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. The likelihood in a network of N detectors is computed as11,23,24
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considering the noise in each detector to be stationary, Gaussian, and uncorrelated with the noise in the other 
detectors in the network. d f( )i , n f( )i , and  ϑ

→
s f( , )i  are the frequency-domain representations of the data, noise, and 

the model waveforms respectively. The inner product ã b  is defined as
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where S f( )n
i( )  is the power spectral density (PSD) of the i-th detector’s noise.

For computing the likelihood, we analyze the gravitational-wave dataset 
→
d t( ) from the Hanford and 

Livingston detectors, between GPS times (1167559926, 1167559942) for GW170104, (1180922444, 1180922500) 
for GW170608, and (1187529246, 1187529262) for GW170823. We analyze 

→
d t( ) from the Hanford, Livingston, 

and Virgo detectors between GPS times (1185389797, 1185389813) for GW170729, (1186302509, 1186302525) 
for GW170809, (1186741851, 1186741867) for GW170814, and (1187058317, 1187058333) for GW170818. Based 
on the estimates of the masses indicating the length of the signals from the search pipeline14,25–28 and from the 
results of the parameter estimation analyses reported in refs2–4,6, GW170608 was found to have properties of a 
lower mass source and hence have larger number of cycles as compared to the other events. Therefore we extend 
the priors for GW170608 to much lower component masses than for the other two events, which is described 
below. This requires more data for the analysis of GW170608 such that the segment of the data being analyzed can 
encompass the longest duration (ie. smallest mass) template waveform drawn from the prior used for GW170608.

The dataset is decimated to a sample rate of 2048 Hz. The PSD used in the likelihood is constructed using 
the median PSD estimation method described in ref.29 with 8 s Hann-windowed segments (overlapped by 4 s) 
taken from GPS times (1167559424, 1167560448) for GW170104, (1180921982, 1180923006) for GW170608, 
(1185388936, 1185389960) for GW170729, (1186302007, 1186303031) for GW170809, (1186741349, 
1186742373) for GW170814, (1187057815, 1187058839) for GW170818, and (1187528744, 1187529768) for 
GW170823. Prior to performing a Fourier transform of the data for PSD estimation, we remove the signal from 
the data used for PSD estimation by applying a gating window of width of the order of the signal length. This 
removes any bias introduced in the noise due to the presence of the signal. The PSD estimate is truncated to 
4 s in the time-domain using the method described in ref.29. For all seven events except GW170608, the like-
lihood is computed between a low-frequency cutoff of 20 Hz and the Nyquist frequency of 1024 Hz for all the 
detectors in the network. For GW170608, we use the same procedure in ref.3 and compute the likelihood using 
a low-frequency cutoff of 20 Hz and the Nyquist frequency of 1024 Hz for the Livingston detector, and using 
frequencies between 30 Hz and 1024 Hz for the Hanford detector. During the observation of GW170608, the 
Hanford detector was undergoing a routine instrumental procedure to minimize angular noise coupling to the 
strain measurement. This introduced excess noise in the strain data from the Hanford detector at frequencies 
around ~19–23 Hz, but the strain data was shown to be stable above 30 Hz in ref.3.

The template waveforms  ϑ
→

s f( , )i  used in the likelihood are generated using the IMRPhenomPv230,31 waveform 
model implemented in the LIGO Algorithm Library (LAL)32. The parameters ϑ

→
 measured in the ensemble MCMC for 

these seven events are: right ascension α, declination δ, polarization ψ, component masses in the detector frame m1
det 

and m2
det, luminosity distance dL, inclination angle ι, coalescence time tc, magnitudes for the spin vector a1 and a2, azi-

muthal angles for the spin vectors θ1
a and θ2

a, polar angles for the spin vectors θ1
p and θ2

p. We analytically marginalize 
over the fiducial phase φ. For efficient sampling of the parameter space and faster convergence of the Markov chains, we 
apply a transformation from the mass parameters that define the prior (m1

det, m2
det) to chirp mass and mass ratio 

 q( , )det  coordinates. The chirp mass is defined as  = +m m m m( ) /( )1 2
3/5

1 2
1/5. While sampling, we allow the 

mass ratio q to be both greater and less than 1.
For GW170104, we assume uniform priors for detector-frame component masses m1,2

det ∈ [5.5, 160) M⊙. When 
generating the waveform in the MCMC, the masses are transformed to the detector-frame chirp mass det and 
q with a restriction 



. < < .M12 3 / 45 0det , and 1 < q < 8 where =q m m m mmax{ , }/min{ , }1
det

2
det

1
det

2
det . We 

assume uniform prior distributions m1,2
det ∈ [3, 50) M⊙ for GW170608, m1,2

det ∈ [10, 90) M⊙ for GW170729, 
m1,2

det ∈ [10, 80) M⊙ for GW170814, and m1,2
det ∈ [5, 80) M⊙ for GW170809, GW170818, and GW170823. For the 

luminosity distance, we assume a uniform in volume distribution such that ∝p d H d( )L L
2, with dL ∈ [100, 2500) 

Mpc for GW170104, dL ∈ [10, 1500) Mpc for GW170608, dL ∈ [10, 5000) Mpc for GW170729, dL ∈ [10, 2500) Mpc 
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for GW170809, dL ∈ [10, 1500) Mpc for GW170814, dL ∈ [10, 3000) Mpc for GW170818, and dL ∈ [10, 5000) Mpc 
for GW170823. The priors for the remaining parameters are the same for all the events. For spin magnitudes, we 
use uniform priors a1,2 ∈ [0.0, 0.99). We use a uniform solid angle prior for the spin angles, assuming a uniform 
distribution for the spin azimuthal angles θ π∈ [0, 2 )1,2

a  and a sine-angle distribution for the spin polar angles θ1,2
p . 

We use uniform priors for the arrival time tc ∈ [ts − 0.1 s, ts + 0.1 s) where ts is the trigger time of the event being 
analyzed, reported in2–4,6. For the sky location parameters, we use a uniform distribution prior for α ∈ [0, 2π) and 
a cosine-angle distribution prior for δ. We use a uniform prior for the polarization angle ψ ∈ [0, 2π) and a 
sine-angle distribution for the inclination angle ι prior. The mass and spin priors for GW170104 are the same as 
those mentioned for the final analysis using the “effective precession” model in ref.2.

The parameter estimation analyses of the events produce samples of the posterior probability density function 
in the form of Markov chains. Successive states of these chains are not independent, as Markov processes depend 
on the previous state33. Independent samples are obtained from the full Markov chains by “thinning” or drawing 
samples from chains of the coldest temperature, with an interval of the autocorrelation length11,33. These inde-
pendent samples are used to calculate estimates for the model parameters from the analysis.

Posterior probability density functions.  Independent samples from the ensemble MCMC chains from 
the analyses of all the seven events are available for download at the data release repository for this work34. We 
encourage use of these data in derivative works. The repository also contains IPython notebooks35 demonstrating 
how to read the data from the files and manipulate them, and provide examples of reconstructing the figures 
presented in this paper.

Samples of the varied parameters in the MCMC can be combined to obtain posteriors for other derivable 
parameters. We map the values for the detector-frame masses (m1

det, m2
det) and the luminosity distance dL from 

the runs to source-frame masses (m1
src, m2

src) using the standard Λ-CDM cosmology36,37. While visualizing and 
quoting the detector-frame and source-frame masses, we use = =q m m m m/ /1

det
2
det

1
src

2
src where m1

det and m1
src 

refer to the more massive black hole, and m2
det and m2

src refer to the less massive black hole in the binary; ie. we 
present our results with q ≥ 1. We also map the component masses to parameters such as the chirp mass  and 
the mass ratio q, and map the component masses and spins to the effective inspiral spin parameter χeff and the 
effective precession spin parameter χp

30,31. Our measurements show that all the events are in agreement with 
being binary black hole sources.

In order to obtain an estimate for a particular parameter, the other parameters that were varied in the ensem-
ble MCMC can be marginalized over in the posterior probability density function. Recorded in Table 1, is a sum-
mary of the median and 90% credible interval values of the main parameters of interests obtained from the 
analyses of all seven O2 binary black hole events. The marginalized distributions for −m m1

src
2
src, q − χeff, and 

dL − ι for the seven events are shown in Figs 1, 2 and 3 respectively. The two-dimensional plots in these figures 
show 90% credible regions for the respective parameters.

Our results show that GW170729 is the largest mass binary black hole signal and GW170608 is the smallest 
mass binary black hole signal from the detections during O1 and O2. Parameter estimates of the binary black 
holes observed during O1 were presented in refs7,11. GW170814 seems to have lesser support for asymmetric 
mass ratios than the other events. All the events have low effective spin values. GW170814 has more support for 
face-on systems, whereas GW170809 and GW170818 has a preference for face-off systems. For GW170608, there 
is preference for both face-on (ι = 0) and face-off (ι = 180). GW170104, GW170729, and GW170823 has support 
for face-on (ι = 0), face-off (ι = 180) and edge-on (ι = 90). Face-on systems are those for which the inclination 
angle ι = 0; ie. the line of sight is parallel to the binary’s orbital angular momentum. Face-off systems are those for 
which ι = π (the line of sight is anti-parallel to the binary’s orbital angular momentum). We also computed χp for 
each of the events and found no significant measurements of precession. GW170608 seems to be observed at the 
closest luminosity distance and GW170729 the farthest among the O2 binary black holes.

Parameter GW170104 GW170608 GW170729 GW170809 GW170814 GW170818 GW170823

det (M⊙) . − .
+ .25 2 1 6

1 7 . − .
+ .8 50 0 05

0 06 . − .
+ .51 7 9 0

8 0 . − .
+ .29 9 1 8

2 2 . − .
+ .27 2 1 2

1 2 . − .
+ .32 2 2 8

2 8 . − .
+ .39 1 4 5

4 7

m1
det (M⊙) . − .

+ .37 3 6 8
8 2 . − .

+ .12 0 2 1
6 0 74 5 13 8

13 0. − .
+ . . − .

+ .41 9 6 8
10 3 . − .

+ .33 9 2 8
6 3 . − .

+ .43 5 6 1
9 7 . − .

+ .52 7 8 1
12 7

m2
det (M⊙) . − .

+ .22 9 4 9
5 9 . − .

+ .8 0 2 3
1 6 . − .

+ .48 8 16 0
14 6 . − .

+ .28 7 6 6
5 9 . − .

+ .28 9 4 4
2 6 . − .

+ .32 0 7 6
5 9 . − .

+ .39 1 10 6
7 8

src (M⊙) . − .
+ .21 2 1 4

1 9 . − .
+ .7 96 0 19

0 19 . − .
+ .34 1 4 5

6 4 . − .
+ .24 9 1 5

2 1 . − .
+ .24 3 1 2

1 4 . − .
+ .26 7 1 9

2 2 . − .
+ .29 0 3 2

4 2

m1
src (M⊙) . − .

+ .31 4 6 0
7 6 . − .

+ .11 3 2 0
5 6 . − .

+ .49 5 10 2
12 1 . − .

+ .35 0 5 9
9 1 . − .

+ .30 4 2 7
5 7 . − .

+ .36 1 5 3
8 5 . − .

+ .39 2 6 6
10 9

m2
src (M⊙) . − .

+ .19 2 4 0
4 9 . − .

+ .7 5 2 2
1 5 . − .

+ .32 2 9 1
9 9 . − .

+ .23 9 5 3
5 0 . − .

+ .25 8 4 0
2 6 . − .

+ .26 5 6 0
4 7 . − .

+ .28 9 7 2
6 3

q . − .
+ .1 63 0 56

0 84 . − .
+ .1 50 0 46

1 65 . − .
+ .1 53 0 48

0 93 . − .
+ .1 46 0 42

0 85 . − .
+ .1 17 0 15

0 46 . − .
+ .1 36 0 33

0 76 . − .
+ .1 34 0 31

0 85

χeff − . − .
+ .0 08 0 17

0 16 . − .
+ .0 057 0 06

0 19 . − .
+ .0 34 0 27

0 21 . − .
+ .0 06 0 16

0 18 . − .
+ .0 08 0 12

0 12 − . − .
+ .0 08 0 24

0 20 . − .
+ .0 07 0 21

0 22

a1 . − .
+ .0 35 0 31

0 48 . − .
+ .0 32 0 29

0 47 . − .
+ .0 60 0 51

0 34 . − .
+ .0 34 0 31

0 53 . − .
+ .0 53 0 48

0 42 . − .
+ .0 56 0 50

0 38 . − .
+ .0 44 0 40

0 48

a2 . − .
+ .0 47 0 42

0 45 . − .
+ .0 43 0 39

0 49 . − .
+ .0 57 0 50

0 38 . − .
+ .0 40 0 37

0 51 . − .
+ .0 46 0 42

0 47 . − .
+ .0 50 0 45

0 44 . − .
+ .0 45 0 41

0 48

dL (Mpc) −
+970 410

400
−
+318 109

128
−
+2980 1400

1410
−
+1020 390

310
−
+584 186

130
−
+1030 350

420
−
+1920 860

870

Table 1.  Results from PyCBC Inference analysis of binary black hole events from LIGO-Virgo’s second 
observing run. Quoted are the median and 90% credible interval values for a subset of the inferred model 
parameters.
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Figure 4 shows the 90% credible regions for the sky location posterior distributions of all the seven binary 
black hole events in a Mollweide projection and celestial coordinates. GW170818 and GW170814 have substan-
tially small sky localization areas as they were detected by the H1L1V1 three-detector network, with a significant 
signal-to-noise ratio (SNR) contribution from all the detectors. The GW170729 and GW170809 parameter esti-
mation analyses use data from all three detectors in the network. However, the SNR in Virgo is not significant, 
causing the sky localization area to be broader than in the cases of GW170814 and GW170818. The sky locali-
zation area of GW170809 is smaller as compared to GW170729, as the former has a higher network SNR than 
the latter; the sky localization area varies inversely as the square of the SNR. The events observed by the H1L1 

Fig. 1  Posterior probabilities of the source frame primary mass m1
src and secondary mass m2

src from the PyCBC 
Inference analyses of the seven gravitational-wave signals from binary black hole mergers in Advanced LIGO-
Virgo’s second observing run (O2). Plotted are the 90% credible contours in the 2D plane. The measurements 
suggests that GW170729 has the highest masses and GW170608 has the lowest masses among all black hole 
binaries observed in O1 and O2. Parameter estimates of the O1 binary black holes were presented in refs7,11.

Fig. 2  Posterior probabilities of the asymmetric mass ratio q and the effective inspiral spin χeff from the PyCBC 
Inference analyses of the seven gravitational-wave signals from binary black hole mergers in Advanced LIGO-
Virgo’s second observing run. Plotted are the 90% credible contours in the 2D plane. All the events have low χeff 
values. GW170814 has lesser support for asymmetric mass ratios than the other events.
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two-detector network—GW170104, GW170608, GW170823 have poor sky localization, with GW170823 having 
the lowest network SNR and broadest sky localization area, and GW170608 having the highest network SNR and 
smallest sky localization area.

Estimates of the parameters for these events were previously published in the LIGO–Virgo Collaboration 
(LVC) detection papers for these events2–4,6. The results from our analyses are overall in agreement with the 
estimates published by the LVC within the statistical errors of measurement of the parameters. Any small dis-
crepancies in the measurement of the parameters would be due to the differences in the analysis methods. One 
of the differences is the method of the PSD estimation. Another such difference is that we do not marginalize 
over calibration uncertainties of the measured strain38, whereas the LVC analyses use a spline model to fit the 
calibration uncertainties. The true impact of calibration errors on the parameter estimates should be evaluated 

Fig. 3  Posterior probabilities of the luminosity distance dL and the inclination angle ι from the PyCBC Inference 
analyses of the seven gravitational-wave signals from binary black hole mergers in Advanced LIGO-Virgo’s second 
observing run. Plotted are the 90% credible contours in the 2D plane. GW170104, GW170729, and GW170823 
have support for face-on (ι = 0), face-off (ι = 180) and edge-on (ι = 90). For GW170608, there is a stronger 
preference for the system being face-on (ι = 0) and face-off (ι = 180). For GW170814, there is a stronger preference 
for the system being face-on (ι = 0). For GW170809 and GW170818 there is a stronger preference for face-off 
(ι = 180). GW170608 is observed at the closest luminosity distance and GW170729 the farthest.

Fig. 4  Posterior probabilities for the sky location parameters—right ascension and declination from the 
PyCBC Inference analyses of the seven gravitational-wave signals from binary black hole mergers in Advanced 
LIGO-Virgo’s second observing run. Plotted are the 90% credible contours in Mollweide projection and 
celestial coordinates; the right ascension is expressed in hours and the declination in degrees. GW170818 
and GW170814 have substantially small sky localization areas, being detected by the H1L1V1 three-detector 
network, with considerable SNR in all the detectors. The GW170729 and GW170809 analyses used data 
from the three-detector network. However, the sky localization area is broad due to low Virgo SNR. Between 
GW170729 and GW170809, the latter has a higher network SNR leading to a smaller sky localization area. 
GW170104, GW170608, GW170823 have poor sky localization, as they were detected by the H1L1 two detector 
network; GW170823 has the lowest network SNR and broadest sky localization area, and GW170608 has the 
highest network SNR causing the smaller sky localization area.
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using a physical model of the calibration, which does not exist currently in any analysis. This will be revisited in 
a future work.

Data Records
The data products from the parameter estimation analyses for the seven events are stored in seven HDF39 files, 
available within the Zenodo data release repository34 for this work. The location of these HDF files within the 
repository are listed in Table 2. In this section, we describe the contents of these seven HDF files.

The top-level of each HDF file contains attributes named ifos, variable_args, posterior_only, 
and lognl. variable_args is a list of the inferred model parameters. For these seven analyses this includes: 
the coalescence time (tc), distance (distance), inclination angle (inclination), polarization angle 
(polarization), right ascension (ra), declination (dec), detector-frame component masses (mass1 and 
mass2), azimuthal angles of the spin vector (spin1_azimuthal and spin2_azimuthal), polar angles 
of the spin vector (spin1_polar and spin2_polar), and magnitudes of the spin vector (spin1_a and 
spin2_a). mass1, spin1_a, spin1_polar, spin1_azimuthal in the files refer to the primary black 
hole in the binary. mass2, spin2_a, spin2_polar, spin2_azimuthal refer to the secondary black hole 
in the binary.

ifos stores the list of the names of interferometers from which data has been analyzed in each run. The 
attribute posterior_only is a Boolean where a True value indicates that the posterior samples and likeli-
hood statistics are stored as flattened arrays in the files. lognl stores the value of the noise likelihood, which is 
described below.

The independent samples of the model parameters are stored in a top-level HDF group, named [‘sam-
ples’]. For each parameter listed in the variable_args attribute, the [‘samples’] HDF group contains 
an HDF dataset that is a one-dimensional array indexed by the independent samples. Therefore, the set of param-
eters for the i-th independent sample is the i-th element of each array. For example, [‘samples/mass1’]32 and 
[‘samples/mass2’]32 are the masses for the 32-nd independent sample. Samples in the mass1 and mass2 
data sets are in solar mass units, those in distance are in Mpc units, those in tc are in seconds, and those in 
spin1_a and spin2_a are dimensionless. Samples in the spin1_polar, spin2_polar, spin1_azi-
muthal, spin2_azimuthal, inclination, ra, dec, and polarization are in radians.

The second top-level HDF group is [‘prior_samples’], which stores prior samples in a similar format as 
the [‘samples’] group described above. For each of the parameters listed in the variable_args attribute, 
the [‘prior_samples’] HDF group contains an HDF dataset that is a one-dimensional array of samples of 
that parameter drawn from the prior distribution.

The third top-level HDF group, named [‘likelihood_stats’], contains quantities to obtain the prior 
ϑ
→

p H( ) and likelihood ∣
→

ϑ
→

p d t H( ( ) , ) from Eq. 1 for each independent sample. In order to obtain the prior for 
each independent sample, the [‘likelihood_stats’] HDF group contains a dataset of the natural loga-
rithm of the prior probabilities called [‘likelihood_stats/prior’]. The datasets in the [‘likeli-
hood_stats’] HDF group are one-dimensional arrays indexed by the independent sample (eg. the i-th 
element corresponds to the prior probability of the i-th independent sample) as well. In order to obtain the likeli-
hood for each independent sample, there is a dataset containing the natural logarithm of the likelihood ratio Λ 
called [‘likelihood_stats/loglr’]. The likelihood ratio Λ is defined as11

∣

∣
Λ =

→
ϑ
→

→ →
p d t H

p d t n
log log ( ( ) , )

( ( ) ) (4)

where ∣
→ →p d t nlog ( ( ) ) is the natural logarithm of the noise likelihood defined as11

∣  ∑
→ → = − .

=
p d t n d f d flog ( ( ) ) 1

2
( ) ( )

(5)i

N

i i
1

Event
Posterior 
samples Location of the associated data file within the data release repository

GW170104 8000 posteriors/GW170104/gw170104_posteriors_thinned.hdf

GW170608 8000 posteriors/GW170608/gw170608_posteriors_thinned.hdf

GW170814 8000 posteriors/GW170814/gw170814_posteriors_thinned.hdf

GW170729 8000 posteriors/GW170729/gw170729_posteriors_thinned.hdf

GW170809 8000 posteriors/GW170809/gw170809_posteriors_thinned.hdf

GW170818 8000 posteriors/GW170818/gw170818_posteriors_thinned.hdf

GW170823 8000 posteriors/GW170823/gw170823_posteriors_thinned.hdf

Table 2.  For each binary black hole merger, this table contains: the event’s name, number of independent 
samples obtained with the ensemble MCMC, and location of the HDF files containing the independent samples 
within the Zenodo data release repository34.
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The natural logarithm of the noise likelihood is a constant for each analysis. Therefore from Eq. 4, in order to 
compute the natural logarithm of the likelihood, ∣

→
ϑ
→

p d t Hlog ( ( ) , ), the user adds lognl to each element of 
[‘likelihood_stats/loglr’].

The fourth top-level HDF group is [‘psds’]. For each interferometer from which data has been used in 
the analysis, the [‘psds’] HDF group contains a dataset storing a frequency series of the PSD multiplied by 
the square of the dynamic range factor. The dynamic range factor is a large constant to reduce the dynamic 
range of the strain; here, we use 269 rounded to 17 significant figures (precisely 5.9029581035870565 × 1020). 
The first entry in each PSD frequency series corresponds to frequency f = 0 Hz, and the last entry corresponds to 
f = 1024 Hz. Attached as attributes to each interferometer’s PSD frequency series dataset object are the frequency 
resolution—delta_f and the low frequency cutoff used for that interferometer in the PSD estimation and like-
lihood computation—low_frequency_cutoff.

Technical Validation
The analyses in this paper were performed using the PyCBC Inference software11 with the parallel-tempered 
emcee sampler15,16 (https://github.com/dfm/emcee/tree/v2.2.1), hereafter referred to as emcee_pt, as the sam-
pling algorithm. A validation study of PyCBC Inference with the emcee_pt sampler was presented in Sec. 4 of 
ref.11. The validation study in ref.11 used the same version of the PyCBC code, waveform model, sampler settings, 
data conditioning settings, and burn-in test as used in our analyses in this paper, and therefore demonstrates the 
credibility of the results presented in this paper. In this section, we summarize the validation study.

We have tested the performance of this setup (ie. code version, waveform model, sampler settings, etc.) using 
analytic likelihood functions such as the multivariate normal, Rosenbrock, eggbox, and volcano functions. The 
emcee_pt sampler successfully sampled the underlying analytical distributions. The recovery of parameters of 
a four-dimensional normal distribution using the emcee_pt sampler is shown in Fig. 2 of ref.11.

Reference11 also describes a test performed using simulated binary black hole signals to validate the reliability 
of parameter estimates generated by PyCBC Inference with the emcee_pt sampler. The test is carried out by 
generating 100 realizations of stationary Gaussian noise colored by the power spectral densities of the Advanced 
LIGO detectors around the time of observation of GW15091440. A unique simulated binary black hole signal, 
whose parameters were sampled from the prior probability density function, is injected into each simulated noise 
realization. For the population of 100 simulated binary black hole signals, the network signal-to-noise ratios 
range from 5 to 160, and are predominantly spaced between 10 to 40. PyCBC Inference, using the emcee_pt 
sampler, was then run on each simulated binary black hole signal to produce samples of the posterior probability 
density function and compute credible intervals that estimate the modeled parameter values. For each parameter, 
we then calculate the percentage of the runs (x%) in which the true value of the parameter was recovered within 
a certain credible interval (y%). In the ideal case, there should be a 1-to-1 relation between these percentiles, ie. 
x should equal y for any value of the percentile y. The percentile-percentile curves obtained for each parameter 
in the test is plotted in Fig. 3 of ref.11. To evaluate the deviation between the percentile-percentile curve for 
each parameter from a 1-to-1 relation, a Kolmogorov-Smirnov (KS) test is performed. Using the set of p-values 
obtained for all the parameters, another KS test is performed expecting the p-values to adhere to a uniform 
distribution. The p-value obtained from this calculation is 0.7, which is sufficiently high to infer that PyCBC 
Inference, with it’s implementation of the emcee_pt sampler, provides unbiased estimates of the binary black 
hole modeled parameters.

In addition to the aforementioned tests using analytical distributions and simulated signals, the 90% credi-
ble interval measurements of the binary black hole parameters from our analyses presented in this paper are in 
agreement with the LIGO–Virgo Collaboration estimates2–4,6 which used a different inference code. This further 
validates the results presented here.

Usage Notes
When citing the data associated with this paper and released in the data release repository34, please cite this paper 
for describing the data and the analyses that generated them. Please also cite ref.11 which describes and validates 
the PyCBC Inference parameter estimation toolkit that was used for generating the data. The samples of the 
posterior probability density function for each analysis presented in this paper are stored in separate HDF files, 
and the location of each HDF file is listed in Table 2. We direct users to the tools available in PyCBC Inference to 
read these files and visualize the data. Figures 1, 2 and 3 in this paper were generated using these tools from the 
PyCBC version 1.12.3 release. The data release repository also includes scripts to execute pycbc_inference 
and reproduce the analysis and resulting samples.

The data release repository for this work34 includes two IPython notebooks named data_release_o2_
bbh_pe.ipynb and o2_bbh_pe_skymaps.ipynb. data_release_o2_bbh_pe.ipynb pre-
sents tutorials for using PyCBC to handle the data. This notebook contains examples to load the HDF datasets, 
convert the parameters in the HDF files to other coordinates (eg. →m m q( , ) ( , )1

det
2
det det ), and visualize the 

samples of the posterior probability density function. The samples’ credible intervals are visualized as marginal-
ized one-dimensional histograms and two-dimensional credible contour regions. We include commands in this 
notebook to reproduce Figs 1, 2 and 3 in this paper. PyCBC Inference also includes an executable called pycbc_
inference_plot_posterior to render these visualizations. The IPython notebook o2_bbh_pe_sky-
maps.ipynb demonstrates a method of visualizing the sky location posterior distributions, as presented in 
Fig. 4 in this paper. We use tools from the open source ligo.skymap package (https://pypi.org/project/ligo.
skymap/) for writing the sky location posterior samples from our analyses into FITS files, reading them, and 
generating probability density contours on a Mollweide projection.

The released data are freely available under the Creative Commons License: CC BY.

https://github.com/dfm/emcee/tree/v2.2.1
https://pypi.org/project/ligo.skymap/
https://pypi.org/project/ligo.skymap/
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Code Availability
The posterior probability density functions presented in this paper were sampled using the PyCBC Inference 
software. The PyCBC Inference toolkit uses the Bayesian inference methodology described in this paper; a more 
detailed description of the toolkit is presented in ref.11. The source code and documentation of PyCBC Inference 
is available as part of the PyCBC software package at http://pycbc.org. The results in this paper were generated 
with the PyCBC version 1.12.3 release. In the data release repository for this work34 we provide scripts and 
configuration files for replicating our analysis. The scripts document our command line calls to the pycbc_
inference executable which performs the ensemble MCMC analyses. The command line call to pycbc_inference 
contains options for: the ensemble MCMC configuration, data conditioning, and locations of the configuration 
file and gravitational-wave detector data files. The configuration files included in the repository, and used as an 
input to pycbc_inference, specify the prior probability density functions used in the analyses, including sections 
for: initializing the distribution of Markov-chain positions in the ensemble MCMC, declaring transformations 
between the parameters that define the prior and the parameters that the ensemble MCMC samples (eg. 

→m m q( , ) ( , )1 2 ), and defining additional constraints to the prior probability density function11.
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