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ON THE IRREDUCIBLE COMPONENTS OF MODULI SCHEMES
FOR AFFINE SPHERICAL VARIETIES

ROMAN AVDEEV AND STÉPHANIE CUPIT-FOUTOU

Abstract. We give a combinatorial description of all affine spherical varieties with
prescribed weight monoid Γ. As an application, we obtain a characterization of the
irreducible components of Alexeev and Brion’s moduli scheme MΓ for such varieties.
Moreover, we find several sufficient conditions for MΓ to be irreducible and exhibit several
examples where MΓ is reducible. Finally, we provide examples of non-reduced MΓ.

1. Introduction

Throughout this paper, we work over an algebraically closed field k of characteristic 0.
Let G be a connected reductive algebraic group. Fix a Borel subgroup B of G along

with a maximal torus T in B and denote the related set of dominant weights by Λ+.
Given a G-variety, that is, an algebraic variety X equipped with a regular action of G,

the action of G on X naturally induces a G-module structure on the algebra k[X ] of regular
functions on X. When X is irreducible, the highest weights of k[X ] form a monoid ΓX

called the weight monoid of X. If furthermore X is affine, its weight monoid is finitely
generated.

An affine G-variety X is said to be multiplicity-free if X is irreducible and the G-module
k[X ] contains every simple G-module with multiplicity at most 1. In this case, the G-
module structure of k[X ] is completely determined by the weight monoid of X and the
decomposition of k[X ] into simple G-modules reads as

(1.1) k[X ] =
⊕

λ∈ΓX

k[X ]λ,

where k[X ]λ stands for the simple G-submodule of k[X ] with highest weight λ.
According to a result of Vinberg and Kimelfeld [VK78], an irreducible affine G-variety

is multiplicity-free if and only if it contains an open B-orbit. Normal irreducible (not
necessarily affine) G-varieties containing an open B-orbit are said to be spherical. In
particular, an irreducible affine G-variety is spherical if and only if it is multiplicity-free
and normal. For a multiplicity-free affine G-variety X, the property of being normal (and
hence spherical) can be read off from its weight monoid: X is normal if and only if ΓX is
saturated, that is, equals the intersection of a lattice with a cone.

Given any finitely generated monoid Γ ⊂ Λ+, there exists a multiplicity-free affine G-
variety X0 with weight monoid Γ for which the decomposition (1.1) is a grading, that is,
k[X0]λk[X0]µ = k[X0]λ+µ for all λ, µ ∈ Γ. As shown by Popov in [Po86], the G-variety
X0 is a common G-equivariant degeneration of all multiplicity-free affine G-varieties with
weight monoid Γ.
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For a general multiplicity-free affine G-variety X, the deviation of the decomposi-
tion (1.1) from being a grading is measured by the tail cone of X. This is the ra-
tional convex cone spanned by all expressions λ + µ − ν such that λ, µ, ν ∈ ΓX and
k[X ]λk[X ]µ ⊃ k[X ]ν . An invariant of importance to us is the set of spherical roots of X,
which by definition are the primitive elements of the lattice spanned by ΓX lying on ex-
tremal rays of the tail cone of X. It is known that each spherical root of X is an element
of a finite set Σ(G) depending only on the group G; see § 5.3 for a description of Σ(G).

Losev proved in [Lo09b] that, up to a G-equivariant isomorphism, every affine spherical
G-variety is uniquely determined by its weight monoid along with its set of spherical
roots. In [ACF15], this result was recovered by a different method and extended to
arbitrary multiplicity-free affine G-varieties. It is therefore a natural problem to classify
all multiplicity-free affine G-varieties with a prescribed weight monoid by determining all
sets arising as sets of spherical roots of such varieties.

In this paper, we solve the above-mentioned problem in the case of affine spherical G-
varieties. More precisely, for any given finitely generated and saturated monoid Γ ⊂ Λ+,
we determine all possible sets Σ (we call them admissible) such that there exists an affine
spherical G-variety with weight monoid Γ and set of spherical roots Σ (see Theorem 6.9).
Our description is derived from the combinatorial classification of (not necessarily affine)
spherical G-varieties established jointly in [LV83, Kn91, Lu01, Lo09a, BP14, Cu14].1 It
appears that admissible sets are characterized by a number of combinatorial conditions,
which can be easily checked in every concrete example.

From our description of the affine spherical G-varieties with prescribed weight monoid Γ,
we derive a combinatorial characterization of the irreducible components of the moduli
scheme MΓ for these varieties that was constructed by Alexeev and Brion in [AB05]. Ac-
cording to loc. cit., for every finitely generated monoid Γ ⊂ Λ+ (not necessarily saturated),
MΓ is an affine scheme of finite type equipped with an action of the adjoint torus Tad (the
quotient of T by the center of G) in such a way that Tad-orbits in MΓ are in bijection
with G-isomorphism classes of multiplicity-free affine G-varieties with weight monoid Γ.
Moreover, the variety X0 may be regarded as the unique Tad-fixed closed point of MΓ.
It was also proved in [AB05] (and recovered in [ACF15]) that MΓ contains only finitely
many Tad-orbits, so that there are only finitely many multiplicity-free affine G-varieties
with any given weight monoid.

When Γ is saturated, we show that the irreducible components of the moduli scheme
MΓ bijectively correspond to maximal with respect to inclusion admissible sets for Γ (see
Theorem 7.1). In particular, MΓ is irreducible if and only if there is an admissible set that
contains all the others. As an application of this criterion, we find a number of sufficient
conditions on Γ for MΓ to be irreducible, two of these conditions read as follows:

(1) Γ is G-saturated, that is, equals the intersection of a lattice with Λ+ (see Theo-
rem 7.27);

(2) Γ is the weight monoid of an affine spherical G-variety whose algebra of regular
functions is a unique factorization domain (see Proposition 7.21).

Based on our description of the irreducible components of the moduli scheme MΓ (for
saturated Γ), we construct several examples of monoids Γ such that MΓ is reducible

1See also the references in [BP14] for partial results.
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(see § 7.5). The only example of that kind known before is due to D. Luna (unpublished)
and was mentioned in [AB06, Example 3.20].

Finally, combining our irreducibility criterion with results on the tangent space of MΓ

at the point X0 obtained in [ACF15], we give a necessary and sufficient combinatorial
condition for MΓ to be an affine space (as a scheme); see Theorem 7.12. Thanks to this
condition, MΓ turns out to be an affine space in both cases (1) and (2) mentioned above.
As a particular case of (2), MΓ is an affine space whenever Γ is the weight monoid of
a spherical G-module; this result was first proved by Papadakis and Van Steirteghem
in [PvS12, PvS16] via a case-by-case approach based on the classification of spherical
modules. As another application of the above-mentioned combinatorial condition, we
exhibit examples of monoids Γ for which MΓ is a non-reduced point (see § 7.6).

We note that in [BvS16] Bravi and Van Steirteghem independently obtained a similar
combinatorial description of affine spherical G-varieties with a prescribed weight monoid.
Their method is essentially the same as ours, however they used a slightly different lan-
guage. The fact that MΓ is irreducible in situation (2) was announced (without proof) by
Pezzini in [Pe17].

Organization of the paper. In § 2 we set up the notation and conventions used through-
out this paper. In §§ 3, 4, and 5 we collect some basic material and known results on
multiplicity-free affine G-varieties, Alexeev and Brion’s moduli schemes MΓ, and spher-
ical G-varieties. In § 6 we obtain our combinatorial description of all affine spherical
G-varieties with a prescribed weight monoid in terms of admissible sets. In § 7 we apply
the results of § 6 to characterize combinatorially the irreducible components of moduli
schemes MΓ and, in particular, to obtain an irreducibility criterion for MΓ. Besides, we
provide several conditions on Γ under which MΓ turns out to be irreducible or even an
affine space. We end up § 7 by discussing several examples of MΓ illustrating the diverse
geometric properties of these schemes.

Acknowledgments. The authors are grateful to E.B. Vinberg for having attracted their
attention to the problem of describing all affine spherical G-varieties with a prescribed
weight monoid. Thanks are also due to the two referees for their valuable comments and
suggestions, which improved the paper.

The first author was supported by the DFG priority program 1388, the “Oberwol-
fach Leibniz Fellows” programme of the Mathematical Research Institute of Oberwolfach,
Dmitry Zimin’s “Dynasty” Foundation, the Guest Program of the Max-Planck Institute
for Mathematics in Bonn, and the RFBR grant no. 16-01-00818. He also thanks the
Institute for Fundamental Science in Moscow for providing excellent working conditions.

2. Notation and conventions

Throughout this paper, all topological terms relate to the Zariski topology. All sub-
groups of algebraic groups are assumed to be closed. A variety is a separated reduced
scheme of finite type. A K-variety is a variety equipped with a regular action of an al-
gebraic group K. A K-isomorphism of two K-varieties is a K-equivariant isomorphism.
Closed subsets of schemes are always equipped with their reduced subscheme structure.

Z+ = {z ∈ Z | z ≥ 0};
Q+ = {q ∈ Q | q ≥ 0};
k× is the multiplicative group of the field k;
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|X| is the cardinality of a finite set X;
V ∗ is the dual of a vector space V ;
L∗ = HomZ(L,Z) is the dual lattice of a lattice L;
LQ = L⊗Z Q is the rational vector space spanned by a lattice L;
L∗
Q = (LQ)

∗ = HomZ(L,Q)
〈· , ·〉 is the natural pairing between L∗

Q and L, where L is a lattice;
X(K) is the character group of an algebraic group K (in additive notation);
Y is the closure of a subset Y of a scheme X;
k[X ] is the algebra of regular functions on an algebraic variety X;
OX is the structure sheaf of a scheme X;
TxX is the tangent space of a scheme X at a closed point x ∈ X;
G is a connected reductive algebraic group;
C is the connected center of G;
B ⊂ G is a fixed Borel subgroup;
T ⊂ B is a fixed maximal torus;
U ⊂ B is the unipotent radical of B;
Tad is the adjoint torus of T , that is, the quotient of T by the center of G;
(· , ·) is a fixed inner product on X(T )Q invariant with respect to the Weyl group

associated with T ;
∆ ⊂ X(T ) is the root system of G with respect to T ;
Π ⊂ ∆ is the set of simple roots with respect to B;
∆∨ ⊂ X(T )∗ is the root system dual to ∆;
α∨ ∈ ∆∨ is the coroot corresponding to a root α ∈ ∆;
Λ+ ⊂ X(T ) is the monoid of dominant weights with respect to B;
V (λ) is the simple G-module with highest weight λ ∈ Λ+;
vλ ∈ V (λ) is a highest weight vector in V (λ).
The lattices X(B) and X(T ) are identified via restricting characters from B to T .
If V is a vector space equipped with an action of a group K, then the notation V K

stands for the subspace of K-invariant vectors. For every character χ of K, the notation

V
(K)
χ stands for the subspace of K-semi-invariant vectors of weight χ.
The nodes of connected Dynkin diagrams as well as the simple roots of simple algebraic

groups are numbered as in [Bo68].
For every element σ =

∑

α∈Π

kαα, where kα ∈ Q+ for all α ∈ Π, we set Supp σ =

{α | kα 6= 0}. The type of σ is the type of the Dynkin diagram of the set Supp σ. When
the Dynkin diagram of Supp σ is connected, we denote the ith simple root in Supp σ
by αi.

2

If the group G is simple then ̟i stands for the ith fundamental weight of G.
For every subset F ⊂ X(T ), we set F⊥ = {α ∈ Π | 〈α∨, λ〉 = 0 for all λ ∈ F}. By

abuse of notation, for a single element λ ∈ X(T ) we write λ⊥ instead of {λ}⊥.
Let Q be a finite-dimensional vector space over Q.
A subset C ⊂ Q is called a (finitely generated convex) cone if there are finitely many

elements q1, . . . , qs ∈ Q such that C = Q+q1 + . . .+Q+qs.
A cone C ⊂ Q is said to be strictly convex if C ∩ (−C) = {0}.

2If the Dynkin diagram of Supp σ has non-trivial symmetries, this convention may not determine αi

uniquely, however this does not cause any ambiguity in our paper.
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The dimension of a cone is the dimension of its linear span.
The dual cone of a cone C ⊂ Q is the cone

C∨ = {ξ ∈ Q∗ | 〈ξ, q〉 ≥ 0 for all q ∈ C}.

One always has (C∨)∨ = C.
A face of a cone C ⊂ Q is a subset F ⊂ C of the form

F = C ∩ {q ∈ Q | 〈ξ, q〉 = 0}

for some ξ ∈ C∨. Each face of C is again a cone.
An extremal ray of a strictly convex cone C is a face of dimension 1.

3. Generalities on multiplicity-free affine G-varieties

As already stated in the introduction, we say that an affine G-variety is multiplicity-free
if it is irreducible and its algebra of regular functions is a multiplicity-free G-module. An
affine spherical G-variety is a multiplicity-free affine G-variety that is normal.

3.1. Combinatorial invariants. Let X be a multiplicity-free affine G-variety.
The weight monoid of X is the set ΓX of highest weights of the G-module k[X ]. Since

X is irreducible, ΓX is a submonoid of Λ+. Moreover, ΓX is finitely generated, which is
implied by the fact that X is affine; see, for instance, [Po86, Corollary 5 of Theorem 4].

A monoid Γ ⊂ Λ+ is said to be saturated if Γ = ZΓ∩Q+Γ. It is well-known (and follows
essentially from [Vu76, § 1.2, Theorem 1] and [KKMS73, Ch. I, § 1, Lemma 1]) that X is
normal (and hence spherical) if and only if the weight monoid ΓX is saturated.

For every λ ∈ ΓX , let k[X ]λ ⊂ k[X ] be the simple G-submodule with highest weight λ.
An expression λ + µ − ν with λ, µ, ν ∈ ΓX is called a tail of X if k[X ]λk[X ]µ ⊃ k[X ]ν .
The tail cone of X is the convex cone in QΓX generated by all tails.

The root monoid of X is the monoid ΞX generated by all tails. Note that ΞX is a
submonoid in Z+Π. Let Ξsat

X be the saturation of ΞX , that is, the intersection of the
group ZΞX with the tail cone. A fundamental property of the monoid Ξsat

X is given by the
following theorem, which is a particular case of [Kn96, Theorem 1.3].

Theorem 3.1. The monoid Ξsat
X is free, and its indecomposable elements form a set of

simple roots of a root system in X(T ).

It follows from this theorem that the tail cone of X is simplicial. Let ΣX denote the
set of indecomposable elements of Ξsat

X . Clearly, the set ΣX is linearly independent and

Ξsat
X = Z+ΣX .

A spherical root of X is a primitive element of the lattice ZΓX lying on an extremal
ray of the tail cone of X. We denote the set of spherical roots of X by ΣX .

The definitions of the sets ΣX and ΣX imply that for every σ ∈ ΣX there is a unique
element σ ∈ ΣX which is a multiple of σ. Then the map σ 7→ σ is a natural bijection
between the sets ΣX and ΣX . See Theorem 7.8 for an explicit description of this bijection
for affine spherical G-varieties.

In what follows, we shall need the following consequence of Theorem 3.1.

Corollary 3.2. The set ΣX is linearly independent.

A refined version of Theorem 3.1 for affine spherical G-varieties is given by
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Theorem 3.3 ([ACF15, Theorem 4.12]). Suppose that X is an affine spherical G-variety.

Then ΞX = Ξsat
X ; in particular, ΞX is free.

The following uniqueness result was first proved by Losev in case of affine spherical
G-varieties; see [Lo09b, Theorem 1.2].

Theorem 3.4 ([ACF15, Corollary 4.23]). Up to a G-equivariant isomorphism, a multiplicity-

free affine G-variety X is uniquely determined by the pair (ΓX ,ΣX).

3.2. The variety X0. Given a finitely generated submonoid Γ ⊂ Λ+, take a finite gen-
erating set E of Γ and consider the G-module

V =
⊕

λ∈E

V (λ)∗.

For every λ ∈ E, choose a highest weight vector vλ∗ ∈ V (λ)∗, consider the vector

x0 =
∑

λ∈E

vλ∗ ∈ V,

and put
X0 = Gx0 ⊂ V.

Theorem 3.5 ([VP72, Theorem 6]). The following assertions hold:

(a) up to a G-isomorphism, the G-variety X0 is independent of the choice of E;

(b) X0 is a multiplicity-free affine G-variety;

(c) ΓX0
= Γ;

(d) k[X0]λ · k[X0]µ = k[X0]λ+µ for all λ, µ ∈ ΓX0
; in other words, ΣX0

= ∅.

3.3. Degenerations. Let X be a multiplicity-free affine G-variety. We say that an ele-
ment ̺ ∈ X(T )∗ is non-negative (with respect to X) if 〈̺, γ〉 ≥ 0 for all γ ∈ ΓX∪ΣX . Note
that every element of X(T )∗ lying in the dominant Weyl chamber of the root system ∆∨

is non-negative.
Take a non-negative element ̺ ∈ X(T )∗ and for every n ∈ Z+ define the subspace

D̺,n =
⊕

λ∈ΓX ,
〈̺,λ〉≤n

k[X ]λ ⊂ k[X ].

Then the collection of subspaces {D̺,n | n ∈ Z+} forms a G-invariant filtration on k[X ].
Let

gr̺ k[X ] =
⊕

n∈Z+

D̺,n/D̺,n−1

be the graded algebra associated with this filtration. Clearly, the algebras k[X ]U and
(gr̺ k[X ])U are isomorphic, which by [Po86, Corollary of Theorem 6] implies that the
algebra gr̺ k[X ] is a finitely generated integral domain. We now consider the irreducible
affine G-variety

gr̺X = Spec(gr̺ k[X ]).

The following result follows directly from the construction.

Lemma 3.6. The affine G-variety Y = gr̺ X is multiplicity-free. Moreover, ΓY = ΓX

and ΣY = {σ ∈ ΣX | 〈̺, σ〉 = 0}. In particular, ΣY ⊂ ΣX .
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Note that if 〈̺, α〉 > 0 for all α ∈ Π then gr̺ X is G-isomorphic to the G-variety X0

introduced in § 3.2; see [Po86, § 4].

Proposition 3.7. Suppose that X is a multiplicity-free affine G-variety and Σ ⊂ ΣX is

an arbitrary subset. Then

(a) there exists a non-negative element ̺ ∈ X(T )∗ such that 〈̺, σ〉 = 0 for all σ ∈ Σ
and 〈̺, σ〉 > 0 for all σ ∈ ΣX \ Σ;

(b) for any ̺ as in (a), the G-variety Y = gr̺ X satisfies ΓY = ΓX and ΣY = Σ.

Proof. (a) Recall from Theorem 3.1 that the elements in ΣX form a set of simple roots
of a root system in X(T ). For every σ ∈ ΣX , let ̟(σ) ∈ X(T )∗Q be the fundamental
coweight of this root system corresponding to the simple root σ, so that 〈̟(σ), σ〉 = 1
and 〈̟(σ), σ′〉 = 0 for all σ′ ∈ ΣX \ {σ}. Since every fundamental coweight of a root
system is a non-negative linear combination of simple coroots and ΣX ⊂ Z+Π, it follows
that for every σ ∈ ΣX the element ̟(σ) lies in Q+{α∨ | α ∈ Π} and hence satisfies
〈̟(σ), λ〉 ≥ 0 for all λ ∈ Λ+. Consequently, a suitable positive multiple of the element
∑

σ∈ΣX\Σ

̟(σ) belongs to X(T )∗ and is non-negative, hence it can be taken for ̺.

(b) This is a consequence of part (a) and Lemma 3.6. �

4. Generalities on moduli schemes MΓ

Throughout this section we assume that Γ ⊂ Λ+ is an arbitrary finitely generated
monoid.

4.1. The definition of MΓ. Consider the G-module

(4.1) AΓ =
⊕

λ∈Γ

V (λ).

Fix a highest weight vector vλ ∈ V (λ) and equip the subspace AU
Γ =

⊕

λ∈Γ

kvλ ⊂ AΓ with

an algebra structure by setting

(4.2) vλ · vµ = vλ+µ for all λ, µ ∈ Γ.

Note that the algebra AU
Γ is isomorphic to the semigroup algebra of Γ.

Let

MΓ : (Schemes) → (Sets)

be the contravariant functor assigning to each scheme S the set of OS-G-algebra structures
on the sheaf OS ⊗k AΓ that extend the given multiplication (4.2) on AU

Γ .
As a consequence of [AB05, Proposition 2.10 and Theorems 1.12, 2.7] (see also [Br13,

§ 4.3]), the functor MΓ is represented by an affine scheme MΓ of finite type, called the
moduli scheme of multiplicity-free affine G-varieties with weight monoid Γ. In particular,
the closed points of MΓ are in bijection with the G-equivariant algebra structures on AΓ

extending the multiplication (4.2) on AU
Γ .

Thanks to [Po86, Theorem 2], for every multiplicity-free affine G-variety X with weight
monoid Γ there is a (not necessarily unique) T -equivariant isomorphism

(4.3) τ : k[X ]U
∼
−→ AU

Γ ,
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which uniquely extends to a G-module isomorphism k[X ]
∼
−→ AΓ. The algebra structure

on AΓ transferred from k[X ] via this isomorphism thus determines a closed point of MΓ.
In this way, X may be regarded as a closed point of MΓ (which depends however on the
choice of τ).

4.2. Basic facts on the Tad-action on MΓ. The moduli scheme MΓ can be equipped
with an action of the adjoint torus Tad; see [AB05, § 2.1] for a precise definition. For
convenience of the reader, we recall this action on the level of closed points. As was
mentioned in § 4.1, each closed point of MΓ is given by a multiplication law m : AΓ⊗AΓ →
AΓ extending the multiplication (4.2) on AU

Γ . It is clear from (4.1) that m can be expressed
as the sum

m =
∑

λ,µ,ν∈Γ

mν
λ,µ

where each component mν
λ,µ : V (λ)⊗ V (µ) → V (ν) is a G-module homomorphism. Then

[AB05, Proposition 2.11] asserts that

(t ·m)νλ,µ = (ν − λ− µ)(t) ·mν
λ,µ

for all t ∈ Tad and λ, µ, ν ∈ Γ. It is worth noting that Tad acts on the closed points of MΓ

just by changing the isomorphism τ in (4.3).
Below we gather several properties of the Tad-action on MΓ.

Theorem 4.1 (see [AB05, Theorem 1.12 and Lemma 2.2]). Let X be a multiplicity-

free affine G-variety with weight monoid Γ. Regard X as a closed point of MΓ via an

isomorphism τ as in (4.3).

(a) The Tad-orbit TadX ⊂ MΓ does not depend on the choice of τ .
(b) The map X 7→ TadX induces a bijection between the G-isomorphism classes of

multiplicity-free affine G-varieties with weight monoid Γ and the Tad-orbits in MΓ.

Recall the definition of the variety X0 from § 3.2.

Theorem 4.2 ([AB05, Theorem 2.7]). Regarded as a closed point of MΓ, X0 is fixed

by Tad and belongs to each Tad-orbit closure in MΓ.

The following result was first proved in [AB05, Corollary 3.4] and recovered by another
method in [ACF15, Corollary 4.24].

Theorem 4.3. The torus Tad acts on MΓ with finitely many orbits. In particular, there

are only finitely many isomorphism classes of multiplicity-free affine G-varieties with pre-

scribed weight monoid Γ.

Corollary 4.4. The irreducible components of MΓ are given by the closures of the open

Tad-orbits in MΓ.

The next theorem provides a moduli interpretation of the root monoid of a multiplicity-
free affine G-variety.

Theorem 4.5 ([AB05, Proposition 2.13]). Let X be a multiplicity-free affine G-variety

with weight monoid Γ. The Tad-orbit closure TadX ⊂ MΓ is a multiplicity-free affine

Tad-variety with weight monoid ΞX .

Corollary 4.6. Under the hypotheses of Theorem 4.5, dimTadX = |ΣX |.
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4.3. Further properties. The three equivalent conditions of the following proposition
naturally define a partial order on the set of (G-isomorphism classes of) multiplicity-free
affine G-varieties with weight monoid Γ.

Proposition 4.7. Let X and Y be multiplicity-free affine G-varieties with weight monoid Γ.

The following conditions are equivalent.

(1) TadY ⊂ TadX.

(2) ΣY ⊂ ΣX .

(3) Y = gr̺ X for some non-negative element ̺ ∈ X(T )∗.

Proof. (1)⇒(2) In view of Theorem 4.5 and well-known facts from the theory of (possibly
non-normal) affine toric varieties (see, for instance, [CLS11, Theorem 3.A.3]), the relation
TadY ⊂ TadX implies that the cone Q+ΞY is a face of the cone Q+ΞX , which yields
ΣY ⊂ ΣX .

(2)⇒(1) As the set ΣX is linearly independent (Corollary 3.2), the cone Q+ΣY is a
face of the cone Q+ΣX . It then follows from loc. cit. that TadX contains a Tad-orbit O
such that the weight monoid of O equals ΞX ∩ Q+ΣY . By Theorem 4.1, there exists a
multiplicity-free affine G-variety Y ′ with weight monoid Γ such that O = TadY

′. Then
ΣY ′ = ΣY , therefore Y and Y ′ are G-isomorphic by Theorem 3.4.

(2)⇒(3) This follows from Proposition 3.7 and Theorem 3.4.
(3)⇒(2) This follows from Lemma 3.6. �

The following smoothness criterion for MΓ is known to specialists; we provide it together
with a proof for convenience of the reader.

Theorem 4.8. The following properties are equivalent.

(1) MΓ is smooth at X0.

(2) MΓ is smooth.

(3) MΓ is an affine space.

Proof. (1)⇒(2) Clearly, the set of singular points in MΓ is closed and Tad-stable. If it is
nonempty then it contains X0 by Theorem 4.2, a contradiction.

(2)⇒(3) It follows from Theorem 4.5 that MΓ is a smooth affine multiplicity-free Tad-
variety. By Theorem 4.2, the closed Tad-orbit in MΓ is the point X0, whence MΓ is an
affine space.

(3)⇒(1) This implication is obvious. �

5. Generalities on spherical varieties

As was already mentioned in the introduction, a G-variety X is said to be spherical if
it is normal, irreducible, and contains an open B-orbit. Thanks to [VK78, Theorem 2],
in the case of affine X this definition agrees with that given at the beginning of § 3.

5.1. Combinatorial invariants. Let X be an arbitrary spherical G-variety and let k(X)
denote the field of rational functions on X.

The weight lattice of X is the set

ΛX = {λ ∈ X(T ) | k(X)
(B)
λ 6= 0}.

Clearly, ΛX is a sublattice of X(T ). For every λ ∈ ΛX , we fix a nonzero function fλ ∈

k(X)
(B)
λ . Since X contains an open B-orbit, one has k(X)

(B)
λ = kfλ for all λ ∈ ΛX .
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We set
LX = Λ∗

X and QX = (LX)Q = (ΛX)
∗
Q.

We regard LX as a sublattice in QX .
Every discrete Q-valued valuation v of k(X) vanishing on k× determines the element

ρv ∈ QX such that 〈ρv, λ〉 = v(fλ) for all λ ∈ ΛX . The restriction of the map v 7→ ρv to the
set of G-invariant Q-valued valuations of k(X) vanishing on k× is injective (see [LV83,
7.4] or [Kn91, Corollary 1.8]); we denote its image by VX . Moreover, VX ⊂ QX is a
finitely generated convex cone of full dimension; see [BP87, 4.1, Corollary, i)] or [Kn91,
Corollary 5.3]. The cone VX is called the valuation cone of X.

Primitive elements σ ∈ ΛX such that Q+σ is an extremal ray of the cone −V∨
X are

called spherical roots of X. We denote the set of all spherical roots of X by ΣX .
From [Br90, § 3] or [Kn94, Theorem 7.4], we know that ΣX is a set of simple roots of

a root system in ΛX . Hence (σ1, σ2) ≤ 0 for any two distinct elements σ1, σ2 ∈ ΣX . In
particular, the set ΣX is linearly independent.

Let BX (resp. DX) denote the set of all G-stable (resp. B-stable but not G-stable)
prime divisors in X. Elements of DX are called colors of X. Clearly, the union BX ∪DX

is the set of all B-stable prime divisors in X. As X contains an open B-orbit, the set
BX ∪ DX is finite.

For every D ∈ BX ∪ DX , let vD be the valuation of the field k(X) defined by D, that
is, vD(f) = ordD(f) for every f ∈ k(X). We define the map

ρX : BX ∪ DX → LX

by setting ρX(D) = ρvD .
For every α ∈ Π, let DX(α) ⊂ DX be the set of colors that are unstable with respect

to the action of the minimal parabolic subgroup Pα ⊃ B of G associated with α. Then
the set DX is the union of the sets DX(α) with α running over Π. We set

(5.1) Πp
X = {α ∈ Π | DX(α) = ∅}.

Remark 5.1. It follows from the above definitions that the invariants ΛX , LX , QX , VX ,
ΣX , DX , ρX |DX

, and Πp
X depend only on the open G-orbit O ⊂ X. The sets DX and DO

are identified by intersecting colors of X with O.

Remark 5.2. If X is affine then by [Kn91, Lemma 5.1] the dual cone of −VX is exactly the
tail cone of X defined in § 3.1. Taking into account Proposition 5.3(b) below, we see that
in this case the set ΣX is exactly the set of primitive elements of ΛX lying on extremal
rays of the tail cone of X, which agrees with the definition of ΣX given in § 3.1.

The following proposition, which is known to specialists, relates some of the above
invariants of an affine spherical G-variety X with its weight monoid ΓX introduced in § 3.1.

Proposition 5.3. Let X be an affine spherical G-variety and let KX be the cone in QX

generated by the set ρX(BX ∪ DX).

(a) ΓX = ΛX ∩ K∨
X , where K∨

X is considered as a cone in (ΛX)Q.

(b) ΛX = ZΓX .

(c) Πp
X = Γ⊥

X .

Proof. (a) Let λ ∈ ΛX . Since the function fλ is B-semi-invariant, it can have poles only
in the complement of the open B-orbit in X. The normality of X implies that fλ is
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regular on X if and only if it has no poles along each of the divisors in BX ∪ DX , which
is equivalent to λ ∈ K∨

X .
(b) See, for instance, [Ti11, Proposition 5.14].
(c) To prove the inclusion “⊂”, let α ∈ Πp

X and assume that 〈α∨, λ〉 > 0 for some

λ ∈ ΓX . Then the line kfλ = k[X ]
(B)
λ is Pα-unstable, hence so is the divisor of zeros of fλ

by [PV94, Theorem 3.1]. Consequently, DX(α) 6= ∅, which contradicts (5.1).
Now let us prove the inclusion “⊃”. Since X is affine, there exists a nonzero B-semi-

invariant function f ∈ k[X ] that vanishes on all colors of X. Without loss of generality
we may assume that f = fλ for some λ ∈ ΓX . If α ∈ Π \ Πp

X then DX(α) 6= ∅ by (5.1),
hence the line kfλ is Pα-unstable and 〈α∨, λ〉 > 0. �

5.2. Relations between simple roots and colors. The results in this subsection are
extracted from [Lu97, §§ 2.7, 3.4]; see also [Ti11, § 30.10].

Let X be a spherical G-variety.

Proposition 5.4. For every α ∈ Π, exactly one of the following possibilities is realized:

(p) DX(α) = ∅.

(a) α ∈ ΣX , DX(α) = {D+, D−}, and 〈ρX(D
+), λ〉 + 〈ρX(D

−), λ〉 = 〈α∨, λ〉 for all

λ ∈ ΛX .

(a′) 2α ∈ ΣX , DX(α) = {D}, and 〈ρX(D), λ〉 = 〈1
2
α∨, λ〉 for all λ ∈ ΛX .

(b) Qα ∩ ΣX = ∅, DX(α) = {D}, and 〈ρX(D), λ〉 = 〈α∨, λ〉 for all λ ∈ ΛX .

In what follows, by Da
X (resp. Da′

X , Db
X) we denote the union of the sets DX(α) where

α runs over all simple roots of type (a) (resp. (a′), (b)).

Proposition 5.5. The union DX = Da
X ∪ Da′

X ∪ Db
X is disjoint.

5.3. Classification of spherical homogeneous spaces.

Definition 5.6. An element σ ∈ X(T ) is called a spherical root of G if σ is a non-negative
linear combination of simple roots of G with coefficients in 1

2
Z such that the following

conditions are satisfied:

(1) if σ ∈ Z∆ then σ appears in Table 1;
(2) if σ /∈ Z∆ then 2σ appears in Table 1 and its number is marked by an asterisk.

We denote the set of all spherical roots of G by Σ(G).
In Table 1, the notation αi stands for the ith simple root of the set Supp σ whenever

the Dynkin diagram of Supp σ is connected. If Supp σ is of type A1 × A1, then α, β are
the two distinct roots in Supp σ.

Remark 5.7. Usually, a spherical root of G is (equivalently) defined as an element σ ∈ X(T )
such that there exists a spherical G-variety X with ΛX = Zσ and ΣX = {σ}. In this
paper we adopt Definition 5.6 because it is purely combinatorial and hence practical.

A pair (Πp, σ) with Πp ⊂ Π and σ ∈ Σ(G) is said to be compatible if

(5.2) Πσ ⊂ Πp ⊂ σ⊥

where the set Πσ ⊂ Supp σ is determined as follows:

Πσ =











Supp σ ∩ σ⊥ \ {αr} if σ = α1 + α2 + . . .+ αr with support of type Br;

Supp σ ∩ σ⊥ \ {α1} if σ has support of type Cr;

Supp σ ∩ σ⊥ otherwise.
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Table 1. Spherical roots

No.
Type of
Supp σ

σ Πσ Note

1 A1 α1 ∅

2 A1 2α1 ∅

3∗ A1 × A1 α + β ∅

4 Ar α1 + α2 + . . .+ αr

∅ for r = 2;
α2, α3, . . . , αr−1

for r ≥ 3
r ≥ 2

5∗ A3 α1 + 2α2 + α3 α1, α3

6 Br α1 + α2 + . . .+ αr

∅ for r = 2;
α2, α3, . . . , αr−1

for r ≥ 3
r ≥ 2

7 Br 2α1 + 2α2 + . . .+ 2αr α2, α3, . . . , αr r ≥ 2
8∗ B3 α1 + 2α2 + 3α3 α1, α2

9 Cr α1 + 2α2 + 2α3 + . . .+ 2αr−1 + αr α3, α4, . . . , αr r ≥ 3
10∗ Dr 2α1 + 2α2 + . . .+ 2αr−2 + αr−1 + αr α2, α3, . . . , αr r ≥ 4
11 F4 α1 + 2α2 + 3α3 + 2α4 α1, α2, α3

12 G2 α1 + α2 ∅

13 G2 2α1 + α2 α2

14 G2 4α1 + 2α2 α2

For the reader’s convenience, in the column “Πσ” of Table 1 we listed all roots in the
set Πσ for every spherical root σ ∈ Z∆. If σ ∈ Σ(G) \ Z∆, then Πσ = Π2σ.

The following definition is due to Luna; see [Lu01, § 2]. Our version of this definition
is close to [Ti11, Definition 30.21].

Definition 5.8. Suppose that Λ is a sublattice in X(T ), Πp is a subset of Π, Σ ⊂ Σ(G)∩Λ
is a set consisting of primitive elements in Λ, and Da is a finite set equipped with a map
ρ : Da → Λ∗. For every α ∈ Π ∩ Σ, put D(α) = {D ∈ Da | 〈ρ(D), α〉 = 1}.

The quadruple (Λ,Πp,Σ,Da) is called a homogeneous spherical datum if it satisfies the
following axioms:

(A1) 〈ρ(D), σ〉 ≤ 1 for all D ∈ Da and σ ∈ Σ, and the equality is attained if and only
if σ = α ∈ Π ∩ Σ and D ∈ D(α);

(A2) for every α ∈ Π ∩ Σ, the set D(α) contains exactly two elements D+
α and D−

α ,
which satisfy 〈ρ(D+

α ), λ〉+ 〈ρ(D−
α ), λ〉 = 〈α∨, λ〉 for all λ ∈ Λ;

(A3) the set Da is the union of the sets D(α) over all α ∈ Π ∩ Σ;
(Σ1) if α ∈ Π ∩ 1

2
Σ then 〈α∨, λ〉 ∈ 2Z for all λ ∈ Λ;

(Σ2) if α, β ∈ Π, α ⊥ β, and α + β ∈ Σ ∪ 2Σ, then 〈α∨, λ〉 = 〈β∨, λ〉 for all λ ∈ Λ;
(S) Πp ⊂ Λ⊥ and for every σ ∈ Σ the pair (Πp, σ) is compatible.

Theorem 5.9 ([Lu01, BP14, Cu14]). The map O 7→ (ΛO,Π
p
O,ΣO,D

a
O) is a bijection

between (G-isomorphism classes of ) spherical homogeneous spaces of G and homogeneous

spherical data for G.

According to this theorem, the quadruple (ΛO,Π
p
O,ΣO,D

a
O) is said to be the homoge-

neous spherical datum of O, we shall denote it by HO.
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5.4. Affine embeddings of spherical homogeneous spaces. Let O be a spherical
homogeneous space of G. A spherical G-variety X containing O as an open G-orbit is
said to be a G-equivariant embedding (or simply an embedding) of O.

Definition 5.10. An embedding X of O is said to be simple if X contains exactly one
closed G-orbit.

Simple embeddings are classified by strictly convex colored cones.

Definition 5.11 (see [Kn91, § 3]). A colored cone is a pair (C,F) with C ⊂ QO and
F ⊂ DO having the following properties:

(CC1) C is a cone generated by ρO(F) and finitely many elements of VO;
(CC2) C◦ ∩ VO 6= ∅.

A colored cone is said to be strictly convex if the following property holds:

(SCC) C is strictly convex and 0 /∈ ρO(F).

Let X be a simple embedding of O and let Y be the closed G-orbit of X. We put
FX = {D ∈ DX | Y ⊂ D} and let CX denote the cone in QX generated by the set
ρX(BX ∪ FX).

Proposition 5.12 ([Kn91, Theorem 3.1]). The map X 7→ (CX ,FX) is a bijection between

G-isomorphism classes of simple embeddings of O and strictly convex colored cones in QO.

The following theorem provides a description of all affine embeddings of O.

Theorem 5.13 ([Kn91, Theorem 6.7]). Let X be an embedding of O.

(a) If X is affine then X is simple.

(b) Suppose that X is simple and let (C,F) be the corresponding colored cone. Then

X is affine if and only if there is an element χ ∈ ΛX such that:

(AE1) 〈v, χ〉 ≤ 0 for all v ∈ VO;

(AE2) 〈q, χ〉 = 0 for all q ∈ C;

(AE3) 〈ρO(D), χ〉 > 0 for all D ∈ DO \ F .

Here is a useful application of the above theorem.

Proposition 5.14 (compare with [Ti11, Corollary 15.5]). Let K ⊂ Q be a strictly convex

cone generated by ρO(DO) and finitely many elements of VO. Suppose that 0 /∈ ρO(DO).
Then there exists an affine embedding X of O such that ΓX = ΛO ∩ K∨, where K∨ is

considered as a cone in (ΛO)Q.

Proof. Let C be the largest face of K such that C◦ ∩ VO 6= ∅ and set

F = {D ∈ DO | ρO(D) ∈ C}.

Then (C,F) is a colored cone, and the simple embedding X of O corresponding to (C,F)
has the desired properties. �

6. Affine spherical G-varieties with a prescribed weight monoid

6.1. Spherical roots compatible with a lattice. Let Λ ⊂ X(T ) be a sublattice.

Definition 6.1. A spherical root σ ∈ Σ(G) is said to be compatible with Λ if the following
properties hold:
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(CL1) σ ∈ Λ and σ is a primitive element of Λ;
(CL2) the pair (Λ⊥, σ) is compatible;
(CL3) if σ = α+β or σ = 1

2
(α+β) for some α, β ∈ Π with α ⊥ β, then 〈α∨, λ〉 = 〈β∨, λ〉

for all λ ∈ Λ;
(CL4) if σ = 2α for some α ∈ Π, then 〈α∨, λ〉 ∈ 2Z for all λ ∈ Λ.

A geometrical interpretation of this definition is given by

Proposition 6.2. For a spherical root σ ∈ Σ(G), the following conditions are equivalent.

(1) σ is compatible with Λ.

(2) There exists a spherical homogeneous space G/H with ΛG/H = Λ and ΣG/H = {σ}.

Proof. (1)⇒(2) According to Theorem 5.9, it suffices to find a set Da equipped with a
map ρ : Da → Λ∗ such that H = (Λ,Λ⊥, {σ},Da) is a homogeneous spherical datum. If
σ /∈ Π, then we take Da = ∅. In case σ = α ∈ Π, we take Da to be a set consisting of
two elements D+ and D− such that ρ(D+) is any element in Λ∗ with 〈ρ(D+), α〉 = 1 and
〈ρ(D−), λ〉 = 〈α∨, λ〉 − 〈ρ(D+), λ〉 for all λ ∈ Λ. In both cases, one easily checks that H

is a homogeneous spherical datum.
(2)⇒(1) Thanks to Theorem 5.9, this follows by comparing Definitions 5.8 and 6.1. �

6.2. Spherical roots compatible with a monoid. Let Γ ⊂ Λ+ be a finitely generated
and saturated monoid. Set L = (ZΓ)∗, Q = LQ = (QΓ)∗ and let ι : X(T )∗ → L be the
restriction map. Further, let K ⊂ Q be the cone dual to Q+Γ. Clearly, K is strictly
convex. Let K1 be the set of primitive elements ̺ in L such that Q+̺ is an extremal ray
of K. Finally, for every σ ∈ ZΓ we put K1(σ) = {̺ ∈ K1 | 〈̺, σ〉 > 0}.

Definition 6.3. A spherical root σ ∈ Σ(G) is said to be compatible with Γ if σ is com-
patible with the lattice ZΓ and satisfies the following conditions:

(CM1) if σ /∈ Π then for every ̺ ∈ K1(σ) there exists δ ∈ Π \ Γ⊥ such that ι(δ∨) is a
positive multiple of ̺.

(CM2) if σ = α ∈ Π then there exist two elements ̺1, ̺2 ∈ K ∩ L with the following
properties:
(a) 〈̺1, α〉 = 〈̺2, α〉 = 1;
(b) ι(α∨) = ̺1 + ̺2;
(c) K1(α) ⊂ {̺1, ̺2}.

The set of all spherical roots σ ∈ Σ(G) compatible with Γ will be denoted by Σ(Γ).

Remark 6.4. It follows from condition (CM2) that, for every α ∈ Σ(Γ) ∩ Π, at least one
of the two elements ̺1, ̺2 lies on an extremal ray of the cone K. The latter implies that
the two elements ̺1, ̺2 are uniquely determined, up to a permutation.

With every α ∈ Σ(Γ) ∩ Π we associate a two-element set D(α) = {D+
α , D

−
α } equipped

with the map ρ : D(α) → L given by ρ(D+
α ) = ̺1 and ρ(D−

α ) = ̺2.
The following proposition provides a geometrical interpretation of spherical roots com-

patible with Γ.

Proposition 6.5. For a spherical root σ ∈ Σ(G), the following conditions are equivalent.

(1) σ ∈ Σ(Γ).
(2) There exists an affine spherical G-variety X with ΓX = Γ and ΣX = {σ}.
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Proof. For every spherical root σ ∈ Σ(G) ∩ ZΓ, we put Vσ = {q ∈ Q | 〈q, σ〉 ≤ 0}.
(1)⇒(2) We consider two cases.
Case 1: σ /∈ Π. Then H = (ZΓ,Γ⊥, {σ},∅) is a homogeneous spherical datum. By

Theorem 5.9, there is a spherical homogeneous space O of G such that HO = H . In view
of Propositions 5.4 and 5.5, we thus have

(6.1) ρO(DO) =

{

{ι(γ∨) | γ ∈ Π \ Γ⊥} if σ /∈ 2Π;

{ι(α∨)/2} ∪ {ι(γ∨) | γ ∈ Π \ (Γ⊥ ∪ {α})} if σ = 2α ∈ 2Π.

In particular, 0 /∈ ρO(DO). It follows from (6.1) and condition (CM1) that the cone K is
generated by the set ρO(DO) and finitely many elements of Vσ. As K is strictly convex,
by Proposition 5.14 there exists an affine embedding X of O such that ΓX = Γ.

Case 2: σ = α ∈ Π. We consider the quadruple H = (ZΓ,Γ⊥, {α},D(α)), where
D(α) is equipped with the above map ρ. It is easily verified that H is a homogeneous
spherical datum. By Theorem 5.9, there is a spherical homogeneous space O of G such
that HO = H . Then by Propositions 5.4 and 5.5 we have

(6.2) ρO(DO) = {̺1, ̺2} ∪ {ι(γ∨) | γ ∈ Π \ (Γ⊥ ∪ {α})}.

In particular, 0 /∈ ρO(DO). It follows from (6.2) and condition (CM2) that the cone K is
generated by the set ρO(DO) and finitely many elements of Vσ. As K is strictly convex,
by Proposition 5.14 there exists an affine embedding X of O such that ΓX = Γ.

(2)⇒(1) Let X be an affine spherical G-variety with ΓX = Γ and ΣX = {σ} and let O be
the open G-orbit in X. By Proposition 5.3(b), we have ΛX = ZΓX . In view of Remark 5.1,
Proposition 6.2 implies that σ is compatible with ΛX . Thanks to Proposition 5.3(a), the
cone KX = K is generated by the set ρX(DX) and finitely many elements of VX = Vσ.
Further, Proposition 5.3(c) yields Πp

X = Γ⊥. Conditions (CM1) and (CM2) now follow
from Propositions 5.4, 5.5, and axiom (A1). �

Corollary 6.6. Suppose that X is an affine spherical G-variety with ΓX = Γ. Then

ΣX ⊂ Σ(Γ).

Proof. Thanks to Proposition 3.7, for every σ ∈ ΣX there exists an affine spherical G-
variety Y with ΓY = Γ and ΣY = {σ}, hence σ ∈ Σ(Γ) by Proposition 6.5. �

6.3. Admissible sets of spherical roots for a given monoid. In this subsection, we
obtain one of the main results of this paper: a combinatorial description of the affine
spherical G-varieties with prescribed weight monoid (Theorem 6.9).

We retain all the notation introduced in § 6.2.

Definition 6.7. A subset Σ ⊂ Σ(Γ) is said to be admissible if it satisfies the following
condition:

(AP) for every α ∈ Σ ∩ Π, D ∈ D(α), and σ ∈ Σ \ {α}, the inequality 〈ρ(D), σ〉 ≤ 1
holds, and the equality is attained if and only if σ = β ∈ Π and there is D′ ∈ D(β)
with ρ(D′) = ρ(D).

Remark 6.8. The following statements follow directly from the definition.

(a) Every 1-element subset of Σ(Γ) is admissible.
(b) Every subset Σ ⊂ Σ(Γ) with Σ ∩ Π = ∅ is admissible. In particular, Σ(Γ) is

admissible whenever Σ(Γ) ∩Π = ∅.
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(c) A subset Σ ⊂ Σ(Γ) is admissible if and only if so is every 2-element subset of Σ.
(d) A subset {α, σ} ⊂ Σ(Γ) with α ∈ Π and σ /∈ Π is admissible if and only if

〈̺, σ〉 ≤ 0 for every ̺ ∈ ρ(D(α)).
(e) If Σ ⊂ Σ(Γ) is an admissible subset then every subset Σ′ ⊂ Σ is also admissible.

Theorem 6.9. For a subset Σ ⊂ Σ(Γ), the following conditions are equivalent.

(1) Σ is admissible.

(2) There exists an affine spherical G-variety X with ΓX = Γ and ΣX = Σ.

Proof. (1)⇒(2) First consider the disjoint union S =
⊔

α∈Σ∩Π

D(α). We introduce an equiv-

alence relation on S as follows. For α, α′ ∈ Π ∩ Σ, D ∈ D(α), and D′ ∈ D(α′) we write
D ∼ D′ if and only if one of the following two conditions holds:

• α = α′ and D = D′;
• α 6= α′ and ρ(D) = ρ(D′).

Now consider the quotient set Da = S/∼. By construction, Da is equipped with a well-
defined map ρ : Da → L. For every α ∈ Σ ∩ Π, we shall identify the set D(α) with its
image in Da. One easily checks that the quadruple H = (ZΓ,Γ⊥,Σ,Da) is a homogeneous
spherical datum. By Theorem 5.9, there is a spherical homogeneous space O of G such
that HO = H . Then Propositions 5.4 and 5.5 yield

(6.3) ρO(DO) = ρ(Da) ∪ {
1

2
ι(β∨) | β ∈ Π ∩

1

2
Σ} ∪ {ι(β∨) | β ∈ Π \ (Γ⊥ ∪ Σ ∪

1

2
Σ}.

Note that 0 /∈ ρO(DO).
We now check that the cone K is generated by the set ρO(DO) and finitely many elements

of VO. As ρ(Da) ⊂ K by (CM2), formula (6.3) implies ρO(DO) ⊂ K. Consequently, it
suffices to take an arbitrary element ̺ ∈ K1\VO and show that a suitable positive multiple
of ̺ lies in ρO(DO). Since VO =

⋂

σ∈Σ

Vσ, there is a spherical root σ ∈ Σ such that ̺ ∈ K1(σ).

If σ ∈ Π then ̺ ∈ ρO(DO) by (CM2) and (6.3). If σ /∈ Π then by (CM1) there exists
δ ∈ Π \ Γ⊥ such that ι(δ∨) is a positive multiple of ̺. It follows from (6.3) that ι(δ∨)
or ι(δ∨)/2 lies in ρO(DO) unless δ ∈ Π ∩ Σ. But the latter implies 〈δ∨, σ〉 > 0, which is
impossible because δ and σ are two simple roots in a root system; see § 5.1.

Thus, the strictly convex cone K satisfies all the conditions of Proposition 5.14, and so
there exists an affine embedding X of O such that ΓX = Γ.

(2)⇒(1) Let X be an affine spherical G-variety with ΓX = Γ and ΣX = Σ. By Propo-
sition 5.3(a), the cone K is generated by the set ρX(BX ∪DX). Now take any α ∈ Σ∩Π.
In view of condition (CM2) and Remark 6.4, the set K1(α) is non-empty and is con-
tained in D(α). On the other hand, Propositions 5.4, 5.5, Remark 5.1, Theorem 5.9,
and axiom (A1) imply K1(α) ⊂ ρX(DX(α)), hence ρ(D(α)) = ρX(DX(α)). The latter
yields (AP) thanks to axiom (A1). �

7. Applications to moduli schemes MΓ

Throughout this section, Γ stands for a finitely generated and saturated monoid. We
retain all the notation introduced at the beginning of § 6.2.
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7.1. A combinatorial description of the irreducible components of MΓ. In this
subsection, we apply the results of § 6.3 to describe the irreducible components of the
moduli scheme MΓ.

According to Theorem 6.9, for every admissible subset Σ ⊂ Σ(Γ) let X(Σ) be the affine
spherical G-variety such that ΓX(Σ) = Γ and ΣX(Σ) = Σ.

Theorem 7.1. The map Σ 7→ TadX(Σ) is a bijection between the maximal with respect

to inclusion admissible subsets of Σ(Γ) and the irreducible components of MΓ. Moreover,

dimTadX(Σ) = |Σ|.

Proof. This follows readily from Theorem 6.9, Corollaries 4.4 and 4.6, and Proposition 4.7.
�

In view of Remark 6.8(a), the set Σ(Γ) contains a unique maximal admissible subset
if and only if Σ(Γ) is admissible itself. This along with Theorem 7.1 yields the following
irreducibility criterion for MΓ.

Corollary 7.2. The following conditions are equivalent.

(1) The set Σ(Γ) is admissible.

(2) MΓ is irreducible.

7.2. The tangent space of MΓ at X0. In this subsection, we present (in a reformu-
lated form) the combinatorial description of the Tad-module structure in TX0

MΓ obtained
in [ACF15]; see Theorem 7.10. Our version of this description, which will be needed in
the remaining part of this section, requires the notions of a Γ-deviant simple root and a
Γ-loose spherical root.

Definition 7.3. A root α ∈ Π is said to be Γ-deviant if α ∈ ZΓ and there exist two
distinct elements ̺1, ̺2 ∈ K1 with the following properties:

(DR1) 〈̺1, α〉 = 〈̺2, α〉 = 1;
(DR2) ι(α∨) ∈ (Q+̺1 +Q+̺2) \ {2̺1, ̺1 + ̺2, 2̺2};
(DR3) K1(α) = {̺1, ̺2}.

The set of all Γ-deviant roots will be denoted by Dev(Γ).

Remark 7.4. It follows directly from the definition that every α ∈ Dev(Γ) has the following
properties:

(a) α is primitive in the lattice ZΓ;
(b) α is compatible with the lattice ZΓ;
(c) α /∈ Σ(Γ).

The following proposition shows that the set Dev(Γ) is empty for a wide class of
monoids Γ.

Proposition 7.5. Suppose that Γ = Γ0⊕Λ0 where Γ0 is a free monoid and Λ0 is a lattice

with Λ⊥
0 = Π (that is, Λ0 ⊂ X(C)). Then Dev(Γ) = ∅. In particular, Dev(Γ) = ∅

whenever Γ is free.

Proof. Suppose that α ∈ ZΓ ∩ Π and two distinct elements ̺1, ̺2 ∈ K1 satisfy condi-
tions (DR1)–(DR3). Then {̺1, ̺2} is a part of a basis of L hence ι(α∨) = b1̺1 + b2̺2 for
some b1, b2 ∈ Z. In this case, one easily checks that conditions (DR1), (DR2) cannot hold
simultaneously. �



18 ROMAN AVDEEV AND STÉPHANIE CUPIT-FOUTOU

Examples of Γ with Dev(Γ) 6= ∅ are given in § 7.6.
For our description of TX0

MΓ, we shall need the following lemma.

Lemma 7.6. For an element α ∈ ZΓ ∩ Π, the following conditions are equivalent.

(1) α ∈ Dev(Γ) ∪ Σ(Γ).
(2) There exist two elements ̺1, ̺2 ∈ K ∩ L satisfying the following conditions:

(a) 〈̺1, α〉 = 〈̺2, α〉 = 1;
(b) ι(α∨) ∈ (Q+̺1 +Q+̺2) \ {2̺1, 2̺2};
(c) K1(α) ⊂ {̺1, ̺2}.

Proof. The implication (1)⇒(2) follows directly from Definitions 6.3 and 7.3. To prove
the converse implication, suppose that two elements ̺1, ̺2 ∈ K ∩ L satisfy conditions
(a)–(c). Clearly, K1(α) 6= ∅, and so we have two cases.

Case 1: |K1(α)| = 2, that is, K1(α) = {̺1, ̺2}. It follows from Definitions 6.3 and 7.3
that α ∈ Dev(Γ) ∪ Σ(Γ).

Case 2: |K1(α)| = 1. Without loss of generality we assume that K1(α) = {̺1}. We
claim that α ∈ Σ(Γ). To check condition (CM2) it suffices to prove that the element
̺′2 = ι(α∨) − ̺1 lies in the cone K. Let a, b ∈ Q+ \ {0} be such that ι(α∨) = a̺1 + b̺2;
note that a + b = 2. Next, as ̺2 ∈ K there is an expression ̺2 = c̺1 + τ where c ∈ Q+

and τ is an element of the cone spanned by the set K1 \ {̺1}. Since 〈τ, α〉 ≤ 0, it follows
from (a) that c ≥ 1. We have ̺′2 = (a + bc − 1)̺1 + bτ with a + bc− 1 ≥ a + b− 1 = 1,
and so ̺′2 ∈ K. �

Definition 7.7. A spherical root σ ∈ Σ(G) is said to be Γ-loose3 if σ ∈ Σ(Γ) and one of
the following conditions holds:

(LR1) σ /∈ ZΠ;
(LR2) σ = α ∈ Π and ρ(D(α)) = {ι(α∨)/2};
(LR3) σ = α1 + . . .+ αr with Supp σ of type Br (r ≥ 2) and αr ∈ Γ⊥;
(LR4) σ = 2α1 + α2 with Supp σ of type G2.

Note that 2σ ∈ Σ(G) ∩ ZΠ for every Γ-loose σ ∈ Σ(G).
For every σ ∈ Σ(Γ) we define the element σ ∈ {σ, 2σ} as follows:

σ =

{

2σ if σ is Γ-loose;

σ otherwise.

The following theorem, which is a particular case of [Lo09a, Theorem 2] (see also
[ACF15, Theorem 4.20]), explains the role played by Γ-loose spherical roots for affine
spherical G-varieties.

Theorem 7.8. Suppose that X is an affine spherical G-variety with weight monoid Γ.

Then ΣX = {σ | σ ∈ ΣX}.

Next, we define the set

Σ(Γ) = {σ | σ ∈ Σ(Γ)} ⊂ Σ(G).

Note that σ 7→ σ is a natural bijection between Σ(Γ) and Σ(Γ).

Remark 7.9. Σ(Γ) ∩Dev(Γ) = ∅.

3The term is taken from [BL11, § 2.2] where it was used in a similar situation.
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We now put

Φ(Γ) = {σ ∈ X(Tad) | −σ is a Tad-weight of TX0
MΓ}.

In other words, Φ(Γ) is the set of Tad-weights in the cotangent space of MΓ at X0.
The following theorem is a reformulation of [ACF15, Theorem 3.1].

Theorem 7.10. The tangent space TX0
MΓ is a multiplicity-free Tad-module4. Moreover,

Φ(Γ) = Σ(Γ) ∪ Dev(Γ).

Proof. This follows by comparing [ACF15, Theorem 3.1] with the definitions of Σ(Γ),
Σ(Γ), Dev(Γ) and taking into account Lemma 7.6. �

Combining this theorem together with Proposition 7.5, we obtain

Corollary 7.11. Suppose that Γ is free. Then Φ(Γ) = Σ(Γ).

7.3. A smoothness criterion for MΓ.

Theorem 7.12. The following conditions are equivalent.

(1) The set Σ(Γ) is admissible and Dev(Γ) = ∅.

(2) MΓ is an affine space (as a scheme).

Proof. (1)⇒(2) Theorems 7.1 and 7.10 imply that MΓ is smooth at X0, and so MΓ is an
affine space by Theorem 4.8.

(2)⇒(1) The set Σ(Γ) is admissible by Corollary 7.2. Next, thanks to Theorem 7.1,
there exists an affine spherical G-variety X with ΓX = Γ such that MΓ = TadX. As MΓ

is an affine space, Theorem 4.5 yields Φ(Γ) = ΣX . Now Theorem 7.10, Remark 7.4(a, c),
and Corollary 6.6 imply Dev(Γ) = ∅. �

Corollary 7.13. Suppose that the set Σ(Γ) is admissible (or, equivalently, MΓ is irre-

ducible). Then the following conditions are equivalent.

(1) Dev(Γ) = ∅.

(2) MΓ is reduced.

Proof. (1)⇒(2) This follows from Theorem 7.12.
(2)⇒(1) Applying Theorems 7.1, 4.5, 3.3, and 7.8 we find that Φ(Γ) = Σ(Γ), whence

Dev(Γ) = ∅ by Theorem 7.10 and Remark 7.9. �

7.4. Sufficient conditions for MΓ to be irreducible and/or smooth. To establish
such conditions, we shall need the three following lemmas.

Lemma 7.14. Let α ∈ Σ(Γ) ∩ Π and σ ∈ Σ(Γ) \ Π. Suppose that ρ(D(α)) = {ι(α∨)/2}.
Then the set {α, σ} is admissible.

Proof. Thanks to Remark 6.8(d), we need to show that 〈α∨, σ〉 ≤ 0. If α 6∈ Supp σ then
the latter inequality holds automatically, therefore we may assume that α ∈ Supp σ. Since
both pairs (Γ⊥, α) and (Γ⊥, σ) are compatible, it follows from (5.2) that Πσ ⊂ α⊥, that
is, α ⊥ Πσ. An inspection of Table 1 shows that the conditions 〈α∨, σ〉 > 0 and α ⊥ Πσ

can hold simultaneously only in one of the following three cases:

4Here the term “multiplicity-free Tad-module” should not be mixed with “multiplicity-free Tad-variety”,
which has a different meaning.
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(1) σ = α1 + α2 with Supp σ of type A2 and α ∈ {α1, α2};
(2) σ = α1 + α2 with Supp σ of type B2 and α = α1;
(3) σ = α1 + α2 with Supp σ of type G2 and α = α2.

Further, the condition ι(α∨)/2 ∈ L implies 〈α∨, σ〉 ∈ 2Z, which is not the case in any of
the above three situations. Thus 〈α∨, σ〉 ≤ 0. �

Lemma 7.15. Suppose that α ∈ (Σ(Γ) ∩ Π) ∪ Dev(Γ). Then ι(α∨) does not lie on an

extremal ray of the cone K.

Proof. This follows by comparing the definitions of the sets Σ(Γ), Σ(Γ), and Dev(Γ). �

Lemma 7.16. Suppose that α ∈ (Σ(Γ) ∩ Π) ∪ Dev(Γ) and X is an affine spherical G-

variety with ΓX = Γ. Then DX(α) 6= ∅. Moreover,

|DX(α)| =

{

2 if α ∈ ΣX ;

1 otherwise.

Proof. It follows from the hypothesis that α ∈ ZΓ, which implies α /∈ Πp
X by Proposi-

tion 5.3(c). Now the claim follows from Proposition 5.4. �

Proposition 7.17. Suppose that ρ(D(α)) ⊂ K1 for every α ∈ Σ(Γ) ∩Π. Then

(a) the set Σ(Γ) is admissible;

(b) MΓ is irreducible.

Proof. (a) According to Remark 6.8(b, c), it is enough to show that every set {α, σ} with
α ∈ Σ(Γ) ∩ Π and σ ∈ Σ(Γ) \ {α} is admissible.

Case 1: σ /∈ Π. Assume that there is D ∈ D(α) such that 〈ρ(D), σ〉 > 0. Since
ρ(D) ∈ K1, it follows from (CM1) that ρ(D) is proportional to ι(β∨) for some β ∈ Π.
As 〈ρ(D), α〉 = 1, we obtain β = α and hence ρ(D(α)) = {ι(α∨)/2}. Now the claim is
implied by Lemma 7.14.

Case 2: σ = β ∈ Π. Assume that there is D ∈ D(α) such that 〈ρ(D), β〉 > 0. Since
ρ(D) ∈ K1, it follows from (CM2) that ρ(D) = ρ(D′) for some D′ ∈ D(β).

Part (b) follows from (a) thanks to Corollary 7.2. �

The next proposition describes a class of monoids Γ for which MΓ is an affine space.

Proposition 7.18. Suppose that Γ = Γ0 ⊕ Λ0 where Γ0 is a free monoid with minimal

set of generators E and Λ0 is a lattice with Λ⊥
0 = Π (that is, Λ0 ⊂ X(C)). Suppose that

every α ∈ Π satisfies one of the following conditions:

(1) 〈α∨, λ〉 > 0 for at most one λ ∈ E;

(2) 〈α∨, λ〉 ≤ 1 for all λ ∈ E.

Then MΓ is an affine space.

Proof. Proposition 7.5 yields Dev(Γ) = ∅, hence by Theorem 7.12 and Proposition 7.17
it suffices to show that ρ(D(α)) ⊂ K1 for every α ∈ Σ(Γ) ∩ Π.

For every λ ∈ E, let ̺λ ∈ K1 be the respective dual element.
Take an arbitrary root α ∈ Σ(Γ) ∩ Π. Clearly, ι(α∨) 6= 0. If α satisfies (1) then ι(α∨)

lies on an extremal ray of K, which by Lemma 7.15 implies ρ(D(α)) = {ι(α∨)/2} ⊂ K1.
In what follows we assume that α satisfies (2). As α ∈ Σ(Γ), there is an expression



ON THE IRREDUCIBLE COMPONENTS OF MODULI SCHEMES 21

α =
∑

λ∈E

cλλ+ µ where cλ ∈ Z and µ ∈ Λ0. Note that cλ = 〈̺λ, α〉 for all λ ∈ E. It follows

from (CM2) that cλ ≤ 1 for all λ ∈ E. Now

〈α∨, α〉 = 2 =
∑

λ∈E

cλ〈α
∨, λ〉,

which in view of (2) implies that there exist two distinct elements λ1, λ2 ∈ E such that
cλ1

= 1 and cλ2
= 1. It follows from (CM2) that ρ(D(α)) = {̺λ1

, ̺λ2
} ⊂ K1. �

Remark 7.19. As we shall see in Remark 7.22 below, the weight monoid of any affine
spherical G-variety X with k[X ] a unique factorization domain is of the form described
in Proposition 7.18. In particular, so is the weight monoid of any spherical G-module.

Proposition 7.20. Suppose that there exists an affine spherical G-variety X with ΓX = Γ
such that Σ(Γ) ∩ Π ⊂ ΣX and ρX(D) lies on an extremal ray of K for every D ∈ DX .

Then MΓ is an affine space.

Proof. By Theorem 7.12, we need to prove that the set Σ(Γ) is admissible and Dev(Γ) = ∅.
In view of Proposition 7.17(a), to check the admissibility of Σ(Γ) it suffices to show

that ρ(D(α)) ⊂ K1 for every α ∈ Σ(Γ) ∩ Π.
Case 1: α ∈ Σ(Γ). The hypotheses imply α ∈ ΣX , whence ρ(D(α)) = ρ(DX(α)) ⊂ K1.
Case 2: α /∈ Σ(Γ). Then ρ(D(α)) = {ι(α∨)/2} by the definition of Σ(Γ), and Re-

mark 6.4 yields ρ(D(α)) ⊂ K1.
We now show that Dev(Γ) = ∅. Take any α ∈ Dev(Γ). By Lemma 7.16, the set DX(α)

contains a unique element D. Proposition 5.4 then implies that ρ(D) is proportional to
ι(α∨), and so ι(α∨) lies on an extremal ray of K1, which contradicts Lemma 7.15. �

Proposition 7.21. Suppose that there exists an affine spherical G-variety X with ΓX = Γ
such that k[X ] is a unique factorization domain. Then MΓ is an affine space.

Proof. The claim will follow as soon as we check the conditions of Proposition 7.20.
It is well known that under our hypotheses all the elements ρX(D) with D ∈ BX ∪DX

are linearly independent in L; we recall the proof for convenience of the reader. As k[X ]
is a unique factorization domain, the divisor class group of X is trivial. Consequently, for
every D ∈ BX ∪ DX there exists a function fD ∈ k[X ] such that D is the divisor of zeros
of fD. As D is B-stable, fD is B-semi-invariant, and we let λD ∈ Γ be the weight of fD.
Then for all D,D′ ∈ BX ∪ DX one has

(7.1) 〈ρX(D), λD′〉 =

{

1 if D = D′;

0 if D 6= D′.

It follows that all the elements ρX(D) with D ∈ BX ∪ DX are linearly independent in L.
Since these elements generate the cone K (see Proposition 5.3(a)), we get ρX(DX) ⊂ K1.

To complete the proof, it suffices to show that Σ(Γ)∩Π ⊂ ΣX . Take any α ∈ Σ(Γ)∩Π
and assume that α /∈ ΣX . Then by Lemma 7.16 the set DX(α) contains a unique ele-
ment D. It follows from Proposition 5.4 that ι(α∨) lies on an extremal ray of the cone K,
which contradicts Lemma 7.15. �

Remark 7.22. Suppose that X is an affine spherical G-variety with ΓX = Γ such that k[X ]
is a unique factorization domain. Then, combining relations (7.1) with Proposition 5.4,
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it is easy to see that the weight monoid of X satisfies the conditions of Proposition 7.18
with E = {λD | D ∈ BX ∪DX} and Λ0 the lattice of weights of invertible G-semi-invariant
regular functions5 on X. This gives an alternative proof of Proposition 7.21.

The following statement recovers the main results of the papers [PvS12, PvS16].

Corollary 7.23. Suppose that there exists a spherical G-module V with ΓV = Γ. Then

(a) MΓ is an affine space;

(b) MΓ = TadV .

Proof. As k[V ] is a unique factorization domain, part (a) follows from Proposition 7.21.
Part (b) is implied by [AB05, Corollary 2.9] because V is smooth. �

We now describe one more class of monoids Γ for which MΓ is an affine space.

Definition 7.24. A finitely generated monoid Γ ⊂ Λ+ is called G-saturated if

Γ = ZΓ ∩ Λ+.

Remark 7.25. Every G-saturated monoid is automatically saturated.

Remark 7.26. A monoid Γ is G-saturated if and only if its dual cone K is generated by
the set {ι(γ∨) | γ ∈ Π\Πp}.

Theorem 7.27. Suppose that Γ is G-saturated. Then

(a) Dev(Γ) = ∅;

(b) the set Σ(Γ) is admissible;

(c) MΓ is an affine space.

Proof. (a) In view of Remark 7.26, for every α ∈ ZΓ ∩Π the set K1(α) contains a unique
element, which is proportional to ι(α∨). Hence Dev(Γ) = ∅ by Lemma 7.15.

(b) Take any α ∈ Σ(Γ) ∩ Π. Lemma 7.15 together with Remark 7.26 imply that
ρ(D(α)) = {ι(α∨)/2}, whence ρ(D(α)) ⊂ K1. Then the set Σ(Γ) is admissible by Propo-
sition 7.17(a).

(c) This follows from (a) and (b) thanks to Theorem 7.12. �

Remark 7.28. For the case where Γ is free and G-saturated, the fact that MΓ is an affine
space was known before thanks to the papers [Ja07, BCF08].

7.5. Examples of reducible MΓ. Recall from Theorem 7.1 that the irreducible compo-
nents of MΓ are in bijection with the maximal admissible subsets of Σ(Γ).

In all the five examples presented in this subsection, the monoid Γ is free, Σ(Γ) =
{σ1, σ2} for two distinct elements σ1, σ2 ∈ Σ(G), and the whole set Σ(Γ) is not admissible.
Thus MΓ turns out to have two irreducible components of dimension 1 meeting at the
point X0.

Despite all the examples show the same geometrical picture of MΓ, our motivation for
constructing them was to reveal different combinatorial types of a non-admissible pair of
spherical roots in Σ(Γ). Namely, as every admissible subset of Σ(Γ) is a set of simple roots
of a root system in QΓ (see § 5.1), it is clear that the set {σ1, σ2} is automatically not
admissible whenever (σ1, σ2) > 0; this happens in Example 7.29. On the other hand, by

5In fact, every invertible regular function on X is automatically G-semi-invariant by [Ro61, Theorem 1].
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Remark 6.8(b) the set {σ1, σ2} is automatically admissible if σ1, σ2 /∈ Π. Our remaining
four examples show that in the situation {σ1, σ2} ∩Π 6= ∅ there are no simple conditions
like (σ1, σ2) = 0 or (σ1, σ2) < 0 under which the set {σ1, σ2} is automatically admissible,
and this holds regardless of whether both σ1, σ2 are simple roots or only one of them is
simple. The following table demonstrates the combinatorial differences of our examples.

Example no. 7.29 7.30 7.32 7.33 7.34

Property
σ1 /∈Π, σ2∈Π,
(σ1, σ2)>0

σ1, σ2∈Π,
(σ1, σ2)=0

σ1 /∈Π, σ2∈Π,
(σ1, σ2)=0

σ1, σ2∈Π,
(σ1, σ2)<0

σ1 /∈Π, σ2∈Π,
(σ1, σ2)<0

Example 7.29. Let G = SL3 and Γ = Z+{3̟1, ̟1 + ̟2}. Then Γ⊥ = ∅ and ZΓ =
Z{α1, α2}. The spherical roots of G compatible with the lattice ZΓ are α1, α2 and α1+α2.
Next, K1 = {̺1, ̺2} where ̺1 = (α∨

1 −α∨
2 )/3 and ̺2 = α∨

2 . We have Σ(Γ) = {α1+α2, α1}
with ρ(D(α1)) = {̺1, 2̺1 + ̺2}. As 〈2̺1 + ̺2, α1 + α2〉 = 1 > 0, the set {α1 + α2, α1} is
not admissible. Thus there are two maximal admissible subsets {α1 + α2} and {α1}.

Example 7.30. Let G = SL2× SL2, let ̟i (resp. αi) be the fundamental weight (resp.
simple root) of the ith factor of G, and consider the monoid Γ = Z+{2̟1, 2l̟1 + 2̟2},
where l is a positive integer. Then Γ⊥ = ∅ and ZΓ = Z{α1, α2}. The spherical roots
of G compatible with the lattice ZΓ are α1 and α2. Next, K1 = {̺1, ̺2} where ̺1 =
(α∨

1−lα∨
2 )/2 and ̺2 = α∨

2 /2. We have Σ(Γ) = {α1, α2} with ρ(D(α1)) = {̺1, ̺1+2l̺2} and
ρ(D(α2)) = {̺2}. If l = 1 then the set {α1, α2} is not admissible since 〈̺1 + 2̺2, α2〉 = 1
but ̺1 + 2̺2 /∈ ρ(D(α2)). If l ≥ 2 then the set {α1, α2} is not admissible because
〈̺1 + 2l̺2, α2〉 = l > 1. Thus there are two maximal admissible subsets {α1} and {α2}.

Remark 7.31. For l = 2 we recover Luna’s example mentioned in [AB06, Example 3.20].

Example 7.32. Let G = SL2×G0, where G0 is a connected semisimple algebraic group,
and Γ = Z+{α, lα + σ}, where α is the simple root of SL2, σ is a dominant weight of
G0 such that σ ∈ Σ(G0) \ Π, and l is a positive integer. Then Γ⊥ = σ⊥ \ {α} and
ZΓ = Z{α, σ}. The spherical roots of G compatible with the lattice ZΓ are σ and α. Let
̺0 be the element of L such that 〈̺0, α〉 = 0 and 〈̺0, σ〉 = 2. Then K1 = {̺1, ̺2} where
̺1 = (α∨ − l̺0)/2 and ̺2 = ̺0/2. We have Σ(Γ) = {σ, α} with ρ(D(α)) = {̺1, ̺1 +2l̺2}.
As 〈̺1 + 2l̺2, σ〉 = l > 0, the set {σ, α} is not admissible. Thus there are two maximal
admissible subsets {σ} and {α}.

Example 7.33. Let G = SL4 and Γ = Z+{2̟1 + (2l + 1)̟2, 2̟2, ̟1 + ̟3}, where l
is a positive integer. Then Γ⊥ = ∅ and ZΓ = Z{α1, α2, α3}. The spherical roots of G
compatible with the lattice ZΓ are α1, α2, α3, α1+α2, and α2+α3. Next, K1 = {̺1, ̺2, ̺3}
where ̺1 = (α∨

1 − α∨
3 )/2, ̺2 = −(2l + 1)α∨

1 /4 + α∨
2 /2 + (2l + 1)α∨

3 /4, and ̺3 = α∨
3 . We

have Σ(Γ) = {α1, α2} with ρ(D(α1)) = {̺1, ̺1+ ̺3} and ρ(D(α2)) = {̺2, ̺2+(2l+1)̺1}.
If l = 1 then the set {α1, α2} is not admissible since 〈̺2 + (2l + 1)̺1, α1〉 = 1 but
̺2 + (2l + 1)̺1 /∈ ρ(D(α1)). If l ≥ 2 then the set {α1, α2} is not admissible because
〈̺2 + (2l + 1)̺1, α1〉 = l > 1. Thus there are two maximal admissible subsets {α1} and
{α2}.

Example 7.34. Let G = SL4 and Γ = Z+{̟1+(2l+1)̟3, ω2, 2ω3}, where l is a positive
integer. Then Γ⊥ = ∅ and ZΓ = Z{α1, α2, (α1 + α3)/2}. The spherical roots of G
compatible with the lattice ZΓ are α1, α2, α3, α1+α2, and α2+α3. Next, K1 = {̺1, ̺2, ̺3}
where ̺1 = α∨

1 , ̺2 = α∨
2 and ̺3 = (α∨

3 − (2l + 1)α∨
1 )/2. We have Σ(Γ) = {α1 + α2, α3}
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with ρ(D(α3)) = {̺3, ̺3 + (2l + 1)̺1}. As 〈̺3 + (2l + 1)̺1, α1 + α2〉 = l > 0, the set
{α1+α2, α3} is not admissible. Thus there are two maximal admissible subsets {α1+α2}
and {α3}.

Remark 7.35. In Examples 7.30, 7.32–7.34 the set Σ(Γ) is admissible whenever l = 0.

Remark 7.36. It would be interesting to construct examples of reducible moduli schemes
MΓ revealing other features. For instance, are there examples of MΓ with arbitrarily many
irreducible components and/or irreducible components of arbitrarily large dimension?

7.6. Examples where MΓ is a non-reduced point. In the examples below, the fact
that MΓ is a non-reduced point follows from Σ(Γ) = ∅ and Dev(Γ) 6= ∅ thanks to
Theorem 7.1 and Corollary 7.13.

Example 7.37. Let G = SL4 and Γ = Z+{λ1, λ2, λ3, λ4}, where

λ1 = ̟2 +̟3,

λ2 = 2̟1 + 2̟2 + 2̟3,

λ3 = 2̟1 + 2̟2 + 3̟3,

λ4 = 4̟1 + 4̟2 + 7̟3.

Then Γ⊥ = ∅ and ZΓ = Z{2̟1, ̟2, ̟3}. Note that λ3 = (λ2 + λ4)/3 and Γ is the
intersection of the lattice ZΓ with the cone Q+Γ, so that Γ is saturated. The spherical
roots of G compatible with the lattice ZΓ are α1 and α3. One easily checks that Σ(Γ) = ∅.
Next, K1 = {̺1, ̺2, ̺3} where

̺1 = 3α∨
1 /2 + 2α∨

2 − 2α∨
3 ,

̺2 = −α∨
2 + α∨

3 ,

̺3 = −α∨
1 + α∨

2 .

We have 〈̺1, α1〉 = 〈̺2, α1〉 = 1, 〈̺3, α1〉 = −3, and α∨
1 = (2̺1 + 4̺2)/3, which implies

that α1 and ̺1, ̺2 satisfy conditions (DR1)–(DR3), whence α1 ∈ Dev(Γ). One easily
checks that α3 /∈ Dev(Γ) and so Dev(Γ) = {α1}. Therefore MΓ is a non-reduced point.

Example 7.38. Let G = SL2× SL2× SL2, let ̟i denote the fundamental weight of the
ith factor of G, and consider the monoid

Γ = Z+{2̟1, ̟2 +̟3, 2p̟1 +̟2, 2q̟1 +̟3},

where ̟i stands for the fundamental weight of the ith factor of G and p, q are positive
integers. Then Γ⊥ = ∅ and ZΓ = Z{2̟1, ̟2, ̟3}. Note that Γ is the intersection of
the lattice ZΓ with the cone Q+Γ, so that Γ is saturated. The only spherical root of G
compatible with the lattice ZΓ is α1. Next, K1 = {̺1, ̺2, ̺3, ̺4} where

̺1 = α∨
1 /2− pα∨

2 + pα∨
3 ,

̺2 = α∨
1 /2 + qα∨

2 − qα∨
3 ,

̺3 = α∨
2 ,

̺4 = α∨
3 .

Clearly, α∨ = 2q
p+q

̺1 +
2p
p+q

̺2. Then it is easy to see that α1 ∈ Σ(Γ) when p = q and

α1 ∈ Dev(Γ) when p 6= q. It follows that MΓ is an affine line when p = q and a non-
reduced point when p 6= q.
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Remark 7.39. It would be interesting to construct examples of non-reduced moduli schemes
MΓ revealing other features. For instance, are there examples of reducible and non-
reduced MΓ, examples of irreducible non-reduced MΓ of arbitrarily large dimension, ex-
amples where MΓ is a non-reduced point with tangent space of arbitrarily large dimension?
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