Abstract

We give an answer to the abstract Capelli problem: Let \((G, V)\) be a multiplicity-free finite-dimensional representation of a connected reductive complex Lie Group \(G\) and \(G'\) be its derived subgroup. Assume that the categorical quotient \(V//G\) is one-dimensional, i.e., there exists a polynomial \(f\) generating the algebra of \(G'\)-invariant polynomials on \(V\) \((\mathbb{C}[V]^{G'} = \mathbb{C}[f]\)) and such that \(f \not\in \mathbb{C}[V]^{G}\). We prove that the category of regular holonomic \(D_V\)-modules invariant under the action of \(G\) is equivalent to the category of graded modules of finite type over a suitable algebra \(A\). This has been conjectured by T. Levasseur [27, Conjecture 5.17, p. 508] (after we had already proved it in some cases: [34], [35], [36], [37]).

Keywords: \(D\)-modules, holonomic \(D\)-modules, invariant differential operators, irreducible representations, prehomogenous vector spaces, multiplicity-free spaces, Capelli identity, representations of Capelli type.

2000 Mathematics Subject Classification. Primary 32C38; Secondary 32S25, 32S60

1 Introduction

One of the highlights of the theory of \(D\)-modules is the Riemann-Hilbert correspondence. It establishes a bridge between analytic objects (regular holonomic \(D\)-modules) and geometric ones (constructible sheaves). This has been proved independently by M. Kashiwara [19] and Z. Mebkhout [29]. One interprets the Riemann-Hilbert correspondence as a generalization of Deligne’s solution of the 21-st problem of Hilbert (see N. M. Katz [17] and also Z. Mebkhout [30], [31]). In a sense the Riemann-Hilbert correspondence generalizes the well known one-to-one correspondence between vector bundles with integrable connections and local systems. Actually, this correspondence induces an equivalence of categories between the category of regular holonomic \(D\)-modules with a characteristic variety \(\Lambda\) and that of perverse sheaves on \(V\) (where \(V\) is a complex manifold) with microsupport \(\Lambda\). In fact, a perverse sheaf is not really a sheaf but rather a complex of sheaves. More precisely, it is an object of the derived category. Also, the notion of a morphism between perverse sheaves is difficult to handle. But, on the other side, it is clear what is meant by a \(D_V\)-module and a \(D_V\)-linear morphism. So, if one wants to understand the structure of perverse sheaves on \(V\), it is certainly worthwhile to take advantage of the Riemann-Hilbert correspondence and to study the category of regular holonomic \(D_V\)-modules. These objects are perhaps more accessible.

Let \(G\) be a complex connected reductive algebraic group, and let \(G' = [G, G]\) be its derived subgroup. Denote by \((G, \rho, V)\) or \((G, V)\) a rational finite-dimensional linear representation of \(G\) \((\rho : G \rightarrow GL(V, \mathbb{C}))\) and \(\mathbb{C}[V]\) the algebra of polynomials on \(V\). The action of \(G\) on \(V\) extends to \(\mathbb{C}[V]\). We will denote by \(\mathbb{C}[V]^{G} \subset \mathbb{C}[V]\) the subalgebra of \(G\)-invariant polynomials on \(V\). We assume that \((G, V)\) is a multiplicity-free space, that is, the associated representation of \(G\) on \(\mathbb{C}[V]\)
decomposes without multiplicities. In other words, each irreducible representation of G occurs at most once in $\mathbb{C}[V]$ (see definition \[\text{1}\]). For the classification and properties of multiplicity-free spaces, we refer to the work by C. Benson and G. Ratcliff \[\text{1}\], F. Knop \[\text{25}\], A. Leahy \[\text{26}\]. We assume furthermore that the multiplicity-free space (G, V) has a one-dimensional quotient (i.e., the categorical quotient is one-dimensional: $\dim (V/G) = 1$), that is, there exists a polynomial f on V such that the subalgebra $\mathbb{C}[V]^{G}$ of G-invariant polynomials on V is the algebra of polynomials in f (i.e., $\mathbb{C}[V]^{G} = \mathbb{C}[f]$), and such that $f \not\in \mathbb{C}[V]^{G}$ (see definition \[\text{2}\]). Then, it is known that: G acts on V with an open orbit, and in this case the representation (G, V) is called a prehomogeneous vector space (see M. Sato \[\text{46, 47}\] or T. Kimura \[\text{24, chap. 2}\]). Moreover, it is shown in \[\text{24, p. 39, proposition 2.22}\] that: for such a reductive prehomogeneous vector space, there exists a constant coefficient differential operator Δ and a polynomial

$$b(s) = c(s + 1)(s + \lambda_1 + 1) \cdots (s + \lambda_n + 1) \in \mathbb{R}_n[s], \quad c > 0,$$

called the Bernstein-Sato polynomial of f such that

$$\Delta f^{s+1} = b(s)f^s.$$

M. Kashiwara \[\text{18}\] has shown that the roots of this polynomial are rational, i.e., $\lambda_j \in \mathbb{Q}$ for $1 \leq j \leq n - 1$.

As usual \mathcal{D}_V is the sheaf of rings of differential operators on V with holomorphic coefficients. Let us now point out that the action of G on $\mathbb{C}[V]$ extends to $\Gamma(V, \mathcal{D}_V)^{\text{pol}}$ the \mathbb{C}-algebra of differential operators on V with polynomial coefficients in $\mathbb{C}[V]$. This gives rise to a natural algebra: the Weyl algebra $\Gamma(V, \mathcal{D}_V)^{G}$ of polynomial coefficients G-invariant differential operators on V.

If G is a Lie group, let \mathfrak{g} be the Lie algebra of G and $U(\mathfrak{g})$ be the universal enveloping algebra of \mathfrak{g}. A representation as above (G, V) is said to be of "Capelli type" if (G, V) is an irreducible multiplicity-free representation (MF for short) such that: the subalgebra of G-invariant global algebraic sections $\Gamma(V, \mathcal{D}_V)^{G}$ is the image of $Z(U(\mathfrak{g}))$, the center of $U(\mathfrak{g})$, under the differential $\tau: \mathfrak{g} \longrightarrow \Gamma(V, \mathcal{D}_V)^{\text{pol}}$ of the G-action, i.e.,

$$\tau(Z(U(\mathfrak{g}))) = \Gamma(V, \mathcal{D}_V)^{G}$$

(see definition \[\text{3}\]). Note that these representations have been studied by R. Howe and T. Umeda in \[\text{14, 48}\]: they fall into eight cases (see Appendix).

If (G, V) is of Capelli type; in particular if (G, V) is MF, then V. G. Kac \[\text{16}\] asserts that G has finitely many orbits $(V_k)_{k \in K}$. Let us denote by $\Lambda := \bigcup_{k \in K} T^*_V V_k \subset T^*V$ the Lagrangian subvariety which is the union of the closure of conormal bundles to the G-orbits (see \[\text{11}\]).

Recall that a coherent \mathcal{D}_V-module \mathcal{M} is said to be holonomic if its characteristic variety $\text{char}(\mathcal{M})$ is Lagrangian. Equivalently, the characteristic variety is of dimension equal to dim V. The holonomic \mathcal{D}_V-module \mathcal{M} is called regular if there exists a global good filtration FM on \mathcal{M} such that the annihilator of $\text{gr}^F \mathcal{M}$ (i.e., the ideal $\text{ann}_{\mathbb{C}[T^*V]}\text{gr}^F \mathcal{M}$) is a radical ideal in $\text{gr}^F \mathcal{M}$ (see \[\text{19}\] definition 5.2) or \[\text{23}\] Corollary 5.1.11]).

Denote by $\text{Mod}^{\text{rh}}(\mathcal{D}_V)$ the full category whose objects are holomorphic regular holonomic \mathcal{D}_V-modules \mathcal{M}, whose characteristic variety $\text{char}(\mathcal{M})$ is contained in Λ, equivalently those which admit global good filtrations stable under the induced action of the Lie algebra \mathfrak{g} of G on \mathcal{M} (see Remark \[\text{12}\]). The general problem consists in the description of the category $\text{Mod}^{\text{rh}}_{\Lambda}(\mathcal{D}_V)$.
The expected shape to the general solution of the family of problems is as follows. Let us first recall that G' is the derived subgroup of G. We denote by

$$\mathcal{A} := \Gamma(V, \mathcal{D}_V)^{G'} \subset \Gamma(V, \mathcal{D}_V)^{\text{pol}}$$

the \mathbb{C}-algebra formed by G'-invariant global algebraic sections of \mathcal{D}_V, i.e. the algebra of polynomial coefficients G'-invariant differential operators. This algebra is well understood (see [14], [27]), in particular it contains θ the Euler vector field on V. Note that R. Howe and T. Umeda [14] have proved that when (G, V) is of Capelli type, the algebra \mathcal{A} is a polynomial algebra on a canonically defined set of generators. These generators are precisely the Capelli operators. T. Levasseur [27] Theorem 4.11, p. 491], H. Rubenthaler [33] p. 1346, proposition 3.1, 1) or [14] p. 24, theorem 5.3.3] and Z. Yan [49 theorem 1.9] gave a general description of this algebra. We should also mention the contribution by M. Muro, in the real case [5.3.3] and Z. Yan [49, theorem 1.9] gave a general description with explicit relations in Proposition 6, p. 120], [34 Proposition 5, p. 637-638], [38 Proposition 8, p. 4].

If $\mathcal{J} := \text{ann}\mathbb{C}[V]^{G'} = \text{ann}\mathbb{C}[f] \subset \mathcal{A}$ denotes the two sided ideal annihilator of G'-invariant polynomials on V, we consider \mathcal{A} the quotient algebra \mathcal{A}/\mathcal{J}, going modulo a suitable ideal \mathcal{J} of \mathcal{A} described in section [3] \mathcal{J} is the preimage of the ideal in \mathcal{A}/\mathcal{J} defined by specific relations [28], [29], [30], [31] of Proposition [10]. Following the work by Benson - Ratcliff [1], Howe - Umeda [14], Knopp [25] and Levasseur [27], we will deduce that the quotient algebra \mathcal{A} is generated by the following three operators and relations (see Corollary [11]: θ the Euler vector field on V, f the multiplication by the polynomial $f(x)$ of degree n, and the differential operator $\Delta := f\left(\frac{\partial}{\partial x}\right)$ as above satisfying the Bernstein-Sato equations:

$$\Delta f = c\frac{\theta}{n+1}(\frac{\theta}{n} + \lambda_1 + 1) \cdots (\frac{\theta}{n} + \lambda_{n-1} + 1), \quad f\Delta = c\frac{\theta}{n}(\frac{\theta}{n} + \lambda_1) \cdots (\frac{\theta}{n} + \lambda_{n-1}), \quad c > 0$$

and the relations

$$[\theta, f] = nf, \quad [\theta, \Delta] = -n\Delta.$$

Let $\text{Mod}^{\text{gr}}(\mathcal{A})$ be the category whose objects are finitely generated left \mathcal{A}-modules T such that for each $s \in T$, the \mathbb{C}-vector space spanned by the set $\{\theta^s n / n \geq 1\}$ is finite dimensional. In other words, this category consists of all graded left \mathcal{A}-modules T of finite type for θ the Euler vector field on V.

The functor $\Psi : \text{Mod}^{\text{gr}}(\mathcal{D}_V) \to \text{Mod}^{\text{gr}}(\mathcal{A})$, defined by taking $\Psi(\mathcal{M})$ to be the set of all g-invariant θ-homogeneous global sections of \mathcal{M}, with quasi-inverse $\Phi : \text{Mod}^{\text{gr}}(\mathcal{A}) \to \text{Mod}^{\text{gr}}(\mathcal{D}_V)$ defined by $\Phi(T) := \mathcal{D}_V \otimes_\mathcal{A} T$, give the equivalence of categories:

Theorem [20] Let (G, V) be a representation of Capelli type with a one-dimensional quotient. Then the categories $\text{Mod}^{\text{gr}}(\mathcal{D}_V)$ and $\text{Mod}^{\text{gr}}(\mathcal{A})$ are equivalent.

This has been conjectured by Levasseur [27] Conjecture 5.17, p. 508], after we had already proved it in the following cases (see [33], [34], [35], [36], [37], [38], [39]):

- $(G = GL(n) \times SL(n), V = M_n(\mathbb{C}))$
• \((G = SO(n) \times \mathbb{C}^*, V = \mathbb{C}^n)\)
• \((G = GL(n), V = \Lambda^2 \mathbb{C}^n), n \text{ even}\)
• \((G = GL(n), V = S^2 \mathbb{C}^n)\)
• \((G = Sp(n) \times GL(2), (\mathbb{C}^2)^n)\).

Actually, we are interesting to obtain a uniform proof which treated all the cases at once, that is, the eight cases where \((G, V)\) is of Capelli type with a one-dimensional quotient (see Appendix A). The proof of this result is equivalent to the fact that any object in \(\text{Mod}^{rh}_\Lambda(D_V)\) is generated by its \(G'\)-invariant global sections (see Theorem 15).

It turns out that the equivalence between the categories \(\text{Mod}^{rh}_\Lambda(D_V)\) and \(\text{Mod}^{gr}_A\) leads to a description of the "analytic" regular holonomic \(D_V\)-modules in \(\text{Mod}^{rh}_\Lambda(D_V)\) in terms of "algebraic homogeneous" \(D_V\)-modules.

By the way, we should note that the problem of classifying holomorphic regular holonomic \(D\)-modules or equivalently perverse sheaves on a complex manifold (thanks to the Riemann-Hilbert correspondence) has been treated by several authors. The first such result (around 1980) was Deligne’s quiver description of perverse sheaves on an affine line with only possible singularity at the origin [6], which under the Riemann-Hilbert correspondence is the case where \(G = \mathbb{C}^*\) acts on \(V = \mathbb{C}\) by scalar multiplication. Deligne’s description uses a characterization of constructible sheaves given in [7], [8]. We should also mention the contribution of L. Boutet de Monvel [2], who gave a description of holomorphic regular holonomic \(D\)-modules in one variable by using pairs of finite dimensional \(\mathbb{C}\)-vector spaces and certain linear maps. A. Galligo, M. Granger and P. Maisonnebe [9] obtained using the Riemann-Hilbert correspondence, a classification of regular holonomic \(D_{C^n}\)-modules with singularities along the hypersurface \(x_1 \cdots x_n = 0\) by \(2^n\)-tuples of \(\mathbb{C}\)-vector spaces with a set of linear maps. L. Narváez-Macarro [10] treated the case \(y^n = x^m\), T. Braden and M. Grinberg [4] studied perverse sheaves on complex \(n \times n\)-matrices, symmetric matrices and \(2n \times 2n\)-skew-symmetric matrices, each stratified by the rank. They gave an explicit description of the category of such perverse sheaves as the category of the representations of a quiver. In [33], [34], [35], the author classified regular holonomic \(D\)-modules associated to the same stratification using \(D\)-modules theoretical methods etc. This paper is organized as follows:

In Section 2 we recall notions on the so called representations of Capelli type. In section 3 we review some useful results: in particular the one’s saying that: any coherent \(D_V\)-module equipped with a good filtration, invariant under the action of the Euler vector field \(\theta\), is generated by finitely many global sections of finite type for \(\theta\). Section 4 deals with the concrete description of \(\mathcal{A}\) the algebra of \(G'\)-invariant differential operators following Benson - Ratcliff [1], Howe - Umeda [14], Knopp [23], and Levasseur results [27] Theorem 4.11, p. 491]. In section 5 we establish the main result, namely Theorem 20. This is done by means of the central Theorem 15 saying that: any object \(\mathcal{M}\) in the category \(\text{Mod}^{rh}_\Lambda(D_V)\) is generated by finitely many global \(G'\)-invariant sections. This result leads to the equivalence of categories between the category \(\text{Mod}^{rh}_\Lambda(D_V)\) and the category \(\text{Mod}^{gr}_\Lambda(A)\): the image by this equivalence of a regular holonomic \(D_V\)-module being its set of \(\theta\)-homogeneous global sections, which are invariant under the action of \(G'\).

We refer the reader to [3], [12], [19], [20], [21], [22] for notions on \(D\)-modules theory.
2 Review on representations of Capelli type with one dimensional quotient

Let G be a connected reductive complex algebraic group. We denote by G' its derived subgroup.

Let $\rho : G \to GL(V)$ be a finite dimensional representation of G, again denoted by (G, V).

Recall that a polynomial $f \in \mathbb{C}[V]$ is called a relative invariant of (G, V) if there exists a rational character $\chi \in X(G)$ such that $g \cdot f = \chi(g)f$ for all $g \in G$. One says (see [24, Chap. 2]) that the representation (G, V) is a (reductive) prehomogeneous vector space if G has an open dense orbit Ω in V. In that case, we denote the complement of the open dense orbit by $S := V \setminus \Omega$, it is called the singular set of (G, V). Then, it is known (see [24, p. 26, theorem 2.9]) that, the one-co dimensional irreducible components of S are of the form $\{f_i = 0\}, 1 \leq i \leq r$, for some relative invariants f_i. The f_i are algebraically independent, and are called the basic or fundamental relative invariants of (G, V). Note that, any relative invariant can be (up to non zero constant) written as $\prod_{i=1}^r f_i$.

When the singular set S is an hypersurface, the prehomogeneous vector space (G, V) is said to be regular (see [24, p. 43, theorem 2.28]).

2.1 Multiplicity-free representations

Let us denote by \mathfrak{g} the Lie algebra of the connected reductive Lie group G, and by t the Lie algebra of a maximal torus of G. Denote by B the set of dominant weights lattices of (\mathfrak{g}, t). For a fix finite-dimensional representation (G, V) of the reductive group G, we recall that the action of G on V extends to the algebra of polynomials on V. Then, the rational G-module $\mathbb{C}[V]$ decomposes as

$$\mathbb{C}[V] \cong \bigoplus_{\beta \in B} E(\beta)^{m(\beta)},$$

where $E(\beta)$ is an irreducible \mathfrak{g}-module with highest weight $\beta \in B$ and $m(\beta) \in \mathbb{N} \cup \{\infty\}$. We recall that the finite-dimensional linear representation (G, V) is said to be multiplicity-free (MF for short) if its associated representation of G on $\mathbb{C}[V]$ decomposes without multiplicities. This means that each irreducible representation $E(\beta)$ of G occurs at most once in $\mathbb{C}[V]$. More precisely, we recall the following definition [27, definition 4.1., p. 484]:

Definition 1 The representation (G, V) is called multiplicity-free if in (1): $m(\beta) \leq 1$ for all β. In this case

$$\mathbb{C}[V] = \bigoplus_{\beta \in B} V(\beta)^{m(\beta)}, \quad m(\beta) = 0, 1,$$

where $V(\beta)$ is isomorphic to $E(\beta)$.

Note that, a classification of MF representations can be found in [11, 16, 20], and a complete list of irreducible MF representations is given in [14, table p. 612] or [27, appendix, p. 508].

2.1.1 Multiplicity-free spaces with one-dimensional quotient

As above, G' is the derived subgroup of the complex Lie group G. We recall the following definition:

Definition 2 (see Levasseur [27]) A multiplicity-free-space (G, V) is said to have a one-dimensional quotient if there exists a non constant polynomial $f_0 \in \mathbb{C}[V]$ such that $f_0 \notin \mathbb{C}[V]^{G'}$, and such that $\mathbb{C}[V]^{G'} = \mathbb{C}[f_0]$.

2.2 Representations of "Capelli type"

We continue with \((G, V)\) the finite dimensional representation of the connected reductive Lie group \(G\). We have denoted by \(g = \text{Lie}(G)\) the Lie algebra of \(G\). We consider \(\tau\) the differential of the \(G\)-action defined as follows:

\[
\tau : g \rightarrow \Gamma(V, D)^{\text{pol}},
\]

where \(\Gamma(V, D)^{\text{pol}}\) is the algebra of global algebraic sections of \(D_V\), i.e. the algebra of polynomial coefficients differential operators. For any element \(\xi\) in \(g\), the image \(\tau(\xi)\) is a linear derivation on \(\mathbb{C}[V]\) given by

\[
\tau(\xi)(\phi)(v) = \frac{d}{dt}|_{t=0} (e^{t\xi} \cdot \phi)(v) = \frac{d}{dt}|_{t=0} \phi(e^{-t\xi} \cdot v),
\]

for all \(\phi \in \mathbb{C}[V], \ v \in V\). This image is homogeneous of degree zero in the sense that \([\theta, \tau(\xi)] = 0\). Denote by \(U(g)\) the universal enveloping algebra of the Lie algebra \(g\). The map \(\tau\) yields a homomorphism denoted again by \(\tau\), and defined by

\[
\tau : U(g) \rightarrow \Gamma(V, D_V)^{\text{pol}}.
\]

Recall that the group \(G\) acts naturally on \(\Gamma(V, D_V)^{\text{pol}}\):

\[
(g \cdot P)(\phi) = g \cdot P (g^{-1} \cdot \phi).
\]

The differential of this action is given by \(P \mapsto [\tau(\xi), P]\) for \(\xi \in g, \ P \in \Gamma(V, D_V)^{\text{pol}}\). Therefore, a subspace \(I \subset \Gamma(V, D_V)^{\text{pol}}\) is stable under \(G\) (resp. \(G'\)) if and only if \([\tau(g), I] \subset I\) (resp. \([\tau(g'), I] \subset I\)). Then, we know from [27] that the subalgebra of polynomial coefficients \(G\)-invariant differential operators

\[
\Gamma(V, D_V)^G = \{ P \in \Gamma(V, D_V)^{\text{pol}} : [\tau(g), P] = 0 \}
\]

is contained in the one’s of \(G'\)-invariant differential operators

\[
\bar{A} := \Gamma(V, D_V)^{G'} = \{ P \in \Gamma(V, D_V)^{\text{pol}} : [\tau(g), P] = 0 \}.
\]

In particular, if \(Z(U(g)) = U(g)^G\) is the center of \(U(g)\) then

\[
\tau(Z(U(g))) \subset \Gamma(V, D_V)^G.
\]

Definition 3 We say that the representation \((G, V)\) is of Capelli type if:

- \((G, V)\) is irreducible and \(MF\);
- \(\tau(Z(U(g))) = \Gamma(V, D_V)^G\).

Remark 4 In the list of irreducible \(MF\) representations \((G, V)\) given by Howe and Umeda (see [13, table p. 612] or [27, appendix p. 508]), there are exactly eight of them which are of Capelli type with one-dimensional quotient (see Appendix A).
3 Coherent \mathcal{D}-modules generated by their θ-homogeneous global sections

We shall denote by \mathcal{D}_V the sheaf of rings of differential operators on V with holomorphic coefficients. If x denotes a typical element of V, and $\partial := \frac{\partial}{\partial x}$ its dual in \mathcal{D}_V, let $\theta := \text{Trace}(x\partial)$ be the Euler vector field on V.

Definition 5 Let \mathcal{M} be a \mathcal{D}_V-module. A section u in \mathcal{M} is said to be homogeneous if $\dim_C \mathbb{C}[\theta]u < \infty$, i.e. the \mathbb{C}-vector space spanned by the set $\{\theta^n u / n \geq 1\}$ is finite dimensional. The section u is said to be homogeneous of degree $\lambda \in \mathbb{C}$, if there exists $j \in \mathbb{N}$ such that $(\theta - \lambda)^j u = 0$.

Let us recall the following result which will be used later (see [35, Theorem 1.3.]):

Theorem 6 Let \mathcal{M} be a coherent \mathcal{D}_V-module, equipped with a good filtration $(\mathcal{M}_k)_{k \in \mathbb{Z}}$ stable under the action of θ. Then,

i) \mathcal{M} is generated over \mathcal{D}_V by finitely many homogeneous global sections, i.e.,

$$\mathcal{M} = \mathcal{D}_V \{s_1, \cdots, s_k \in \Gamma(V, \mathcal{M}) \mid \dim_C \mathbb{C}[\theta]s_j < \infty, 0 \leq j \leq k\},$$

ii) For any $k \in \mathbb{N}$, $\lambda \in \mathbb{C}$, the vector space $\Gamma(V, \mathcal{M}_k) \cap \bigcup_{p \in \mathbb{N}} \ker((\theta - \lambda)^p)$ of homogeneous global sections in \mathcal{M}_k, of degree λ, is finite dimensional.

Remark 7 We will describe a holomorphic classification of regular holonomic \mathcal{D}_V-modules in $\text{Mod}^\text{rh}_{\Lambda}(\mathcal{D}_V)$, but Theorem 6 permits to reduce these objects to "algebraic homogeneous" \mathcal{D}_V-modules.

4 Algebras of invariant differential operators on a class of multiplicity-free spaces

As in the introduction, (G, V) is a finite-dimensional representation of a connected reductive Lie group G and $G' := [G, G]$ is the derived subgroup of G. Recall that the action of the group G extends to various algebras, namely $\mathbb{C}[V] = S(V^*)$ the algebra of polynomial functions on V, $\Gamma(V, \mathcal{D}_V)^\text{pol}$ the algebra of differential operators with polynomial coefficients in $\mathbb{C}[V]$, and $\mathbb{C}[V^*] = S(V)$ identified with differential operators with constant coefficients. We thus obtain algebras of invariants: $\mathbb{C}[V]^G$, $S(V)^G$, and $\Gamma(V, \mathcal{D}_V)^G$.

If (G, V) is a prehomogeneous vector space, let f_0, \cdots, f_m be its fundamental relative invariants and let $\chi_j \in \mathfrak{X}(G)$, $0 \leq j \leq m$, be their weight. There exist relative invariants $f_j^*(\partial) \in S(V)$ with weight χ_j^{-1}, $0 \leq j \leq m$ (see [27, Section 3.1]). We set $\Delta_j := f_j^*(\partial)$ for $j = 0, \cdots, m$.

It is known that the algebra $\mathbb{C}[V]^G$ of G'-invariant polynomials is a polynomial ring

$$\mathbb{C}[V]^G = \mathbb{C}[f_0, \cdots, f_m],$$

and that

$$S(V)^G = \mathbb{C}[\Delta_0, \cdots, \Delta_m]$$
Consider the following multiplication map
\[m : \mathbb{C}[V] \otimes S(V) \rightarrow \Gamma(V, D_V)^{\text{pol}} \]
\[\phi \otimes f \mapsto \phi f(\partial). \] (11)

One knows from Howe - Umeda [14] that through this map the \((\mathbb{C}[V], G)\)-module \(\Gamma(V, D_V)^{\text{pol}}\) identifies with \(\mathbb{C}[V] \otimes S(V)\):
\[\Gamma(V, D_V)^{\text{pol}} \simeq \mathbb{C}[V] \otimes S(V) \] (12)

where the group \(G\) acts on \(\Gamma(V, D_V)^{\text{pol}}\) as follows: \(\forall \phi \in \mathbb{C}[V], \forall P \in \Gamma(V, D_V)^{\text{pol}}\)
\[(g \cdot P)(\phi) = g \cdot P(g^{-1} \cdot \phi). \] (13)

First, we are interested in the description of the algebras of \(G\)-invariant differential operators on a multiplicity-free space following the work by Benson - Ratcliff [1], Howe - Umeda [14], Knopp [25] and Levasseur [27]. Actually, the isomorphism \(m\) is \(G\)-invariant, hence the algebra of \(G\)-invariant differential operators decomposes as a direct sum of one-dimensional irreducible \(G\)-modules \(CE_\gamma\):
\[\Gamma(V, D_V)^G = \bigoplus_{\gamma \in \Gamma} \mathbb{C}E_\gamma \] (14)

where \(\Gamma\) is the set of dominant weights lattices of the pair \((\mathfrak{g}, \mathfrak{t})\) of the Lie algebras of \(G\) and of a maximal torus of \(G\) respectively.

Let
\[E_\gamma (x, \partial_x) := \frac{1}{\dim \mathbb{C}E_\gamma} m(E_\gamma) \quad \in \quad \Gamma(V, D_V)^G \] (15)

be the operator corresponding to \(E_\gamma\). The operators \(E_\gamma (x, \partial_x)\) are called the normalized Capelli operators. Put
\[E_j := E_{\lambda_j}(x, \partial_x) \quad 0 \leq j \leq r. \] (16)

We know from [14] Proposition 7.1 that the given of a multiplicity-free representation is equivalent to the given of a commutative algebra of \(G\)-invariant differential operators:
\[(G : V) \text{ multiplicity-free} \iff \Gamma(V, D_V)^G \text{ commutative}. \] (17)

In that case the algebra \(\Gamma(V, D_V)^G\) is generated by the normalized Capelli operators \(E_j\) for \(0 \leq j \leq r\) (see [14] Theorem 9.1 or [1] Corollary 7.4.4):

Theorem 8 (Howe - Umeda). For a fix multiplicity-free representation \((G, V)\), the algebra
\[\Gamma(V, D_V)^G = \mathbb{C}[E_0, \ldots, E_r] \]
is a commutative polynomial ring.

From now on, we focus our attention in the subalgebras of \(G\) (resp. \(G'\))-invariant global algebraic sections of \(D_V\) on multiplicity-free representations with a one-dimensional quotient.
4.1 Invariant differential operators on multiplicity-free spaces with one dimensional quotient

Recall that G' denotes the derived subgroup of G. Recall also that a multiplicity-free representation (G, V) is said to be with one-dimensional quotient if there exists a polynomial function $f \in \mathbb{C}[V]$ such that
\[\mathbb{C}[V]^{G'} = \mathbb{C}[f] \quad \text{and} \quad f \notin \mathbb{C}[V]^G. \] (18)

In fact, the polynomial function f is a relative invariant of degree n of weight $\chi \in \mathcal{X}(G)$, and there exists an associated relative invariant differential operator $f^* := f(\partial) \in \mathbb{C}[V^*]$ of degree n with weight χ^{-1}. More precisely, set $\Delta := f^*(\partial)$. We know from Sato - Bernstein - Kashiwara (see [24, Proposition 2.22] and [18]) that there exists a polynomial $b(s) \in \mathbb{R}[s]$ of degree n called the Bernstein - Sato polynomial such that:

\begin{align*}
\text{i)} \quad b(s) &= c \prod_{j=0}^{n-1} (s + \lambda_j + 1), \quad c > 0; \\
\text{ii)} \quad \Delta(f^{s+1}) &= b(s)f^s; \\
\text{iii)} \quad \lambda_{j+1} \in \mathbb{Q}^+, \quad 0 \leq j \leq n - 1, \quad \lambda_0 = 0.
\end{align*}

Set $f := f_0$ and $\Delta := \Delta_0 = f^*(\partial)$. (20)

Following T. Levasseur [27, Section 4.2], recall that if (G, V) is a multiplicity-free representation of one-dimensional quotient then we have

\[\mathbb{C}[V]^{G'} = \mathbb{C}[f], \quad S(V)^{G'} = \mathbb{C}[V^*]^{G'} = \mathbb{C}[\Delta] \quad \text{and} \quad E_0 = f\Delta. \] (21)

Now, consider $\mathcal{A} := \Gamma(V, \mathcal{D}_V)^{G'}$ the algebra of G'-invariant (polynomial coefficients) differential operators on V:

\[\mathcal{A} \supset \Gamma(V, \mathcal{D}_V)^{G'} \quad \text{and} \quad \mathcal{J} := \left\{ P \in \Gamma(V, \mathcal{D}_V)^{G'} / \ P f^m = 0 \quad \text{for all} \quad m \in \mathbb{N} \right\} \subset \mathcal{A} \] (22)

is the annihilator of the G'-invariant polynomial functions on V.

Recall that θ denotes the Euler vector field on V, $\theta \in \Gamma(V, \mathcal{D}_V)^{G'}$. T. Levasseur [27, Lemma 4.10] proved that: for any G-invariant differential operator $P \in \Gamma(V, \mathcal{D}_V)^{G'}$, there exists an associated Bernstein-Sato polynomial $b_P(s) \in \mathbb{R}[s]$ such that the operator $P - b_P(\theta)$ belongs to \mathcal{J}. In particular, one can find a polynomial $b_{E_j}(s)$ associated with each Capelli operator E_j, $0 \leq j \leq r$, such that if we consider Ω_j to be

\[\Omega_j := E_j - b_{E_j}(\theta) \in \mathcal{J} \quad \text{for} \quad j = 0, \cdots, r, \] (23)

then we obtain the following results [27, Theorem 4.11, (i), (v)]:

Theorem 9 If (G, V) is a fix multiplicity-free representation with one-dimensional quotient, then

\[\mathcal{A} = \mathbb{C}\langle f, \Delta, \theta, \Omega_1, \cdots, \Omega_r \rangle, \] (24)
\[
\mathcal{J} = \sum_{j=1}^{r} \Omega_j.
\]
(25)

Note that, the operators \(f\) and \(\Delta\) do not commute nor do not commute with the operators \(\Omega_1, \cdots, \Omega_r\).

By the way, using these results, T. Levasseur [27, Theorem 4.15] gives a duality (of Howe type) correspondence between (multiplicity-free) representations (with a one-dimensional quotient) of \(G\) and lowest weight modules over the Lie algebra generated by \(f\) and \(\Delta\) (which is infinite dimensional when the degree of \(f\) is \(\geq 3\)). Actually, this duality recovers and extends results obtained by H. Rubenthaler when the representation \((G, V)\) is of "commutative parabolic type" (see [42, Proposition 4.2] and also [10, Corollary 4.5.17]).

We should note that when \((G, V)\) is irreducible, then

\[
\Omega_r = 0, \quad \text{the two sided ideal } \mathcal{J} = \sum_{j=0}^{r-1} \Omega_j = \sum_{j=0}^{r-1} \Omega_j \mathcal{J}, \quad \text{and} \quad \mathcal{A} = \mathbb{C}\langle f, \Delta, \theta, \Omega_1, \cdots, \Omega_{r-1} \rangle.
\]
(26)

In the case \((GL(n, \mathbb{R}), S^2(\mathbb{R}^n))\) of the real general linear group action on real symmetric matrices, M. Muro proved this formula in [32, Proposition 2.1, p. 356]. When \((G, V) = (GL(n, \mathbb{C}) \times SL(n, \mathbb{C}), M_n(\mathbb{C})), (GL(2m, \mathbb{C}), \Lambda^2 V^{2m}), (GL(n, \mathbb{C}), S^2 \mathbb{C}^n)\), this non commutative algebra is obtained with explicit relations in [34, Proposition 5, p. 637-638], [33, Proposition 6, p. 120], [38, Proposition 8, p. 4]. Actually, the result [27] generalizes the one’s of H. Rubenthaler (see [42, Proposition 3.1] or [44, Theorem 5.3.3,]) obtained when \((G, V)\) is an irreducible regular plihomogeneous representation of commutative parabolic type. We have the following proposition.

Proposition 10 Let \((G, V)\) be an irreducible multiplicity-free representation with a one-dimensional quotient. The following relations hold in the quotient algebra \(\mathcal{A}/\mathcal{J}\):

\[
[\theta, f] = nf, \quad [\theta, \Delta] = -n\Delta, \quad f\Delta = c\frac{\theta}{n}(\frac{\theta}{n} + \lambda_1) \cdots (\frac{\theta}{n} + \lambda_{n-1}), \quad c > 0
\]
(28)
\[
\Delta f = c\frac{\theta}{n} + 1)(\frac{\theta}{n} + \lambda_1 + 1) \cdots (\frac{\theta}{n} + \lambda_{n-1} + 1),
\]
(29)
\[
f_j \Delta_j = c_j\frac{\theta}{n}(\frac{\theta}{n} + \lambda_1) \cdots (\frac{\theta}{n} + \lambda_{n-j-1}), \quad c_j > 0, \quad 0 \leq j \leq r
\]
(30)

where \(\lambda_k \in \mathbb{Q}\) for \(k = 0, \cdots, n - 1\)

Proof. We should note that by [27, Remark 4.12, (2)], we have the homogeneity of degree \(n\) (resp. \(-n\)) of the polynomial \(f\) (resp. \(\Delta\), that is, the formula (28), (29).

Recall that \(\Omega_j := E_j - b_{E_j}(\theta) \in \mathcal{J}\), for \(j = 0, \cdots, r\), so we clearly have

\[
E_j = b_{E_j}(\theta) \in \mathcal{A}/\mathcal{J}.
\]
(31)

Recall also that from [27, p. 490], we have \(E_0 = f\Delta\) and \(b_{E_0}(s) = b(s - 1)\) where \(b(s) = c(s + 1)(s + \lambda_1 + 1) \cdots (s + \lambda_{n-1} + 1)\) is the \(b\)-function of \(f\). Then, using this last in [33], we get

\[
f\Delta = c\frac{\theta}{n}(\frac{\theta}{n} + \lambda_1) \cdots (\frac{\theta}{n} + \lambda_{n-1}) \in \mathcal{A}/\mathcal{J}.
\]
Next, since \(\Delta f^{s+1} = b(s) f^s \), that is, \((\Delta f)^s = b(s) f^s \) we get the formula (31):
\[
\Delta f = b(\theta) \mod J.
\]

More generally, we may take \(E_j = f_j \Delta_j \) and using (33) we get
\[
f_j \Delta_j = b_{E_j}(\theta) \text{ in } \mathcal{A}/J
\]
with \(b_{E_j}(s) = b_j(s-1) = c_j s(s+\lambda_1) \cdots (s+\lambda_{n-j-1}) \), \(c_j > 0 \), \(0 \leq j \leq r \), that is, the formula (32). \(\blacksquare \)

Let \(\mathcal{K} \) be the ideal of \(\mathcal{A}/J \) defined by the relations (28), (29), (30), (31) of Proposition 10.

Then the preimage of \(\mathcal{K} \) under the quotient map \(\mathcal{A} \longrightarrow \mathcal{A}/J \) is an ideal of \(\mathcal{A} \) containing properly \(J \).

Let us denote by \(\mathcal{J} \) the preimage in \(\mathcal{A} \) of the ideal \(\mathcal{K} \). Denote by \(\mathcal{A} \) the quotient algebra of \(\mathcal{A} \) by \(\mathcal{J} \):
\[
\mathcal{A} := \mathcal{A}/\mathcal{J}.
\]

We have the following corollary which is a particular case of T. Levasseur’s result in [27, Theorem 3.9, p. 483] or H. Rubenthaler [43, Theorem 2.8, p. 1345], [44, Theorem 7.3.2, p. 37]:

Corollary 11 The quotient algebra \(\mathcal{A} \) is generated by \(f, \theta, \Delta \) satisfying the relations (28), (29), (30), (31):
\[
\begin{align*}
[\theta, f] &= nf, \\
[\theta, \Delta] &= -n, \Delta \\
f \Delta &= c_\theta (\theta n + \lambda_1) \cdots (\theta n + \lambda_{n-1}), \\
\Delta f &= c_\theta (\theta n + 1)(\theta n + \lambda_1 + 1) \cdots (\theta n + \lambda_{n-1} + 1).
\end{align*}
\]

5 \(\mathcal{D}_V \)-modules on representations of ”Capelli type” with one-dimensional quotient generated by their invariant global sections

In this section, we continue with the representation \((G, V)\) of the connected (reductive) Lie group \(G\) as in Section 4 and \(G'\) its derived subgroup. It is well known, in this case, that \(G\) (resp. \(G'\)) acts on \(V\) with finitely many orbits \((V_k)_{k \in K}\) (see [16]). Let \(\Lambda \subset T^* V \) be the Lagrangian subvariety which is the union of the closure of conormal bundles \(T_{V_k} V\), where \(V_k\) are the orbits of \(G\) (see Panyushev [41]). We recall that the action of \(G\) on \(V\) defines a morphism (see [2], [3]) \(\tau : \mathfrak{g} \longrightarrow \Theta_V, \xi \mapsto \tau(\xi) \) from the Lie algebra \(\mathfrak{g}\) of \(G\) to the subalgebra \(\Theta_V\) of \(\mathcal{D}_V\) consisting of vector fields on \(V\), i.e. the tangent sheaf on \(V\). So the Lagrangian variety \(\Lambda\) is defined by the common zeros of the principal symbols of vector fields corresponding to infinitesimal generators of \(G\).

Recall that a \(\mathcal{D}_V\)-module is said to be holonomic if it is coherent and its characteristic variety is Lagrangian. Equivalently the characteristic variety is of dimension equal to \(\dim V\). A holonomic \(\mathcal{D}_V\)-module \(\mathcal{M}\) is regular if there exists a global good filtration \(F \mathcal{M}\) on \(\mathcal{M}\) such that the annihilator of \(\text{gr}^F \mathcal{M}\) (i.e., the ideal \(\text{ann}_{\mathcal{D}_V} \text{gr}^F \mathcal{M}\)) is a radical ideal in \(\text{gr}^F \mathcal{M}\) (see [10] definition 5.2) or [23 Corollary 5.1.11]). As in the introduction, we denote by \(\text{Mod}^r_{\Lambda}(\mathcal{D}_V)\) the full category consisting of all holomorphic regular holonomic \(\mathcal{D}_V\)-modules whose characteristic variety \(\Lambda\) is contained in the union of the closure of conormal bundles to the \(G\)-orbits (see Panyushev [41]). Let \(\mathcal{M}\) be a holomorphic regular holonomic \(\mathcal{D}_V\)-module in \(\text{Mod}^r_{\Lambda}(\mathcal{D}_V)\). We know from Brylinski and Kashiwara [11].
that \mathcal{M} has a good filtration $(\mathcal{M}_j)_{j \in \mathbb{Z}}$ satisfying the following condition: For a differential operator P of degree m ($P \in \Gamma(U, \mathcal{D}_V(m))$, where U is an open subset of V), if its principal symbol $\sigma_m(P)$ vanishes on the characteristic variety $\text{char}(\mathcal{M})$, then we have

$$PM_j \subset \mathcal{M}_{j+m-1} \quad \text{for any } j \in \mathbb{Z}. \quad (35)$$

In particular, if ξ is a vector field (corresponding to an infinitesimal generator of G) which describes the characteristic variety Λ, its principal symbol vanishes on $\Lambda \supset \text{char}(\mathcal{M})$ (so vanishes on $\text{char}(\mathcal{M})$). Then the relation (35) implies that

$$\xi \mathcal{M}_j \subset \mathcal{M}_{j+1-1}, \quad \text{that is} \quad (36)$$

$$\xi \mathcal{M}_j \subset \mathcal{M}_{j} \quad \text{for any } j \in \mathbb{Z}. \quad (37)$$

Then we have the following

Remark 12 The objects of the category $\text{Mod}_\Lambda^{rh}(\mathcal{D}_V)$ are holomorphic regular holonomic \mathcal{D}_V-modules equipped with global good filtrations which are preserved by the action of the Lie algebra \mathfrak{g} of G.

We recall the following definition:

Definition 13 Let G be an algebraic group acting on a smooth variety V, and $\alpha : G \times V \rightarrow V$ the group action morphism ($\alpha(g, v) = g \cdot v$ ($g \in G, v \in V$)). One says that the group G acts on a well filtered \mathcal{D}_V-module \mathcal{M} if it preserves the good filtration on \mathcal{M}, and there exists an isomorphism of $\mathcal{D}_G \times V$-modules $u : \alpha^+(\mathcal{M}) \rightarrow \text{pr}_V^+(\mathcal{M})$ satisfying the associativity condition coming from the group multiplication of G ($\text{pr}_V : G \times V \rightarrow V, (g, v) \mapsto v$ is the projection onto V).

We specialize further to the case where (G, V) is of Capelli type, i.e., (G, V) is an irreducible multiplicity-free space such that $\Gamma(V, \mathcal{D}_V)^G$ is equal to the image of the center of $U(\mathfrak{g})$ under the differential $\tau : \mathfrak{g} \rightarrow \Gamma(V, \mathcal{D}_V)^\text{pol}$ of the G-action (see definition 3). More precisely, assume that (G, V) is a representation of Capelli type with a one-dimensional quotient, i.e., there exists a non constant polynomial f such that $f \notin \mathbb{C}[V]^G$, and such that $\mathbb{C}[V]^G = \mathbb{C}[f]$ (see definition 2). Let G_1 be the simply connected cover of the derived subgroup G'. T. Levasseur [27, Lemma 5.15] proved that the category of $(G_1 \times C)$-equivariant \mathcal{D}_V-modules, where C is the centre of G, is equivalent to the category $\text{Mod}_\Lambda^{rh}(\mathcal{D}_V)$ of holomorphic regular holonomic \mathcal{D}_V-modules studied here. Therefore, we deduced the following remark:

Remark 14 The action of G on V extends to an action of the universal covering G_1 on \mathcal{D}_V-modules \mathcal{M} in $\text{Mod}_\Lambda^{rh}(\mathcal{D}_V)$. Specially the derived subgroup G' acts on \mathcal{M}.

This section consists in the proof of the main general argument of the paper. We show that any \mathcal{D}_V-module \mathcal{M} in the category $\text{Mod}_\Lambda^{rh}(\mathcal{D}_V)$ is generated by its invariant global sections under the action of G'.

Theorem 15 A \mathcal{D}_V-module \mathcal{M} in $\text{Mod}_\Lambda^{rh}(\mathcal{D}_V)$ is generated by its G'-invariant global sections.

Firstly, we give some basic results which will be used in the proof of this central theorem.
5.1 Extension of sections and G-invariance

For the proof of Theorem 15, we shall use an algebraic point of view. Since the concerning D_V-modules are regular holonomic, it is equivalent to consider the algebraic case or the analytic one.

We need the following two lemmas in the proof:

Lemma 16 ([46, Lemma 1, p. 247, n°55])

Let V be an affine variety, f a regular function on V, and Ω the set of points $x \in V$ such that $f(x) \neq 0$. Let \mathcal{F} be a coherent algebraic sheaf on V, and $s \in \Gamma(\Omega, \mathcal{F})$ a section of \mathcal{F} on Ω. Then, for any large enough $N \in \mathbb{N}$, there exists a section s' of \mathcal{F} on the whole V, $s' \in \Gamma(V, \mathcal{F})$, such that $s'|_{\Omega} = sf^N$, i.e.,

$$s'_|_{\Omega} = sf^N. \quad (38)$$

Lemma 17

Consider G' the complex algebraic group acting on the affine algebraic variety V, f a G'-invariant regular function on V ($f \in \mathbb{C}[V]^{G'}$), Ω the complement in V of the hypersurface defined by $f = 0$, and \mathcal{F} a G'-equivariant coherent algebraic sheaf on V. Then, any G'-invariant section s of \mathcal{F} on Ω ($s \in \Gamma(\Omega, \mathcal{F})^{G'}$) extends to a G'-invariant global section m ($m \in \Gamma(V, \mathcal{F})^{G'}$).

Proof. Recall that V is an affine algebraic variety, i.e. $V = \text{Spec}A$, where $A := \mathbb{C}[V]$ is an affine algebra over \mathbb{C} and $\Omega = \text{Spec}A[\frac{1}{f}]$ with $A[\frac{1}{f}] = \mathbb{C}[V][\frac{1}{f}] = \mathbb{C}[\Omega]$.

Since \mathcal{F} is a coherent algebraic sheaf on V, then \mathcal{F} is a finitely generated A-module. We consider the restriction of \mathcal{F} on Ω:

$$\mathcal{F}[\Omega] := \mathcal{F} \otimes_A A[\frac{1}{f}]. \quad (39)$$

The previous lemma says that any section s of \mathcal{F} on Ω ($s \in \Gamma(\Omega, \mathcal{F})$) extends to a global section m ($m \in \Gamma(V, \mathcal{F})$) such that

$$m|_{\Omega} = sf^p \quad \text{for} \quad p \gg 0. \quad (40)$$

So, from (39) and (40), the section s can be written as

$$s = \frac{m}{f^r} \quad \text{for} \quad r \gg 0. \quad (41)$$

Recall that the group G' acts on A and on \mathcal{F}. Then, for any $g \in G'$ acting on s, we have

$$g.s = g\left(\frac{m}{f^r}\right) = \frac{g.m}{f^r}. \quad (42)$$

Since s is a G'-invariant section ($g.s = s$) and f is a G'-invariant regular function ($f = g.f$), then the previous equality becomes:

$$s = \frac{g.m}{f^r}. \quad (43)$$

Using (41), we get

$$\frac{m}{f^r} = \frac{g.m}{f^r} \iff \frac{m - g.m}{f^r} = 0. \quad (44)$$

This means that there exists a large integer $N \gg 0$ such that

$$(m - g.m)f^N = 0 \iff mf^N = (g.m)f^N. \quad (45)$$
Since f is G'-invariant ($f^N = g_f^N$), this last becomes

$$mf^N = (g.m)(g.f^N),$$

that is,

$$mf^N = g.(mf^N).$$

Thus mf^N is a G'-invariant global section extending $s \left(mf^N \in \Gamma(V,F)^G \right)$.

5.2 Proof of theorem 15

Recall that the irreducible multiplicity free representation (G,V) has a Zariski open dense orbit Ω, and a relative invariant f (i.e., there exists a character $\chi \in \Lambda^*(G)$ such that $g \cdot f = \chi(g)f$ for $g \in G$) which is a G'-invariant homogeneous polynomial of degree n such that $\mathbb{C}[V]^G = \mathbb{C}[f]$. In this case, we know from V. G. Kac [16] that G has finitely many orbits, namely $n + 1$ orbits. We denote by Ω_k the closure of the G-orbits V_k for $0 \leq k \leq n$ with $V_0 = \{0\}$. Let us consider again f as the mapping $f : V \rightarrow \mathbb{C}$, $x \mapsto f(x)$, and $\{V_n\} = \{V_n\}$ the hypersurface defined by $f = 0$, then we have $\Omega := \{V \setminus \{V_{n-1}\}$ the complement in V of the $\{V_{n-1}\}$.

Let M be a holomorphic regular holonomic D_V-module in the category Modr$^\Lambda D_V$. One sets

$$M^G := D_V \{m_1, \ldots, m_p \in \Gamma(V,M)^G \text{ such that } \dim \mathbb{C}[\theta]m_j < \infty \text{ for } 1 \leq j \leq p\}$$

the submodule of M generated, over D_V, by finitely many homogeneous global sections, which are invariant under the action of G'.

First, we claim that on the open dense orbit Ω, we have the equality $M = M^G$. Indeed, let $j : \Omega \rightarrow V$ be the open embedding. The restriction $M_\Omega := \{M \}^G$ is a G'-equivariant D_Ω-module. Notice that, if we denote again by f the mapping $f : V \rightarrow \mathbb{A}$, this identifies Ω/G with $\mathbb{A} \setminus \{0\}$. The generic stabilizers H in G' of points in Ω are connected (see Appendix C, Remark), so the G'-equivariant D_Ω-module M_Ω is the pullback by f of a $D_{\Omega/G}$-module N on Ω/G.

$$M_\Omega = f^+ (N) \text{ with } N \text{ a } D_{\Omega/G} \text{-module.} \quad (48)$$

Thus on Ω, the G'-invariant sections of M_Ω, i.e., $\{\Gamma(\Omega,M_\Omega)^G\}$ (which are exactly the inverse images by f of $\{\Gamma(\mathbb{A},N)\}$ the sections on \mathbb{A} of N) generate $\{\Gamma(\Omega,M_\Omega)\}$ as a $\Gamma(\Omega,O_\Omega)$-module:

$$\Gamma(\Omega,M_\Omega)^G = f^{-1}(\Gamma(\mathbb{A},N)), \quad (49)$$

and

$$\Gamma(\Omega,M_\Omega) = \Gamma(\Omega,O_\Omega) \left\{ \Gamma(\Omega,M_\Omega)^G \right\} = \Gamma(\Omega,O_\Omega) \left\{ f^{-1}(\Gamma(\mathbb{A},N)) \right\}. \quad (50)$$

Now, for every section $m \in \Gamma(\Omega,M_\Omega)$, one can find a sufficiently large integer $N \gg 0$ such that the section obtained by multiplication by f^N, that is,

$$mf^N \in \Gamma(\Omega,M_\Omega) \quad (51)$$

extends to a global section of M (see Lemma 19), i.e., the section mf^N lifts to a global section

$$\widetilde{mf^N} \in \Gamma(V,M). \quad (52)$$
If m is a G'-invariant section on Ω ($m \in \Gamma (\Omega, \mathcal{M}_\Omega)^{G'}$), so is mf^N, i.e.,

$$mf^N \in \Gamma (\Omega, \mathcal{M}_\Omega)^{G'}.$$ \hspace{1cm} (53)

Then, according to the Lemma \[\Box\] we can choose this lifting section $\widetilde{mf^N}$ to be G'-invariant:

$$\widetilde{mf^N} \in \Gamma (V, \mathcal{M})^{G'}.$$ \hspace{1cm} (54)

Thus, by (50) (and since the mapping f is invertible on Ω), the image of $\Gamma (V, \mathcal{M})^{G'}$ in $\Gamma (\Omega, \mathcal{M}_\Omega)^{G'}$ generates $\Gamma (\Omega, \mathcal{M}_\Omega)^{G'}$ as a $\Gamma (\Omega, \mathcal{O}_\Omega)$-module.

Since Ω is an affine space, we see that the restriction of $\mathcal{M}^{G'}$ to Ω equals \mathcal{M}_Ω:

$$j^+ (\mathcal{M}^{G'}) = \mathcal{M}_\Omega.$$ \hspace{1cm} (55)

Hence on Ω, the quotient module $\mathcal{M}/\mathcal{M}^{G'}$ is zero, namely

$$\mathcal{M}/\mathcal{M}^{G'} = 0 \text{ on } \Omega,$$

and its support lies in the hypersurface ∇_{n-1}:

$$\text{Supp} (\mathcal{M}/\mathcal{M}^{G'}) \subset \nabla_{n-1}.$$ \hspace{1cm} (57)

Now, since we already know that \mathcal{M} is a G'-equivariant \mathcal{D}_ν-module (see Remark \[\Box\]), then $\mathcal{M}^{G'}$ is also G'-equivariant, hence such is the quotient module $\mathcal{M}/\mathcal{M}^{G'}$. Moreover, since ∇_{n-1} has a finite number of G'-orbits, we have $\mathcal{M}/\mathcal{M}^{G'}$ with support on the closure of the G'-orbits, i.e.,

$$\text{Supp} (\mathcal{M}/\mathcal{M}^{G'}) \subset \nabla_k \text{ for } 0 \leq k \leq n - 2.$$ \hspace{1cm} (58)

In particular, the quotient module $\mathcal{M}/\mathcal{M}^{G'}$ is supported by V_0 (the Dirac module with support at the origin), then $\mathcal{M} = \mathcal{M}^{G'}$.

6 Equivalence of categories

In this section, we establish the main result of this paper: Theorem \[\Box\].

Recall that $\overline{\mathcal{A}} = \mathbb{C} \langle f, \Delta, \theta, \Omega_1, \ldots, \Omega_{r-1} \rangle$ is the algebra of G'-invariant differential operators. Since the Euler vector field θ belongs to $\overline{\mathcal{A}}$, we can decompose the algebra $\overline{\mathcal{A}}$ under the adjoint action of θ:

$$\overline{\mathcal{A}} = \bigoplus_{k \in \mathbb{N}} \overline{\mathcal{A}}[k], \quad \overline{\mathcal{A}}[k] = \{ P \in \overline{\mathcal{A}} : [\theta, P] = kP \}$$ \hspace{1cm} (59)

and we can check that

$$\forall k, l \in \mathbb{N}, \quad \overline{\mathcal{A}}[k] \cdot \overline{\mathcal{A}}[l] \subset \overline{\mathcal{A}}[k + l].$$ \hspace{1cm} (60)

so $\overline{\mathcal{A}}$ is a graded algebra.

Recall also that $\overline{\mathcal{J}} \subset \overline{\mathcal{A}}$ is the annihilator of $\mathbb{C}[f]$. We have denoted $\overline{\mathcal{J}}$ the preimage in $\overline{\mathcal{A}}$ of the
ideal in \(\mathcal{A}/\mathcal{J} \) defined by the relations (28), (29), (30), (31) of Proposition 10:

\[
\begin{align*}
[\theta, f] &= nf, \\
[\theta, \Delta] &= -n\Delta \\
\Delta f &= c(\theta + 1)(\theta + 1 + 1) \cdots (\theta + \lambda_n + 1).
\end{align*}
\]

We put \(\mathcal{A} \) the quotient of \(\mathcal{A} \) by \(\mathcal{J} \): \(\mathcal{A} := \mathcal{A}/\mathcal{J} \) (see Corollary 11).

Now, since \(\mathcal{J} \) is an ideal of \(\mathcal{A} \) it decomposes also under the adjoint action of \(\theta \):

\[
\mathcal{J} = \bigoplus_{k \in \mathbb{N}} \mathcal{J}[k], \quad \mathcal{J}[k] = \mathcal{J} \cap \mathcal{A}[k].
\]

Note that \(\mathcal{J} \) is an homogeneous ideal of the graded algebra \(\mathcal{A} \), thus the quotient algebra \(\mathcal{A} = \mathcal{A}/\mathcal{J} \) is naturally graded by

\[
\mathcal{A}[k] := (\mathcal{A}/\mathcal{J})[k] = \mathcal{A}[k]/\mathcal{J}[k].
\]

As in the introduction, we denote by \(\text{Mod}^{\text{gr}}(\mathcal{A}) \) the category whose objects are finitely generated left \(\mathcal{A} \)-modules \(T \) such that for each \(s \in T \), the \(\mathbb{C} \)-vector space spanned by the set \(\{\theta^n s / n \geq 1\} \) is finite dimensional. Equivalently the category consisting of graded \(\mathcal{A} \)-modules \(T \) of finite type such that \(\dim_{\mathbb{C}} \mathcal{C}[\theta] u < \infty \) for any \(u \) in \(T \). In other words, \(T \) is a direct sum of finite dimensional \(\mathbb{C} \)-vector spaces:

\[
T = \bigoplus_{\alpha \in \mathbb{C}} T_{\alpha}, \quad T_{\alpha} := \bigcup_{p \in \mathbb{N}} \ker (\theta - \alpha)^p \text{ (with } \dim_{\mathbb{C}} T_{\alpha} < \infty) \]

equipped with the endomorphisms \(f, \theta, \Delta \) of degree \(n, 0, -n \), respectively and satisfying the relations (28), (29), (30), (31) of Proposition 10 with \((\theta - \alpha) \) being a nilpotent operator on each \(T_{\alpha} \).

Recall that \(\text{Mod}^{\text{rh}}(\mathcal{D}_V) \) stands for the category consisting of holomorphic regular holonomic \(\mathcal{D}_V \)-modules whose characteristic variety is contained in \(\Lambda \) the union of conormal bundles to the orbits of the action of \(G \) on the complex vector space \(V \).

Let \(\mathcal{M} \) be an object in the category \(\text{Mod}^{\text{rh}}(\mathcal{D}_V) \), denote by \(\Psi (\mathcal{M}) \) the submodule of \(\Gamma (V, \mathcal{M}) \) consisting of \(G' \)-invariant homogeneous global sections \(u \) in \(\mathcal{M} \) such that \(\dim_{\mathbb{C}} \mathcal{C}[\theta] u < \infty \):

\[
\Psi (\mathcal{M}) := \left\{ u \in \Gamma (V, \mathcal{M})^{G'}, \ dim_{\mathbb{C}} \mathcal{C}[\theta] u < \infty \right\}.
\]

We are going to show that \(\Psi (\mathcal{M}) \) is an object in \(\text{Mod}^{\text{gr}}(\mathcal{A}) \).

Let \((\sigma_1, \cdots, \sigma_p) \in \Gamma (V, \mathcal{M})^{G'} \) be a finite family of homogeneous invariant global sections generating the \(\mathcal{D}_V \)-module \(\Psi (\mathcal{M}) \) (see Theorem 15):

\[
\Psi (\mathcal{M}) := \mathcal{D}_V \langle \sigma_1, \cdots, \sigma_p \rangle.
\]

We are going to see that the family \((\sigma_1, \cdots, \sigma_p) \) generates also \(\Psi (\mathcal{M}) \) as an \(\mathcal{A} \)-module: indeed, an invariant section \(\sigma \in \Psi (\mathcal{M}) \) can be written as

\[
\sigma = \sum_{j=1}^{p} q_j (X, D) \sigma_j \quad \text{where} \quad q_j \in \mathcal{D}_V.
\]
Let G_c be the compact maximal subgroup of G' and denote by $\tilde{q}_j := \int_{G_c} q_j dg$ the average of q_j over G_c. Then, the average \tilde{q}_j belongs to the algebra \mathcal{A} (i.e., $\tilde{q}_j \in \mathcal{A}$). Now, denote by f_j the class of \tilde{q}_j modulo \mathcal{J}:

$$f_j := \tilde{q}_j \mod \mathcal{J} \quad \text{that is} \quad f_j \in \mathcal{A}.$$ \hfill (67)

Therefore, we also have

$$\sigma = \sum_{j=1}^{p} \tilde{q}_j \sigma_j = \sum_{j=1}^{p} f_j \sigma_j \quad \text{with} \quad f_j \in \mathcal{A}. \hfill (68)$$

This last means that

$$\Psi (\mathcal{M}) := \mathcal{A} \langle \sigma_1, \cdots, \sigma_p \rangle,$$ \hfill (69)

and $\Psi (\mathcal{M})$ is an \mathcal{A}-module. Moreover, according to Theorem 6 ii), we have

$$\Psi (\mathcal{M}) = \bigoplus_{\alpha \in \mathcal{C}} \Psi (\mathcal{M})_{\alpha} \hfill (70)$$

where

$$\Psi (\mathcal{M})_{\alpha} := [\Psi (\mathcal{M})] \bigcap \left[\bigcup_{p \in \mathbb{N}} \ker (\theta - \alpha)^p \right] \quad \text{(with dim}_C \Psi (\mathcal{M})_{\alpha} < \infty) \hfill (71)$$

is the finite dimensional C-vector space of homogeneous global sections of degree $\alpha \in \mathcal{C}$ in $\Psi (\mathcal{M})$. Finally, we can check that

$$\mathcal{A} [k] \Psi (\mathcal{M})_{\alpha} \subset \Psi (\mathcal{M})_{\alpha + k} \quad \text{for all} \quad k \in \mathbb{N}, \ \alpha \in \mathcal{C}. \hfill (72)$$

So, $\Psi (\mathcal{M})$ is a graded \mathcal{A}-module of finite type for the Euler vector field θ thanks to (69)-(72). This means that $\Psi (\mathcal{M})$ is an object in $\text{Mod}^{gr}(\mathcal{A})$.

Conversely, let T be an object in the category $\text{Mod}^{gr}(\mathcal{A})$, one associates to it the \mathcal{D}_V-module

$$\Phi (T) := \mathcal{M}_0 \bigotimes_{\mathcal{A}} T \hfill (73)$$

where $\mathcal{M}_0 := \mathcal{D}_V / \mathcal{J}$. Then $\Phi (T)$ is an object in the category $\text{Mod}^{th}(\mathcal{D}_V)$.

Thus, we have defined two functors

$$\Psi : \text{Mod}^{th}(\mathcal{D}_V) \rightarrow \text{Mod}^{gr}(\mathcal{A}), \ \Phi : \text{Mod}^{gr}(\mathcal{A}) \rightarrow \text{Mod}^{th}(\mathcal{D}_V). \hfill (74)$$

We need the two following lemmas:

Lemma 18 *The canonical morphism*

$$T \rightarrow \Psi (\Phi (T)), \quad t \mapsto 1 \otimes t \hfill (75)$$

is an isomorphism, and defines an isomorphism of functors $\text{Id}_{\text{Mod}^{gr}(\mathcal{A})} \rightarrow \Psi \circ \Phi$.

Proof. We have set $\mathcal{M}_0 := \mathcal{D}_V / \mathcal{J}$. Denote by ε (the class of $1_{\mathcal{D}}$ modulo \mathcal{J}) the canonical generator of \mathcal{M}_0. Recall that G_c is the compact maximal subgroup of G'. Let $h \in \mathcal{D}_V$, denote by $\tilde{h} \in \mathcal{A}$ its average on G_c and by ϕ the class of \tilde{h} modulo \mathcal{J}, that is, $\phi \in \mathcal{A}$.

Since ε is G'-invariant, we get $\tilde{h} \varepsilon = \tilde{h} \varepsilon = \varepsilon \phi$. Moreover, we have $\tilde{h} \phi = 0$ if and only if $\tilde{h} \in \mathcal{J}$.
, in other words $\varphi = 0$. Therefore, the average operator (over G_c) $D_V \rightarrow \overline{A}$, $h \mapsto \tilde{h}$ induces a surjective morphism of \mathcal{A}-modules $v : M_0 \rightarrow A$. More generally, for any \mathcal{A}-module T in the category $\text{Mod}^h(\mathcal{A})$ the morphism $v \otimes 1_T$ is surjective

$$v_T : M_0 \otimes T \rightarrow A \otimes T = T \quad (76)$$

which is the left inverse of the morphism

$$u_T : T \rightarrow M_0 \otimes T, \ t \mapsto \varepsilon \otimes t, \quad (77)$$

that is, $(v \otimes 1_T) \circ (\varepsilon \otimes 1_T) = v(\varepsilon) = 1_T$. This means that the morphism u_T is injective. Next, the image of u_T is exactly the set of invariant sections of $M_0 \otimes T = \Phi(T)$, that is, $\Psi(\Phi(T))$; indeed if $\sigma = \sum_{i=1}^p h_i \otimes t_i$ is an invariant section in $M_0 \otimes T$, we may replace each h_i by its average $\tilde{h}_i \in \mathcal{A}$, then we get

$$\sigma = \sum_{i=1}^p \tilde{h}_i \otimes t_i = \varepsilon \otimes \sum_{i=1}^p \tilde{h}_i t_i \in \varepsilon \otimes T, \quad (78)$$

that is, $\sum_{i=1}^p \tilde{h}_i t_i \in T$. Therefore, the morphism u_T is an isomorphism from T to $\Psi(\Phi(T))$ and defines an isomorphism of functors.

Next, we note the following:

Lemma 19 The canonical morphism

$$w : \Phi(\Psi(M)) \rightarrow M \quad (79)$$

is an isomorphism and defines an isomorphism of functors $\Phi \circ \Psi \rightarrow \text{Id}_{\text{Mod}^h(D_V)}$.

Proof. As in the theorem 15, the D_V-module M is generated by a finite family of invariant sections $(\sigma_i)_{i=1, \ldots, p} \in \Psi(M)$ so that the morphism w is surjective. Now, consider Q the kernel of the morphism $w : \Phi(\Psi(M)) \rightarrow M$. It is also generated over D_V by its invariant sections, that is, by $\Psi(Q)$. Then we get

$$\Psi(Q) \subset \Psi(\Phi(\Psi(M))) = \Psi(M) \quad (80)$$

where we used $\Psi \circ \Phi = \text{Id}_{\text{Mod}^h(\mathcal{A})}$ (see the preceding Lemma 15). Since the morphism $\Psi(M) \rightarrow M$ is injective $(\Psi(M) \subset \Gamma(V, M))$, we obtain $\Psi(Q) = 0$. Therefore $Q = 0$ (because $\Psi(Q)$ generates Q).

This section ends by Theorem 20 established by means of the preceding lemmas.

Theorem 20 Let (G, V) be a representation of Capelli type with a one-dimensional quotient. Then the functors Φ and Ψ induce equivalence of categories

$$\text{Mod}^h(D_V) \cong \text{Mod}^h(\mathcal{A}). \quad (81)$$
Appendix

Appendix A: Representations of Capelli type with one-dimensional quotient

<table>
<thead>
<tr>
<th>(G, V)</th>
<th>deg f</th>
<th>b(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) ((SO(n) \times \mathbb{C}^*, \mathbb{C}^n))</td>
<td>2</td>
<td>((s + 1)(s + \frac{n}{2}))</td>
</tr>
<tr>
<td>(2) ((GL(n), S^2\mathbb{C}^n))</td>
<td>(n)</td>
<td>(\prod_{i=1}^{n}(s + \frac{n-i}{2}))</td>
</tr>
<tr>
<td>(3) ((GL(n), \Lambda^2\mathbb{C}^n), n \text{ even})</td>
<td>(\frac{n}{2})</td>
<td>(\prod_{i=1}^{n}(s + 2i - 1))</td>
</tr>
<tr>
<td>(4) ((GL(n) \times SL(n), M_n(\mathbb{C})))</td>
<td>(n)</td>
<td>(\prod_{i=1}^{n}(s + i))</td>
</tr>
<tr>
<td>(5) ((Sp(n) \times GL(2), (\mathbb{C}^{2n})^2))</td>
<td>2</td>
<td>((s + 1)(s + 2n))</td>
</tr>
<tr>
<td>(6) ((SO(7) \times \mathbb{C}^*, spin = \mathbb{C}^8))</td>
<td>2</td>
<td>((s + 2)(s + 4))</td>
</tr>
<tr>
<td>(7) ((G_2 \times \mathbb{C}^*, \mathbb{C}^7))</td>
<td>2</td>
<td>((s + 1)(s + \frac{7}{2}))</td>
</tr>
<tr>
<td>(8) ((GL(4) \times Sp(2), M_4(\mathbb{C})))</td>
<td>4</td>
<td>((s + 1)(s + 2)(s + 3)(s + 4))</td>
</tr>
</tbody>
</table>

Appendix B: Generic isotropy subgroups \(G_{X_0}\) for representations of Capelli type

\(|G_{X_0}|:\) isotropy subgroup at generic point \(X_0 \in V \setminus f^{-1}(0)\)

<table>
<thead>
<tr>
<th>(G, V)</th>
<th>(G_{X_0})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) ((SO(n) \times \mathbb{C}^*, \mathbb{C}^n))</td>
<td>(SO(1) \times SO(n - 1))</td>
</tr>
<tr>
<td>(2) ((GL(n), S^2\mathbb{C}^n))</td>
<td>(O(n))</td>
</tr>
<tr>
<td>(3) ((GL(n), \Lambda^2\mathbb{C}^n), n \text{ even})</td>
<td>(Sp(\frac{n}{2}))</td>
</tr>
<tr>
<td>(4) ((GL(n) \times SL(n), M_n(\mathbb{C})))</td>
<td>(Sp(1) \times Sp(n - 1))</td>
</tr>
<tr>
<td>(5) ((Sp(n) \times GL(2), (\mathbb{C}^{2n})^2))</td>
<td>(SL(n))</td>
</tr>
<tr>
<td>(6) ((SO(7) \times \mathbb{C}^*, spin = \mathbb{C}^8))</td>
<td>(SO(1) \times SO(6))</td>
</tr>
<tr>
<td>(7) ((G_2 \times \mathbb{C}^*, \mathbb{C}^7))</td>
<td></td>
</tr>
<tr>
<td>(8) ((GL(4) \times Sp(2), M_4(\mathbb{C})))</td>
<td></td>
</tr>
</tbody>
</table>

(see A. Sasada [45] (1), (2), (3), (13), (15) p. 79-83] or Sato-Kimura [47] (1), (2), (3), (13), (15), p. 144-145])

Appendix C: Generic isotropy subgroups \(H\) for derived subgroups \(G'\) of the group \(G\)
$(G', V) \quad H = \text{isotropy subgroup at a generic point } X_0 \in V \setminus f^{-1}(0)$

(1) $(SO(n), \mathbb{C}^n) \quad SO(1) \times SO(n - 1)$

(2) $(SL(n), S^2\mathbb{C}^n) \quad SO(n)$

(3) $(SL(n), \Lambda^2\mathbb{C}^n), n \text{ even} \quad Sp(\frac{n}{2})$

(4) $(SL(n) \times SL(n), M_n(\mathbb{C})) \quad Sp(1) \times Sp(n - 1)$

(5) $(Sp(n) \times SL(2), (\mathbb{C}^{2n})^2) \quad SL(n)$

(6) $(SO(7), \text{spin} = \mathbb{C}^8) \quad SO(1) \times SO(6)$

(7) (G_2, \mathbb{C}^7)

(8) $(SL(4) \times Sp(2), M_4(\mathbb{C}))$

Remark. The generic isotropic subgroup H of (G', V) are connected.

Acknowledgements: The essential part of this paper was completed while the author was a visiting member first at Max-Planck Institute for Mathematics (MPI), and then at TATA Institute of Fundamental Research (TIFR). The author would like to express his heartiest thanks to all these institutions and their members for their hospitalities. Specially, we thank N. Nitsure for helpful discussions.

References

Note: a generic isotropic subgroup of G' is a stationary subgroup at a generic point $X_0 \in V \setminus S$ with $S : f = 0.$

[34] P. Nang, On a class of holonomic \mathcal{D}-modules on $\text{M}_n(\mathbb{C})$ related to the action of $\text{GL}_n(\mathbb{C}) \times \text{GL}_n(\mathbb{C})$, Adv. Math. 218 (3) (2008), 635–648

[37] P. Nang, Regular holonomic \mathcal{D}-modules on skew symmetric matrices, Preprint of the Max-Planck-Institut für Mathematik MPIM 42 (2007),

[38] P. Nang, On a class of holonomic \mathcal{D}-modules on symmetric matrices attached to the action of the general linear group, Preprint of Institut des Hautes Études Scientifiques (IHES) M/02/22(04) (2008),

[39] P. Nang, \mathcal{D}-modules on the representation of $\text{Sp}(2n,\mathbb{C}) \times \text{GL}(2,\mathbb{C})$, Preprint of the Max-Planck-Institut für Mathematik MPIM 65 (2012),

Philibert Nang

École Normale Supérieure,
Laboratoire de Recherche en Mathématiques
BP 8637
Libreville, Gabon

E-mail: nangphilibert@yahoo.fr, pnang@ictp.it