ORIGINAL ARTICLE

Cerebral Cortex, March 2020;30: 1056-1067

doi: 10.1093/cercor/bhz148
Advance Access Publication Date: 5 September 2019
Original Article

Seeing the Unexpected: How Brains Read
Communicative Intent through Kinematics

James P. Trujillo®12 Irina Simanova?, Asli Ozytirek?-3 and Harold Bekkering?

IDonders Institute for Brain, Cognition and Behaviour, 2Centre for Language Studies, Radboud University
Nijmegen, 6500HD Nijmegen, the Netherlands and 3Max Planck Institute for Psycholinguistics, 6525XD

Nijmegen, the Netherlands

Address correspondence to James P. Trujillo, Radboud University, Montessorilaan 3, B.01.25, 6525GR Nijmegen, the Netherlands.

Email: jptrujillo88@hotmail.com

Abstract

Social interaction requires us to recognize subtle cues in behavior, such as kinematic differences in actions and gestures
produced with different social intentions. Neuroscientific studies indicate that the putative mirror neuron system (pMNS)
in the premotor cortex and mentalizing system (MS) in the medial prefrontal cortex support inferences about contextually
unusual actions. However, little is known regarding the brain dynamics of these systems when viewing communicatively
exaggerated kinematics. In an event-related functional magnetic resonance imaging experiment, 28 participants viewed
stick-light videos of pantomime gestures, recorded in a previous study, which contained varying degrees of communicative
exaggeration. Participants made either social or nonsocial classifications of the videos. Using participant responses and
pantomime kinematics, we modeled the probability of each video being classified as communicative. Interregion
connectivity and activity were modulated by kinematic exaggeration, depending on the task. In the Social Task,
communicativeness of the gesture increased activation of several pMNS and MS regions and modulated top-down coupling
from the MS to the pMNS, but engagement of the pMNS and MS was not found in the nonsocial task. Our results suggest
that expectation violations can be a key cue for inferring communicative intention, extending previous findings from

wholly unexpected actions to more subtle social signaling.
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Introduction

In order to successfully interact with others, it is important
to understand their social and communicative intentions. The
human brain is remarkable in its ability to attribute goals and
intentions to actions, allowing us to interpret not only what a
person is doing (i.e., the concrete intention) but also why they
are doing it (i.e., the abstract intention) (Van Overwalle 2009).
For example, as a customer lifts a glass, the waiter can predict
whether the customer is going to drink from the glass or uses
this act as a request to have another drink. In this example,

the social or communicative intention of the actor must be
quickly read from their motor behavior (Blakemore et al. 2001).
An interesting question is how the brain picks up on the subtle,
socially relevant modulation of the motor act to accomplish this
abstract intention reading.

Previous research suggests that humans modulate the kine-
matics of their movements based on high-level, abstract inten-
tions (Becchio et al. 2012; Pezzulo et al. 2013). For example, when
an object-directed action is produced with a communicative
intention, the kinematic profile of the action is quantitatively
different from when the same action is produced without or
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with a different degree of communicative intention (Sartori et al.
2009; Campisi and Ozylirek 2013). In a previous behavioral study,
we quantified the differences in kinematics of motor acts pro-
duced in a more- compared with less-communicative context.
We found that, in actions and gestures, both spatial and tem-
poral kinematic features were modulated, becoming more exag-
gerated in the more-communicative context (Trujillo et al. 2018).
Furthermore, we found that observers were able to read this
communicative intent from the actors’ movement kinematics
(Trujillo et al. 2018). These results are well in line with pre-
vious suggestions that humans are able to use differences in
kinematic profiles in order to infer an underlying intention
(Becchio et al. 2012).

The ability to read intentions from movement kinematics has
been shown both for concrete end-state intentions, for example,
grasp to drink versus grasp to pour (Cavallo et al. 2016; Becchio
et al. 2018), and for more abstract social intentions, for example,
engaging in a social task (Manera et al. 2011; Trujillo et al. 2018).
It has been suggested that the end-state intentions may be
read by directly mapping the kinematics onto actions in our
own motor repertoire (Blakemore et al. 2001; Rizzolatti et al.
2014; Cavallo et al. 2016). While direct mapping could work for
concrete (action end-state) intentions, it is less clear how we
read more abstract (i.e., high level) social intentions that may
not have a direct mapping. Abstract intentions are more difficult
due to the necessity of having a mapping of all potential socially
modulated forms of every action.

A potential solution is to infer intentions based on whether
the action follows a typical, expected kinematic pattern or not.
This follows from literature describing how we ascribe high-level
intentions to movements that are otherwise unusual or implau-
sible, given the context, as a way to rationalize them (Gergely
and Csibra 2003; Brass et al. 2007; Csibra and Gergely 2007). For
example, when we see someone activating a light switch with
their knee, we may rationalize this as being due to their hands
being occupied by a heavy stack of books (Brass et al. 2007). In
this way, we explain away the unusual movement as being due to
the observable context. In the case of communicatively intended
acts, the exaggerated kinematics would be inconsistent with
how an observer expects the action to be produced according
to previous experience, resulting in the observer attributing a
more abstract intention to the actor. This is consistent with
the theory of sensorimotor communication (Pezzulo et al. 2013),
which suggests that movements can be made communicative by
deviating from the most optimal way of performing the action.
This also fits with previous results showing that kinematically
inefficient movements are seen as unexpected (Hudson et al.
2018). This framework would predict that we do not understand
by mapping the observed kinematics to our own motor system
but rather by actively inferring a hidden intention that would
explain the unusual movement.

In the brain, processing abstract intentions typically involves
the mentalizing system (MS) (Kampe et al. 2003; Frith and Frith
2006; Spunt et al. 2011; Ciaramidaro et al. 2013). At the same time,
a meta-analysis by Van Overwalle and Baetens suggests that the
brain likely utilizes the motor system to understand what the
observed action is together with the MS to process the intention
(Van Overwalle and Baetens 2009). This is especially important
when considering the case of communicative kinematic modu-
lation. If we are to read the underlying intention from kinematic
modulation alone, we must first recognize that the action is
being performed in an unusual or exaggerated fashion. Recog-
nizing the act as unusual likely involves the putative mirror neu-

ron system (pMNS) (Newman-Norlund et al. 2010) attempting to
match the observed action with one already in the observer’s
motor repertoire (Kilner et al. 2007). The exaggerated kinematics
would therefore elicit a breach of expectation, resulting in the
recruitment of the MS to process the underlying intention that
generated the unusual behavior (Brass et al. 2007; de Lange
et al. 2008; Schiffer et al. 2014). The recruitment of the pMNS
and MS in response to unusual movements and the reading
of intentions has been shown previously, utilizing movements
that are unusual given their end goal (e.g., using one’s knee to
activate a light switch) and context (e.g., whether one’s hands
are free). Distinctly unusual kinematics, specifically in terms of
movement trajectory, have also been shown to recruit pMNS and
MS regions (Marsh et al. 2011, 2014). This suggests that observers
are sensitive to the rationality or efficiency of movement, and
unexpected kinematics may lead to intention inferences. How-
ever, these studies did not explicitly test whether brain response
scales with unexpectedness or inefficiency of the movement
kinematics.

Here, we specifically investigate the question of whether a
difference in the intention to communicate can be recognized
from the kinematics provided. As kinematic modulation is a
relatively subtle intentional signal based purely in movement,
testing the recruitment of the pMNS and MS in recognizing
abstract intention provides a direct test of this model of inten-
tion reading.

Processing of abstract intentions in the pMNS and MS is
likely achieved via an interaction between the 2 systems. This
is because the 2 systems are often not activated concurrently.
Instead, studies of intention recognition often show activation
of either the pMNS or the MS, but not both for the same task, sug-
gesting that information likely flows from one to the other when
both are needed. The results from Van Overwalle and Baetens
(2009) seem to suggest that this process would be bottom-up,
with the pMNS influencing the MS when breaches of movement
expectation are encountered. In this framework, expectations
originate in the premotor cortex (PMC), and the MS is recruited
to resolve these breaches of expectation. An alternative account
is the predictive coding framework (Kilner et al. 2007). This
framework suggests that high-level expectations, originating
in this case in the MS, might influence lower level expecta-
tions, such as movement expectations (Ondobaka et al. 2015).
Although the theoretical framework of predictive coding com-
putationally predicts bidirectional influence (i.e., top-down and
bottom-up), experimental work seems to primarily find top-
down modulation (Chennu et al. 2016; Chambon et al. 2017). This
is particularly the case when participants are actively attending
to the unexpected stimulus (Chennu et al. 2016). This would
argue for a stronger top-down influence, with the MS primarily
influencing the pMNS. This account is supported by findings
from studies of perceptual breaches of expectation, where unex-
pected changes in auditory stimuli (Chennu et al. 2016) as well
as the processing of more abstract intentions (Chambon et al.
2017) result in modulation of top-down connectivity strength. It
is therefore necessary to investigate directional connectivity in
order to understand how the 2 systems interact when reading
abstract (e.g., communicative) intentions from movement.

An important aspect of previous studies on intention recog-
nition is the role of context. For example, in the study by Brass
et al. (2007), the unusual action of turning on a light switch was
informed by the presence of a stack of folders that the actor
was holding. The act itself was of course unusual due to the
effector used (i.e., the knee, rather than the hand) to complete
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the action. Similarly, intention may be largely inferred from the
combination of action and object. For example, picking up an
apple and extending it towards the viewer is likely to be seen
as communicatively or socially intended, whereas picking up
a book and opening it directly in front of one’s self is seen as
privately or personally intended (Ciaramidaro et al. 2007). In
order to understand how kinematics can inform intention recog-
nition, we must therefore disentangle subtle, communicatively
intended kinematic modulation from other visual contextual
cues.

Finally, it is important to address the effect of exogenous
cues on intention recognition. While it is clear that observers
can read even abstract intentions from movement kinematics,
this inference on the underlying intention is not likely to be
actively made under all circumstances (de Lange et al. 2008;
Spunt and Lieberman 2013). Instead, intention inferences may
only be made when it is task-relevant. However, it is possible
that the brain responds in a similar way even when the intention
is not being attended. Therefore, testing whether activation and
connectivity changes are dependent on the presence of explicit
task instructions would indicate whether the brain responds
implicitly to communicative cues in movement kinematics.

Current Study

This study aims to determine the neural systems and mecha-
nisms underlying the recognition of communicative intention
at the level of movement kinematics. Particularly, we 1) test
whether communicative kinematic modulation results in acti-
vation of the pMNS and MS and 2) determine whether there
is evidence for a top-down or bottom-up interaction between
the systems. We additionally will determine whether there is
evidence for implicit processing of abstract intentions from
kinematic modulation alone. We further build on previous stud-
ies by investigating whether this neural mechanism of intention
inference also holds for more complex movement sequences
such as representational gestures (i.e., movements that visually
simulate a manual action).

We address these issues using 2 forced-choice gesture
viewing tasks during functional magnetic resonance imaging
(fMRI). In the 2 tasks, participants viewed stick-light figures
created in a previous study where we measured the kinematics
of more- and less-communicative gestures (Trujillo et al. 2018).
In one task, the Social Task, participants were asked after
each video if they believe the action being depicted in the
video was intended for the actor or the viewer (representing
more- and less-communicative intentions). In the other task,
the (Nonsocial) Handedness Task, participants saw the same
videos but were asked to decide whether the action being
depicted was performed with the left hand or the right
hand. Using participant responses, we calculated the average
perceived communicativeness of the kinematic modulation in
each of the videos. By correlating this value with fMRI blood
oxygen level-dependent (BOLD) response, we calculated the
extent to which brain activation increases with increasingly
communicative kinematics. We therefore use kinematics to
provide an extension of the abstract intention inference model
beyond the perception of purely categorical, contextually
embedded stimuli. We further specify the model by assessing
whether communicative kinematic modulation affects top-
down or bottom-up information flow between the systems
(effective connectivity analysis). Finally, as a secondary analysis,
we use the Handedness Task to determine whether the neural

response to communicative kinematics is dependent on task
instruction (secondary task analysis).

Methods
Participants

Twenty-eight participants took part in this study, recruited from
the Radboud University. Participants were recruited with the
criteria of being between the ages of 18 and 35 years, being right-
handed, with correct or corrected-to-normal vision, being native
speakers of Dutch, and with no history of psychiatric or commu-
nication impairments. One participant was excluded due to an
error in the projection of stimuli, resulting in a difference in size
in the projection. One additional participant did not complete
the first task due to discomfort in the scanner. This led to a
total sample size of 26 participants (11 male) with a mean age
of 25.10 years. The procedure was approved by a local ethics
committee.

Materials

Kinematic Feature Quantification

The current study used the same kinematic features quanti-
fied in Trujillo et al. (2018). We used a toolkit for markerless
automatic analysis of kinematic features, developed earlier in
our group (Trujillo et al. 2019). The following briefly describes
the features of quantification procedure: All features were mea-
sured within the time frame between the beginning (hands start
to move) and ending (hands no longer moving) of the gesture.
This was the same method used by Trujillo et al. (2018), allowing
us to more faithfully replicate behavioral findings and ensuring
the kinematic features represent the movement in the entirety
of the video. Motion-tracking data from the Kinect provided
measures for our kinematic features: “Distance” was calculated
as the total distance traveled by both hands in 3D space over
the course of the item. “Vertical amplitude” was calculated on
the basis of the highest space used by either hand in relation to
the body. “Peak velocity” was calculated as the greatest velocity
achieved with the dominant hand. “Hold time” was calculated
as the total time, in seconds, counting as a hold. Holds were
defined as an event in which both hands and arms are still for
atleast 0.3 s. “Submovements” were calculated as the number of
individual ballistic movements made, per hand, throughout the
item. Ballistic movements were calculated using a peak analysis,
similar to the description of submovements given by Meyer et al.
(1988). In line with the Trujillo et al. (2018) study, our peak
analysis used a velocity threshold of 0.2 m/s, a between-peak
distance of 8 frames, and minimum peak height and prominence
of 0.2 m. To account for the inherent differences in the kinemat-
ics of the various items performed, z-scores were calculated for
each feature/item combination across all actors including both
conditions. This standardized score represents the modulation
of that feature, as it quantifies how much greater or smaller the
feature was when compared with the average of that feature
across all of the actors. This means that high z-score values for a
video indicate that the kinematics were significantly larger than
what is typical for that action. For a more detailed description of
these quantifications, see Trujillo et al. (2018).

Stimuli
We included 120 videos recorded in a previous study (Trujillo
et al. 2018). In this previous study, 40 participants performed
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31 different representational (pantomime) gestures. Twenty per-
formed the gestures in a less-communicative context, while
the other 20 performed them in a more-communicative con-
text. Motion capture data of participants (henceforth actors) in
this previous experiment were captured using Microsoft Kinect
while the actors were seated at a table. The gestures were
pantomime versions of object-directed actions, such as cutting
paper with scissors or peeling a banana. For each act, actors
began with their hands placed on designated starting points on
the table, marked with tape. Target objects were placed on the
table (e.g., scissors and a sheet of paper for “cutting paper with
scissors”), but actors were instructed beforehand not to actually
touch the objects. After placing the object(s) on the table, the
experiment moved out of view and recorded instructions were
played in Dutch (e.g., “knip het papier doormidden met de
schaar” [“cut the paper with the scissors”]). Inmediately follow-
ing the instructions, a bell sound was played, indicating that
the actor could start performing the gesture. Once the act was
complete, the hands returned to the starting points, after which
another bell sound indicated the end of the trial. The more-
communicative context was elicited by introducing a confeder-
ate who sat in an adjacent room and was said to be watching
through the video camera and learning from the participant. In
this way, an implied communicative context was created. The
same procedure was applied to the less-communicative context,
except the confederate was said to be learning the experimental
setup. The less-communicative context was therefore exactly
matched, including the presence of an observer, but only differed
in that there was no implied interaction.

In order to provide a representative sample of the videos, we
first ranked all videos according to the overall kinematic modu-
lation (z-scores derived from the kinematic features described
in the Stimuli section) and the communicative context (more
or less communicative). This placed all of the videos on a con-
tinuum from low kinematic modulation, as was typical of the
less-communicative videos, up to high kinematic modulation,
as seen in the more-communicative videos. We then selected
60 more-communicative videos, favoring high z-scores, and 60
less-communicative videos, favoring low z-scores, on the basis
of keeping the 2 contexts matched in all raw kinematic (i.e., non-
modulation) values as well as overall duration, while also keep-
ing the modulation values of all kinematic features significantly
different. This was done using standard t-tests on the raw and
modulation values. Therefore, the more-communicative videos
were primarily characterized by high positive z-scores, and less-
communicative videos were characterized by high negative (e.g.,
slower, smaller than typical) z-scores. Once a suitable selection
was made, the selected videos were transformed into stick-light
figures based on the Kinect motion capture data (see Fig. 1 for
still frames). This ensured that the visual information being
processed while viewing the videos was identical besides the
movements, or kinematics, of the act.

Physical Setup and Briefing

Participants were informed that they would be viewing short
videos of actions being depicted by “stick figures,” which were
created from the motion capture data of real participants in a
previous experiment. They were informed that half of the par-
ticipants performed the actions for themselves, and the other
half performed them explicitly for someone else. We informed
the participants that, in their first task, they should try to guess if
each action was performed for the actor or for the viewer and, in

the second task, they should try to determine if the actions were
performed more with the left hand or the right hand. The Social
Task was always given first, followed by the Handedness Task.
The ordering was fixed to ensure that the stimuli were novel
during the Social Task.

Participants were positioned in the supine position in the
scanner with an adjustable mirror attached to the head coil.
Through the mirror, participants were able to see a projection
screen outside the scanner. Participants were given an MRI-
compatible response box, which they were instructed to operate
using the index finger of their right hand to press a button
on the right and the index finger of their left hand to press a
button on the left. Button locations corresponded to response
options given on the screen, which always include 2 options:
one on the left of the screen and one on the right of the screen.
The resolution of the projector was 1024 x 768 pixels, with a
projection size of 454 x 340 mm and a 755-mm distance between
the participant and the mirror. Video size on the projection was
adjusted such that the stick figures in the videos were seen at
a size of 60 x 60 pixels. This ensured that the entire figure fell
on the fovea, reducing eye movements during image acquisition.
Stimuli were presented using an in-house developed PsychoPy
(Peirce et al. 2019) script.

Tasks

Social Task . The Social Task was designed to explicitly elicit
intention recognition by attending to the movements. In this
task, participants first saw a Dutch action verb that served as
a linguistic prime for the upcoming video. This was provided
to ensure participants understood the gesture that they were
seeing. Next, there was a 3.5-s fixation cross, with a 1.5-s jitter.
Participants were then presented with the stick-light gesture.
The average duration for these videos was 6.34 s. After the video
completed, participants were then visually presented with the
question of whether the action was intended for the actor or
the viewer. The 2 options were presented on random sides of
the screen, and participants responded by pressing either the
left or right button of the response box. No feedback was given
regarding the accuracy of the response. The order of videos was
randomized for each participant.

Handedness Task . The Handedness Task was designed so that
participants would attend to the movements without any social
or communicative implication, allowing us to test for evidence of
automatic processing of intention. This task followed the same
procedure, with a new randomized order of stimuli. However,
in this task, participants were asked whether the action was
performed with the left hand or the right hand. See Figure 2 for
a schematic timeline of one trial.

Behavioral Data

Data Preparation and Implementation

Response time (RT) and intention classification were utilized for
analyses. Data were first checked for outliers at the participant
level in terms of RT, with outliers considered to be more than 2.5
standard deviations above the group mean. This led to a removal
of 73 individual trials in the Social Task and a removal of 76
trials in the Handedness Task. All preparatory procedures and
statistical tests were carried out separately for the Social and
Handedness Tasks. All testing of behavioral data was performed
using the R statistical program (R Core Team, 2017). Mixed-
effects modeling utilized the Ime4 package (Bates et al. 2014),
and P values were estimated using the Satterthwaite approxi-
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Figure 1. Still frames of a stick-light figure and a comparison with the corresponding video images. The lower panel depicts a series of still frames from one of the
videos recorded in Trujillo et al. (2018) at various stages of action completion. The upper panel depicts the corresponding stick-light figure derived from the kinematics
of this action. Note that the images in the upper panel represent what was seen by participants, who had no exposure to the video images. Figure was adapted with

permission from Trujillo et al. (2019).
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Actor Viewer

The action
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Figure 2. Overview of trial progression. The upper panel depicts the Social Task, while the lower panel depicts the Nonsocial Handedness Task. Participants first saw
a single prime word, followed by a fixation cross of variable length, then the video, and, finally, the task-specific response screen.

mation of denominator degrees of freedom, as implemented in
the ImerTest package (Kuznetsova 2016).

Statistical Analyses
Social Task. Statistical analyses were carried out in order to
assess whether kinematic modulation was correlated with
intention classification. Note that we did not test whether
classification decisions matched the context labels from the
previous study (Trujillo et al. 2018). This is because the primary
interest of the study was the spectrum of kinematic modulation,
rather than the initial categories that are also highly variable.
We used linear mixed-effects modeling to determine
the correlation between kinematic features and intention
classification. Kinematic modulation values were entered into
the model as fixed effects with the classification decision
(communicative, for the viewer, or noncommunicative, for

the actor) as the dependent variable. In the first model,
participant was additionally included as a random intercept
variable, allowing us to control for individual variation between
participants. We used a x? test to determine if this model better
explained the data than a null model in which only participant
variation was given as an explanatory (independent) variable.
Next, we compared our initial model with a more complex
model that additionally included actor and action as random
intercepts. This model was again tested against the null and
initial models to determine which provided the best explanation
of the data using x? tests. Only fixed effects results from the
winning model are interpreted. To reduce the risk of Type I error,
we used the Simple Interactive Statistical Analysis tool (http://
www.quantitativeskills.com/sisa/calculations/bonferhtm) to
calculate an adjusted alpha threshold based on the mean
correlation between all of the tested kinematic features, as
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well as the number of tests (i.e., number of variables in the
mixed model). Our 4 variables (vertical amplitude, peak velocity,
submovements, and hold time) showed an average correlation
of 0.063, leading to a Bonferroni-corrected alpha threshold of
0.013.

Handedness Task. Statistical analyses were carried out in order
to assess whether participants were attending to the movement
kinematics. This ensures that our fMRI results reflect only a
difference in the task, rather than the stimuli, which partici-
pants should be attending to similarly in both the Social and
Handedness Tasks.

We used linear mixed-effects modeling following the same
procedure described for the Social Task. The only difference was
that we included peak velocity and submovements for the left
hand and excluded vertical amplitude and hold time. This was
done due to vertical amplitude and hold time being features
that were quantified from both hands. Therefore, we included
the single-hand features for both right and left in order to test
the hypothesis that participants classified the handedness of
the videos according to hand-specific features. In other words,
we assume that right-handed classifications will be made based
on submovements and/or peak velocity of the right hand if
participants are attending to the kinematics.

We again calculated an adjusted alpha threshold based on
the mean correlation of the tested kinematic features and the
number of tests (again 4). The 4 variables in this model set (right
peak velocity, right submovements, left peak velocity, and left
submovements) showed a mean correlation of 0.138, leading to
a Bonferroni-corrected alpha threshold of 0.015.

Calculation of “Communicativeness” Metric

In order to test our hypothesis that the communicative quality of
movement kinematics would be correlated with hemodynamic
response in the mirroring and mentalizing systems, we used
the behavioral data to calculate a metric of how communicative
each video was. In order to calculate this communicativeness
value, we first calculated a new mixed-effects model with intent
classification as the dependent variable; vertical amplitude, hold
time, peak velocity, submovements, and RT as fixed effects pre-
dictors; and actor, action, and participant as random intercepts.
RT was included in this model as a measure of certainty, allowing
us to capture not only the effect of the kinematics on the final
classification decision of the participants but also how quickly
the participants made this decision. Finally, we used this model
to calculate the mean predicted probability of judging each video
as communicative. As the predicted probability serves as a mea-
sure of how likely a new participant would be to judge a video
as communicative, this is taken to represent a quantification
of video communicativeness. The process of calculating the
predicted probability was carried out in a leave-one-out manner,
where the values were calculated separately for each individual
participant, based only on the rest of the participants’ response
data. For example, to calculate the communicative values that
would be used to model participant 5’s brain response, we used
the response data from participants 1-4 and 6-26 to calculate
a mean value for each video. Participant 5’s data are thus not
included in the calculation of her own fMRI regressors. This
was repeated for each participant. This was done to prevent
overfitting the data. In the end, each participant had a unique
set of communicativeness values assigned to the videos, with
one value per video. The communicativeness metric therefore
provided a single value for each video that described, based on

participant responses and the underlying kinematic modulation
values, the probability that the video would be classified as
being communicatively intended when viewed by a new, naive
participant. These values were then used to model the fMRI data
at the first (subject) level.

Brain Imaging

fMRI Data Acquisition

Anatomical and task-related MRI images were acquired on a
3-T Siemens Magnetom Skyra MR scanner with a 32-channel
head coil at the Donders Institute for Brain, Cognition and
Behaviour in Nijmegen, the Netherlands. Structural images (1
x 1 x 1 mm?) were acquired using a T;-weighted magneti-
zation prepared rapid gradient echo sequence with time rep-
etition (TR)=2300 ms, time echo (TE)=3.03 ms, flip angle=8°,
and field of view (FOV)=256 x 256 x 192 mm3. Two behav-
ioral tasks (described below) were carried out by participants
while T,x-weighted dual-echo echo-planar imaging (EPI) BOLD-
fMRI images were acquired using an interleaved ascending slice
acquisition sequence (slides =40, TR=730 ms, TE=37.8 ms, flip
angle =90°, voxel size=3 x 3 x 3, slice gap=0.34 mm, FOV =212
x 212 mm?).

fMRI Analysis—General Linear Model

All analyses were performed using SPM12 (Statistical Paramet-
ric Mapping; Wellcome Department, http://www.fil.ion.ucl.ac.
uk/spm). All functional data were preprocessed following the
same pipeline: Functional and structural images were realigned
and coregistered, with spatial normalization with the Montreal
Neurological Institute (MNI) template and spatial smoothing
using an 8-mm full-width at half-maximum kernel. After pre-
processing, we checked motion parameters in the task-related
acquisitions to ensure that no participants moved more than 3°
in rotation or 3 mm in translation.

We created an event-related design matrix for within-
subject first-level analysis, wherein we modeled the video-
viewing period, response, and fixation as separate regressors.
Communicativeness of the videos was added as a parametric
modulator, with the values convolved with the video-viewing
events in a separate regressor. Finally, the 6 motion parameters
were added as regressors of no interest. Our primary first-
level contrast was communicativeness over baseline, which
effectively modeled a linear correlation between the BOLD signal
and the communicativeness score. The 2 tasks were modeled in
separate design matrices, with no direct comparisons between
the 2. This is because the Handedness Task was only used to test
whether brain activation or connectivity is related to kinematic
modulation when the task does not require a communicative
intent decision.

Contrast images from the first-level analysis were used in the
second (group) level analysis, using whole-brain voxel-wise t-
tests. Contrast maps were thresholded at P < 0.001, uncorrected,
with cluster threshold set as k > 10.

fMRI Analysis—Dynamic Causal Modeling

General overview. We used dynamic causal modeling (DCM;
Friston et al. 2003) in order to quantify how the mentalizing
and mirroring systems interact during intention understanding.
DCM allows the researcher to define a subset of brain regions
and their connections and model how the activity of the
regions or strength of the connections is dependent upon an
experimental manipulation. After building and estimating a
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Social Task

Figure 3. Overview of GLM results. The top panels (A, C) depict slices from the Social Task, while the bottom panels (B, D) depict the Handedness Task. Red areas indicate
a significant (P < 0.001) correlation between BOLD response and video communicativeness. The red color bars show the corresponding T values. Panels A and B provide
a slice-by-slice overview of the 2 tasks, while panels C and D provide a 3D rendering of the same data, with significant areas of interest highlighted (IFG=inferior

frontal gyrus; MFG =middle frontal gyrus).

set of potential causal models, a model selection analysis is
performed in order to find the model that represents the best
fit to the data. In order to keep the models relatively simple and
balanced, we opted to only model 2 regions: one from the MS and
one from the mirroring system. We based our initial selection
criteria on the meta-analysis of intention understanding by
Van Overwalle and Baetens (2009), which lists the posterior
superior temporal sulcus (pSTS), anterior inferior parietal sulcus
(aIPS), and PMC as the primary mirroring system regions and
the temporoparietal junction (TPJ) and medial prefrontal cortex
(mPFC) as the primary MS regions. As the TPJ, aIPS, and pSTS
show some degree of overlap, we chose not to use these regions
and therefore selected the PMC as the representative mirroring
region and the mPFC as the representative mentalizing region to
contrast the 2 networks in a neuroanatomically optimal manner.

Regions of interest. We defined the location of these group-level
regions of interest around the peak-voxel coordinates of our
second-level communicativeness contrast from the Social Task.
Functional regions were defined from the coordinates based
on the definitions by Lacadie et al. (2008). Note that the same
coordinates were used in our DCM analysis of the Handedness
Task in order to ensure a direct comparison of the results and
that this analysis is carried out regardless of general linear
model (GLM) results of the Handedness Task as this was an a
priori planned analysis in order to compare against the Social
Task. The PMC was located at x =24, y =—10, z =53, while the
mPFC was located at x =—9, y =38, z =23. The coordinates
were used as starting points to locate subject-specific regions.
This was done using SPM12’s volume-of-interest utility, which
takes a starting coordinate and moves it, per participant, to the
nearest peak voxel within a 5-mm range. This method takes
individual variation in functional neuroanatomy into account
and increases sensitivity of subsequent analyses. Each newly
assigned peak was manually checked to ensure that it still was
in the designated region. Mean time courses were extracted from
a 10-mm sphere surrounding the peak coordinate, using the

communicativeness contrast and a liberal threshold of P <0.100
to ensure a robust estimate of the time series.

Model space. We created an initial model composed of the PMC
and mPFC with bidirectional intrinsic connections. The video-
viewing event (video onset, with length equal to video dura-
tion) was modeled as a possible direct, or driving, influence
on regional activity, while the communicativeness regressor (as
explained under the Calculation of “Communicativeness” Metric
section) was defined as a possible modulating influence on the
strength of interregion connections. By varying the presence of
the driving and modulation influences on the 2 regions and con-
nections, we created 14 models that included all possible com-
binations of these influences, including one fully parameterized
model that had both driving influences and both modulations
as well as one “null” model that had no influence from the task.
See Supplementary Figure 1 for a schematic overview of all these
models.

Model selection. Bayesian model selection was used to test the
probability of our data given each of the models. As our partic-
ipants are relatively homogeneous (i.e., no group-based infer-
ences), we utilized a fixed effects approach. A posterior prob-
ability of >0.95 was taken to be a strong evidence in favor of a
particular model.

Results
Behavioral Results—Social Task

For the Social Task, we tested whether higher kinematic modu-
lation values predicted classification of an act as being commu-
nicative. In line with our hypothesis, our mixed-effects regres-
sion model containing the kinematic features as fixed effects
predictors was a better fit to the data than the null model
that did not contain kinematics, x?(4)=51.629, P <0.001. Adding
actor and action as random intercepts further improved model
fit, x2(2) =18.605, P <0.001. All results at the kinematic feature
level are therefore based on the full model, including all kine-
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matic modulation values as fixed effects as well as participant,
actor, and action as random intercepts. In terms of kinematic
features, we found that increased vertical amplitude (z =4.113,
P <0.001) and hold time (z =3.243, P =0.001) were significantly
predictive of classifying an act as communicative. An increased
number of submovements showed a near-significant relation
to intent classification (z =2.432, P =0.015), while peak velocity
was notrelated to communicative intent classification (z=0.924,
P =0.356). Results therefore confirm that intention classification
was related to kinematic modulation.

Behavioral Results—Handedness Task

For the Handedness Task, we tested whether higher kinematic
modulation values of a particular hand predicted classification
of an act being performed more with that same hand. This
was to ensure participants were attending to the kinematics
in this task. We found that the model containing kinematic
modulation values was a better fit to the data than the null
model, x2(4)=83.291, P <0.001. Adding actor and action to the
model further improved model fit, x2(2)=368.57, P <0.001. All
results at the kinematic feature level are therefore based on
the full model, including all kinematic modulation values as
fixed effects as well as participant, actor, and action as random
intercepts.

In terms of kinematic features, we found that submovements
of the right hand were predictive of classifying an act as being
more right-handed (z =5.143, P <0.001). We found no associa-
tion between handedness classification and submovements of
the left hand (z =—1.676, P =0.094), peak velocity of the right
hand (z =1.817, P =0.069), or peak velocity of the left hand
(z =1.643, P =0.100). Results therefore confirm that participants
attended to kinematic modulation also during the Handedness
Task, while further suggesting that the right hand was attended
to primarily.

Whole-Brain Results—Social Task

Whole-brain results reflect BOLD correlation with video com-
municativeness. Results of the whole-brain analysis of the Social
Task show primarily regions associated with the pMNS, such as
the right PMC and right inferior parietal lobe, as well as regions
associated with the MS, such as the left mPFC and left TP]. We
additionally found activation in the left inferior frontal gyrus,
left caudate nucleus, right hippocampus, and several areas of
the cerebellum. See Figure 3A for a graphical overview of these
results. Table 1 provides an overview of peak coordinates, given
in MNI space, with statistics and cluster sizes. All regions were
significant at P <0.001.

Whole-Brain Results—Handedness Task

Results of the whole-brain analysis of the Handedness Task
show only the middle frontal gyrus being correlated with com-
municativeness. See Figure 3B for a graphical overview of these
results. See Table 1 for peak coordinates and statistics.

Connectivity Results—Social Task

In the Social Task, we found strong evidence (posterior proba-
bility = 1.00) for a model with no driving effects of video viewing
on the PMC or mPFC but modulation of the top-down (mPFC -
PMC) connection. See Figure 4 for a schematic overview of the
winning model and the exceedance probability.

Connectivity Results—Handedness Task

In the Handed Task, we did not find evidence above our defined
probability threshold. However, 2 models together showed a pos-
terior probability of 1.00. The model with the highest evidence
(posterior probability = 0.561) showed driving influence of video
viewing on the PMC and modulation by communicativeness of
the videos on the bottom-up (PMC — mPFC) connection. The
second model (posterior probability = 0.439) showed no driving
effects but modulation by communicativeness of the bottom-
up connection. Together, this can be taken as strong evidence
in support of modulation of the bottom-up connection, with
weaker support for the driving effect on the PMC. See Figure 4
for a schematic overview of the 2 models and the exceedance
probabilities associated with them.

Discussion
General Overview of Findings

This study set out to test the brain activation and connectiv-
ity during the recognition of communicative intentions from
kinematic modulation. We found that 1) participants recognize
communicative intent based on spatial and temporal kinematic
features if explicitly asked to classify intentionality, 2) the per-
ceived communicativeness of the videos correlates with activa-
tion of the mentalizing and mirroring systems when this is task-
relevant, and 3) top-down connectivity between these systems is
altered by communicativeness in the Social Task, while bottom-
up connectivity is modulated in the Nonsocial Task.

Behavioral Results

Our behavioral results show that our participants were able to
utilize kinematic modulation in their intention classifications.
This result is a direct replication of earlier work from our group
that showed that increased vertical amplitude was perceived as
communicative (Trujillo et al. 2018). The current study replicated
this finding while extending it in 2 important ways. First, we
additionally found hold time to be predictive of communica-
tive intent classification. Second, our use of stick-light figures,
rather than real videos, shows that intention recognition can
occur even from highly reduced stimuli. Together, these results
support the hypothesis that communicative intent can be read
purely from movement kinematics (Becchio et al. 2012; Cavallo
et al. 2016) and that both spatial and temporal features are
important signals of intention.

We found that the exaggeration of submovements of the right
hand was associated with perceiving an act as right-handed.
This finding indicates that participants also attended to kine-
matic modulation in the Handedness Task, although the specific
features were different from the Social Task. Given this finding,
we are able to compare brain activation and connectivity results
between the 2 tasks, as the primary difference is whether partic-
ipants were basing judgments of communicative intentionality
or handedness on the perceived kinematic modulation.

Brain Activation in Response to Communicative
Kinematics

In the Social Task, we found activation of areas associated
with the MS, such as the mPFC and left TPJ, as well as several
areas associated with the mirroring system such as the inferior
parietal lobe and PMC. Our results largely replicate the meta-
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Table 1 Significant activation correlated with communicativeness across tasks

L/R BA Region T VA k X y z
Social Task

R Hippocampus 6.02 4.69 474 30 -19 -10
L Caudate nucleus 5.59 4.46 438 -9 -1 14
L 32 mPFC 5.26 4.28 362 -9 38 23
L 47 IFG 5.23 4.26 130 —24 29 -1
L Hippocampus 5.06 4.16 55 —27 -16 -7
L 39 TPJ 4.49 3.81 23 —54 —49 29
R 46 IPL 4.31 3.69 36 39 35 5

R 7 4.12 3.57 18 27 -79 38
R 40 3.99 3.47 52 57 —-34 38
R Cerebellum 3.94 3.44 11 9 -28 —-40
R 6 PMC 3.86 3.34 11 24 -10 53
R Cerebellum 3.82 3.36 16 3 -76 41

L 3.78 3.33 18 —24 -76 —-25
R 6 PMC 3.74 3.3 11 21 11 47
Handedness Task

R 46 MFG 4.16 3.56 17 51 41 2

BA =Brodmann area; IFG =inferior frontal gyrus; IPL =inferior parietal lobe; k = cluster size; L =left; MFG =middle frontal gyrus; R = right.
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Figure 4. Overview of winning DCM models. (A) The winning model for the Social Task. (B) The exceedance probability. In all models, circles depict the individual
regions, while arrows depict the intrinsic, directional coupling between them. Video viewing is modeled as a driving input to the regions, while communicativeness is
modeled as a modulator of coupling strength. (C) The 2 high-probability models for the Handedness Task. (D) The exceedance probabilities for these models.

analytic findings by Van Overwalle and Baetens regarding brain
activation while reading intentions from unusual or unexpected
actions, experimental findings of brain activation in response
to unexpected or unusual motions (Van Overwalle and Baetens
2009; Marsh et al. 2011, 2014), as well as implicit intention recog-

nition tasks using object-directed actions (Ciaramidaro et al.
2013). Similar to previous reports on violations of movement
expectations, we found the right PMC (Manthey et al. 2003;
Koelewijn et al. 2008; Van Overwalle and Baetens 2009), mPFC
(Van Overwalle and Baetens 2009; Schiffer et al. 2014), and left
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TPJ (Ciaramidaro et al. 2013) responding to increasingly commu-
nicative movements. One major distinction between our find-
ings and those of the meta-analysis is that we found the left
TPJ], whereas Van Overwalle and Baetens found the right TPJ.
This can be explained by the left TP] being primarily responsible
for the processing of communicative intentions (Van Overwalle
and Baetens 2009; Becchio et al. 2012; Ciaramidaro et al. 2013),
whereas the right TPJ is involved in the processing of many other
types of intentions as well (Van Overwalle and Baetens 2009;
Ciaramidaro et al. 2013). These results are therefore directly in
line with the idea that inferring abstract intentions is based on
breaches of expectation originating in the MS, while expanding
these previous findings by specifically showing that the brain
responds similarly to subtle breaches at the kinematic level.

Besides the a priori predicted mentalizing and mirroring
areas, we also found activation of the hippocampus and cau-
date nucleus to be correlated with communicative kinemat-
ics. Activation of both of these regions is directly in line with
our theoretical framework. For example, previous work shows
the caudate nucleus responding to expectation violations in a
human movement observation paradigm (Schiffer and Schubotz
2011) as well as more generally in response to less familiar action
sequences (Diersch et al. 2013). The hippocampus has similarly
been linked to processing less familiar actions (Diersch et al.
2013) and is furthermore involved in signaling the presence of
novel information (Lisman and Grace 2005) such as unfamiliar
actions (Caligiore et al. 2013). These findings suggest that the
caudate nucleus and hippocampus play an important role in
processing unexpected movement kinematics in order to infer
communicative intentions.

In the Handedness Task, we did not find any activation in our
a priori defined regions of interest. This means that the regions
found in the Social Task only respond when communicativeness
is task-relevant. This finding is contrary to studies that used
implicit viewing tasks and still found significant activation.
However, a major difference in our study is that, while we used
kinematic variations of the same overall action, previous studies
typically use categorically different actions, such as lifting up
an apple to take a bite compared with lifting it up to pass to
the observer (Ciaramidaro et al. 2013). Thus, while the brain
may respond robustly to categorically distinct socially intended
actions, response to subtle kinematic differences may itself also
be much more subtle in the absence of explicit attention to
the underlying intention. On the other hand, we are not the
first to report a task-dependent response to the intentionality
of observed actions. Our finding is in agreement with an earlier
study by de Lange and colleagues who similarly found activation
of the MS in response to unusual actions, but only when explic-
itly attending to the intention (de Lange et al. 2008). de Lange
et al. additionally found that an area of the mirroring system
remained active in response to unusual actions even when not
explicitly attending to the intention. Similarly, we found the
middle frontal gyrus, which may also be involved in the pMNS
(Molenberghs et al. 2011). Similarly, Spunt and Lieberman (2013)
found that cognitive load, in the form of a competing mem-
ory task, extinguished activation of MS regions during abstract
intention inference. Overall, we suggest that robust activation
of the MS and pMNS in response to communicative kinematic
modulation only occurs when the observer is actively attending
to this aspect of the movement. Future studies will be needed in
order to determine whether kinematic modulation will naturally
draw attention in the absence of explicit task instructions, given
that our control task may have inadvertently drawn attention

away from this feature of the stimuli, rather than simply making
it less task-relevant.

Effective Connectivity

In the experiment, participants had to infer intentionality of the
observed actions, that is, decide if the action was performed “for
the actor” or “for the viewer.” The model-driven connectivity
analysis showed that the kinematic modulation affected top-
down coupling strength between mPFC and PMC and not vice
versa. Our findings therefore provide evidence for a hierarchical
system utilizing top-down expectations and bottom-up detec-
tion of kinematic deviations. This suggested mechanism allows
us to draw a parallel with perceptual studies that empirically test
the effect of unexpected stimuli on brain dynamics. Specifically,
recent studies using DCM show that, while attending to auditory
stimuli, unexpected omissions or mismatches of the stimulus
result in changes to top-down connections between relevant
brain regions (Auksztulewicz and Friston 2015; Chennu et al.
2016). More generally, these findings are also directly in line
with models of top-down control in social cognition (Wang and
Hamilton 2012; Hillebrandt et al. 2013).

Our finding fits well with experimental evidence of expecta-
tions shaping the dynamics of higher and lower level cognitive
systems when processing concrete (i.e., end-goal) intentions. For
example, in a recent study, Jacquet and colleagues measured
corticospinal excitability to show that, when viewing and identi-
fying the end goal of an action, changes to expectations regard-
ing end-goal intentions result in tuning of the motor system
(Jacquet et al. 2016). Interestingly, and in line with our study,
these expectations could be based on observed kinematics and
whether or not they were optimal for goal completion. While
Jacquet et al. only looked at the motor system, a later study by
Chambon and colleagues investigated the use of sensory evi-
dence versus prior expectations to recognize concrete intentions
while measuring whole-brain activation (Chambon et al. 2017).
Chambon et al. found that top-down connections within the MS
are modulated by an increasing reliance on prior expectations,
which occurs when sensory evidence becomes less available
or reliable (Chambon et al. 2017). Similarly, Ondobaka and col-
leagues found that the posterior cingulate cortex, another region
of the MS, has a top-down effect on the action observation net-
work during the processing of movement expectations of others
(Ondobaka et al. 2015). While the specific regions in this study
are different from our results, this may be due to the difference
in the types of movement goals, or intentions, being processed.
Ondobaka et al. conclude that their result shows support for a
hierarchical account of action goal understanding with high-
level midline (mentalizing) regions processing expected goals
(or intentions) and lower level action observation, or mirror-
ing, regions processing the movements. However, this study
did not directly show changes in connectivity between higher
and lower levels. Our results therefore provide an interesting
extension to these previous findings, showing evidence for the
importance of top-down connections when observing other’s
actions—including gesture.

In the Handedness Task, we see the pattern of connectivity
modulation reversed. Increased communicativeness of the
videos results in more modulation of the bottom-up coupling
strength. This is in line with the study of coupling strength
changes in response to unexpected auditory stimuli. In that
study, top-down coupling changes were associated with an
unexpected stimulus when this stimulus was the focus of
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attention. When the stimulus was not the focus of attention,
the top-down coupling effect was still present but paired with
a bottom-up coupling change as well (Chennu et al. 2016).
However, the DCM results from the Handedness Task should
be interpreted with caution, as the GLM analysis of this task
did not reveal significant activation of these regions at our
specified threshold. Additionally, the fixed task order and
different cognitive demands of the 2 tasks make it difficult to
determine whether these connectivity differences are due to
that lack of explicit attention to the communicative intent or
to some other factor. We will therefore keep our discussion of
these results to a minimum.

Overall, these results suggest that unexpected events result
in top-down changes in connectivity at multiple levels of the
brain. The detection of unexpected kinematics allows the recog-
nition of communicative intentions.

Conclusions

In sum, we found that communicative intent can be read from
isolated and subtle kinematic cues and that this recognition
process is reflected in activation and (top-down) changes in
connectivity of the mirroring and mentalizing systems. These
results shine new light on how motor and social brain networks
work together to process statistical irregularities in behavior
to understand or “read” the complex dynamics of socially and
communicatively relevant actions. Most directly, it highlights
expectation violations as a key cue for inferring communicative
intention, linking studies of movement, communication, and
low-level perception. In particular, we show that even subtle
kinematic differences in an otherwise typical motor act can be
used to infer intention. This has theoretical implications for
understanding the fundamental neurobiological mechanisms
underlying perceptual inferences and communicative behavior
as well as the evolutionary origins of communicative signal-
ing. Practical implications extend to understanding human and
human-machine interactions and providing a novel neuroscien-
tific basis to investigate clinical conditions in which movement
or social skills are impaired (e.g., autism spectrum disorder).
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