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Abstract In this article, we study quantum randomness of
stochastic cosmological particle production scenario using
quantum corrected higher order Fokker Planck equation.
Using the one to one correspondence between particle pro-
duction in presence of scatters and electron transport in con-
duction wire with impurities we compute the quantum correc-
tions of Fokker Planck Equation at different orders. Finally,
we estimate Gaussian and non-Gaussian statistical moments
to verify our result derived to explain stochastic particle pro-
duction probability distribution profile.

It is a well known fact that the particle production scenario
in the early universe cosmology (during reheating) follows
the dynamical master equation, aka Klein–Gordon equation.
On the other hand, transport phenomena of electron through
a conduction wire with impurities follow time independent
Schrödinger equation. Both of this dynamical time dependent
phenomena have structural one to one correspondence [1,2].
Anderson Localization and saturation of the chaos are some
well studied phenomena in the context of scattering problem
can be extended to describe the quantum randomness phe-
nomena during cosmological particle production. From their
inherent stochastic nature quantum chaos can be related to
them and chaos bound can be defined either by Lyapunov
exponent [3] or by Spectral Form Factor [4,5]. The possi-
ble quantum effects arising from higher order corrections in
dynamical master equation aka Fokker Planck equation for
particle production scenario in the early universe cosmology
(during reheating) can be achieved from the present discus-
sion. For comparing scattering event with stochastic particle
production Dirac Delta profile of time dependent coupling
(mass function) is chosen,
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m2(τ ) =
N∑

j=1

m jδD(τ − τ j ), (1)

localized at time scale τ = τ j (where j represents the number
of non-adiabatic events). Further using the concept of transfer
matrices occupation number can be computed from this set
up. To model a phenomenological situation where width (w j )
of the profile of the time dependent coupling is finite and the
scattering event is relevant, we consider sech scatterers. It is
important to note that, in the limit w j → ∞ the Dirac Delta
profile can be recovered from this phenomenological profile.

In the context of dissipative system, Fokker Planck
equation explains the probability density for particle posi-
tion of Brownian motion in a random system. For a
Markovian process this situation can be expressed by
Chapman–Kolmogorov equation [1]. Now considering Max-
imum Entropy Anstaz we can derive the Fokker Planck equa-
tion from Smoluchowski equation when we integrate the
probability density over the angular coordinate θ :

P(n, θ, φ; τ +δτ) ≡ P(n, θ; τ +δτ) → 〈P(n+δn; τ)〉δτ
(2)

where we consider an infinitesimal change (δθ ) is not func-
tionally dependent on θ . Further Taylor expansion of 〈P(n+
δn; τ)〉δτ with respect to the infinitesimal occupation num-
ber (δn) with the constraint in this context 〈P(n; τ)〉δτ =
P(n, τ ) gives the following result:

〈P(n+δn; τ)〉δτ = 〈P(n; τ)〉δτ +
∞∑

q=1

(q!)−1∂
q
n P(n; τ)〉δτ

(3)

This gives the following general structure of Fokker–Planck
equation which we will use for our all calculations:
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∂τ P(n; τ) =
∞∑

q=1

(q!)−1 (〈(δn)q〉δτ /δτ
)
∂
q
n P(n; τ) (4)

Using Smoluchowski equation the occupation number can be
expressed as:

δn ≡ n2(1 + 2n) − 2
√

(1 + n2)(1 + n)n2n cos 2(φ2 − θ)

(5)

which help us to further define various statistical moments
from the probability density function. Assuming that the par-
ticle production rate is small locally (μδτ < 1) we have the
truncation in Taylor expansion. With primary truncation in
first order 〈(δn)〉δτ Fokker–Planck equation is derived as:

μ−1
k ∂τ P(n; τ) = ∂n [n(1 + n)∂n P(n; τ)] (6)

Here the mean particle production rate have Fourier mode
dependence (μk). By Fourier transformation with respect to
the occupation number n of the distribution function:

P(n; τ) = (2π)−1
∫

dk eikn P̄(k; τ). (7)

Which simplifies the Fokker Planck equation in Fourier
space:

∂τ P̄(k; τ) = μk

(
2ink − k2n2

)
P̄(k; τ), (8)

Imposing initial condition for probability distribution func-
tion at time τ is given by the Dirac Delta profile or its deriva-
tives in different orders we get:

∂ J
τ P(n; τ) = (−1)J n−J J ! δ(n) ∀J = 0, 1, 2, · · · (9)

where J denoting the order of quantum corrected Fokker
Planck Equation.

For J = 1 we get the following solution of the probability
density function:

P(n; τ) =
exp

[
−n(μk(n + 1)τ + 1

4μkτ(n+1)
+ 1)

]

2
√

μkn(n + 1)τπ
. (10)

Comparing the coefficient of δτ from the both sides of the
Taylor expansion we get quantum corrected Fokker Planck
equation at different order. Without truncation on both sides
of this expression additional contributions in δτ and in its
higher order can be obtained and generate quantum cor-
rected version of the Fokker Planck equation valid upto
higher orders. All such higher order corrections justify non-
Gaussian effects appearing during cosmological stochastic
particle production in reheating phase. In another words ori-
gin of higher order contributions describe the quantum effects
from its non vanishing statistical moments originating from
quantum correlations.

Equating both sides of Eq. (4) after Taylor expansion and
comparing the coefficient of δτ 2 the second order Fokker
Planck equation is computed as:
[
n2(1 + n)2/2 ∂4

n + 2n(1 + 3n + 2n2)∂3
n

+(1 + 6n + 6n2)∂2
]
P(n; τ) = μ−2

k ∂2
τ P(n; τ) (11)

At at the second order the probability distribution function
has the form:

P(n; τ) =
(
π(n2 − μ2

kτ
2)

)−1
[n sin(Ln) cos(Lμkτ)

−μkτ cos(Ln) sin(Lμkτ)]

−(4πμkn)−1 [i {Ci(−L(n + μkτ))

−Ci(L(n + μkτ))} − Ci(−L(n − μkτ))

+Ci(L(n − μkτ)) − 2i {Si(L(n + μkτ))

−Si(L(n − μkτ))}] , (12)

where L is the momentum cut-off.
Following the same procedure from Eq. (4) and comparing

the coefficient of δτ 3 the third order Fokker Planck equation
is obtained as:

[
n3(1 + n)3/6 ∂6

n + 3n2(1 + n)2(1 + 2n)/2 ∂5
n

+3n(1 + n)(1 + 5n + 5n2)∂4
n

+(1 + 2n)(1 + 10n + 10n2)∂3
n

]
P(n; τ) = μ−3

k ∂3
τ P(n; τ). (13)

Three fold boundary conditions for this equation for J = 1, 2
and 3 from Eq. (9) with the same initial conditions we get the
following probability distribution function from third order
contribution as given by:

P(n; τ) =
(
(
√

3 + 3i)μk + 2(
√

3 + i)
)
n3

4(
√

3 + 2i)μ2
kn

2((−1)2/3μkτ + n)
√

((−1)2/3μkτ + n)2

+2in2
(

2i
√

3μ2
kτ + μk

(√
− 3

√−1μ2
kτ

2 + n2 + 2(−1)2/3μknτ

+3i
√

3τ + 3τ
)

− 2
√

− 3
√−1μ2

kτ
2 + n2 + 2(−1)2/3μknτ

)

−μknτ
(
(−(

√
3 − 3i)

)
μ2
kτ + 2 6

√−1μ

×
(√

− 3
√−1μ2

kτ
2 + n2 + 2(−1)2/3μknτ + 3i

√
3τ + 3τ

)

−2(
√

3 − i)
√

− 3
√−1μ2

kτ
2 + n2 + 2(−1)2/3μknτ)

+(
√

3 + i)μ2
kτ

2(2μkτ

+
√

−2i(
√

3 − i)μ2
kτ

2 + 4n2 + 4i(
√

3 + i)μknτ). (14)

For fourth order contribution equating both sides of Eq. (4)
and comparing the coefficient of δτ 4 we get fourth order
Fokker Planck equation as given by:
[
70n4(1 + n)4∂8

n + 140n3(1 + 2n)∂7
n

+30n2(1 + n)2(3 + 14n + 14n2)∂6
n

+ 20n(1 + n)(1 + 2n)(1 + 7n + 7n2)∂5
n
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Fig. 1 Variation of fourth order quantum corrected probability distri-
bution with respect to the particle number density

+(1 + 20n + 90n2 + 140n3 + 70n4)∂4
n

]
P(n; τ)

= μ−4
k ∂4

τ P(n; τ). (15)

Applying four fold boundary conditions (J = 1, 2, 3, 4) from
Eq. (9) we get the following expression for the probability
distribution function, as given by:

P(n; τ) = −(2π)−1
∫ q

−p
dk eikn

{
(k2n2μ2

k + 2knμk + 6)

4k3n3μ3
k

e−μk kτ

+ (k2n2μ2
k − 2knμk + 6)

4k3n3μ3
k

eμk kτ

+ (k2n2μ2
k − 6)

2k3n3μ3
k

sin(μkkτ) + 1

k2n2μ2
k

cos(μkkτ)

}
(16)

where we introduce IR and UV regulators, p < k < q.
From Fig. 1 the Pi (i = 1, 2, 3, 4) denote the i-th order

probability distribution. The order by order small correc-
tions (fluctuations) from Gaussian profile support the quan-
tum effects in stochastic particle production. From the quan-
tum corrected probability distribution we can further calcu-
late different statistical moments using Eq. (4). Calculating
expression for 〈n〉, 〈n2〉, 〈n3〉 and 〈n4〉 and standard deviation,
skewness and kurtosis for a given time solidify the quantum
nature as predicted earlier.

To compute the first moment of the occupation number
we use the first order master evolution equation:

μ−1
k ∂τ 〈n〉 = 1 + 2〈n〉. (17)

(a)

(b)

(c)

Fig. 2 Time evolution of variance, skewness and kurtosis computed
from the probability distribution profile

To compute the second moment we use first and second order
master equations in two different orders:

1st order : μ−1
k ∂τ 〈n2〉 = 4〈n〉 + 6〈n2〉, (18)

2nd order : μ−2
k ∂2

τ 〈n2〉 = 12〈n〉 + 12〈n2〉 + 2. (19)

Continuing in the same way one can similarly calculate third
and fourth moments corrected upto different orders.

From Fig. 2a we obtain the large variance with increasing
τ . But the quantum corrected and uncorrected distribution
have same variance at all time signifying that width of the
peak is unchanged by the quantum effects.
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(a) Probability distribution for Itô.
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(b) Probability distribution for Stratonovitch with Q= 1/2.

Fig. 3 Variation of probability density function for Itô and
Stratonovitch with the occupation number per mode

Additionally, it is important to note that the computed
probability distribution function has a long right tail a spe-
cific effect of positive skewness. Considering different order
correction in 〈n3〉 and standard deviation we calculate skew-
ness with and without correction. Now from Fig. 2b, we can
say that the corrected Skewness deviate significantly from the
uncorrected one at low τ limit. But we can see that at higher
time scale they overlap. So for particle production at initial
time the skewness is dominant over uncorrected skewness.
So the effects of quantum corrections are more clearly visible
for initial time scale. Using the corrected 〈n4〉 and standard
deviation we calculate the kurtosis for particle production
event which we have shown in Fig. 2c. Here we have shown
the quantum corrections are dominant at large time scale, but

at low time scale both the corrected and uncorrected kurtosis
overlap with each other (see Fig. 3).

From Itô and Stratonovitch perspective the Fokker Planck
equation can be expressed as:

Itô : ∂τ P(n; τ) = ∂2
n (D(n)P(n; τ)), (20)

Stratonovitch :
∂τ P(n; τ) = ∂n

(
(D(n))1−Q∂n((D(n))Q P(n; τ))

)
(21)

where D(n) = n(n + 1). Using this we get the following
solution of probability distribution:

Itô : P(n, τ ) =
exp

[
− ((4n+2)τμk+n)2

4n(n+1)τμk

]

2
√

π
√
n(n + 1)τμk

, (22)

Stratonovitch:

P(n, τ ) = 1

2
√

μkπτ(n(n + 1))Q

× exp

[
−

(
n2(n + 1) + μkτ(2n + 1)Q(Q + 1)(n(n + 1))Q

)2

4μkτ(n(n + 1))Q+2

]
.

(23)

The probability distribution function obtained from this have
the same the log normal form.

From General perspective the Fokker Planck equation
with effect of potential(U (n)) can be expressed as:

∂n

(
D(n) ∂n

(
exp

(
βV (n)

2

)
P(n; τ)

))

−U (n) exp

(
βV (n)

2

)
P(n; τ)

= ∂τ

(
exp

(
βV (n)

2

)
P(n; τ)

)
, (24)

where the effective potential at finite temperature can be
expressed in terms of the diffusion function D(n) and the
specific model potential V (n) for the number density of the
created particles as:

U (n) =
[
β2

4
D(n)(∂nV (n))2 − β

2
D(n)(∂2

n V (n))

−β

2
(∂nD(n))(∂nV (n))

]
. (25)

Choosing a specific form of the diffusion function,
D(n) = n(n + 1) and the model potential for the number
density of the created particles, V (n) = n2 we get the fol-
lowing simplified expression for the probability distribution
function at finite temperature:

P(n; τ, β) = 1

2
√

π
√
n(n + 1)τμk

× exp

[
− (n − μk(2nτ + τ))2

4n(n + 1)τμk

−βn2

2
− βn {n(βn(n + 1) − 3) − 2}

]
. (26)
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(a) (b)

Fig. 4 Variation of the probability density function with respect to the the occupation number per mode at different temperatures

This result is perfectly consistent as it can able to produce
the previously obtained result in the limiting approximation,
β → 0 (or equivalently at T → ∞). This happened because

in this limit one can fix U (n) → 0 and exp
(

βV (n)
2

)
→ 1.

As a result, we get,

P(n; τ, β → 0) = P(n; τ), (27)

where P(n; τ) is the probability distribution function which
we have obtained in the Itô prescription.

From Fig. 4 of the probability distribution function we
observe that for large value of occupation number the dis-
tribution function decays to a finite saturation value. On the
other hand for small occupation number we get peak in the
distribution function for different values of μkτ .

With different order solutions of Fokker Planck equation
we construct probability density function which explain the
quantum nature in stochastic particle production scenario in
early universe cosmology. Also the existance of higher order
statistical moments of the probability density function. The
present approach can extend to explain the semi-classical
behaviour of particle production event and relating chaos to
this approach eventually set a bound to the quantum random-
ness [4].

From this non-gaussianity in stochastic particle produc-
tion during inflation period we can connect it with the idea
of non-gaussianity in finite universe. Considering interact-
ing background field it will be possible to introduce the other
non-linear and dissipative effects into the system introduced
by the background itself and can be studied as open quantum
system interacting with the defined background set-up [6].

Using more general statistical field theory along with using
the well known Itô and Stratnovitch prescription in pres-
ence of general background potential at finite temperature
the result for analytically obtained probability distribution
function for particle creation can be further generalised for
any system where randomness plays significant role within
it.

Acknowledgements SC would like to thank Quantum Gravity and
Unified Theory and Theoretical Cosmology Group, Max Planck Insti-
tute for Gravitational Physics, Albert Einstein Institute for providing the
Post-Doctoral Research Fellowship. SC take this opportunity to thank
sincerely to Jean-Luc Lehners for their constant support and inspira-
tion. SC thank the organisers of Summer School on Cosmology 2018,
ICTP, Trieste, 15 th Marcel Grossman Meeting, Rome, The European
Einstein Toolkit meeting 2018, Centra, Instituto Superior Tecnico, Lis-
bon and The Universe as a Quantum Lab, APC, Paris for providing
the local hospitality during the work. We also thank all the members
of our newly formed virtual group “Quantum Structures of the Space-
Time & Matter” for elaborative discussions and suggestions to improve
the presentation of the article. Last but not the least, we would like to
acknowledge our debt to the people belonging to the various part of
the world for their generous and steady support for research in natural
sciences.

Data Availability Statement This manuscript has no associated data
or the data will not be deposited. [Authors’ comment: It is completely
a theoretical work where no data is used for the computation.]

Open Access This article is distributed under the terms of the Creative
Commons Attribution 4.0 International License (http://creativecomm
ons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit
to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made.
Funded by SCOAP3.

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


  554 Page 6 of 6 Eur. Phys. J. C           (2019) 79:554 

References

1. M.A. Amin, D. Baumann, JCAP 1602(02), 045 (2016)
2. M.A. Amin, M.A.G. Garcia, H.Y. Xie, O. Wen, JCAP 1709(09), 015

(2017)
3. J. Maldacena, S.H. Shenker, D. Stanford, JHEP 1608, 106 (2016)

4. S. Choudhury, A. Mukherjee, JHEP 1905, 149 (2019).
arXiv:1811.01079 [hep-th]

5. S. Choudhury, A. Mukherjee, P. Chauhan, S. Bhattacherjee, Eur.
Phys. J. C 79(4), 320 (2019). arXiv:1809.02732 [hep-th]

6. S. Shandera, N. Agarwal, A. Kamal, Phys. Rev. D 98(8), 083535
(2018)

123

http://arxiv.org/abs/1811.01079
http://arxiv.org/abs/1809.02732

	Quantum randomness in the Sky
	Abstract 
	Acknowledgements
	References




