1904.11522v1 [cond-mat.mes-hall] 25 Apr 2019

arXiv

Quasiperiodic magnetic chain as a spin filter for arbitrary spin states

Biplab Pal*
Maz Planck Institute for the Physics of Complex Systems, Néthnitzer Str. 38, 01187 Dresden, Germany

We show that a quasiperiodic magnetic chain comprising magnetic atomic sites sequenced in
Fibonacci pattern can act as a prospective candidate for spin filters for particles with arbitrary
spin states. This can be achieved by tuning a suitable correlation between the amplitude of the
substrate magnetic field and the on-site potential of the magnetic sites, which can be controlled by
an external gate voltage. Such correlation leads to a spin filtering effect in the system, allowing
one of the spin components to completely pass through the system while blocking the others over
the allowed range of energies. The underlying mechanism behind this phenomena holds true for
particles with any arbitrary spin states S = 1,3/2,2,..., in addition to the canonical case of spin-
half particles. Our results open up the interesting possibility of designing a spin demultiplexer using
a simple quasiperiodic magnetic chain system. Experimental realization of this theoretical study
might be possible by using ultracold quantum gases, and can be useful in engineering new spintronic

devices.
I. INTRODUCTION

The ability to controllably tune, manipulate and de-
tect the spin degree of freedom of a particle in low-
dimensional systems plays a pivotal role in the field of
spintronics [1-3]. It has emerged as one of the most sig-
nificant areas of research over the past few decades due to
its potential to realize new functionalities in future elec-
tronic devices, and keep the promise to integrate memory
and logic in a single device. Spin-based electronic devices
are assumed to have several important advantages, such
as high memory storage density, faster access speed, low
power consumption, and nonvolatility, which give them a
significant edge over the existing conventional electronic
device technologies. To realize such devices for real-life
applications, a detailed investigation and understanding
of the spin-dependent transport in model nanostructured
systems is of immense importance, and can be treated as
a powerful tool to envision the role of the spin degree of
freedom in coherent electronic systems. Generation of a
spin-polarized current source has been one of the key area
of investigation in the spintronics research domain, and
has attracted intense theoretical as well as experimental
research studies over the course of time [4-14].

For the desirable operations and the development of
the spin-based devices such as spin-FETs [15], spin-
interference devices [16], and readout devices for quan-
tum information processing and quantum computers [17],
the notion of spin-polarized current or the so-called
spin filter is one of the most pertinent components.
Spin interference effects in a quantum ring geometry
subject to the Rashba spin-orbit interaction was suc-
cessfully realized experimentally [18] a few years ago
following an earlier theoretical study [19]. To date,
some notable progress has been achieved in the study
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of spin-polarized transport, where people have used
ferromagnetic semiconductor heterostructures [20, 21],
metallic multilayer structures [22], ferromagnetic metal-
semiconductor interfaces [23], and carbon-based organic
materials [11, 12] among others to achieve highly control-
lable spin-polarized spin injection sources. Furthermore,
the study of spin-polarized transport and spin filtering
effects in quantum networks with loop geometries [24—
27], or in helical molecules [28], and DNA double he-
lix structure [29, 30] has also ushered new light into
this research arena, revealing different subtleties of spin-
polarized transport in mesoscopic systems.

However, to date, the study of spin-polarized transport
has mainly focused on the transportation of electrons,
i. e., for spin 1/2 particles, while the investigation of spin-
polarized transport for particles with higher spin states,
such as spin 1 or spin 3/2 or other higher-order states has
not received the same level of attention. Only recently,
the idea of spin-polarized transport and spin filtering ef-
fects for higher spin states in a periodic magnetic chain
is being proposed and studied in detail [31]. We strongly
believe that this is an area which needs to be explored
more rigorously in order to bring out the possibilities
of designing next-generation novel quantum information
storage devices which rely on the spin-polarized trans-
port of particles with arbitrary higher spin states. Such
systems exhibiting higher-order spin states can be real-
ized in experiments using ultracold fermionic or bosonic
quantum gases [32-37].

It is always an intriguing question to ask whether one
can have spin filtering phenomena in a system which has
no long-range translational order. In the present article,
we address this question and investigate the possibility
of a spin filtering effect for arbitrary higher-order spin
states in a quasiperiodic system. The quasiperiodic sys-
tem we consider for our study is a Fibonacci chain, which
represents the simplest model of a quasicrystal [38, 39].
It is well known that, the eigenstates of a periodic sys-
tem are extended Bloch states [40] and the corresponding
energy spectrum is continuous, while for a disordered sys-
tem, like in a one-dimensional Anderson model, all the
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eigenstates are localized [41]. In contrast to these two
cases, for a Fibonacci quasiperiodic system, the energy
spectrum forms a singular continuous Cantor set [38, 39].
The corresponding eigenstates are critical and show mul-
tifractal character. Thus quasiperiodic systems, in gen-
eral, are expected to show up poor conducting behavior.
In this communication, we present a unique exception
of the above scenario and show that, for a correlation
between the parameters of the Hamiltonian, our simple
tight-binding model of a quasiperiodic magnetic chain
presents a ballistic transmission window for one of the
spin channels while completely blocking the particles in
the other spin channels. It is worth mentioning that, very
recently, Mukherjee et al. have studied the spin filtering
effect in a variety of aperiodic systems [42], where they
have taken certain special kinds of quasi-one-dimensional
building blocks to form the quasiperiodic systems. They
have shown that, for some special numerical correlations
between the hopping integrals of the system, and in some
cases an additional external magnetic flux, will lead to a
spin filtering effect in the system. We note that, in their
study, in addition to a major spin channel having a high
transmittivity, the other remaining minor spin channels
also show some transport in their transmission character-
istics. In contrast with the above scenario, we propose
a very simple model of a one-dimensional quasiperiodic
magnetic chain. Here one can only tune the values of
the on-site potentials of the atomic sites by using some
external gate voltages to accomplish a complete spin fil-
tering effect for one of the desired spin components (chan-
nels), while the remaining spin components will have zero
transport through the system under this condition.

In what follows, we present the model and describe the
essential results. The layout of the paper is the follow-
ing. In Sec. II, we introduce our model and describe the
essential mathematical framework employed to extract
the results. The results for the spin-dependent transport
and the spin filtering effect along with the corresponding
local density of states (LDOS) for different spin channels
are discussed in detail in Sec. III. Finally, in Sec. IV, we
draw our conclusion with a summary of the key findings
and their possible applications.

FIG. 1: Schematic diagram of a finite-size Fibonacci se-
quenced quasiperiodic magnetic layered structure coupled be-
tween two semi-infinite nonmagnetic leads, wiz., source (S)
and drain (D).

II. THE MODEL AND THE THEORETICAL
FRAMEWORK

A. The Fibonacci chain

We propose the construction of a linear magnetic chain
model following a Fibonacci sequence. The Fibonacci
sequence is a quasiperiodic sequence of two letters; say,
A and B. To construct the system, one can start from
the letter A, and then apply the following substitution
rule to grow the system in to its different higher-order
generations:

A — AB and B — A. (1)

By using the above prescription in Eq. (1), we can easily
construct the different generations of a Fibonacci system
as follows, ABA, ABAAB, ABAABABA, and so on. For
our model, the letters A and B are simply replaced by two
kinds of magnetic atomic sites grafted on some substrates
to form the system shown in Fig. 1. These magnetic
sites have magnetic moments h 4 and hi respectively,
associated with them. In the thermodynamic limit, i. e.,
for an infinitely long chain, the ratio of A-type to B-
type magnetic sites is incommensurate and gives o =
(1 ++/5)/2, which is known as the ‘golden ratio’.

B. Hamiltonian of the system

The Hamiltonian of the system in a tight-binding
framework can be written as,

~ (S
H = ZCI (Gi —h; SE )) c; + Z (c;-ftijcj +H.C.),

(i.3)
(2)
where (i, j) indicates the nearest-neighbor atomic sites.
We note that, each of the terms cz(ci), €, t;j, and

=(S
SZ(- ) represents multi-component matrices with dimen-

sions that depend on the spin of the particles. For the
simplest case of a spin-half (S = 1/2) particle, these ma-
trices, viz., creation (annihilation) matrix, on-site poten-
tial matrix, and hopping matrix, take the following forms:

t_ (& f [ Gt _(€&r O
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where the indices ‘I’ and ‘|’ refer to the spin-up and
spin-down components (‘channels’), respectively. Note
that the dimension of these matrices will increase pro-
portionately as we go to the higher-order spin cases, viz.,

- (S
S =1,3/2,..., and so on. The term h; -SZ(- ) represents
the interaction of the spin (S) of the injected particle
with the local magnetic field h; = (hy, hy, h.) at site 1.



~(S
SZ(- ) represents the set of generalized Pauli spin matri-
ces (85,8, S.) expressed in units of S for an incoming
particle with spin S. For the spin-half (S = 1/2) case,

(84,8y,8) turns out to be the set of the usual Pauli
—_—
spin matrices (67,0, 0), and the term h; - SE " at site

i, will have the following explicit form:
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where h; is the amplitude of the vector f_ii, and 0; and ¢;
denote the polar and azimuthal angles, respectively, as
shown in Fig. 2.

FIG. 2: Decomposition of h in a three-dimensional plane. 6
denotes the polar angle and ¢ denotes the azimuthal angle.

C. Equivalence of the spin system with a
multi-strand ladder network

Using the Hamiltonian in Eq. (2), one can write down
the time-independent Schrédinger equation for a general
spin S system as follows:
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{ mg=-—S

()
A simplification of Eq. (5) for a spin-half (S = 1/2) sys-
tem will lead to the following set of difference equations
corresponding to the spin-up (1) and spin-down (|) chan-
nels, respectively, as follows:

[E — (em — hz COS 91)} 1/)1'77* + hz sin Qie*i@wi,i
= thit14 + i1, (6a)
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= tit1,) + i1y (6D)
It is interesting to note that, the above set of difference
equations Eq. (6a) and (6b) resemble the difference equa-

tions for a spinless particle in a two-strand ladder net-
work [43]. The effective on-site potentials for the upper

strand (identified with the spin-up (1) component) and
the lower strand (identified with the spin-down (]) com-
ponent) of the analogous ladder network are €; +—h; cos 6;
and €; | +h; cos 0; respectively, the hopping amplitude be-
tween the two neighboring sites along each strand of the
ladder can be identified as ¢, while the term h; sin 8;e*®
plays the role of the interstrand coupling along the i-th
rung of the ladder.

In a similar way, starting from the Eq. (5) for a spin-1
(S = 1) system, we can obtain the following set of three
coupled difference equations for the three spin channels
1, 0, and —1 respectively, as

1
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where we have used the following set of spin matrices
(8521,85:1, szl) for a spin-1 system:

010 0 —i 0
1 1
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T \/5 y \/5 (3 (3
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and S~ =00 0 |. (8)
00 —1

Once again, the above prescription leads to the fact that,
a spin-1 (S = 1) system can be identified with a three-
strand ladder network for a spinless particle. The above
two analyses for the spin-half (S = 1/2) and the spin-
1 (S = 1) cases lead to the conclusion that, the above
treatment can be extended to a general spin-S system
and can be identified with an equivalent (25 + 1) strand
ladder model for spinless particles. We note that, as we
go to the higher-order spin cases, there will be more such
coupled difference equations corresponding to the differ-
ent spin channels. This analogy between the spin model
and the multi-strand ladder network is employed to engi-
neer the spin filtering effect for our quasiperiodic system,
as described in the subsequent sections.

IIT. RESULTS AND DISCUSSION

One of the essential requirements to have the spin fil-
tering effect, is to decouple the different spin channels



from each other, 4. e., there should not be any spin mix-
ing between different spin components. For our model,
this condition can be satisfied by setting the polar angle
0; = 0V i. By looking at the set of equations (6) and (7),
it can be easily understood that the hybridization terms
(spin-mixing terms) between different spin components
vanishes for 0; = 0 as the sin 0; terms vanishes under this
condition irrespective of the value of the azimuthal angle
¢;. The physical meaning of the above condition is that,
the magnetic moments of the atomic sites in the system
have to be aligned along the z axis parallel to each other.

A. Spin-half (S =1/2) system

For a spin-half (S = 1/2) system, the above choice of
0; will lead to the following set of equations from Eq. (6):

[E — (€4 — hi)|ir = tiy14 + ticig, (9a)

[E — (e + hi)]viy = tigry + i1y, (9D)

It is apparent from the two equations above that the
spin-up (1) and the spin-down ({) channels are now com-
pletely decoupled from each other. We furthermore can
choose €;+ = €| = €, 4. e., the on-site energies at an i-th
atomic site are to be the same for both the spin-up (1)
and the spin-down (|) particles. For our model, h; can
take two possible values h 4 and hp sequenced following a
Fibonacci pattern as depicted in Fig. 1. Such a sequence
can be generated mathematically by using

hi=P+Q(l(i+1)(c—1)] —[ilc —1)]),  (10)

where the function |x] denotes the greatest integer lower
than =, 0 = (1 ++/5)/2, and P and Q are two parame-
ters that control the values of h 4 and hg. Using Eq. (10),
one can easily find out that, the values of h 4 and hg will
turn out to be hq = P+ Q) and hg = P respectively, se-
quenced in a Fibonacci pattern. We can also choose the
values of the on-site potentials €; to follow a Fibonacci
pattern, consisting of two kinds of constituents € 4 and e
respectively. The values of these two on-site potentials
can be easily controlled by using an external gate volt-
age [5]. Hence, one can easily have the exactly identical
Fibonacci pattern for ¢; as that of h,.

Now with this convention, if we set e4 = A + h4 and
e = A+ hp (where A is some constant value which sets
the center of the energy spectrum), then from Eq. (9), it
immediately follows that, for the spin-up (1) channel, the
effective on-site potentials on different atomic sites will
have a constant value, while for the spin-down (|.) channel
the effective on-site potentials on different atomic sites
will follow a Fibonacci quasiperiodic pattern. As a re-
sult of this, we will have an absolutely continuous energy
spectrum for the spin-up (1) channel populated with ex-
tended states while the spin-down () channel will feature

a singular continuous multifractal spectrum. Thus, under
this condition, we will have a high transmission proba-
bility for the spin-up (1) particles whereas the spin-down
(J) particles will encounter zero transmission probabil-
ity. To analyze this fact, we evaluate the local density
of states (LDOS) for the different spin channels by us-
ing the Green’s function technique. The formula for the
LDOS is,

—L lim [ (G, ms|G(B)jms))], (1)

Pjms =
Joms T n—0t

where G(FE) = (21— H) ™ is the Green’s function with
zt = E+in (n — 07), and mg will have 25+1 values for
a general spin S system, e. g., for the spin-half (S = 1/2)
case, ms = 1/2(1), —1/2().
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FIG. 3: (a) Plots of LDOS for the spin-up (1) and the

spin-down (]) channels under the correlation condition €4 =
A+ hy and e = A + hi. The spin-up (1) channel exhibits
an absolutely continuous spectrum (shaded portion) while the
spin-down (J) channel shows a multifractal singular continu-
ous spectrum. We set A =0, ha = 3, and hg = 0.5 measured
in units of the hopping integral ¢. (b) The corresponding
transmission probabilities T and T) for the spin-up (1) and
the spin-down (|) components computed for a 15-th genera-
tion Fibonacci magnetic chain with 610 atomic sites.

We show the plots of LDOS for the spin-up (1) and the
spin-down ({) channels in Fig. 3(a). We have used a real-
space renormalization group (RSRG) method [44, 45] to
compute the LDOS spectrum for the different spin chan-
nels. We can clearly observe that, the spin-up (1) chan-
nel shows an absolutely continuous energy spectrum in
between E = A — 2t and F = A + 2t (here we have
taken A = 0 and ¢t = 1). All the eigenstates popu-
lated under this absolutely continuous energy spectrum
are of extended character. For the spin-down () chan-
nel, we have a multifractal energy spectrum with self-
similarity, which exhibits the signature of a quasiperiodic
system. The corresponding transmission probabilities for
the two spin channels, viz., up (1) and down (J), are ex-
hibited in Fig. 3(b). Evidently, we have a high trans-
mission probability (T%) for the spin-up (1) component
corresponding to the absolutely continuous spectrum in
Fig. 3(a), while the spin-down (]) component gets com-
pletely blocked with zero transmission probability (T7).
To evaluate these transmission characteristics, we take a
finite-size quasiperiodic magnetic chain and couple it in
between two nonmagnetic periodic leads, viz., source (S)
and drain (D), as shown schematically in Fig. 1. For the



results of the transmission probabilities presented here,
we have considered a 15-th generation Fibonacci chain
with 610 atomic sites. The values of the other parame-
ters; namely, the on-site potentials for the atomic sites
in the leads, the hopping amplitudes for sites in the lead,
and the lead to magnetic chain (MC) couplings are chosen
tobees =€ep =0,tg =tp =4,and ts yc = tme,p = 4,
respectively, for our calculation. We have used a stan-
dard transfer-matrix method (TMM) elaborated in de-
tail in Ref. [31] to obtain the transmission probabilities
corresponding to the different spin components for our
quasiperiodic system.
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FIG. 4: (a) Plots of LDOS for the spin-up (1) and the spin-
down (}) components with the correlation condition €4 =
A —ha and e = A — hg. We choose A = 0, ha = 3,
and hp = 0.5 measured in units of the hopping integral ¢.
(b) The corresponding transmission characteristics T4 and T
measured for a 15-th generation Fibonacci magnetic chain
containing 610 atomic sites. The other parameters are same
as in Fig. 3.

We note that, one can have exactly the opposite phe-
nomenon as compared with the results described in the
last two paragraphs for a different choice of correla-
tion between the two sets of parameters {e4,eg} and
{ha,hg}, viz., ea4 = A — hy and eg = A — hp, where
A is a constant value which sets the center of the en-
ergy spectrum. With this choice of the correlation, it
follows from Eq. (9) that, now we will have a constant
value of the effective on-site energies for the spin-down
(J) channel whereas the particles in the spin-up (1) chan-
nel will feel a quasiperiodic effective on-site potential.
Consequently, we will have an absolutely continuous en-
ergy spectrum for the spin-down (|) channel and a mul-
tifractal self-similar singular continuous spectrum for the
spin-up (1) channel as shown in Fig. 4(a). The resulting
transmission characteristics for this case are displayed in
Fig. 4(b), where we can clearly see that, the particles
with spin-down (}) component will have a transparent
transmitting window for the allowed energy regime while
the particles with spin-up (1) component will have a com-
pletely opaque transmitting window. So the conclusion
is that, one can make a tunable spin filter for one of
the desired spin components by choosing an appropriate
correlation between {e4,eg} and {ha,hp}. This can be
achieved basically by suitably tuning the values of €4
and ep using some external gate voltages. The typical
experimental value of the spacial extension over which a
modulation of the gate voltage can be achieved is in the

range of 100-150 nm.

B. Spin-1 (S =1) system

Now we turn to the case of a spin-1 (S = 1) system
which has three components, viz., 1, 0, and —1. It can
be identified with a 25 + 1 = 3 strand ladder network.
Once again, by setting the polar angle 8, = 0V i, we
can decouple the three spin channels from each other,
and analyze the transport properties for each of these
three different spin channels. With the above choice, the
three decoupled equations following from Eq. (7) can be
written as,

(B — (&1 — hi)]win = tig11 + ti11, (12a)

[E — eoltio = tiyio0 + thiiio, (12b)

[E = (€,—14hi) | i1+ = thipr, 1+ 1,1, (12¢)

Now we can choose ¢;1 = €0 = €;,—1 = €;, t. e., the val-
ues of the on-site potentials for the three different spin
components at an i-th atomic site are assumed to be the
same. We know that, for our model, the values of the
local magnetic fields h; = hy4 and hp, are distributed
following a Fibonacci pattern. We can choose exactly
the same Fibonacci sequence for the values of the on-
site potentials ¢, = €4 and eg. We can then suitably
control the values of €4 and ep through some external
gate voltages to have the appropriate correlation condi-
tion for the spin filtering. The possible correlation condi-
tions for the spin-1 particles are ¢; = A+ h;, i € {A, B}.
By applying one of these two sets of conditions, we gen-
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FIG. 5: (a) Plots for the LDOS for the spin-1, spin-0 and
spin-(—1) components with the correlation condition €4 =
A+ hg and eg = A+ hg. We take A = 0, ha = 3.5, and
hs = 0.5 measured in units of the hopping integral ¢. (b)
The corresponding transmission probabilities 11, 1o, and 17—
evaluated for a 15-th generation Fibonacci magnetic chain
containing 610 atomic sites. The lead parameters are es =
ep =0, ts =tp = 5, and ts,mc = tme,p = 4 respectively.
The plots with the dotted lines in both panels are for the
spin-0 component.

erate an absolutely continuous energy spectrum for one
of the three spin channels while the remaining channels



will have multifractal energy spectrum. Consequently,
we will have one of the spin components passing through
the system while the remaining ones will be completely
blocked. In Fig. 5, we exhibit one such situation as a
prototype example, where we apply the correlation con-
ditions €4 = A+ hy and eg = A + hg. This makes
the system completely transparent for the particles with
spin-1 component, while completely impeding the par-
ticles with spin-0 and spin-(—1) components. It is eas-
ily understood that, the other correlation condition will
make the spin-(—1) component transparent through the
system while blocking the particles with spin-0 and spin-
1 components. We do not show this result to save space.
We note that, we cannot have spin filtering for the spin-0
component, as for the spin-0 channel, we do not have an
‘h term’ in the effective on-site potentials as reflected in
Eq. (12D).

C. Other higher-order spin systems

It can be appreciated that, the mathematical frame-
work we have used to compute the results for the previous
two cases of a spin-half (S = 1/2) and a spin-1 (S = 1)
system, can be easily extended for any general ‘spin-S’
system. It is automatically understood that, as we go to
the higher-order spin cases, we will have more numbers
of spin components and eventually one of them will fil-
ter out through the system for the suitable correlations
between the values of the local magnetic fields and the
on-site potentials. Of course, we need to have different
choices of correlations between ¢; and h; to achieve the
spin filtering for different cases as we move up along the
higher-order spin ladder. We note that, to have the filter-
ing for a particle with certain spin component, the Fermi
energy of the particle has to lie within a certain energy
range where the absolutely continuum spectrum appears.
One can easily work out that, for the spin case S = 3/2,
the set of correlation conditions will be ¢; = A 4 h; and
€, = A=+ (h;/3); for the spin case S = 2, the set of corre-
lation conditions will be ¢; = A+h; and ¢; = A=+ (h;/2);
and for the spin case S = 5/2, the set of correlation
conditions will be ¢, = A £+ h;, ¢, = A £ (h;/5), and
€ = A =£ (3h;/5). Here i € {A,B} for our Fibonacci
quasiperiodic magnetic chain model. One can also calcu-
late the conditions for the spin filtering for other higher-
order spin particles following the same prescription.

Remark on the various disorder effects on the spin fil-
tering phenomena.— It is important to discuss the ro-
bustness of the spin filtering protocol with respect to
various disorder effects in the system. One can easily
understand that disorder or thermal fluctuations in the
system will spoil the perfect alignment of the polar angles
0; = 0 V i of the magnetic moments. Hence, it is signifi-
cant to understand what should be the cut-off limit in the
random tilting of the 6; angles before the spin filtering
mechanism in the system breaks down. Upon performing
a rigorous numerical investigation, it has been found that

our results on the spin filtering effect are fairly robust
for small random tilting of the angle 6; below 6; = +10
degrees. Beyond this critical value of random tilting of
0;, the states populating the energy spectrum consist of
highly localized states, directing the system to act as a
poorly conducting system. So it can be concluded that,
for a weak disorder (or thermal broadening) correspond-
ing to the above-mentioned critical value of random tilt-
ing of the angle 6;, the spin filtering protocol persists.

Similarly, it is also worth addressing the effect of the
mismatches between the on-site energies ¢; and the local
magnetic fields h; at different atomic sites on the spin
filtering effect. One can capture this effect by choosing a
random A;. We have numerically found that for a very
weak random disorder in A;, chosen randomly between
the values —0.2t and 0.2¢ (¢ being the hopping ampli-
tude), the spin filtering effect is preserved in the system.
As we increase the strength of this disorder to higher val-
ues, strong localization effect starts to take over and the
efficiency of the spin transport through the system is ex-
tensively reduced. So the protocol for the spin filtering
in our system is robust against weak disorder in A;. It
is also to be noted that, for larger S the system could
be more inclined towards thermal fluctuations. But in
an actual experimental situation, such thermal fluctua-
tions can be controlled by performing the experiment at
a low temperature. However, we have to keep in mind
that, from the point of view of practical applicability,
one cannot go down too low in the temperature scale.
Hence, for a real-life application purpose one has to ju-
diciously compromise between the thermal fluctuations
and the temperature scale.

IV. CONCLUSION

In this paper, we have studied the spin-dependent
transport for particles with arbitrary higher-order spin
states in a tight-binding quasiperiodic magnetic chain
model. A mathematical analogy between a multi-strand
ladder network for spinless particles and a multicompo-
nent spin-S system mimicking a (2S5 + 1) strand ladder
network has been exploited to analyze the problem and
extract the useful results for the spin filtering for differ-
ent spin components. We show that, by incorporating a
suitable correlation between the magnitude of the of local
magnetic fields and the on-site potentials of the magnetic
atomic sites, one can render an absolutely continuous en-
ergy spectrum for one of the desired spin channels (com-
ponents) with a highly transmitting window for the en-
tire allowed energy range, while the other spin channels
exhibit a multifractal energy spectrum with zero trans-
mission probabilities. We show and explain the results in
detail for two prototype examples of spin-half (S = 1/2)
and spin-1 (S = 1) cases. We also give the outline for
the other higher order spin cases and justify that, the
essential mathematical exercise employed by us for our
problem is a general one that holds true for any arbi-



trary higher-order spin-S particles, where S is an integer
or half-integer.

Some of the recent interesting experimental stud-
ies [46, 47] show that, it is possible to manipulate the
spin direction of individual magnetic atoms to form nano-
magnets with arrays of a few exchange-coupled atomic
magnetic moments, exhibiting a rich variety of magnetic
properties and can be explored as the constituents of
nanospintronics technologies. This indicates that, our
theoretical proposal of a quasiperiodic magnetic chain
with an array of atomic magnetic moments sequenced in
a Fibonacci pattern is not far from reality and might be
realized in real-life experiments. Our results can be use-
ful to realize novel magnetic quantum information stor-
age devices and spin-based logic operators [48], relying
on the operation of higher-order spin states. One can
carry forward our analysis and results of this work for
systems with other quasiperiodic sequences like Thue-
Morse, period-doubling, copper mean etc. Finally, we

believe that, our theoretical study of the realization of
spin filters by using a simple tight-binding quasiperiodic
magnetic chain system might open up an interesting fu-
turistic prospect of realizing spin filters using quasicrys-
talline materials.

Acknowledgments

The author gratefully acknowledges the funding and
the facilities provided by MPIPKS through a postdoc-
toral scholarship. The author would like to thank A.
Mukherjee and T. Nag for some useful suggestions on the
manuscript. The author would also like to express his ap-
preciation for the valuable suggestions and constructive
criticisms of the anonymous referees in preparing the re-
vised manuscript.

[1] G. Prinz, Science 282, 1660 (1998).
2] S. A. Wolf, D. D. Awschalom, R. A. Buhrman,
J. M. Daughton, S. von Molnar, M. L. Roukes,

A. Y. Chtchelkanova, and D. M. Treger,
Science 294, 1488 (2001).

[3] S. Sahoo, T. Kontos, J. Furer, C. Hoffmann,
M. Gréber, A. Cottet, and C. Schoénenberger,

Nat. Phys. 1, 99 (2005).

[4] T. Koga, J. Nitta, H. Takayanagi, and S. Datta,
Phys. Rev. Lett. 88, 126601 (2002).

[5] J. A. Folk, R. M. Potok, C. M. Marcus and V. Umansky,
Science 299, 679 (2003).

[6] L. P. Rokhinson, V. Larkina, Y. B. Lyanda-
Geller, L. N. Pfeiffer, and K. W. West,
Phys. Rev. Lett. 93, 146601 (2004).

[7] S. K. Watson, R. M. Potok, C. M. Marcus, and V. Uman-
sky, Phys. Rev. Lett. 91, 258301 (2003).

[8] P. Recher, E. V. Sukhorukov, and D. Loss,
Phys. Rev. Lett. 85, 1962 (2000).

9] A. A. Kiseleva and K. W. Kim,
Appl. Phys. Lett. 78, 775 (2001).
[10] P. LeClair, J. K. Ha, H. J. M. Swagten, J. T.

Kohlhepp, C. H. van de Vin, and W. J. M. de Jonge,
Appl. Phys. Lett. 80, 625 (2002).

[11] M. Koleini, M. Paulsson, and M. Brandbyge,
Phys. Rev. Lett. 98, 197202 (2007).

[12] M. G. Zeng, L. Shen, Y. Q. Cai, Z. D. Sha, and Y. P.
Feng, Appl. Phys. Lett. 96, 042104 (2010).

[13] P. Chuang, S.-C. Ho, L. W. Smith, F. Sfigakis, M. Pep-
per, C.-H. Chen, J.-C. Fan, J. P. Griffiths, I. Farrer, H.
E. Beere, G. A. C. Jones, D. A. Ritchie, and T.-M. Chen,
Nat. Nanotechnol. 10, 35 (2015).

[14] W. Yan, O. Txoperena, R. Llopis, H. Dery, L. E. Hueso,
and F. Casanova, Nat. Commun. 7, 13372 (2016).

[15] S. Datta and B. Das, Appl. Phys. Lett. 56, 665 (1990).

[16] J. Nitta, F. E. Meijer, and H. Takayanagi,
Appl. Phys. Lett. 75, 695 (1999)

[17] Semiconductor Spintronics and Quantum Computation,
edited by D. Awschalom, D. Loss, and N. Samarth

(Springer, New York, 2002).
[18] F. Nagasawa, J. Takagi, Y. Kunihashi, M. Kohda, and J.
Nitta, Phys. Rev. Lett. 108, 086801 (2012).

[19] D. Frustaglia and K. Richter,
Phys. Rev. B 69, 235310 (2004).
[20] R. Fiederling, M. Keim, G. Reuscher, W. Os-

sau, G. Schmidt, A. Waag, and L.W. Molenkamp,
Nature (London) 402, 787 (1999).

[21] Y. Ohno, D. K. Young, B. Beschoten, F.
Matsukura, H. Ohno, and D. D. Awschalom,
Nature (London) 402, 790 (1999).

[22] Y. Tserkovnyak, A. Brataas, and G. E. W. Bauer,
Phys. Rev. B 66, 224403 (2002)

[23] P. R. Hammar, B. R. Bennett, M. J. Yang, and M. John-
son, Phys. Rev. Lett. 83, 203 (1999); P. R. Hammar and
M. Johnson, Phys. Rev. Lett. 88, 066806 (2002).

[24] M. Popp, D. Frustaglia, and K. Richter,
Nanotechnol. 14, 347 (2003).

[25] D. Bercioux, M. Governale, V. Cataudella, and V. M.
Ramaglia, Phys. Rev. Lett. 93, 056802 (2004).

[26] A. Aharony, O. Entin-Wohlman, Y. Tokura, and S. Kat-
sumoto, Phys. Rev. B 78, 125328 (2008).

[27] B. Pal and P. Dutta, Sci. Rep. 6, 32543 (2016).

[28] T-R. Pan, A-M. Guo, and Q.--F. Sun,
Phys. Rev. B 92, 115418 (2015).
[29] A.-M. Guo and Q.-F. Sun,

Phys. Rev. Lett. 108, 218102 (2012).

[30] B. Gohler, V. Hamelbeck, T. Z. Markus, M. Kettner,
G. F. Hanne, Z. Vager, R. Naaman, and H. Zacharias,
Science 331, 894 (2011).

[31] B. Pal, R. A. Romer, and A. Chakrabarti,
J. Phys.: Condens. Matter 28, 335301 (2016).

[32] T.-L. Ho and S. Yip, Phys. Rev. Lett. 82, 247 (1999).

[33] P. Lecheminant, E. Boulat, and P. Azaria,
Phys. Rev. Lett. 95, 240402 (2005).

[34] M. Fattori, T. Koch, S. Goetz, A. Griesmaier, S. Hensler,
J. Stuhler, and T. Pfau, Nat. Phys. 2, 765 (2006).

[35] A. V. Gorshkov, M. Hermele, V. Gurarie, C. Xu, P. S.
Julienne, J. Ye, P. Zoller, E. Demler, M. D. Lukin, and


http://doi.org/10.1126/science.282.5394.1660
http://doi.org/10.1126/science.1065389
https://doi.org/10.1038/nphys149
https://doi.org/10.1103/PhysRevLett.88.126601
https://doi.org/10.1126/science.1078419
https://doi.org/10.1103/PhysRevLett.93.146601
https://doi.org/10.1103/PhysRevLett.91.258301
https://doi.org/10.1103/PhysRevLett.85.1962
https://doi.org/10.1063/1.1347023
https://doi.org/10.1063/1.1436284
https://doi.org/10.1103/PhysRevLett.98.197202
https://doi.org/10.1063/1.3299264
https://doi.org/10.1038/nnano.2014.296
https://doi.org/10.1038/ncomms13372
https://doi.org/10.1063/1.102730
https://doi.org/10.1063/1.124485
https://doi.org/10.1103/PhysRevLett.108.086801
https://doi.org/10.1103/PhysRevB.69.235310
https://doi.org/10.1038/45502
https://doi.org/10.1038/45509
https://doi.org/10.1103/PhysRevB.66.224403
https://doi.org/10.1103/PhysRevLett.83.203
https://doi.org/10.1103/PhysRevLett.88.066806
https://doi.org/10.1088/0957-4484/14/2/347
https://doi.org/10.1103/PhysRevLett.93.056802
https://doi.org/10.1103/PhysRevB.78.125328
https://doi.org/10.1038/srep32543
https://doi.org/10.1103/PhysRevB.92.115418
https://doi.org/
https://doi.org/10.1126/science.1199339
https://doi.org/10.1088/0953-8984/28/33/335301
https://doi.org/10.1103/PhysRevLett.82.247
https://doi.org/10.1103/PhysRevLett.95.240402
https://doi.org/10.1038/nphys443

A. M. Rey, Nat. Phys. 6, 289 (2010).

[36] S. Taie, R. Yamazaki, S. Sugawa, and Y. Takahashi,
Nat. Phys. 8, 825 (2012).

[37] G. Pagano, M. Mancini, G. Cappellini, P. Lombardi, F.
Schafer, H. Hu, X.-J. Liu, J. Catani, C. Sias, M. Inguscio,
and L. Fallani, Nat. Phys. 10, 198 (2014).

[38] M. Kohmoto, L. P. Kadanoff, and C. Tang,
Phys. Rev. Lett. 50, 1870 (1983).

[39] C. Tang and M.
Phys. Rev. B 34, 2041(R) (1986).

[40] C. Kittel, Introduction to Solid State Physics, 8th ed.,
(Wiley, New York, 2005).

[41] P. W. Anderson, Phys. Rev. 109, 1492 (1958).

[42] A. Mukherjee, A. Chakrabarti, and R. A. Romer,

Kohmoto,

Phys. Rev. B 98, 075415 (2018).

[43] S. Sil, S. K. Maiti, and A.
Phys. Rev. B 78, 113103 (2008).

[44] B. Pal and A. Chakrabarti, Physica E 60, 188 (2014).

[45] B. Pal and A. Chakrabarti,
Phys. Lett. A 378, 2782 (2014).

[46] D. Serrate, P. Ferriani, Y. Yoshida, S.-W. Hla, M. Men-
zel, K. von Bergmann, S. Heinze, A. Kubetzka, and R.
Wiesendanger, Nat. Nanotechnol. 5, 350 (2010).

[47] A. A. Khajetoorians, J. Wiebe, B. Chilian, S. Lounis, S.
Bliigel, and R. Wiesendanger, Nat. Phys. 8, 497 (2012).

[48] A. A. Khajetoorians, J. Wiebe, B. Chilian, and R.
Wiesendanger, Science 332, 1162 (2011).

Chakrabarti,


https://doi.org/10.1038/nphys1535
https://doi.org/10.1038/nphys2430
https://doi.org/10.1038/nphys2878
https://doi.org/10.1103/PhysRevLett.50.1870
https://doi.org/10.1103/PhysRevB.34.2041
https://doi.org/10.1103/PhysRev.109.1492
https://doi.org/10.1103/PhysRevB.98.075415
https://doi.org/10.1103/PhysRevB.78.113103
https://doi.org/10.1016/j.physe.2014.02.022
https://doi.org/10.1016/j.physleta.2014.07.034
https://doi.org/10.1038/nnano.2010.64
https://doi.org/10.1038/nphys2299
https://doi.org/10.1126/science.1201725

