on the presence or absence of an
immediate repetition. To test for this hypothesis, the authors
carried out a third experiment with two grammars that
contain an immediate repetition: ABB and AAB. In this
case, the participants again showed a significant preference
for novel stimuli, ruling out the alternative explanation. The
authors conclude that 7-month-old infants are capable of
abstracting simple grammar-like rules.

Whichmechanism?

What is the cognitive mechanism responsible for learning
these regularities? Seminal results on Artificial Language
Learning, and many other studies that emerged afterwards,
have been explained on the basis of statistical learning,

5Both generalizations involve a repetition, but differ on the aspect that
is repeated. In a voiced–unvoiced–voiced triplet, the voiced syllables
may be different, as long as they incorporate a voiced phoneme. In
contrast, ABA syllable sequences need not only preserve the voiced–
unvoiced–voiced pattern, but also employ identical syllables in the A
positions. Both patterns are an instance of a more general XYX rule,
where X and Y represent either phonetic features or syllables.

a domain-general mechanism that discovers regularities by
keeping track of distributional properties of the input, such
as co-occurrences and transitional probabilities (Saffran
et al., 1996a; Saffran et al., 1996b; Aslin et al., 1998).
Thus, one possibility would be that this is the cognitive
mechanism at play during the experiment.

The authors, however, reject this hypothesis. Their main
argument is that a statistical learning mechanism would
track distributional properties between observed lexical
items, and thus it could not account for the stimuli in the
test set, the statistics of which would amount to zero. The
authors claim that a cognitive mechanism of a different
nature must be at play; concretely, a rule-based mechanism
that operates over variables rather than observed items.

The proposed mechanism stores basic units from
the input stream (in this case, syllables) into registers
(variables), depending on their position in the triplet. Thus,
each triplet is decomposed in three variables X, Y, and Z,
and each of these variables represent the syllable appearing
in each position: for instance, lejile would be represented
as X=le, Y=ji, Z=le. According to this proposal, infants
learn rules that relate these variables rather than their
content: for instance, for stimuli in the ABA grammar,
the objective rule is [XYZ such that X equals Z]

(Table 4 lists the rules describing each grammar). Since
rules relate variables rather than items, they can naturally be
transferred to the unseen items in the test stimuli.

It is important to note that this proposal is lacking
relevant details for a model of human learning. To analyze
this point, it is useful to recall Marr’s levels of analysis

Table 4 Algebra-like rules corresponding to each grammar

Grammar Rule

ABA YZ such that X equals Z

ABB YZ such that Y equals Z

AAB YZ such that X equals Y
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(Marr, 1982). Marr suggests a topology for computational
models of cognition, such that: i) computational level
theories are concerned only with characterizing the problem
(what is the goal and why) and the strategy to reach a
solution, ii) algorithmic or processing level models propose
a mechanistic account of the process and the representations
in the cognitive system, and iii) implementational level
approaches explain how the process and representations are
physically instantiated.

The rule-based account offers a characterization of the prob-
lem: it suggests that the space of solutions involves rela-
tional rules over positional variables that represent syllables.
Thus, this proposal has elements of a computational-level
explanation, though a good account of the goal and the strat-
egy to converge to a certain rule are missing. In turn, the use
of variables may be taken as a representational component
of a processing level model, but an algorithmic explanation
is incomplete without a mechanistic account of the process
that transforms the input into the output.

The work we review in this paper attempts to fill in
these explanatory gaps. Upon the publication of the original
work, a fierce discussion emerged, largely dominated by
the proposal of many variants of neural network models.
The predominance of these types of models is somewhat
expected: connectionist models have great acceptance as
implementations of (a form of) statistical learning, but in
their standard form, they do not incorporate the symbolic
components required for representing variables. Thus, much
of the discussion centered on the question of whether
symbolic representations are crucial to account for these
results, and if so, how should they be incorporated in a
mechanistic model. It was not until years later that other
(symbolic) models provided a look at the results from
another perspective, attempting to fill in the missing pieces
of a computational level explanation.

In the midst of these discussions, other fundamental
questions about what really distinguishes these mechanisms
and what can be learned from the experimental results were
explored in much less detail. Our work delves into these
issues, but we first present a review of the different models
that were proposed to account for the experimental findings.

The neural networkmodels

Neural network models, the defining class of models in
connectionist theories of cognition (Churchland, 1980), are
seen as an implementation of statistical learning. These
models consist of a set of units (or artificial neurons) that
communicate through weighted connections, the weights
of which are optimized through a learning procedure to
perform a certain task.

There exist many flavors or architectures of neural
networks, varying in things like the topology of connections
or the training procedure. For this review, we find it most
convenient to distinguish between three main types: (i)
simple recurrent networks, (ii) neural networks with non-
sequential input, and (iii) neural networks equipped with a
repetition detector.

The simple recurrent networkmodels

The simple recurrent network (SRN) was proposed in
Elman (1990) as a variant of the classic feed-forward
network, specialized in learning regularities over sequences.
The main contribution of this network is to process input
data that unfolds through time. The architecture of an SRN
(which can be seen in Fig. 1) incorporates a ‘context’ layer.
At every time step, the activation values of the hidden
nodes are copied into the context layer. The context layer
is connected, through normal connections, to the hidden
layer. The hidden layer thus reads activations from both the
input layer and the context layer. Therefore, the internal
representations depend on the previous state of the network,
incorporating in this way a form of memory.

In their original study, Marcus et al. report simulations of
their experiment with an SRN. In their work, the network
was trained to predict the next syllable in the familiarization
sequence. After some training, the model could perform
well on the familiarization stream, but it did not yield good
results with the test stimuli.

As mentioned before, the authors attributed this failure
to the lack of symbolic operations, since this model does
not explicitly encode variables. This argument had already
been put forward for the broader case of generalization
to novel input (Marcus, 1998), and it is consistent with
the postulation of a specialized rule-based mechanism for
generalization.

Marcus et al.’s interpretation proved controversial,
however, and led many alternative computational models
being proposed, as well as rivaling ideas about the nature of
the rule learning mechanism. We now describe the proposed
models, starting with those that maintain the architecture of
the SRN but apply some variation.

An SRN with analog encoding

Negishi (1999) suggests that the lack of generalization in the
original simulations is due to the fact that the encoding is
based on binary activations. Instead, the author proposes to
represent features of the input as real numbers; concretely,
vowel height and place of articulation. The author replicated
the original simulation with this encoding, obtaining larger
prediction errors for the inconsistent test items—a fact that
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Fig. 1 The SRN models. Figure 1a shows the basic SRN model used in the original simulations. In the variant SRN models, the part of the
architecture that is common to the basic SRN is drawn in lighter color

can be interpreted as reproducing the increased attention
over inconsistent test stimuli observed in the experiment.

In a response to this study, Marcus (1999a) argues that the
use of analog encoding can be seen as endowing the network
with registers: if an input node represents all possible values,
then it suffices to connect it to the output node with a
weight of 1, and thus, the node would act like a variable
that instantiates a particular value at a given time. (To us,
this reasoning is not so convincing when applied to SRN
models: the non-linearities in the hidden layer, and the
connection with the recurrent layer do not permit the direct
copy proposed by Marcus. As argued in Sirois et al. (2000),
variable bindings are only effective if they can be accessed
for further computation).

SRNs optimized for a different goal

Segmentation

Christiansen and Curtin (1999) (and later also Christiansen
et al. 2000) note that the same type of distributional knowl-
edge that allows infants to perform speech segmentation at

similar age (as attested by Saffran et al. 1996a) could be the
basis for their success in the experiment reported by Mar-
cus and colleagues. In other words, since infants are capable
of tracking statistical properties that allow them to segment
the input, these performed computations may also be helpful
for the task proposed by Marcus et al. To test this hypoth-
esis, the authors use an existing SRN model that learns
to segment speech using different types of probabilistic
information, presented in Christiansen et al. (1998).

This model is presented with a sequence of phonemes
(instead of syllables), encoded with phonological features,
primary and secondary stress, as well as whether the
phoneme is the last one in a triplet (and therefore it is
followed by a 1-s silence gap; see Table 5 for more details).
The model is trained to predict an arbitrary representation
of the next phoneme in the sequence, but also whether
the phoneme is a syllable boundary, that is, whether it is
followed by a 250-s silence gap (which is the length for
pauses within triplets). In this way, the model is expected
to learn to segment syllables after having been given the
information about triplet boundaries.
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Table 5 Encoding used in the neural network models reviewed

Models Unit Scheme Features

Marcus et al. (1) Syllable Localist — Binary

Marcus et al. (2) Syllable Distributed — Binary 6 phonetic features

Negishi Syllable Distributed — Analog Place of articulation and

Continuous vowel height

Christiansen&Curtin Phoneme Distributed — Binary 11 phonological features,

primary and secondary stress,

and presence of 1s gap

Seidenberg & Elman Syllable Distributed — Binary 12 phonetic features

Altmann and Dienes Syllable Localist — Binary

Shultz Triplet Localist* — Analog *Localist for syllables

Sirois et al. Syllable Localist — Analog

Shastri&Chang Syllable Distributed — Binary 6 phonetic features

Gasser&Colunga Triplet Localist* — Binary *Also includes an angle

Domeney&Ramus Syllable Localist — Binary

The authors evaluate the model in two ways. First, they
report that the network performs better at segmenting syl-
lables belonging to triplets that are not consistent with the
training grammar. The authors claim that the inconsistent
items are therefore more salient, and this would explain why
infants in the experiment pay more attention to inconsistent
test items. Second, an analysis of the learnt internal representa-
tions is performed. The authors find that the representations
for consistent and inconsistent triplets are distinguishable,
as revealed by a two-group discriminant analysis.

To us, the task that this model is trained is somewhat
unnatural: given that the speech stream is already segmented
in syllable triplets with perceptible silence gaps, it is not clear
why infants would additionally attempt to segment the
stream into smaller units of the size of syllables. This fact is
also observed by Marcus (1999a). In this letter, the author
also argues that an analysis of the internal representations is
not a suitable evaluation, since representations must have a
causal effect on the output in order to be meaningful. Addi-
tionally, Marcus observes that the statistical significance of
the analysis of the internal representations may not be mean-
ingful, since the test consists of a very small number of
items (four) compared to the number of hidden units (80)
that provide the internal representation.

Transfer Learning

The next model we review (Altmann and Dienes, 1999,
based on an earlier model by Dienes et al. 1999), conceives
of generalization as an instance of transfer learning between
different domains. In the context of Marcus et al.’s
experiment, the authors identify the domains as defined

by familiarization stimuli and test stimuli. In order to
account for the distinct domains, the authors extend the
SRN architecture; concretely, the input and the output layers
are augmented with extra nodes, such that two separate
groups of nodes in each layer account for each domain.
Additionally, the SRN is extended with an extra layer (the
“encoding” layer), situated between the input and the hidden
layer. The architecture of this network can be seen in Fig. 1e.

The network is first trained as a normal SRN, using
only the input and output nodes of the first domain (D1).
In the test phase, the stimulus is presented to the group
of input nodes corresponding to the second domain (D2).
Crucially, the test items are presented several times, and—
contrary to the previously reviewed models—the network
continues updating the weights, with the exception of those
connecting the encoding layer with the hidden layer, which
remain “frozen”. By keeping those weights intact, the model
preserves some of the knowledge learned during training
and attempts to transfer it to the test stimuli.

As explained in Altmann (2002), the encoding used in
this model differs in one particular aspect: the representation
of pauses. The authors use two different vectors to encode
the pauses: one for the pauses that precede the onset of a
triplet, and another to mark the ending. In other words, the
silence gap between triplets is encoded as two consecutive
pauses, the final pause for the previous triplet and the
initial pause for the incoming triplet. In this way, the
learning algorithm may detect different associations for
onset and final syllables. We note that, besides unnaturally
representing what perceptually is one single silence, this
encoding provides the model with more explicit positional
information than is available to competing models.
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The authors measure the success of the network by com-
puting the Euclidian distance between the predicted and target
vectors, for the vectors resulting from the last iteration in the
test. The results show higher correlations for prediction in the
consistent grammar. Thus, it seems that this model managed
to capture the regularity in the input: the frozen weights in the
hidden layer presumably encode the learnt pattern, while the
rest of the weights are no longer constrained by the training
items, and thus allow for prediction of novel items. However,
Marcus (1999c) observes that this implementation is consis-
tent with the experimental results only when evaluating the
results by computing the distance to the target. If, instead,
one evaluates the most active unit in the predicted vector,
then the model oscillates between the two grammars.

Additionally, it must be noted that in this model the domains
are predefined, and there is no a priori reason for the test items
to be part of a different domain. The model requires a mecha-
nism that selects and freezes a subset of the weights, but it is
not clear when and under what circumstances this mechanism
would operate, and which particular subset of weights it should
freeze. Thus, although this model was clearly useful for showing
that freezing part of the weights and continuing learning only
on another subset of the weights may be a necessary for gene-
ralization in neural networks, we agree with Marcus that it is
not the final answer: the model is task-specific, and it remains
unclear how it can be related to other cognitive mechanisms.

Categorization

We now review a model that deviates from the original simu-
lations in two ways: by changing the task into categoriza-
tion, and by accounting for prior experience. Seidenberg
and Elman (1999a) observe that the SRN presented by Mar-
cus et al. had no previous knowledge, while infants in their
experiment had been exposed to natural language in their
environment. The authors argue that, by this prior expo-
sure, infants might have learned to represent phonological
similarity between syllables.

In order to account for prior knowledge, the authors
extensively pre-train an SRN with 120 different syllables.
In this pre-training phase, one single node is optimized
to output whether the current syllable is the same as the
previous syllable in the sequence. In this way, the SRN is
trained to learn identity between syllables.

The weights learned during pre-training are used to
initialize the SRN for the actual experiment, which is
also defined as a categorization task, this time involving a
different output node. Crucially, the network is not trained
only with items belonging to one type of grammar (as the
infants in the original experiment), but also with triplets
generated from both ABA and ABB.

When tested with the novel triplets, the network shows
responses close to zero for the ABA triplets and closer to

1 for ABB (concretely, 0.004 and 0.008 for bapoba and
kogako, and 0.853 and 0.622 for bapopo and kogaga). Thus,
it seems that the SRN learned to correctly discriminate
between the grammars.

However, although the incorporation of pre-training is
cognitively motivated, other aspects of this work require
further justification, as discussed also in response letters
(Marcus, 1999a, d; Seidenberg & Elman, 1999b). The sim-
ulations greatly deviate from the original experiment in
providing the model with negative evidence, and addition-
ally, the incorporation of a feedback signal both during
pre-training and training does not have its counterpart in the
original experiment, since subjects in the experiment did not
receive any form of feedback.

Marcus further observes that the output node is trained to
follow the symbolic rule ‘if X==Y then 1 else 0’, suggesting
that this evidences the need for symbolic operations.
Although the model is clearly trained under that rule, as
Seidenberg and Elman argue, the feedback is an external
signal, which does not modify the space of hypothesis of
the model. In other words, the fact that the supervision
signal can be expressed with a symbolic rule does not
entail that the network implements symbolic operations.
It is nevertheless not clear where the signal for learning
identity in the first place would come from, and whether it
is plausible that a region of the brain is dedicated to finding
identity relations in the input.

An SRN that accounts for previous experience

Before participating in the experiment, infants surely had
been exposed to language in their environment. Altmann
(2002) presents a study that accounts for prior knowledge
by pre-training a model with natural language sentences.
Concretely, the model is pre-trained to predict the next
word in a sentence, for a set of 10,000 sentences generated
from the grammar and vocabulary in Elman (1990). Note
that words are encoded with a localist vector, without
information about syllables or phonemes.

The architecture of the model and the encoding are
the same used Altmann and Dienes (1999) (reviewed in
“Transfer Learning”). In this study, the model is pre-trained
as explained above, and then trained and tested with the
Marcus et al. stimuli. Like in the previous proposals, the
model is allowed to learn during the test phase, but in this
study no connections are frozen, i.e., all the connection
weights can be updated.

The output of the model is evaluated by computing the
product moment correlation between the predicted vector
and the target. An analysis of variance shows that consistent
items exhibit a higher correlation. The authors conclude
that their model reproduces the empirical data; however,
the critiques that Marcus raised for previous work (Marcus,
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1999c), based on the fact that the model iterates over the test
items several times, apply also to these simulations.

Non-sequential neural networks

We now review two neural network models that do not
process the input stream sequentially, but instead, processes
triplets separately (i.e., without taking into account the
previous state of the network). These models are trained
to find a suitable representation of the input: the objective
function is set to minimize the error in reproducing the input
pattern in the output layer, so the network needs to build
representations in the intermediate layers that exploit the
crucial features that allow for reconstruction in the output.

An autoencoder trained with cascade-correlation

We first review the study presented in Shultz (1999)
(later replicated in Shultz (2001) with a different encoding
scheme). This model is implemented with an autoencoder
architecture (Mareschal & French, 1997), which attempts
to find a good representation (encoding) of the input.
Unlike the SRN models, this network is trained with
cascade-correlation (Fahlman & Lebiere, 1990), a training
algorithm that gradually adds new nodes to the hidden layer,
depending on the error (the difference between the model
prediction and the input vector).

In the original simulations, each syllable is encoded
with an arbitrary real number, which is represented in a
single node. The information is presented to the network
as triplets; thus, the input and output layers consist of
three nodes, each one corresponding to one syllable. For
the evaluation of the results, the author submits the error
produced in the output layer to a repeated ANOVA. The
results show a significant effect on grammar condition, with
more error for inconsistent test items. Shultz concludes that
this reproduces the original experiments, since more error
requires further cognitive processing—as would be reflected
in the increased looking times for inconsistent items.

Marcus (2001) argues that, due to using just one node to
represent each syllable, the model can easily learn to copy
the relevant syllables in the output. It is true that given the
topology of the network, which is built on the go, it is easy
to imagine that with the incorporation of a few nodes, the
input gets roughly copied in the output (although distorted
with the non-linear function applied to the hidden nodes),
but (Vilcu & Hadley, 2005) showed with further analysis
that the network does not perform such mapping.

Vilcu and Hadly further argue that these results are
only replicable for this particular stimuli; for ABA or ABB
sequences that involve different phonemes, the model is
unable to distinguish between the grammars. Additionally, the
authors show that the model does not generalize to stimuli

encoded outside the range of the real numbers employed in
the encoding.

It must be noted that this network operates over full
triplets, creating in this way a somewhat artificial treatment
of a continuous input. The next model we review incorpo-
rates a slightly more realistic treatment of time.

An auto-associator model

Sirois et al. (2000) argue for a model that more clearly
reproduces the experimental set up of Marcus et al., which
involves habituation. The proposed model is as a fully
connected neural network (i.e., all the nodes in the network
are connected to each other); the external input is presented by
activating a number of nodes, and the activity is propagated
to all the nodes (including themselves) for a few cycles. The
network is trained to reproduce this input, and in order to
achieve this goal, it needs to strengthen the weights between
nodes that have correlated activations, learning in this way
associations in the input.

The input is processed as follows: each syllable in a
triplet is presented to a different group of nodes, one at
time; but crucially, the activation of the previous syllables
is decreased (or ‘decayed’), creating in this way a fading
memory of the input. Once the three syllables in a triplet
have been presented, the activations of the network are
reset. Thus, the model implements a certain representation
of time, though only within triplets.

As for the evaluation, Sirois analyzes the number of presen-
tations required for the test items to be assimilated (i.e., to be
accurately reproduced by the network). The rationale is that
a larger number of presentations would predict increased
attention in infant behavior, since more cognitive resources
would be required. The outcome is a significant difference
between consistent and inconsistent items, so the model is
taken to reproduce the original findings.

It must be noticed that the close reproduction of the origi-
nal set up in this model is as much an advantage as a draw-
back: since the design is intimately tied to the experiment,
the architecture would need to be adapted for even small
changes of the stimuli. For instance, a simple variation of
the experiment that involved sequences of syllables of non-
uniform length (e.g., triplets and quadruplets) would not be
easy to implement with this architecture, since the number
of nodes required is determined by the number of syllables.
This is a clear disadvantage with respect to the SRN models,
which are flexible in this regard.

Neural networks with a repetition detector

We now review three models that have a dedicated
mechanism to detect repetitions of syllables in the input.
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Fig. 2 Model presented in Shastri and Chang (1999) (image courtesy of Lokendra Shastri). The numbers indicate link delays in the connections

A neural network with positional binding

(Shastri & Chang, 1999) present a model of the Marcus et
al. experiment that implements a form of dynamic binding
(Hummel, 2011). The model, originally presented in (Shastri
et al., 1993), is implemented as a neural network with two
groups of dedicated nodes for the input: one group that
represents the phonetic features for an input syllable, and
another group with three nodes corresponding to each of the
three positions in a triplet. The idea behind dynamic binding
is that the nodes of the two groups activate in synchrony,
and therefore the coincident activity can be exploited by the
network in order to learn the abstract pattern in the input.

This neural network model involves recurrent connec-
tions, but it is not implemented as a standard SRN. Instead,
the model (illustrated in Fig. 2) clamps some input acti-
vations and propagates the activity through the network.
After some delay, a target (the “correct” activation of the
positional information) is clamped in the network. The dif-
ference between the actual activations and the target is used
to update the weights through gradient descent.

Crucially, during the presentation of each syllable, all the
positional nodes in which the syllable appears are active
in the target; for instance, for the stimulus ledile, the first
and the third positional nodes are both active on each
presentation of le, and the second positional node is active
during the presentation of di. It must be noted that, with the
introduction of this form of feedback, the model is provided
with an actual mechanism for detecting repetitions.

When it comes to the Marcus et al. experiment, the perfor-
mance of the model is evaluated by computing the mean
squared error between the model activations of the posi-
tional nodes and the target. The error is considerably smaller

for test items consistent with the training grammar, and thus
the model appears to reproduce the empirical findings.

Shastri and Chang argue that this approach offers a plausible
mechanism to implement rules via biologically inspired
temporal synchrony. Thus, this model is not presented as a
counterargument to the claim by Marcus et al.; actually,
Marcus (2001) reflects that this model implements temporal
rather than spatial variables. However, as argued also in
Shultz (2001), the design of the model is very tied to the actual
experiment; additionally, the feedback is clearly unrealistic,
in providing the model with the expected outcome rather
than with the available information in the input. Therefore,
we conclude that it does not yet offer a full reconciliation
between symbolic and neural network models.

The PLAYPENmodel

Gasser and Colunga (2000) present a model (named PLAY-
PEN) that implements another form of dynamic binding.
The authors formalize the task in the Marcus et al. experi-
ment as extraction of correlations from the input: the authors
emphasize that infants generalize to novel items because they
learn relational correlations in the input, instead of content-
specific associations.

PLAYPEN is implemented as a generalized Hopfield net-
work, that is, a fully connected neural network model in
which weights are adjusted with the Contrastive Hebbian
Learning algorithm (Hopfield, 1984). The network, illus-
trated in Fig. 3, is provided with dedicated units that detect
sameness and difference. Therefore, its task is to reinforce
the correlations according to the relations of sameness and
difference found in the input.

As in the previous model, the authors assume dedicated
nodes for each syllable position in a triplet. Additionally,
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Fig. 3 The PLAYPEN model (image courtesy of the authors, Gasser &
Colunga 2000). Diamonds indicate difference relations; ovals indicate
sameness

the model is augmented such that each unit has an “angle”.
The specific value of the angle is arbitrary, but it provides
an additional dimension to the network, such that units with
similar angle can be treated similarly. In this way, Gasser and
Colunga implement a form of simplified dynamic binding.

The authors train ten instances of their model for each
grammar condition. Afterwards, four repetitions of each test
item are presented to the models by clamping the activation
of the corresponding units. The average activation value of
the relational units is stronger for the test items consistent
with the training grammar, and the interaction between
training and testing rule is significant(p < 0.001). Therefore,
it appears that the network has strengthened the connections
of the relations present in the familiarization stimuli.

In spite of the claims of biological plausibility of the
model, its actual implementation remains extremely tied
to the actual task, since the model comes with pre-wired
relations over explicit bindings. Still, the authors argue
that their model does not qualify as a symbolic model,
since variables in symbolic models are content-independent,
while PLAYPEN is sensitive to feature similarity between
the presented items. However, while we agree that the model
does not implement symbolic variables, it does incorporate
rules, and thus it embodies the assumption that infants are
equipped with a repetition detector.

The abstract recurrent network

Dominey and Ramus (2000) simulate the Marcus et
al. experiment with two models. Their first model is
based on an architecture called temporal recurrent network
(Dominey, 1995), a recurrent architecture in which only
the weights connecting the hidden and the output layer

are trained (while the rest are randomly initialized and
remain unchanged). Interestingly, the nodes in this network
are Leaky Integrate-and-Fire units: instead of single-valued
activations, these units produce continuous spikes.

The authors do not find with this model a pattern of
results that is consistent with the behavior of the infants
in the experiment. Therefore, they simulate the experiment
with an augmented version of the model, which they call
abstract recurrent network (ARN). The ARN model features
an additional short-term memory that stores the last five
syllables of the input (in order to account for the 7±2
magical number for short-term memory, Miller 1956), and
a “recognition” component that detects whether any of the
items in the short-term memory is the same as the actual
item. This information is then provided to the internal
state (the hidden layer), so that the model can exploit this
information while updating the weights between the hidden
layer and the output.

Given that the model is updated in continuous time, the
authors measure the response latencies of the activation of
the correct output nodes. These latencies should be smaller
for learned items, since the strength of the activations in
the network would influence the activity in the output. The
authors find that statistically significant evidence: consistent
stimuli items have shorter latencies, and this is taken to
predict shorter looking times.

This model therefore appears to be a promising approach
in incorporating successful learning with a more realistic
treatment of time. However, as mentioned in the previous
approaches, this network is endowed with a component that
actively looks for repetitions in short-term memory (and
even contains a node that fires when no repetition is found).
This results in the very strong postulation that infants must
be equipped with such a dedicated mechanism.

Importantly, this model adds some form of variables, in
line with the claims by Marcus and colleagues. This is due to
how the model accesses the augmented short-term memory,
which is based on isolated memory positions dedicated to
storing different items. It must be emphasized that this
behavior comes from how the memory is accessed, not by
the mere fact of adding short-term (spatial) memory; in
other words, a network with this kind of memory may learn
how to access it efficiently, and might eventually discover
how it can exploit that nodes in the memory are dedicated
to different items. This is not the case in the model by
Dominey and Ramus, in which the recognition component
is handcrafted to have positional access to elements in the
short-term memory.

The symbolic models

All the models reviewed so far are neural network approaches,
though some of them incorporate some form of symbolic
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structure. To the best of our knowledge, the only existing
symbolic models of the Marcus et al. experiment are Kuehne
et al. (2000) and Frank and Tenenbaum (2011). As we
reflect in “Which mechanism?”, a possible reason for this
asymmetry with the number of neural network approaches is
the simplicity of the grammars: when rules and variables
are assumed, the task is so straightforward that there is not
much room for unexpected findings. Nevertheless, in this
section we review the latter model, since we think it offers a
novel perspective onto the problem; concretely, it addresses
the question of what determines which, among all the
consistent rules, is preferred.

The Bayesian lexical model (henceforth, BLM; Frank &
Tenenbaum, 2011) is designed to infer the symbolic rule
that may have generated the observed data (i.e., the stimuli).
The hypotheses space consists of combinations of rules that
apply over syllables within triplets. Since the model is applied
to a variety of datasets, this inventory is adapted to each experi-
ment; in the case of the experiment by Marcus and collea-
gues, the hypothesis space incorporates an identity relation
over syllables in the input. Therefore, the model may converge
to any combination of identity relations that is consistent
with the stimuli.

The model uses Bayesian inference to decide which is the
most likely rule r (grammar) that may have generated the
observed stream of triplets T = t1, ..., tn; in other words, the
goal of the model is to find for which rule r the posterior
probability p(r|T ) is maximal. As defined in Eq. 1, the
posterior can be computed as a product of the likelihood of
observing the data assuming this rule p(T |r) (see Eq. 2) and
the prior probability of the rule p(r) (that is, the probability
of a rule before observing the input stream). In order for the
posterior to be a probability, this product needs to be norma-
lized by the sum of the probabilities for all possible rules:

p(r|T ) = p(T |r)p(r)
∑

r ′∈R p(T |r ′)p(r ′)
(1)

where

p(T |r) =
∏

ti∈T

p(ti |r), (2)

and where

p(ti |r) = 1

|r| . (3)

, with |r| denoting the total number of triplets that are
congruent with rule r.

The prior is defined as a uniform distribution; hence,
each rule is a priori equally likely. As for the likelihood,
the authors assume strong sampling, that is, the triplets
are assumed to have been uniformly sampled from the set
of triplets that a rule can generate. This entails that the
probability of observing a triplet under a certain grammar
is larger for “smaller” grammars (that is, grammars that

generate a smaller number of triplets), as seen in Eq. 3.
This creates a bias in the model in favor of more concise
grammars; for instance, for a triplet such as je-li-je, a
rule like ABA is more likely than a more general but
equally consistent rule ABC that involves no identity. This
bias is referred to as the size principle, and is consistent
with infants behavior in similar experiments (Gerken, 2006,
2010).

Given the simplicity of the experiment and the model, the
only rule that can compete with ABA or ABB is ABC, that
is, a grammar which generates triplets consisting of three
arbitrary syllables, which may or may not be repeated. This
model shows that more probability is attributed to the more
specific grammars ABA and ABB (consistent with the size
principle defined above).

The authors present two additional variants of this model:
one that assumes a certain amount of noise in the generative
process (regulated through an additional parameter), and
another that additionally allows for the possibility that the
data was generated from multiple rules.

Due to the addition of parameters, the model now
requires a procedure of fitting. The posterior probabilities
derived from the model are related to the human responses
through the use of the negative log probability (surprisal).
These two variants also attributed more probability (less
surprisal) to the rules involving an identity relation,
although some small probability mass was attributed to the
general rule ABC.

The BLM model thus identifies which rules would be
favored under a rational model incorporating a bias for less
general rules. Although the model is simple in comparison
to the neural network approaches (mostly due to the fact that
that the hypothesis space is relatively small and manually
defined, ad hoc for the experiment), it brings an additional
value that should not be underestimated. Concretely, it
is the only model that clearly defines which biases are
hypothesized to guide the preference for certain rules over
others. Thanks to that, this approach incorporates a principle
that postulates why the participants induced an identity rule
instead of a more general rule in which all triplets are
possible.

The model, however, is fiercely criticized by Endress
(2013), questioning the validity of the size principle
as a cognitive bias. The author reports an independent
experiment in which participants are exposed to instances of
an ABB grammar, using spoken syllables. The participants
could discover at least two rules: the identity rule between
the second and third syllable, or a more general rule
glossed as “any sequence of human speech syllables”. In the
subsequent test phase, participants had to choose between
an ABB sequence of monkey vocalizations, or AAB triplets
carried by human speech. The results show a preference
for the AAB human triplets, a fact that is interpreted by
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Endress as contrary to the size principle. Frank (2013), in
turn, argues that this data shows a modality preference rather
than a rule preference. The issue is therefore not settled: it is
not clear whether the subjects prefer certain generalizations
based on the “size” of the set of items that a rule can
generate, or based on a bias favoring acoustic aspects of the
input (i.e., the vocalizations).

Model evaluation

Although the models reviewed address the same experimen-
tal data, they greatly differ in the criteria applied to judge
their success in reproducing the empirical phenomenon. The
original experiment evaluates statistical significance over
looking times, and this is taken as evidence for individuals
having learnt the abstract rules. As is often the case in cog-
nitive modeling, the proposed models are not evaluated in
terms of reproducing the behavioral responses6, but rather,
on their ability to learn some regularity in the input that
allows for drawing a distinction between the two conditions.

In the original SRN simulations by Marcus and colleagues,
it is not clear how the output of the model was evaluated,
since the authors only report that “the network is unable
to distinguish the inconsistent and consistent sentences”.
In many of the follow-up papers, modelers use some error
measure (e.g., mean squared error) to compute how much
the predicted vectors deviate from the target (Negishi, 1999;
Altmann and Dienes, 1999, 2002; Shultz, 1999; Shastri
& Chang, 1999); generally this is accompanied with a
statistical analysis that shows whether the computed error
allows for distinction between grammars.

The rest of the reviewed studies apply other criteria.
Sirois et al. (2000) compare the number of stimuli
presentations required to succeed at generalization in each
condition. Seidenberg and Elman (1999a) report the average
activity of the output node in their model (trained for
grammar classification). Gasser and Colunga (2000) also
evaluate the average activity of certain nodes in the model—
in this case, those that are dedicated to encode the rule–,
and report the interaction between train and test rules. In
contrast, Christiansen and Curtin (1999) and Christiansen
et al. (2000) frame the problem as a segmentation task, and
evaluate their models on the prediction of internal pauses
within a triplet. Additionally, they analyze the internal
representations built by the model, and find that they are
distinguishable for each type of grammar. Dominey and
Ramus (2000) takes the latency of output node related to
the correct prediction as a proxy for looking times. Finally,

6Sometimes models are accompanied by response models that
transform the model output into a measure that can be interpreted as
a behavioral response, but this is not the case for the models we have
reviewed.

Frank and Tenenbaum (2011) report whether the grammar
preferred by their model is the one hypothesized by Marcus
et al. (ABA or ABB, vs. other consistent grammars such as
ABC).

In this paper, we argue that a new and consistent
evaluation methodology is needed (see desideratum 6).
There are two main arguments for this. First, given the
variability of measures used to evaluate the models, it
is not possible to compare them quantitatively. Second,
we observe that there is a fundamental problem with
most of these evaluation criteria: models are tested on
some form of discrimination between items generated from
each grammar, but not on whether they have learn the
hypothesized rule (exceptions to this are the models in
Shastri & Chang 1999, Gasser & Colunga 2000, and Frank
& Tenenbaum 2011). This stems from an ambiguity in
the original results: the statistical significance between
grammar conditions can emerge even if infants have not
perfectly learned the hypothesized rule.

Analysis of themodels

In the previous section, we have reviewed models that
appear to offer distinct perspectives on generalization.
We now identify what we think are the most relevant
questions that the Marcus et al. experiment raised, and
analyze whether these seemingly contrasting approaches
differ when answering those questions.

Question 1: Which features or perceptual units
participate in the process?

In the experiment, infants are exposed to a synthesized
speech stream. The way this stream is perceived must
impact what is learned from it, and therefore, details
of this perceptual process are relevant. For instance, do
infants perceive the input as a sequence of phonemes, or
is the syllable the most salient perceptual unit? Do they
analyze lower-level properties, such as phonetic features,
once a syllable has been recognized? Do other acoustic
dimensions, such as loudness or pitch, play a role in what
is learned? How does the insertion of silence gaps affect the
perception of the basic units?

These questions have not received much attention.
However, thanks to using computer modeling, researchers
are forced to make choices about how to represent the
input and how to present it to the model over time. This
is reflected in the encoding, which may, for instance,
incorporate some detailed acoustic aspects of the stimuli
or, instead, represent them with arbitrary symbols that do
not encode any of the acoustic properties of the item. The
latter is the approach taken by symbolic models such as the
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BLM, where each syllable is represented with an arbitrary
symbol. However, in the case neural network models, the
input vector can be coded in either way, as explained next.

In a localist encoding scheme, vectors are initialized
to a null value (typically, 0 or -1) except for one of its
units, which will have a non-null activation value (typically,
1). The position of the active unit indicates which item is
represented, but it does not convey any information of the
properties of the item; therefore, localist representations are
always arbitrary. On the contrary, in a distributed encoding
scheme, each unit may participate in the representation
of more than one item. Although these values can be
chosen arbitrarily, each unit may be chosen to represent
one particular property of the item, and thus, the distributed
vector would encode certain specific properties of the
stimuli. As shown in Table 5, models vary in the choice of
represented acoustic features.

The choice of the encoding scheme has an impact on
generalization. As argued in Marcus (1998), for a standard
neural network to succeed in generalizing to novel items,
such novel items must fall within the training space. Marcus
defines training space as the subset of the input space
covered by the feature values (i.e., the value of each unit)
of the training items. As an example, consider an encoding
scheme based on three features [f1, f2, f3], and a training
set consisting of the vectors [1, 1, 1], [1, 0, 0] and [1, 0, 1]. In
this setup, a novel item like [1, 1, 0] lies within the training
space, since all the features f1, f2 and f3 have appeared
in the training data with values 1, 1, and 0, respectively.
On the contrary, a novel item like [0, 1, 0] is outside the
training space, since f1 = 0 did not appear during training,
and consequently, a standard neural network model7 would
never predict an item with f1 = 0.

For this reason, the choice of the encoding scheme and
the dimensions to encode is relevant, since a certain amount
of overlap is needed for generalization in standard neural
networks. To illustrate this, consider the case in which
localist representations are used. The nodes that represent
the test items will be zero during familiarization, and
therefore the learning algorithm will update the connecting
weights until they converge to zero, so they would never
be active to predict novel items. On the contrary, with
distributed vectors, some of the units representing the test
stimuli may have been active during training.

This raises two relevant issues. First of all, only
distributed vectors stand a chance of yielding the desired
generalization behavior, and whether they do depends on the
overlap between vectors in training and test. This overlap

7The reason for this is that backpropagation updates the weights
independently; in particular, the weights connected to an output node
are updated independently to the weights connected to a different
output node. Marcus refers to this aspect of the backpropagation
algorithm as training independence.

can be accomplished in two ways: either by using pseudo-
random symbolic initializations that guarantee a certain
amount of overlap, or by investigating which are the relevant
properties of the input that need to be coded in the vector.
To our knowledge, this issue has also not been thoroughly
explored. Thus, this will be one of our points in the
desiderata for future work (1).

Second, the fact that a neural network may show only
some degree of generalization (by predicting a vector that is
close to the ‘correct’ vector) begs the question of whether
infants in the experiment are exhibiting similar behavior.
The behavioral responses show discrimination between
grammars, but the experimental paradigm cannot distill
whether infants would accurately predict the next syllable
or would just have a close enough prediction to distinguish
between test items. It is therefore not clear whether we
should expect models to produce perfect generalization or
a statistically significant difference in responses between
grammars. For this reason, we propose that models are
evaluated at least on both aspects, as we reflect later in the
desiderata (see desideratum 6).

Finally, an aspect of the representation of the input
that has not received enough attention is the treatment
of time. Almost all the neural network models reviewed
receive the input as discretized units, and update the weights
of the model after each presentation (sometimes during
a few timesteps, as in Shastri and Chang, 1999). The
only exception is the spiking neural network model by
Dominey and Ramus (2000), but even in this model we
can find discrete syllable registers in its short-term memory.
The use of discrete input has also forced the model to
have a very unnatural representation of pauses, which are
generally coded as one symbol—as if it were one more
item in the vocabulary. For this reason, in the desiderata we
suggest to investigate generalization over continuous input
(desideratum 9).

Question 2: What is the learning process?

One of the most ambitious goals behind the Marcus et al.
experiment and modeling work is to shed light on the nature
of the learning mechanism that is operating during the
experiment. In neural networks, the implemented process of
learning is commonly referred to as “associative learning”,
and it is characterized by responding to contingency
relations in the data. Most neural networks are trained
with some form of gradient descent; in the majority of
cases, the algorithm used is backpropagation (Rumelhart
et al., 1988). Although the neurobiological plausibility of
backpropagation has often been in questioned (Zipser &
Andersen, 1988; Crick, 1989; Stork, 1989), later work
argued that the learning procedure can be implemented
also with biologically plausible bidirectional activation
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propagation (O’Reilly, 1996, 1998); moreover, Xie and
Seung (2003) prove that—under certain conditions—
backpropagation is mathematically equivalent to contrastive
Hebbian learning, a process that is more commonly
accepted as biologically plausible. All the neural network
models reviewed implement some form of gradient descent,
with the exception of the proposal of Dominey and Ramus
(2000), which features a learning algorithm based on
cortico-striatal circuits in the brain (Dominey, 1995), which
researchers have interpreted as a form of least mean squares
(Lukoševišius, 2012).

The rule-based model proposed by Frank and Tenenbaum
(2011) learns through Bayesian inference over a predefined
space of hypotheses. Therefore, this model does not offer an
account of the process that induces the regularities in the first
place. The authors clearly state that the model is proposed
as an “ideal learner”: framed at Marr’s computational level,
the aim of this proposal is not to account for the constraints
of the human cognitive system, but rather to characterize the
space of solutions and what would be the optimal solution
given a certain prior. Therefore, a cognitively realistic rule-
based model that explains how learning takes place during
the experiment is still lacking.

Question 3: Which generalization?

The speech streams we are concerned with are generated
according to an ABA, AAB, or ABB pattern, which
involves relations between syllables. However, the stimuli
are also compatible with other rules, and—as discussed in
Question 1—regularities may also appear in other acoustic
dimensions.

In order to illustrate this, Table 6 shows some of the rules
that describe the relations between syllables in the triplets.
These can be as general as ‘three consecutive syllables’
(equivalent to rule (a)), or they could operate over two of the
syllables in the triplet. These basic rules can be composed

with logical operators (and, or, not), such as ‘(a) and (b)’;
for instance, if a learner is hypothesized to learn a rule
like ‘triplet containing an adjacent repetition’, this can be
expressed as ‘X=Y or Y=Z’. As will be explained in the next
section, theories that postulate that rules are cognitively real
need to disambiguate which rule is being learned when rules
are equivalent in their extension.

From the models we have reviewed, only the Bayesian
approach Frank and Tenenbaum (2011) explicitly tackles
this question. In order to distinguish between otherwise
equiprobable consistent hypotheses, this model incorporates
a predefined rational principle that determines which
hypothesis should be favored; in this case, the size principle.
Therefore, the BLM provides a transparent way to test how
different principles would be favored by a probabilistic
inference process, an aspect that is missing in the neural
network models.

It must be noted that rational principles are not the
only source of disambiguation to decide between competing
rules. For instance, Endress et al. (2005) report experimental
evidence showing that repetition-based grammars are easier
to learn when the repetition takes place in the edge
positions. This entails that other aspects–such as perceptual
factors—can also impose saliency in certain dimensions
of the stimuli, breaking the uniformity between otherwise
equivalent rules. For this reason, we suggest in desiderata 2,
3, and 4 that alternative factors that influence why certain
rules are favored should be explored.

Question 4: What are themental representations
created?

Another question raised by the experiment is how the
induced rule is represented in the cognitive system. As
researchers, we are used to employ formal languages for
scientific descriptions, and thus it is natural to characterize
stimuli with formal rules such as XYZ such that X=Z. And

Table 6 Summary of some of the rules that the learners in Marcus et al. may extract

ABA ABB AAB Consistent

(a) XYZ XYZ XYZ

(b) XYZ : CV CV CV (CV : Consonant − V owel) XYZ : CV CV CV XYZ : CV CV CV

(c) XYZ : X �= Y XYZ : X �= Y XYZ : X = Y

(d) XYZ : Y �= Z XYZ : Y = Z XYZ : Y �= Z 1,2,3

(e) XYZ : X = Z XYZ : X �= Z XYZ : X �= Z 1,2

(f) presence of repetition presence of repetition presence of repetition

(g) presence of nonadjacent repetition presence of adjacent repetition presence of adjacent repetition 1,2

(h) voiced-unvoiced-voiced voiced-unvoiced-unvoiced voiced-voiced-unvoiced 1

These rules could further be composed with and, or, and not operators (e.g., [(c)]AND[(d)] suffices to explain the three experiments). Column
“consistent” indicates whether the rules suffice to explain results in experiments 1, 2, and/or 3
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indeed, the behavior shown by the infants in Marcus et
al. experiment can be described as following an identity
rule that accounts for the familiarization grammar. However,
the mental representations of infants in the experiment
need not directly map with the components of such formal
expression: the variables and the logical operators that relate
them may or may not correspond directly to mental entities.

When it comes to representations, symbolic and non-
symbolic models have different strengths and weaknesses.
Symbolic rules can easily accommodate some of the most
interesting properties of thought and language, such as
systematicity, productivity and compositionality. The use of
variables that are blind to the specific properties of their
content allows for a binary output: rules are either consistent
or inconsistent, never in between. However, this has the
downside of endowing the models with little flexibility,
and thus they are often not robust to noise (Opitz &
Hofmann, 2015) 8. In contrast, neural network models do
not explicitly represent rules or variables, so relations are
content-dependent (as well as context dependent). One of
the advantages of these models is that they can naturally
account for degraded instances or accidental gaps; therefore,
exceptions can be handled without the need of additional
mechanisms (Elman, 1999).

As argued in Pylyshyn (1991), it is common in science
that a debate arises when the object of research involves a
system that can be easily described with rules. The author
outlines a topology for theories addressing those type of
systems, according to which the ontological status of the
theory can be seen as a point in a spectrum between two
extremes. Theories may, on one extreme, postulate rules
that only account for regularities in the behavior of the
system. In this case, rules function only as a theoretical
descriptive construct, but the theory is agnostic towards the
representations and the principles followed by the system.
In intermediate positions, theories postulate that some of its
elements correspond to principles or properties materialized
in the system, and on the other extreme, theories maintain
that all its rules and representations are explicitly encoded
in the system. In the latter case, the elements in the
canonical expression of a rule (including its symbols and the
relations between them) correspond to certain properties in
the system. Thus, details such as the total number of rules
and their precise definition (e.g., whether they are based
on identity or difference, even if their scope is identical)
become relevant for a theory that posits that these rules are
materialized in the cognitive system.

8Probabilistic symbolic models, like the BLM model, are sometimes
deemed as alleviating the rigidness of symbolic models. However, note
that, in the BLM model, probabilities are applied over the hypothesized
rules, while the representation of the rules is still fully symbolic: a rule
is either consistent or inconsistent with the stimuli.

This characterization of theories can be easily related to
Marr’s levels of analysis. The rule-based model in Frank
and Tenenbaum (2011) is explicitly stated at Marr’s com-
putational level; therefore, the fact that it employs symbolic
rules is not to be taken as a representational claim. On the
other hand, neural network models are implementational-
level accounts of how processes and representations may
be realized: unless the architectures incorporate additional
symbolic mechanisms, the underlying claim is that the
behaviour observed in the experiment can emerge even
when symbolic representations are not employed.

An agenda for formal rule-learning research

The previous analysis has allowed us to closely examine
how this collection of models has helped in advancing our
knowledge on the main research questions. Surprisingly,
however, in spite of the relative simplicity of the experiment
and the vast number of models, the state of our knowledge
appears rather incomplete when we analyze the questions
at this level of detail. For this reason, we have compiled an
agenda of the issues that require more attention.

Desideratum 1 Investigate which features should be
encoded in the input representation, and quantify the overlap
of features needed for generalization to occur.

To begin with, not much attention has been devoted to
how the perception of the input can affect generalization.
The syllables in the original experiment are chosen to min-
imize phonetic overlap, but as pointed out by McClelland
and Plaut (1999), other acoustic cues may exhibit regulari-
ties. Additionally, similar experiments involving a different
set of syllables show null results (Geambasu&Levelt, p.c.),
suggesting that low-level cues might be relevant.

As mentioned before, the amount of overlap in the rep-
resentation of input vectors in neural network models influ-
ences the prediction of novel items. Thus, more research
is needed to quantify the amount of overlap required to
reproduce the empirical findings, and specially, which fea-
tures should be encoded in the vectors (and therefore, which
perceptual dimensions guide generalization).

Desideratum 2 Investigate perceptual biases.

The second issue that can be observed is that, in
all models, the perceptual units (generally syllables) are
treated equally, regardless of the position they appear at.
However, as mentioned before, experimental work shows
that syllables that appear in the edge of sequences are
more salient to humans, to the extent that some rules are
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not learned if the regularity appears in middle positions
(Endress et al., 2005).

The reviewed models do not explicitly incorporate any
such biases. Although a case could be made for neural
networks being able to learn those biases, this would only
occur when saliency facilitates the task. Thus, we suggest
that future efforts should be directed to investigate which
perceptual biases facilitate or hinder generalization.

Desideratum 3 Investigate the role of prior experience.

Most of the models reviewed are used as a tabula rasa:
they are initialized with some independent method (e.g.,
randomly sampled weights in a neural network) and then
trained exclusively on the familiarization data. However,
for a randomly initialized model, it is unlikely that a
short exposure to the familiarization stimuli suffices to
reproduce the experiments. If, instead, the initial state of the
models incorporates relevant prior knowledge, the learning
procedure may converge more easily to the generalizing
solution that infants seem to learn.

This is the idea behind the models proposed by Altmann
(2002) and Seidenberg and Elman (1999a), but our analysis
concluded that these models are not convincing explana-
tions of the empirical phenomenon. Moreover, the use of
pretraining procedures would be more explanatory if the
they allow us to pinpoint which aspects of the prior knowl-
edge are the ones influencing generalization to novel items.

Desideratum 4 Model the coexistence and competition of
rules.

It is very unlikely that information can be described
with one single rule, but rather, an input stream is likely
to incorporate coexisting regularities, possibly between
different dimensions. A model of generalization should
explain how the induced rules coexist, that is, how are
multiple hypotheses represented and whether and how they
relate or interfere with each other.

There are multiple factors that could influence the
preference for some rules over others. As outlined in the
desiderata above, perceptual factors and prior experience
are some of the aspects that individuals may consider
when they favor some rules over others. External factors,
such as contextual information, may also play a role. As
an example (adapted from Tenenbaum & Griffiths 2001),
consider a math student who, after seeing numbers 30 and
40, is asked whether 41 or 50 are part of the same set. We
would expect a preference for 50, as a result of inducing a
mathematical rule such as ‘multiple of 10’. However, if we
show these same numbers to a medicine student focused on
the study of dangerous cholesterol levels, we expect her to
generalize to 41 rather than 50, given that a rule based on

proximity of these quantities is more relevant in this context.
Thus, given the same input, context can change the favored
generalizations.

From the models we have reviewed, only the BLM
addresses this question, by assigning probabilities that
weight coexisting hypotheses, and proposing a criterion
(the size principle) to assign a preference for some rules
over others (see also Chater and Vitányi (2003) for a more
general argument for simplicity as a rational principle for
disambiguating between equiprobable inductions). How-
ever, while (probabilistic) symbolic models are naturally
suited for modeling this aspect of learning, the neural net-
work models that we have reviewed do not offer any insight
in this regard. Thus, one desideratum for neural network
approaches to this problem is to explain which factors pre-
dict the preference for some rules over others, and propose
an account of how rules coexist and compete.

Desideratum 5 Incorporate independently motivated pres-
sures for learning generalizing solutions.

In neural network models, the hypothesis space often
contains multiple local optima, and thus the learning
procedure has high risk of getting stuck in one of those.
This entails that, in practice, there exist multiple solutions
that may be found by a neural network model. While
these solutions may be sufficient to account for the training
data, they may not be generalizing solutions that can be
transferred to the test stimuli.

This can be seen as a form of overfitting. Since neural
networks have many degrees of freedom, they can easily
find one of the non-generalizing solutions. In order to push
a neural network model to find a generalizing solution, an
additional source of pressure is needed. Thus, we believe
an important avenue of future research is to investigate
how to incorporate independently motivated biases to find
generalizing solutions.

Desideratum 6 Forge a consensus on evaluation criteria for
models.

One of the most pressing issues that we have discovered
in this review is that there is much disagreement in the
formulation of the objective to optimize and, specially, on
how to evaluate the outcome of a model. As is common in
HTPP experiments, the original study compares the looking
times between the two conditions, and this is taken as
an indication that participants have learnt something that
allows them to discriminate between conditions. However,
the details of this response mechanism are not well known
(though see Bergmann et al. 2013 for a model of the
HTTP). Thus, having alternative evaluation criteria that help
revealing what has been learnt can be helpful—but as we
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have observed, having too many of them hinders model
comparison.

This is specially relevant for this experiment, since
reflecting on the evaluation has revealed an important
issue about the empirical data: while the results exhibit
statistically significant difference in the attention that
infants show between different grammars, there is no
evidence that infants perform accurate generalization (i.e.,
correct prediction of the last syllable in a triplet), and this
uncertainty is rather fundamental, as we do not know of
experimental procedures that allow us to investigate what
exactly have infants learned. Progress in understanding the
latter would definitely facilitate that modelers settle for
one particular evaluation method and compare the different
model proposals in a systematic manner.

For lack of better knowledge, we suggest that models are
evaluated on both criteria: i) whether they exhibit statistical
significance for grammar discrimination, and ii) whether the
model accurately generalizes to new items.

Desideratum 7 Bridge the gap between levels of analy-
sis: investigate how neural networks perform apparently
symbolic computations.

As discussed before, one of the most debated issues
is the ontological status of symbolic rules and variables.
Even though the neural network models reviewed have
arguably shown some success in reproducing the empirical
findings, the relation between the symbolic-like behavior
and its actual realization in the model is not completely
clear: neural networks are assumed to perform symbolic-
like computations implicitly, but how exactly this is
done remains elusive. Thus, in order to understand
how non-symbolic systems perform apparently symbolic
computations, we should aim to investigate the internal
representations and strategies employed by neural networks.
Recent work on neural-symbolic integration has started
addressing these issues (e.g., Alhama & Zuidema 2016,
2018, Alishahi et al. 2017; Hupkes et al. 2018).

Desideratum 8 Models should learn spontaneously from
brief or limited exposure.

Neural network models start from a largely unconstrained
parameter space, and thus need to iterate over the data multiple
times in order to converge to a good parameter setting.
This is aggravated in the case of small training datasets (as
would be the case for the Marcus et al. stimuli), since less
data entails that more epochs are required for convergence.
Unfortunately, this does not reproduce the training setup
used in the infants experiment, in which the familiarization
stimuli are presented only once. Although it could be argued
that the procedure of iterating multiple times over the

stimuli in the model reflects the availability of the data in
short-term memory (such as the phonological loop) in the
children, this does not allow us to distinguish between tasks
that can be learned spontaneously and those that require a
longer exposure or even a developmental trajectory.

For this reason, we think that achieving spontaneous
learning with neural network models is an ambitious
but relevant project. Recent advances on neural network
architectures involving augmented memory (e.g., the neural
Turing machines, Graves et al. 2014) are capable of fast
memorization and retrieval of input stimuli, and thus they
offer a promising avenue for learning from short exposures
(e.g., successes in one-shot learning have been reported in
Santoro et al. 2016). Research progress on constraining the
initial state of the models based on prior knowledge (as
outlined in desideratum 3) may also be beneficial for faster
convergence to generalizing solutions.

Desideratum 9 Investigate the effect of the continuous
nature of speech in generalization.

An aspect that has been widely neglected in the reviewed
models is to represent the continuous nature of speech.
Some of the models operate over all the data at once
(concretely, the Bayesian model), while the neural networks
process the data in an incremental fashion, either over
triplets, syllables or phonemes. But even in this case,
the stream is pre-segmented, and the models are updated
synchronously in discrete timesteps (as argued before, the
model by Dominey and Ramus (2000) offers a more realistic
treatment of time, but it does not succeed in modeling the
experiment without pre-segmenting the input syllables and
accessing its storage in a symbolic fashion).

By simplifying the representation of time, some aspects
of auditory processing can be neglected. For instance,
the speed at which an auditory speech stream is played
may have an effect on the structural dependencies that
learners can extract from it, due to the temporal proximity
of the items involved (e.g., Wang et al. (2017) show
that increasing the speech rate improves learning of
non-adjacent dependencies). This phenomenon cannot be
modeled with discrete neural networks, since there is no
manipulation that can account for the speed of presentation
of the syllables. It remains an open question whether a more
realistic treatment of time would also bring new insights to
the question of generalization.

Conclusions

The study by Marcus and colleagues has been very
influential in the field, thanks to showing generalization
abilities in 7-month-old infants that had not been previously
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attested. It is fair to point out that these results have
not always been so easy to replicate (see footnote 1 in
Gerken (2006) as an example; also Geambasu&Levelt,
p.c.); likewise, other generalization experiments (Gomez
& Gerken, 1999) show behavior in the opposite direction,
with infants looking significantly longer to consistent rather
than inconsistent test items (as explained in footnote 4).
Thus, unraveling under which conditions Marcus et al.’s
study can be replicated requires further investigation, as
well as a methodology to compare the outcomes of a group
of related studies (e.g., see a methodological proposal for
meta-analysis of experimental data in Tsuji et al. 2014).
Nevertheless, even if we conclude that the experiment
can only be replicated under very specific conditions, its
design has undeniably been very fruitful for posing concrete
questions about the nature of generalization.

In this work, we have contrasted different modeling tradi-
tions. Even though some approaches may appear irreconcil-
able at first glance, it actually seems that neural networks
and Bayesian approaches are somewhat complementary in
their contribution to understanding generalization. The for-
mer offer a theory of how humans may discover relevant
regularities in the input at all, while the latter provide clear
criteria for why they might prefer one generalization over
another. In neural networks, it is difficult to predict before-
hand which of the competing generalizations would be
chosen, and thus, as explained in the previous section, the
choices for the represented dimensions of the input will have
an impact on what is learned. In contrast, in Bayesian mod-
els, we can pre-specify the hypothesis space and test rational
principles to distinguish between possible generalizations,
but the models lack the architectural constraints of learning
that neural networks provide.

Overall, our study shows that, in spite of the many
questions that can be raised from the Marcus et al. study
and the large number of modeling contributions, most of
the discussion has been centered around the question of the
ontological status of rules and symbols. Although we agree
that one of the most intriguing issues in cognitive science
is to discover whether rule-like behavior requires symbolic
operations, we hope that our review has highlighted other
aspects of the problem that have received too little attention,
such as the impact of perceptual factors and the question of
which rule is preferred among competing consistent rules.
Future experimental and modeling work on generalization
in these directions would help in unraveling the foundations
of this key aspect of human cognition.
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