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EXCESS DIMENSION FOR SECANT LOCI IN SYMMETRIC

PRODUCTS OF CURVES

MARIAN APRODU AND EDOARDO SERNESI

Abstract. We extend a result of W. Fulton, J. Harris and R. Lazarsfeld [6]
to secant loci in symmetric products of curves. We compare three secant loci
and prove the the dimensions of bigger loci can not be excessively larger than
the dimension of smaller loci.

1. Introduction

In this Note we study the following problem that is connected to the geometry
of secant loci and has already appeared in [6]. Let m, n and k ≤ min{m,n} be
three positive integers, X be an integral algebraic variety over C, and consider a
diagram of vector bundles:

0 // H // F ′ π
// F // 0

E

σ

OO

πσ

>>
⑥
⑥
⑥
⑥
⑥
⑥
⑥
⑥

where rk(E) = m, rk(F ′) = n + 1 and rk(F ) = n. We propose to compare the
dimensions of closed subschemes of X defined as

Dk(σ) = {x ∈ X |rank(σx) ≤ k},

Dk(πσ) = {x ∈ X |rank(πx ◦ σx) ≤ k}

and
Dk+1(σ) = {x ∈ X |rank(σx) ≤ k + 1}.

The comparison of Dk(σ) and Dk(πσ) supposing that E∗ ⊗ H is ample is the
content of [6, Lemma 4], however, we try to avoid here the ampleness hypothesis
and replace it by weaker assumptions.

Obviously, Dk(σ) ⊂ Dk(πσ) ⊂ Dk+1(σ) and in general the inclusions are strict.
However, we shall prove that the dimension of bigger loci cannot increase too much
compared to the dimension of smaller loci, similarly to [6, Lemma 4]. To this
end, we place ourselves first in the generic situation, section 2. This is one of the
usual tricks used in the study of determinantal subschemes, see for example [3]. In
section 3 we find explicit comparison bounds, and, in the last part, we apply these
bounds to the case of secant loci inside symmetric products of curves, which are
defined as degeneracy loci of suitable sheaf morphisms. For canonical line bundles,
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the result specialises to the well-known ”excess linear series” Theorem of Fulton-
Harris-Lazarsfeld, [6].

2. The generic situation

For any positive integers a, b and k ≤ min{a, b} denote by M(a, b) the variety
of complex a× b matrices and by Mk(a, b) ⊂ M(a, b) the subscheme of matrices of
rank ≤ k. Its singular locus is precisely Mk−1(a, b).

Given two integers m and n consider the morphism

µ : M(m,n+ 1)×M(n+ 1, n) → M(m,n)

given by matrix multiplication.

We compare the intersection of the three closed subsets

µ−1(Mk(m,n)), Mk(m,n+ 1)×M(n+ 1, n) and Mk+1(m,n+ 1)×M(n+ 1, n)

of M(m,n+1)×M(n+1, n) with the complement of M(m,n+1)×Mn−1(n+1, n).

Clearly (Mk(m,n+1)×M(n+1, n))\(M(m,n+1)×Mn−1(n+1, n)) is contained
in µ−1(Mk(m,n))\(M(m,n+1)×Mn−1(n+1, n)) and µ−1(Mk(m,n))\(M(m,n+
1)×Mn−1(n+ 1, n)) is contained in (Mk+1(m,n+ 1)×M(n+ 1, n)) \ (M(m,n+
1)×Mn−1(n+ 1, n)).

We compute:

dim(Mk(m,n+ 1)×M(n+ 1, n)) = m(n+ 1)− (m− k)(n+ 1− k) + n(n+ 1)

= (m+ n)(n+ 1)− (m− k)(n+ 1− k)

dim(Mk+1(m,n+ 1)×M(n+ 1, n)) = m(n+ 1)− (m− k − 1)(n− k) + n(n+ 1)

= (m+ n)(n+ 1)− (m− k − 1)(n− k)

and

dim(µ−1(Mk(m,n))) ≥ m(n+ 1) + n(n+ 1)− (m− k)(n− k)

= (m+ n)(n+ 1)− (m− k)(n− k),

by the subadditivity of codimension for µ (see, for example, [8, Theorem 17.24]).
Moreover, we prove:

Proposition 2.1. dim
(

µ−1(Mk(m,n)) \ (M(m,n+ 1)×Mn−1(n+ 1, n))
)

= (m+
n)(n+ 1)− (m− k)(n− k).

Proof. Let A = (aij) ∈ M(m,n + 1) and B = (bjk) ∈ M(n + 1, n). By definition
µ(A,B) = AB. Denote by Bt the transpose of B. Working with coordinate order

(c11, c12, . . . , c1n|c21, c22, . . . , c2n| . . . |cm1, cm2, . . . , cmn)

on M(m,n) and

(a11, a12, . . . , a1,n+1|a21, a22 . . . , a2,n+1| . . . |am1, am2, . . . , am,n+1|b11, . . . | . . . | . . . bn+1,n)

on M(m,n+ 1)×M(n+ 1, n) the jacobian matrix of µ at (A,B) is composed of
two blocks:
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









Bt 0 . . . 0 . . .
0 Bt . . . 0 . . .
...

...
...

0 0 . . . Bt . . .











where the first block corresponding to (∂µ/∂aij) has m copies of Bt, and the second
block is equivalent, via row permutations, with a similar matrix containing n copies
of A.

This matrix has maximal rank mn if B has maximal rank n. Then µ is surjective
and smooth outside M(m,n+1)×Mn−1(n+1, n) and hence the fibres are equidi-
mensional and µ−1 preserves codimension on the complement of this locus. �

Therefore we have:

dim
(

µ−1(Mk(m,n)) \ (M(m,n+ 1)×Mn−1(n+ 1, n))
)

(1)

− dim ((Mk(m,n+ 1)×M(n+ 1, n)) \ (M(m,n+ 1)×Mn−1(n+ 1, n)))

= m− k

and

dim ((Mk+1(m,n+ 1)×M(n+ 1, n)) \ (M(m,n+ 1)×Mn−1(n+ 1, n)))(2)

− dim
(

µ−1(Mk(m,n)) \ (M(m,n+ 1)×Mn−1(n+ 1, n))
)

= n− k.

3. The comparison of degeneracy loci

Let X be an arbitrary integral algebraic variety, and consider a diagram of vector
bundles as at the beginning:

0 // H // F ′ π
// F // 0

E

σ

OO

πσ

>>
⑥
⑥
⑥
⑥
⑥
⑥
⑥
⑥

with rk(E) = m, rk(F ′) = n + 1 and rk(F ) = n. The problem of comparing
dimensions of degeneration loci is local, and hence we may assume that the three
vector bundles are trivial and the morphisms are given by matrices. With the
convention that a matrix defines a morphism by multiplication on the left with row
vectors, this diagram induces a natural morphism:

f : X −→ M(m,n+ 1)×M(n+ 1, n), f = (f1, f2).

Note that, by definition, the image of the second component f2 is contained in
M(n+ 1, n) \Mn−1(n+ 1, n).

We have the identifications:

Dk(σ) = f−1 (Mk(m,n+ 1)×M(n+ 1, n)) ,

Dk+1(σ) = f−1 (Mk+1(m,n+ 1)×M(n+ 1, n))

and

Dk(πσ) = f−1(µ−1(Mk(m,n))).

We prove:
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Proposition 3.1. Assume that no irreducible component of Dk(πσ) is contained

in Dk(σ). If Dk(πσ) is non empty, then

(3) dim(Dk(πσ)) ≥ dim(Dk+1(σ))− (n− k).

If Dk(σ) is non empty, then

(4) dim(Dk(σ)) ≥ dim(Dk(πσ)) − (m− k)

and

(5) dim(Dk(σ)) ≥ dim(Dk+1(σ)) − (m+ n− 2k).

Proof. We prove (3). Note that the hypothesis also implies that no irreducible com-
ponent of Dk+1(σ) is contained in Dk(σ). We use the smoothness of Mk+1(m,n+
1) \Mk(m,n+1) and the fact that (Mk+1(m,n+1) \Mk(m,n+1))×M(n+1, n)
intersects µ−1(Mk(m,n)). By the hypothesis, we know that

dim(Dk+1(σ)) = dim(Dk+1(σ) \Dk(σ)).

We apply Proposition 2.1 and subbadditivity of codimension for the restriction of
f to f−1((Mk+1(m,n+1)\Mk(m,n+1))×M(n+1, n)) = Dk+1(σ)\Dk(σ) and the
subvarietyDk(πσ)\Dk(σ) = f−1

(

µ−1(Mk(m,n)) \ (Mk(m,n+ 1)×M(n+ 1, n))
)

.
We prove (4). First note that, since Dk−1(πσ) ⊂ Dk(σ) ⊂ Dk(πσ), the hypothe-

sis implies that no irreducible component of Dk(πσ) is contained in Dk−1(πσ) and
hence

dim(Dk(πσ)) = dim (Dk(πσ) \Dk−1(πσ)) .

SinceMk(m,n)\Mk−1(m,n) is smooth, and µ is smooth on (M(m,n+1)×M(n+
1, n))\(M(m,n+1)×Mn−1(n+1, n)) (from the proof of Proposition 2.1), it follows
that any (A,B) ∈ µ−1(Mk(m,n) \Mk−1(m,n)) \ (M(m,n+ 1)×Mn−1(n+ 1, n))
is a smooth point of µ−1(Mk(m,n)). Taking into account that the image of f is in
the complement of M(m,n+1)×Mn−1(n+1, n), (4) follows from the subadditivity
of codimension for the restricted map:

f : Dk(πσ) \Dk−1(πσ) → µ−1(Mk(m,n)) \ µ−1(Mk−1(m,n)).

The inequality (5) follows from (3) and (4) by addition.
Note that if Dk(σ) is non empty, then Dk(πσ) is also non empty, and the non

emptiness of Dk(πσ) implies the non emptiness of Dk+1(σ). �

Remark 3.2. Under some positivity assumptions, for example E∗ ⊗H be ample
as in [6], the non emptiness of the corresponding degeneracy loci follows. In fact,
[6, Lemma 4] reduces, by taking hyperplane sections, to proving the non emptiness
of Dk(σ) for the case dim(Dk(πσ)) = m− k. Note that the proof of [6, Lemma 4]
cannot be adapted to our case.

Remark 3.3. The generic situation from section 2 corresponds to the case X =
M(m,n+1)×M(n+1, n) and f = id with trivial bundles E, F , F ′ and naturally
defined σ and π.

4. Secant loci

Let C be a smooth projective curve of genus g and n ≥ 1 be an integer. Denote
by Ξn ⊂ C × Cn the universal divisor on the n–th symmetric product Cn of C.
Consider the two projections π : C × Cn → C, respectively πn : C × Cn → Cn.
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For any globally generated line bundle L of degree d on C with h0(L) = r + 1, the
secant bundle of L is the rank–n vector bundle on Cn defined by:

EL,n := πn∗(π
∗L⊗OΞn

).

For any ξ ∈ Cn, the fibre of EL,n over ξ is isomorphic to L|ξ. Note that πn∗π
∗L ∼=

H0(L)⊗OCn
and hence we have a sheaf morphism

eL,n : H0(L)⊗OCn
→ EL,n.

The morphism eL,n is generically surjective for n ≤ r since for a general effective
divisor ξ of degree n on C the map H0(L) → L|ξ is surjective.

For any k ≤ n − 1, the secant locus V k
n (L) is the closed subscheme V k

n (L) :=
Dk(eL,n) ⊂ Cn [4]. If L is very ample, it parametrizes the n–secant (k − 1)–planes
in the induced embedding. The secant loci have been recently used in connection
with syzygy problems, [2], [5].

The expected dimension of V k
n (L) is n−(r+1−k)(n−k) and hence, if non–empty,

then V k
n (L) has dimension ≥ n− (r + 1− k)(n− k).

Consider p ∈ C a general point that defines an embedding Cn
∼= p+Cn ⊂ Cn+1.

Since its pullback to the cartesian product Cn+1 is

({p} × C × . . .× C) + (C × {p} × C × . . .× C) + . . .+ (C × C × . . .× C × {p}),

it follows that Cn is moreover an ample divisor (see also [7, Lemma 2.7] for another
proof).

For any n, we have a short exact sequence of vector bundles on Cn:

0 → OCn+1
(−Cn)|Cn

→ EL,n+1|Cn
→ EL,n → 0.

Indeed, the kernel of the surjective morphism EL,n+1|Cn
→ EL,n is a line bundle

on Cn, and hence it is isomorphic to det(EL,n+1|Cn
) ⊗ det(EL,n)

−1. Using the
isomorphisms det(EL(p),n+1) ∼= det(EL,n+1)⊗OCn+1

(Cn) and det(EL(p),n+1)|Cn

∼=
det(EL,n) (see, for example [1, 5.2.3, p. 71]) the claim follows.

We apply the result from the previous section to X = Cn, H = OCn+1
(−Cn)|Cn

,

F ′ = EL,n+1|Cn
, F = EL,n, and E = H0(L)⊗OCn

, where σ is the evaluation map.

Note that Dk(πσ) = V k
n (L), Dk(σ) = V k

n+1(L)∩Cn, Dk+1(σ) = V k+1
n+1 (L)∩Cn and

hence dim(Dk(σ)) = dim(V k
n+1(L)) − 1 and dim(Dk+1(σ)) = dim(V k+1

n+1 (L)) − 1
by the genericity of p. Assuming non emptiness for the suitable secant loci, the
inequalities (3), (4) and (5) yield to the following excess dimension result:

Theorem 4.1. If V k
n (L) 6= ∅ then

(6) dim
(

V k
n (L)

)

≥ dim
(

V k+1
n+1 (L)

)

− (n− k + 1).

If V k
n+1(L) 6= ∅ and moreover dim(V k

n+1(L)) ≥ 1 then

(7) dim
(

V k
n+1(L)

)

≥ dim
(

V k
n (L)

)

− (r − k)

and

(8) dim
(

V k
n+1(L)

)

≥ dim
(

V k+1
n+1 (L)

)

− (r + n− 2k + 1).

Proof. We only need to verify that no irreducible component of V k
n (L) is contained

in V k
n+1(L)∩Cn. To this end, we use the genericity of p. Note that all the divisors in

V k
n+1(L)∩Cn contain p in the support. Let V ⊂ V k

n (L) be an irreducible component
and DV ⊂ C be the intersection of the supports of divisors D in V . If we pick p
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outside DV , then it is clear that V 6⊂ V k
n+1(L)∩Cn. Choosing p in the complement

of the union of these loci DV , we obtain the result. �

Remark 4.2. Since the expected dimension of V k
n (L) is n − (r + 1 − k)(n − k)

and the expected dimension of V k+1
n+1 (L) is (n+ 1)− (r − k)(n− k) we note that if

the dimension of V k
n (L) equals the expected dimension, then the same is true for

V k+1
n+1 (L).

Remark 4.3. In the special case L = KC , we have an identification V k
n (KC) =

Cn−k
n and hence

dim
(

V k
n (KC)

)

= dim
(

Wn−k
n (C)

)

+ (n− k).

Theorem 1 in [6] corresponds to (6). Corollary 2 in [6] corresponds to (7) and
Corollary 3 in [6] is (8). Note, however, that in [6] no non-emptiness assumption is
needed.

Remark 4.4. If h1(L) = h, the image of V k
n (L) in the Jacobian via the Abel-Jacobi

map is the intersection Wn(C) ∩
(

(L−KC) +Wn−k−1+h
2g−2−d+n(C)

)

. The proof follows

from Riemann-Roch applied to L and L(−D) with D ∈ V k
n (L).

In particular, V k
n (L) 6= ∅ if and only if (compare with [5])

L−KC ∈ Wn(C)−Wn−k−1+h
2g−2−d+n(C) ⊂ Picd−2g+2(C).

If L is non special, then V k
n (L) 6= ∅ if and only if L−KC ∈ Wn(C)−Wn−k−1

2g−2−d+n(C) ⊂

Picd−2g+2(C). Note that, having fixed d, n and k, the locusWn(C)−Wn−k−1+h
2g−2−d+n(C)

decreases when h increases, and hence the chances for V k
n (L) to be non empty also

decrease.
In some cases, for instance, if n ≥ g or if L − KC ≥ 0, we have an inclusion

(L − KC) + Wn−k−1+h
2g−2−d+n(C) ⊂ Wn(C), however, this condition is not verified in

general. In principle, by restriction to Wn(C), the description from [6] applies
to obtain excess dimension results for the images of secant loci in Picn(C). If
the fibres of the Abel-Jacobi maps over these loci are controllable (for example, if
n ≤ gon(C) − 2), then one can pass from the Jacobian to the symmetric products
and, assuming moreover that h ≤ 1, Theorem 4.1 (6) can be improved in the sense
that one can drop the non-emptiness assumption in the hypothesis.

Remark 4.5. Applying Theorem 4.1 we can simplify the statement of Proposition
2.6 in [2] on condition (∆q) and obtain a perfect analogue of the canonical case ([2,
Proposition 3.6]). More precisely, using the terminology and the notation of loc.cit.,

if the dimension of the locus V r−q
r−q+1(L) equals the expected dimension r − 2q and

dim(V r−q+1
r−q+3 (L)) ≤ r − 2q + 1 then the condition (∆q) holds in the strong sense.

Remark 4.6. A similar argument as in the proof of [2, Lemma 2.2] shows that
no irreducible component of V k

n (L) is contained in V k−1
n (L) if L is very ample

and k ≤ r.

Remark 4.7. In [9], M. Kemeny applies our result to syzygies of curves.
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