Abstract

F. Labourie [arXiv:1212.5015] characterized the Hitchin components for $\text{PSL}(n, \mathbb{R})$ for any $n > 1$ by using the swapping algebra, where the swapping algebra should be understood as a ring equipped with a Poisson bracket. We introduce the rank n swapping algebra, which is the quotient of the swapping algebra by the $(n+1) \times (n+1)$ determinant relations. The main results are the well-definedness of the rank n swapping algebra and the “cross-ratio” in its fraction algebra. As a consequence, we use the subfraction algebra of the rank n swapping algebra generated by these “cross-ratios” to characterize the $\text{PSL}(n, \mathbb{R})$ Hitchin component for a fixed $n > 1$. We also show the relation between the rank 2 swapping algebra and the cluster $\text{APGL}(2, \mathbb{R}), D_k$-space.

1. Introduction

1.1 Background

Let S be a connected oriented closed surface of genus $g > 1$. When G is a reductive Lie group, the character variety is

$$R(S, G) := \{ \text{homomorphisms } \rho : \pi_1(S) \to G \} // G,$$

where the group G acts on homomorphisms above by conjugation, and the quotient is taken in the sense of geometric invariant theory [MFK94]. When $G = \text{PSL}(2, \mathbb{R})$, the character variety $R(S, \text{PSL}(2, \mathbb{R}))$ has $4g - 3$ connected components [G88]. Two of these components correspond to all discrete faithful homomorphisms from $\pi_1(S)$ to $\text{PSL}(2, \mathbb{R})$. By the uniformization theorem, any one of the two components is diffeomorphic to the Teichmüller space of complex structures on S up to isotopy. For $n \geq 2$, we define n-Fuchsian representation to be a representation ρ, which can be written as $\rho = i \circ \rho_0$, where ρ_0 is a discrete faithful representation of $\pi_1(S)$ with values in $\text{PSL}(2, \mathbb{R})$ and i is the irreducible representation of $\text{PSL}(2, \mathbb{R})$ in $\text{PSL}(n, \mathbb{R})$. In [H92], N. Hitchin found one of the connected components of the character variety $R(S, \text{PSL}(n, \mathbb{R}))$, which contains the n-Fuchsian representations, called Hitchin component and denoted by $H_n(S)$. By N. Hitchin [H92], the GIT quotient of the Hitchin component $H_n(S)$ coincides with its usual topological quotient. Furthermore, the Hitchin component $H_n(S)$ is diffeomorphic to a ball $\mathbb{R}^{(2g-2)(n^2-1)}$.

A decade later, F. Labourie [L06] and O. Guichard [Gu08] showed that every ρ in the Hitchin component $H_n(S)$ is one to one associated to a ρ-equivariant $(\xi_\rho(\gamma x) = \rho(\gamma) \xi_\rho(x))$ hyperconvex Frenet curve ξ_ρ from the boundary at infinity of $\pi_1(S)$—$\partial_\infty \pi_1(S)$ to $\mathbb{R}P^{n-1}$, where hyperconvex...
means that for any pairwise distinct points \((x_1, ..., x_p)\) with \(p \leq n\), the sum \(\xi(x_1) + ... + \xi(x_p)\) is direct. Let \(\xi^*_\rho\) be its associated \(\rho\)-equivariant osculating hyperplane curve from \(\partial_\infty \pi_1(S)\) to \(\mathbb{R} P^{n-1}\). Let \(\tilde{\xi}_\rho, (\xi^*_\rho)\) be the lifts of \(\xi, (\xi^*_\rho)\) with values in \(\mathbb{R}^n, (\mathbb{R}^n)^*\). F. Labourie defined the weak cross ratio \(\mathbb{B}_\rho\) of four different points \(x, y, z, t\) in \(\partial_\infty \pi_1(S)\):

\[
\mathbb{B}_\rho(x, y, z, t) = \frac{\langle \tilde{\xi}(x) \tilde{\xi}^*(z) \rangle}{\langle \tilde{\xi}(x) \tilde{\xi}^*(t) \rangle} \cdot \frac{\langle \tilde{\xi}(y) \tilde{\xi}^*(t) \rangle}{\langle \tilde{\xi}(y) \tilde{\xi}^*(z) \rangle}.
\]

Such cross ratios are the only cross ratios, called the rank \(n\) cross ratios, that satisfy some symmetry properties, normalisation properties, multiplicative cocycle identities, \(\pi_1(S)\)-invariant properties and \(\mathbb{R}^n\)-linear algebraic properties \([L07]\). Therefore, the space of the rank \(n\) cross ratios identifies with the Hitchin component \(H_n(S)\).

Later on, F. Labourie \([L12]\) defined the swapping algebra to characterize the union of the Hitchin components \(\bigcup_{n=2}^\infty H_n(S)\). The swapping algebra is defined on the ordered pair of points of a subset \(\mathcal{P} \subseteq S^1\). More precisely, we represent an ordered pair \((x, y)\) of \(\mathcal{P}\) by the expression \(xy\), and we consider the ring \(\mathcal{Z}(\mathcal{P}) := \mathbb{K}[\{xy\}_{x, y \in \mathcal{P}}]/\langle xy | \forall x \in \mathcal{P} \rangle\) over a field \(\mathbb{K}\) of characteristic zero. Then we equip \(\mathcal{Z}(\mathcal{P})\) with a Poisson bracket \(\{\cdot, \cdot\}\), called the swapping bracket, by extending the formula on generators for any \(rx, sy \in \mathcal{P}\):

\[
\{rx, sy\} = J(rx, sy) \cdot ry \cdot sx,
\]

\(J\) is defined by Leibniz’s rule. We will define the linking number \(J(rx, sy)\) in Section 2. Therefore, the swapping algebra of \(\mathcal{P}\) is \((\mathcal{Z}(\mathcal{P}), \{\cdot, \cdot\})\). Let \(x, y, z, t\) belong to \(\mathcal{P}\) so that \(x \neq t\) and \(y \neq z\). The cross fraction determined by \((x, y, z, t)\) is the element:

\[
[x, y, z, t] := \frac{xz}{xt} \cdot \frac{yt}{yz}.
\]

Let \(\mathcal{B}(\mathcal{P})\) be the sub fraction ring of \(\mathcal{Z}(\mathcal{P})\) generated by all the cross fractions. Then, the swapping multifraction algebra of \(\mathcal{P}\) is \((\mathcal{B}(\mathcal{P}), \{\cdot, \cdot\})\). Let \(\mathcal{R}\) be the subset of \(\partial_\infty \pi_1(S)\) given by the end points of periodic geodesics. F. Labourie consider a natural homomorphism \(I\) from \(\mathcal{B}(\mathcal{R})\) to \(C^\infty(H_n(S))\) by extending the following formula on generators to \(\mathcal{B}(\mathcal{R})\):

\[
I([x, y, z, t]) = \mathbb{B}_\rho(x, y, z, t).
\]

\textbf{Theorem 1.1} \([F. \text{ Labourie} \ [L12]]\) Let \(S\) be a connected oriented closed surface of genus \(g > 1\). Let \(\{\cdot, \cdot\}\) be the swapping bracket. For \(n \geq 2\), let \(\{\cdot, \cdot\}_S\) be the Atiyah-Bott-Goldman Poisson bracket \([AB83]/[G84]\) of the Hitchin component \(H_n(S)\). If \(\Gamma_1, ..., \Gamma_k, ...\) is a vanishing sequence of finite index subgroups of \(\pi_1(S)\). Let \(S_k = \mathbb{H}^2/\Gamma_k\), vanishing means that any two primitive representatives of \(\pi_1(S)\) in the sequence \(S_1, ..., S_k, ...\) intersect simply at zero or one point at last. For any \(b_0, b_1 \in \mathcal{B}(\mathcal{R})\), we have

\[
\lim_{k \to \infty} \{I(b_0), I(b_1)\}_{S_k} = I \circ \{b_0, b_1\}.
\]

The above theorem is true for any integer \(n > 1\), therefore the swapping multifraction algebra \((\mathcal{B}(\mathcal{R}), \{\cdot, \cdot\})\) asymptotically characterizes the union of Hitchin components \(\bigcup_{n=2}^\infty H_n(S)\).

F. Labourie also showed that, for the space \(\mathcal{L}_n\) of the Drinfeld-Sokolov reduction \([DS85]/[Se91]\) on the space of \(\text{PSL}(n, \mathbb{R})\)-Hitchin opers with trivial holonomy, the natural homomorphism \(i\) from the swapping multifraction algebra \(\mathcal{B}(S^1)\) to the function space \(C^\infty(\mathcal{L}_n)\) is Poisson with respect to the swapping bracket and the Poisson bracket corresponding to second Gelfand-Dickey symplectic structure.
Both the homomorphism \(I \) and the homomorphism \(i \) have large kernels arising from linear algebra of \(\mathbb{R}^n \). Is the swapping algebra \((\mathcal{Z}(P), \{\cdot, \cdot\}) \) still well-defined after divided by these corresponding linear algebraic relations? Is the associated sub fraction algebra generated by all the cross fractions well-defined? These two questions are the main focus of this paper.

1.2 Rank \(n \) swapping algebra and the main results

For \(n \geq 2 \), let \(R_n(P) \) be the ideal of \(\mathcal{Z}(P) \) generated by

\[
D \in \mathcal{Z}(P) \mid D = \det \begin{pmatrix} x_1y_1 & \ldots & x_1y_{n+1} \\ \ldots & \ldots & \ldots \\ x_{n+1}y_1 & \ldots & x_{n+1}y_{n+1} \end{pmatrix}, \forall x_1, \ldots, x_{n+1}, y_1, \ldots, y_{n+1} \in P.
\]

Let \(\mathcal{Z}_n(P) \) be the quotient ring \(\mathcal{Z}(P)/R_n(P) \). The following two theorems are the main results of this paper, which will be proven in Section 3 and 4. By induction on corresponding positions of the points on the circle, we prove the following theorem.

Theorem 1.2 For \(n \geq 2 \), \(R_n(P) \) is a Poisson ideal with respect to the swapping bracket, thus \(\mathcal{Z}_n(P) \) inherits a Poisson bracket from the swapping bracket.

It then follows the Theorem 1.2 that the rank \(n \) swapping algebra of \(P \) is the compatible pair \((\mathcal{Z}_n(P), \{\cdot, \cdot\}) \). For the well-definedness of the cross fractions of the ring \(\mathcal{Z}_n(P) \), by using very classical geometric invariant theory [CP76] [W39] and Lie group cohomology [CE48], we prove the following theorem.

Theorem 1.3 For \(n \geq 2 \), the quotient ring \(\mathcal{Z}_n(P) \) is an integral domain.

Let \(\mathcal{B}_n(P) \) be the sub fraction ring of \(\mathcal{Z}_n(P) \) generated by all the cross fractions. Then, the rank \(n \) swapping multifraction algebra of \(P \) is the pair \((\mathcal{B}_n(P), \{\cdot, \cdot\}) \). Thus, the homomorphism \(I \) naturally factors through \(\mathcal{B}_n(P) \) because of the rank \(n \) cross ratio conditions [L07], which provides a homomorphism

\[
I_n : \mathcal{B}_n(R) \to C^\infty(H_n(S)).
\]

Then we can replace \(I \) by \(I_n \) in Theorem 1.1. Therefore, for a fixed \(n \geq 2 \), the rank \(n \) swapping multifraction algebra \((\mathcal{B}_n(P), \{\cdot, \cdot\}) \) is the Poisson algebra which characterizes \(H_n(S) \). But the homomorphism \(I_n \) is not injective, since the image of the cross fractions are \(\pi_1(S) \) invariant. Still, the non-injectivity and the asymptotic behavior of \(I_n \) are two obstructions to characterize \((H_n(S), \omega_{ABG}) \) exactly. We suggest that these two obstructions are worth of being investigated.

For the homomorphism \(i \), we do not have these two obstructions. Similarly, we also have a homomorphism

\[
i_n : \mathcal{B}_n(S^1) \to C^\infty(\mathcal{L}_n)
\]

induced from the homomorphism \(i \). The homomorphism \(i_n \) is Poisson by Theorem 10.7.2 in [L12] and Theorem 1.2, and injective by Theorem 4.6. As a consequence, the rank \(n \) swapping multifraction algebra \((\mathcal{B}_n(S^1), \{\cdot, \cdot\}) \) should be regarded as the dual of \(\mathcal{W}_n \) algebra.

1.3 Rank 2 swapping algebra and the cluster \(\mathcal{X}_{\text{PSL}(2,\mathbb{R}),D_k}\)-space

Let \(S \) be a connected oriented surface with non-empty boundary and a finite set \(P \) of special points on boundary, considered modulo isotopy. The rank \(n \) swapping algebra also relates to the Fock-Goncharov’s cluster-\(\mathcal{X}_{\text{PSL}(n,\mathbb{R}),S} \)-space. V. Fock and A. Goncharov [FG06] introduced the positive structure in sense of [L94] [L98] and the cluster algebraic structure for the moduli space.
$\mathcal{X}_{\text{PGL}(n,\mathbb{R}),S}$ of framed local systems of the surface S. The positive part of the moduli space $\mathcal{X}_{\text{PGL}(n,\mathbb{R}),S}$ is related to the Hitchin component $H_n(S)$. (For the surface S with boundary or punctures, we can still define $H_n(S)$, but the monodromy around a boundary component is conjugated to an upper or lower triangular totally positive matrix.) Moreover, they introduced a special coordinate system for the cluster $\mathcal{X}_{\text{PGL}(n,\mathbb{R}),S}$-space in [FG06] Section 9, which generalizes Thurston’s shearing coordinates for Teichmüller space [T86]. (The Fock-Goncharov coordinates are also used in case of the closed surface S of genus $g > 1$ [FD14].) This coordinate system is local, because it depends on the ideal triangulation T. Moreover, the coordinate system for T gives us a split torus T_T of $\mathcal{X}_{\text{PGL}(n,\mathbb{R}),S}$. The space $\mathcal{X}_{\text{PGL}(n,\mathbb{R}),S}$ is a variety glued by all these T_T, and the transition function from T_T to another T'_T is defined by a positive rational transformation corresponding to a composition of flips, where each flip is a composition of mutations in its cluster algebraic structure. The positive structure of $\mathcal{X}_{\text{PGL}(n,\mathbb{R}),S}$ arises from the positivity of the rational transformations.

Let D_k be a disc with k special points on the boundary. In the last section, we will prove the following theorem.

Theorem 1.4 Given an ideal triangulation T of D_k, there is an injective and Poisson homomorphims from the fraction algebra generated by the Fock-Goncharov coordinates for the cluster $\mathcal{X}_{\text{PGL}(2,\mathbb{R}),D_k}$-space to the rank 2 swapping multifraction algebra $(B_n(\mathcal{P}),\{\cdot,\cdot\})$, with respect to the natural Fock-Goncharov Poisson bracket and the swapping bracket.

Then we will show that the cluster dynamic of the cluster $\mathcal{X}_{\text{PGL}(2,\mathbb{R}),D_k}$-space can also be interpreted by the rank 2 swapping algebra. As a consequence, the natural Fock-Goncharov Poisson bracket does not depend on the triangulations. The above theorem is generalized for $\mathcal{X}_{\text{PGL}(n,\mathbb{R}),D_k}$-space in the following papers. For $n = 3$, in Chapter 3 of [Su14], we showed a complicated homomorphism, where k flags of $\mathbb{R}P^2$ correspond to the set \mathcal{P} with k elements. For a general n, the homomorphism is discussed in [Su15], where the set \mathcal{P} has $(n-1)\cdot k$ elements, each flag of $\mathbb{R}P^{n-1}$ corresponding to $n-1$ points near each other on the boundary S^1.

Therefore, the rank n swapping algebra provides the links among the Hitchin component $H_n(S)$, W_n algebra and the cluster $\mathcal{X}_{\text{PGL}(2,\mathbb{R}),D_k}$-space.

1.4 Further discussions

In the upcoming paper [Su1511], we will define a quantized version of the rank n swapping algebra. The quantization of $\mathcal{X}_{D_k,\text{PSL}(n,\mathbb{R})}$ by Fock-Goncharov [FG06] [FG09] is embedded into our quantization of the rank n swapping algebra. We will glue the rank n swapping algebras to characterize the cluster $\mathcal{X}_{S,\text{PSL}(n,\mathbb{R})}$-space for the surface S in general. We expect to build a TQFT and some geometric invariants from the rank n swapping algebra.

In [Su1412], we relate the rank n swapping algebra to the discrete integrable system of the configuration space of N-twisted polygon in $\mathbb{R}P^{n-1}$ [FV93][SOT10][KS13]. When $n = 2$, there is a bi-hamiltonian structure for the configuration space of N-twisted polygon in $\mathbb{R}P^{n-1}$. This was conjectured in [SOT10] for $n = 3$. We expect that there exists a bi-hamiltonian structure for n in general.

2. Swapping algebra revisited

In this section, we will recall some basic definitions about the swapping algebra introduced by F. Labourie in Section 2 of [L12]. The new part of this section is that we take care of the
compatibilities of the rings related to $\mathcal{Z}(\mathcal{P})$ and the swapping bracket, particularly the sub
fract ring $\mathcal{B}(\mathcal{P})$ generated by “cross ratios”.

2.1 Linking number

Definition 2.1 [LINKING NUMBER] Let (r, x, s, y) be a quadruple of four points in S^1. The linking number between rx and sy is

$$J(rx, sy) = \frac{1}{2} \cdot (\sigma(r - x) \cdot \sigma(r - y) \cdot \sigma(y - x) - \sigma(r - x) \cdot \sigma(r - s) \cdot \sigma(s - x)),$$

such that for any $a \in \mathbb{R}$, we define $\sigma(a)$ as follows. Remove any point o different from r, x, s, y in S^1 in order to get an interval $[0, 1]$. Then the points $r, x, s, y \in S^1$ correspond to the real numbers in $[0, 1]$, $\sigma(a) = -1; 0; 1$ whenever $a < 0; a = 0; a > 0$ respectively.

In fact, the value of $J(rx, sy)$ belongs to $\{0, \pm 1, \pm \frac{1}{2}\}$, depends on the corresponding positions of r, x, s, y and does not depend on the choice of the point o. In Figure 1, we describe five possible values of $J(rx, sy)$.

2.2 Swapping algebra

Let \mathcal{P} be a cyclic subset of S^1, we represent an ordered pair (r, x) of \mathcal{P} by the expression rx. Then we consider the associative commutative ring

$$\mathcal{Z}(\mathcal{P}) := \mathbb{K}\{xy\}_{x,y \in \mathcal{P}}/\{xx\}_{\forall x \in \mathcal{P}}$$

over a field \mathbb{K} of characteristic 0, where $\{xy\}_{x,y \in \mathcal{P}}$ are variables. Then we equip $\mathcal{Z}(\mathcal{P})$ with a swapping bracket.

Definition 2.2 [SWAPPING BRACKET [L12]] The swapping bracket over $\mathcal{Z}(\mathcal{P})$ is defined by extending the following formula for any rx, sy in \mathcal{P} to $\mathcal{Z}(\mathcal{P})$ by using Leibniz’s rule:

$$\{rx, sy\} = J(rx, sy) \cdot ry \cdot sx.$$

By direct computations, F. Labourie proved the following theorem.

Theorem 2.3 [F. Labourie [L12]] The swapping bracket is Poisson.
Definition 2.4 [SWAPPING ALGEBRA] The swapping algebra of \mathcal{P} is the ring $\mathcal{Z}(\mathcal{P})$ equipped with the swapping bracket, denoted by $(\mathcal{Z}(\mathcal{P}), \{, \})$.

2.3 Swapping multifraction algebra

In this subsection, we consider the rings related to $\mathcal{Z}(\mathcal{P})$ and their compatibilities with the swapping bracket.

Definition 2.5 [CLOSED UNDER SWAPPING BRACKET] For a ring R, if $\forall a, b \in R$, we have $\{a, b\} \in R$, then we say that R is closed under swapping bracket.

Since $\mathcal{Z}(\mathcal{P})$ is an integral domain, let $\mathcal{Q}(\mathcal{P})$ be the total fraction ring of $\mathcal{Z}(\mathcal{P})$. By Leibniz’s rule, we have $\{a, \frac{1}{b}\} = -\frac{\{a, b\}}{b^2}$, thus the swapping bracket is well defined on $\mathcal{Q}(\mathcal{P})$. Therefore we have the following definition.

Definition 2.6 [SWAPPING FRACTION ALGEBRA OF \mathcal{P}] The swapping fraction algebra of \mathcal{P} is the ring $\mathcal{Q}(\mathcal{P})$ equipped with the induced swapping bracket, denoted by $(\mathcal{Q}(\mathcal{P}), \{, \})$.

Definition 2.7 [CROSS FRACTION] Let x, y, z, t belong to \mathcal{P} so that $x \neq t$ and $y \neq z$. The cross fraction determined by (x, y, z, t) is the element of $\mathcal{Q}(\mathcal{P})$:

$$[x, y, z, t] := \frac{xz}{xt} \cdot \frac{yt}{yz}.$$ \hspace{1cm} (6)

Remark 2.8 Notice that the cross fractions verify the following cross-ratio conditions [L07]:

Symmetry: $[a, b, c, d] = [b, a, c, d]$,

Normalisation: $[a, b, c, d] = 0$ if and only if $a = c$ or $b = d$,

Normalisation: $[a, b, c, d] = 1$ if and only if $a = b$ or $c = d$,

Cocycle identity: $[a, b, c, d] \cdot [a, b, d, e] = [a, b, c, e]$,

Cocycle identity: $[a, b, d, e] \cdot [b, c, d, e] = [a, c, e, f]$.

Let $\mathcal{CR}(\mathcal{P}) = \{[x, y, z, t] \in \mathcal{Q}(\mathcal{P}) \mid \forall x, y, z, t \in \mathcal{P}, x \neq t, y \neq z\}$ be the set of all the cross-fractions in $\mathcal{Q}(\mathcal{P})$. Let $\mathcal{B}(\mathcal{P})$ be the subring of $\mathcal{Q}(\mathcal{P})$ generated by $\mathcal{CR}(\mathcal{P})$.

Proposition 2.9 The ring $\mathcal{B}(\mathcal{P})$ is closed under swapping bracket.

Proof. By Leibniz’s rule, $\forall c_1, \ldots, c_n, d_1, \ldots, d_m \in \mathcal{Z}(\mathcal{P})$

$$\{c_1 \cdots c_n, d_1 \cdots d_m\} = \sum_{i=1}^{n} \sum_{j=1}^{m} \{c_i, d_j\},$$ \hspace{1cm} (7)

we only need to show that for any two elements $[x, y, z, t]$ and $[u, v, w, s]$ in $\mathcal{CR}(\mathcal{P})$, where $x \neq t$, $y \neq z$, $u \neq s$, $v \neq w$ in \mathcal{P}, then $\{\frac{x}{x}, \frac{y}{y}, \frac{w}{w}, \frac{s}{s}\} \in \mathcal{B}(\mathcal{P})$. Let $e_1 = xz$, $e_2 = \frac{1}{xz}$, $e_3 = yt$, $e_4 = \frac{1}{yt}$, $h_1 = uw$, $h_2 = \frac{1}{uw}$, $h_3 = vs$, $h_4 = \frac{1}{vs}$. By the definition of the swapping bracket, we have

$$\frac{\{e_1, h_1\}}{e_1 \cdot h_1} = J(xz, uw) \cdot \frac{xw}{xz} \cdot \frac{uz}{uw} \in \mathcal{B}(\mathcal{P}).$$

Then by the Leibniz’s rule, we deduce that for any $e, h \in \mathcal{Z}(\mathcal{P})$, we have

$$\frac{\{e, \frac{1}{h}\}}{e / h} = \frac{\{e, h\}}{e \cdot h} \cdot \frac{1/e}{h / e} = \frac{\{e, h\}}{e \cdot h} \cdot \frac{1/eh}{e \cdot h} = \frac{\{e, h\}}{e \cdot h}.$$
So for any $i, j = 1, 2, 3, 4$, we have $\{e_i, h_j\} \in B(\mathcal{P})$. Since $e_1e_2e_3e_4$ and $h_1h_2h_3h_4$ are also in $B(\mathcal{P})$, so

$$
\{e_1e_2e_3e_4, h_1h_2h_3h_4\} = \sum_{i=1}^{4} \sum_{j=1}^{4} \frac{\{e_i, h_j\}}{e_i \cdot h_j} \cdot (e_1e_2e_3e_4h_1h_2h_3h_4) \in B(\mathcal{P}).
$$

Finally, we conclude that $B(\mathcal{P})$ is closed under swapping bracket. \hfill \Box

Definition 2.10 [SWAPPING MULTIFRACTION ALGEBRA OF \mathcal{P}] The swapping multifraction algebra of \mathcal{P} is the ring $B(\mathcal{P})$ equipped with the swapping bracket, denoted by $(B(\mathcal{P}), \{\cdot, \cdot\})$.

3. Rank n swapping algebra

Swapping algebra $(Z(\mathcal{P}), \{\cdot, \cdot\})$ corresponds to $\bigcup_{n=2}^{\infty} H_n(S)$. In this section, we define the rank n swapping algebra $Z_n(\mathcal{P})$, in order to restrict the correspondence for a fixed n. In theorem 3.4, we will prove that the ring $Z_n(\mathcal{P})$ is compatible with the swapping bracket.

3.1 The rank n swapping ring $Z_n(\mathcal{P})$

Notation 3.1 Let

$$
\Delta((x_1, \ldots, x_{n+1}), (y_1, \ldots, y_{n+1})) = \det \begin{pmatrix} x_1 y_1 & \ldots & x_1 y_{n+1} \\ \ldots & \ldots & \ldots \\ x_{n+1} y_1 & \ldots & x_{n+1} y_{n+1} \end{pmatrix}.
$$

Inspired by linear algebra for \mathbb{R}^n, and the space of the rank n cross-ratios identified with the Hitchin component $H_n(S)$ [L07], we define the rank n swapping ring as follows.

Definition 3.2 [The rank n swapping ring $Z_n(\mathcal{P})$] For $n \geq 2$, let $R_n(\mathcal{P})$ be the ideal of $Z(\mathcal{P})$ generated by $\{D \in Z(\mathcal{P}) \mid D = \Delta((x_1, \ldots, x_{n+1}), (y_1, \ldots, y_{n+1})), \forall x_1, \ldots, x_{n+1}, y_1, \ldots, y_{n+1} \in \mathcal{P} \}.$

The rank n swapping ring $Z_n(\mathcal{P})$ is the quotient ring $Z(\mathcal{P})/R_n(\mathcal{P})$.

Remark 3.3 Decomposing the determinant D in the first row, we have by induction that

$$R_2(\mathcal{P}) \supseteq R_3(\mathcal{P}) \supseteq \ldots \supseteq R_n(\mathcal{P}). \quad (8)$$

3.2 Swapping bracket over $Z_n(\mathcal{P})$

We will prove by induction the fundamental theorem of the rank n swapping algebra.

Theorem 3.4 [First main result] For $n \geq 2$, the ideal $R_n(\mathcal{P})$ is a Poisson ideal with respect to the swapping bracket. Thus the ring $Z_n(\mathcal{P})$ inherits a Poisson bracket from the swapping bracket.

Proof. The above theorem is equivalent to say that for any $h \in R_n(\mathcal{P})$ and any $f \in Z(\mathcal{P})$, we have $\{f, h\} \in R_n(\mathcal{P})$ where $n \geq 2$. By the Leibniz’s rule of the swapping bracket, it suffices to prove the case where $f = ab \in Z(\mathcal{P})$, $h = \Delta((x_1, \ldots, x_{n+1}), (y_1, \ldots, y_{n+1}))$. The points x_1, \ldots, x_{n+1} (y_1, \ldots, y_{n+1} resp.) should be different from each other in \mathcal{P}, otherwise $h = 0$. Therefore the theorem follows from Lemma 3.5. \hfill \Box

Lemma 3.5 Let $n \geq 2$. Let x_1, \ldots, x_{n+1} (y_1, \ldots, y_{n+1} resp.) in \mathcal{P} be different from each other and ordered anticlockwise, a, b belong to \mathcal{P} and $x_1, \ldots, x_l, y_1, \ldots, y_k$ are on the right side of ab (include
coinciding with \(a \) or \(b \) as illustrated in Figure 2. Let \(u \) (resp.) be strictly on the left (right resp.) side of \(\overrightarrow{ab} \). Let

\[
\Delta^{R}(a, b) = \sum_{d=1}^{l} J(ab, xd) \cdot x_{d} \cdot \Delta((x_1, \ldots, x_{d-1}, a, x_{d+1}, \ldots, x_{n+1}), (y_1, \ldots, y_{n+1})) \\
+ \sum_{d=1}^{k} J(ab, uy_{d}) \cdot a_{d} \cdot \Delta((x_1, \ldots, x_{n+1}), (y_1, \ldots, y_{d-1}, b, y_{d+1}, \ldots, y_{n+1}))
\]

We obtain that

\[
\{ab, \Delta((x_1, \ldots, x_{n+1}), (y_1, \ldots, y_{n+1}))\} = \Delta^{R}(a, b).
\]

Proof. The main idea of the proof is to consider the change of \(\{ab, \Delta((x_1, \ldots, x_{n+1}), (y_1, \ldots, y_{n+1}))\} \) when \(ab \) moves topologically in the circle with special points \(a, b, x_1, \ldots, x_{n+1}, y_1, \ldots, y_{n+1} \).

We will prove that

\[
\{ab, \Delta((x_1, \ldots, x_{n+1}), (y_1, \ldots, y_{n+1}))\} = \Delta^{R}(a, b)
\]

by induction on the number of elements of \(\{x_1, \ldots, x_{n+1}, y_1, \ldots, y_{n+1}\} \) on the right side of \(\overrightarrow{ab} \) (includes coinciding with \(a \) or \(b \)), which is \(m = l + k \). Let \(S_{n+1} \) be the permutation group of \(\{1, \ldots, n+1\} \), the signature of \(\sigma \in S_{n+1} \) denoted by \(\text{sgn}(\sigma) \), is defined as 1 if \(\sigma \) is even and \(-1\) if \(\sigma \) is odd. Then we have

\[
\Delta((x_1, \ldots, x_{n+1}), (y_1, \ldots, y_{n+1})) = \sum_{\sigma \in S_{n+1}} \text{sgn}(\sigma) \prod_{i=1}^{n+1} x_i y_{\sigma(i)}.
\]

By the Leibniz’s rule, we obtain that

\[
\{ab, \Delta((x_1, \ldots, x_{n+1}), (y_1, \ldots, y_{n+1}))\} = \sum_{\sigma \in S_{n+1}} \text{sgn}(\sigma) \prod_{i=1}^{n+1} x_i y_{\sigma(i)} \sum_{j=1}^{n+1} \frac{\{ab, x_{j} y_{\sigma(j)}\}}{x_{j} y_{\sigma(j)}}
\]

By the Leibniz’s rule, we obtain that

\[
\{ab, \Delta((x_1, \ldots, x_{n+1}), (y_1, \ldots, y_{n+1}))\} = \sum_{\sigma \in S_{n+1}} \text{sgn}(\sigma) \prod_{i=1}^{n+1} x_i y_{\sigma(i)} \left(\sum_{j=1}^{n+1} \frac{J(ab, x_{j} y_{\sigma(j)}) \cdot a_{\sigma(j)} \cdot x_{j} b}{x_{j} y_{\sigma(j)}} \right).
\]
When $m = 0$ as illustrated in Figure 3, since $J(ab, x_j y_{\sigma(j)}) = 0$, we have $\{ab, x_j y_{\sigma(j)}\} = 0$ for any $j = 1, \ldots, n + 1$ and any $\sigma \in S_{n+1}$. By Equation 12, we have

$$\{ab, \Delta((x_1, \ldots, x_{n+1}), (y_1, \ldots, y_{n+1}))\} = 0 = \Delta^R(a, b)$$

in this case.

Suppose

$$\{ab, \Delta((x_1, \ldots, x_{n+1}), (y_1, \ldots, y_{n+1}))\} = \Delta^R(a, b)$$

for $m = q \geq 0$.

When $m = q + 1$, suppose that x_l is the first point of $\{x_1, \ldots, x_{n+1}, y_1, \ldots, y_{n+1}\}$ on the right side of \overrightarrow{ab} (include coinciding with a or b) with respect to the clockwise orientation.

(i) If x_l coincides with a as illustrated in Figure 4, then $m = 1$. So we have $J(ab, x_ly_{\sigma(l)}) = \frac{1}{2}$ and $J(ab, x_j y_{\sigma(j)}) = 0$ for $j \neq l$. By Equation 12, we have

$$\{ab, \Delta((x_1, \ldots, x_{n+1}), (y_1, \ldots, y_{n+1}))\} = \frac{1}{2} \cdot ab \cdot \Delta((x_1, \ldots, x_{n+1}), (y_1, \ldots, y_{n+1})) = \Delta^R(a, b).$$
(ii) If x_l does not coincide with a, we move b clockwise to the point b', such that $b' \neq x_l$ and the intersection between $\{x_1, ..., x_{n+1}, y_1, ..., y_{n+1}\}$ and the arc bb' is x_l as illustrated in Figure 5.

Then $\{ab', \Delta((x_1, ..., x_{n+1}), (y_1, ..., y_{n+1}))\}$ corresponds to the case $m = q$. Thus we have

$$\{ab', \Delta((x_1, ..., x_{n+1}), (y_1, ..., y_{n+1}))\}$$

$$= \sum_{d=1}^{l-1} J(ab', x_d u) \cdot x_d b \cdot \Delta((x_1, ..., x_{d-1}, a, x_{d+1}, ..., x_{n+1}), (y_1, ..., y_{n+1}))$$

$$+ \sum_{d=1}^{k} J(ab', y_d d) \cdot y_d b \cdot \Delta((x_1, ..., x_{n+1}), (y_1, ..., y_{d-1}, b, y_{d+1}, ..., y_{n+1})).$$

On the other hand, by Equation 12,

$$\{ab', \Delta((x_1, ..., x_{n+1}), (y_1, ..., y_{n+1}))\}$$

$$= \sum_{\sigma \in S_{n+1}} \text{sgn}(\sigma) \prod_{i=1}^{n+1} x_i y_{\sigma(i)} \left(\sum_{j=1}^{n+1} \frac{J(ab', x_j y_{\sigma(j)}) \cdot a y_{\sigma(j)} \cdot x_j b'}{x_j y_{\sigma(j)}} \right).$$

(14)

is a polynomial of $ab', x_1 b', ..., x_{n+1} b'$, denoted by $P(ab', x_1 b', ..., x_{n+1} b')$. Then

$$P(ab, x_1 b, ..., x_{n+1} b) = \sum_{\sigma \in S_{n+1}} \text{sgn}(\sigma) \prod_{i=1}^{n+1} x_i y_{\sigma(i)} \left(\sum_{j=1}^{n+1} \frac{J(ab', x_j y_{\sigma(j)}) \cdot a y_{\sigma(j)} \cdot x_j b'}{x_j y_{\sigma(j)}} \right).$$

By the cocycle identity [L12]: $J(ab, xy) - J(ab', xy) = J(b'b, xy)$, we have

$$\{ab, \Delta((x_1, ..., x_{n+1}), (y_1, ..., y_{n+1}))\} - P(ab, x_1 b, ..., x_{n+1} b)$$

$$= \sum_{\sigma \in S_{n+1}} \text{sgn}(\sigma) \prod_{i=1}^{n+1} x_i y_{\sigma(i)} \left(\sum_{j=1}^{n+1} \frac{(J(ab, x_j y_{\sigma(j)}) - J(ab', x_j y_{\sigma(j)})) \cdot a y_{\sigma(j)} \cdot x_j b}{x_j y_{\sigma(j)}} \right)$$

(15)
Since $J(b'b, x_jy_{\sigma(j)}) = 0$ when $j \neq l$, $J(b'b, x_l y_{\sigma(l)}) = J(ab, x_l u)$. So the above sum equals to

$$\sum_{\sigma \in S_{n+1}} sgn(\sigma) \prod_{i=1}^{n+1} x_i y_{\sigma(i)} \cdot \frac{J(b'b, x_l y_{\sigma(l)}) \cdot a y_{\sigma(l)} \cdot x_l b}{x_l y_{\sigma(l)}}$$

(16)

Since $J(ab', x_d u) = J(ab, x_d u)$ for $d = 1, ..., l-1$, $J(ab', uy_d) = J(ab, uy_d)$ for $d = 1, ..., k$, by Equations 13 15 16, we have

$$\{ab, \Delta((x_1, ..., x_{n+1}), (y_1, ..., y_{n+1}))\} = \Delta^R(a, b)$$

in this case.

When y_k is the first point of $\{x_1, ..., x_{n+1}, y_1, ..., y_{n+1}\}$ on the right side of \overrightarrow{ab} (include coinciding with a or b) with respect to clockwise orientation, the result follows the similar argument. By induction, we have

$$\{ab, \Delta((x_1, ..., x_{n+1}), (y_1, ..., y_{n+1}))\} = \Delta^R(a, b)$$

in general.

Finally, we conclude that

$$\{ab, \Delta((x_1, ..., x_{n+1}), (y_1, ..., y_{n+1}))\} = \Delta^R(a, b).$$

\[\square \]

Remark 3.6 We can also consider $\Delta^L(a, b)$ similar to $\Delta^R(a, b)$ with respect to the left side of \overrightarrow{ab}. The equation $\Delta^R(a, b) = \Delta^L(a, b)$ follows

$$\sum_{i=1}^{n+1} a y_i \cdot \Delta((x_1, ..., x_{n+1}), (y_1, ..., y_{i-1}, b, y_{i+1}, ..., y_{n+1}))$$

(17)

$$\sum_{i=1}^{n+1} x_i b \cdot \Delta((x_1, ..., x_{i-1}, a, x_{i+1}, ..., x_{n+1}), (y_1, ..., y_{n+1})).$$
Example 3.7 As shown in Figure 6, we have
\[\{xz, \Delta((x, z, y), (z, x, t))\} = -xt \cdot \Delta((x, z, y), (z, x, z)) = 0. \] \hspace{1cm} (18)
Therefore, the swapping bracket over \(\mathbb{Z}_n(\mathcal{P}) \) is well defined for \(n \geq 2 \).

Definition 3.8 [Rank \(n \) swapping algebra of \(\mathcal{P} \)] For \(n \geq 2 \), the rank \(n \) swapping algebra of \(\mathcal{P} \) is the rank \(n \) swapping ring \(\mathbb{Z}_n(\mathcal{P}) \) equipped with the swapping bracket, denoted by \((\mathbb{Z}_n(\mathcal{P}), \{\cdot, \cdot\}) \).

4. The ring \(\mathbb{Z}_n(\mathcal{P}) \) is an integral domain

In this section, we will show that the cross fractions are well-defined in the fraction ring of \(\mathbb{Z}_n(\mathcal{P}) \), by proving that the ring \(\mathbb{Z}_n(\mathcal{P}) \) is an integral domain. The strategy of the proof is the following. First, we introduce a geometric model studied by H. Weyl [W39] and C. D. Concini and C. Procesi [CP76] to characterize the ring \(\mathbb{Z}_n(\mathcal{P}) \) as a \(\text{GL}(n, \mathbb{K}) \)-module. Then, we transfer the integrality of the ring \(\mathbb{Z}_n(\mathcal{P}) \) to another ring \(\mathbb{K}^{\text{GL}(n, \mathbb{K})} \) by an injective ring homomorphism. The homomorphism is recovered by a long exact sequence of Lie group cohomology with values in \(\text{GL}(n, \mathbb{K}) \)-modules by Proposition 4.9. In the end, we prove that the ring \(\mathbb{K}_{n,p} \) is integral, which will complete the proof of the theorem.

4.1 A geometric model for \(\mathbb{Z}_n(\mathcal{P}) \)

Let us introduce a geometric model to characterize \(\mathbb{Z}_n(\mathcal{P}) \). Let \(M_{n,p} = (\mathbb{K}^n \times \mathbb{K}^{n^*})^p \) be the space of \(p \) vectors in \(\mathbb{K}^n \) and \(p \) co-vectors in \(\mathbb{K}^{n^*} \).

Notation 4.1 Let \(a_i = (a_{i,1}, ..., a_{i,n})^T, b_i = \sum_{l=1}^{n} b_{i,l} \sigma_l \) where \(a_{i,l}, b_{i,l} \in \mathbb{K}, \sigma_l \in \mathbb{K}^{n^*} \) and \(\sigma_l(a_i) = a_{i,l} \). We define the product between a vector \(a_i \) in \(\mathbb{K}^n \) and a co-vector \(b_j \) in \(\mathbb{K}^{n^*} \) by
\[\langle a_i | b_j \rangle := b_j(a_i) = \sum_{k=1}^{n} a_{i,k} \cdot b_{j,k}. \] \hspace{1cm} (19)

The group \(\text{GL}(n, \mathbb{K}) \) acts naturally on the vectors and the covectors by
\[g \circ a_i := g \cdot (a_{i,1}, ..., a_{i,n})^T, \]
\[g \circ b_j := (b_{j,1}, ..., b_{j,n}) \cdot (g^{-1}) \cdot (\sigma_1, ..., \sigma_n)^T \]
where \(T \) is the transpose of the matrix. When we consider the action on their products, we write \(b_j = (b_{j,1}, ..., b_{j,n})^T \) in column as \(a_i \), then
\[g \circ b_j := (g^{-1})^T \cdot (b_{j,1}, ..., b_{j,n})^T. \]
For any \(g \in \text{GL}(n, \mathbb{K}), a, b \in \mathbb{K}[M_{n,p}] \),
\[g \circ (a \cdot b) := (g \circ a) \cdot (g \circ b). \]
It induces a \(\text{GL}(n, \mathbb{K}) \) action on \(\mathbb{K}[M_{n,p}] \) satisfying:
- For any \(g \in \text{GL}(n, \mathbb{K}), a, b \in \mathbb{K}[M_{n,p}] \), we have
 \[g \circ (a + b) = g \circ a + g \circ b, \]
- For any \(g_1, g_2 \in \text{GL}(n, \mathbb{K}), a \in \mathbb{K}[M_{n,p}] \), we have
 \[g_1 \circ (g_2 \circ a) = (g_1 \cdot g_2) \circ a. \]
Then the polynomial ring $K[M_{n,p}]$ is a $GL(n, K)$-module.

Let B_{nK} be the subring of $K[M_{n,p}]$ generated by $\{\langle a_i | b_j \rangle\}_{i=1,j=1}^p$. We denote the $GL(n, K)$ invariant ring of $K[M_{n,p}]$ by $K[M_{n,p}]^{GL(n,K)}$. Since $\langle a_i | b_j \rangle \in K[M_{n,p}]$ is invariant under $GL(n, K)$ action, we have $B_{nK} \subseteq K[M_{n,p}]^{GL(n,K)}$. Moreover, C. D. Concini and C. Procesi proved that

Theorem 4.2 [C. D. Concini and C. Procesi [CP76] 1] $B_{nK} = K[M_{n,p}]^{GL(n,K)}$.

Since $K[M_{n,p}]$ is an integral domain, they obtained the following corollary.

Corollary 4.3 [C. D. Concini and C. Procesi [CP76]] The subring B_{nK} is an integral domain.

H. Weyl describe B_{nK} as a quotient ring.

Theorem 4.4 [H. Weyl [W39]] All the relations in B_{nK} are generated by $R = \{ f \in B_{nK} \mid f = \det \left(\begin{array}{ccc} \langle a_{i_1} | b_{j_1} \rangle & \ldots & \langle a_{i_1} | b_{j_n+1} \rangle \\ \vdots & \ddots & \vdots \\ \langle a_{i_n+1} | b_{j_1} \rangle & \ldots & \langle a_{i_n+1} | b_{j_n+1} \rangle \end{array} \right), \forall i_k, j_l = 1, \ldots, p \}$.

Remark 4.5 In other words, let W be the polynomial ring $K[\{x_{i,j}\}_{i,j=1}^p]$, $r = \{ f \in W \mid f = \det \left(\begin{array}{ccc} x_{i_1,j_1} & \ldots & x_{i_1,j_{n+1}} \\ \vdots & \ddots & \vdots \\ x_{i_{n+1},j_1} & \ldots & x_{i_{n+1},j_{n+1}} \end{array} \right), \forall i_k, j_l = 1, \ldots, p \}$, let T be the ideal of W generated by r, then we have $B_{nK} \cong W/T$.

Let us recall that $Z_n(P) = Z(P)/R_n(P)$ is the rank n swapping ring where $P = \{x_1, \ldots, x_p\}$. When we identify a_i with x_i on the left and b_i with x_i on the right of the pairs of points in $Z_n(P)$, we obtain the main result of this subsection below.

Theorem 4.6 Let $Z_n(P)$ be the rank n swapping ring. Let S_{nK} be the ideal of B_{nK} generated by $\{\langle a_i | b_i \rangle\}_{i=1}^p$, then $B_{nK}/S_{nK} \cong Z_n(P)$.

4.2 Proof of the second main result

Theorem 4.7 [Second main result] For $n > 1$, $Z_n(P)$ is an integral domain.

Firstly, let us first consider the following $GL(n, K)$-modules:

(i) Let L be the ideal of $K[M_{n,p}]$ generated by $\{\langle a_i | b_i \rangle\}_{i=1}^p$,

(ii) let $K_{n,p}$ be the quotient ring $K[M_{n,p}]/L$,

(iii) let S_{nK} be the ideal of B_{nK} generated by $\{\langle a_i | b_i \rangle\}_{i=1}^p$.

Thus there is an exact sequence of $GL(n, K)$-modules (the right arrows are not only module homomorphisms, but also ring homomorphisms):

$$0 \rightarrow L \rightarrow K[M_{n,p}] \rightarrow K_{n,p} \rightarrow 0. \quad (20)$$

By Lie group cohomology [CE48], the exact sequence above induces the long exact sequence:

$$0 \rightarrow L^{GL(n,K)} \rightarrow K[M_{n,p}]^{GL(n,K)} \rightarrow K_{n,p}^{GL(n,K)} \rightarrow H^1(GL(n,K), L) \rightarrow \ldots. \quad (21)$$

1Thanks for the reference provided by J. B. Bost.
Lemma 4.8 Let S be the finite subset $\{(a_i | b_i)\}_{i=1}^p$. Let \mathbb{K} be a field of characteristic 0. Then

$$(\mathbb{K}[M_{n,p}] \cdot S)^{GL(n, \mathbb{K})} = \mathbb{K}[M_{n,p}]^{GL(n, \mathbb{K})} \cdot S.$$

Proof. The proof follows from Weyl’s unitary trick. Let

$$U(n) = \{g \in GL(n, \mathbb{K}) \mid g \cdot \bar{g}^T = I\}.$$

We want to prove that

$$(\mathbb{K}[M_p] \cdot S)^{U(n)} = \mathbb{K}[M_p]^{U(n)} \cdot S.$$

Notice first that one inclusion is obvious

$$(\mathbb{K}[M_p] \cdot S)^{U(n)} \supseteq \mathbb{K}[M_p]^{U(n)} \cdot S.$$

We next prove the other inclusion:

$$(\mathbb{K}[M_p] \cdot S)^{U(n)} \subseteq \mathbb{K}[M_p]^{U(n)} \cdot S.$$

For this, let dg be a Haar measure on $U(n)$. Let x belongs to $(\mathbb{K}[M_p] \cdot S)^{U(n)}$. We represent x by

$$\sum_{l=1}^k (g \circ t_l) \cdot s_l,$$

where $g \circ s_t = s_t$. Thus we have

$$x = g \circ x = \sum_{l=1}^k (g \circ t_l) \cdot (g \circ s_l) = \sum_{l=1}^k (g \circ t_l) \cdot s_l.$$

By integrating over $U(n)$:

$$g \circ x = \int_{U(n)} \sum_{l=1}^k (g \circ t_l) \cdot s_l \, dg = \sum_{l=1}^k \left(\int_{U(n)} g \circ t_l \, dg \right) \cdot s_l, \quad (22)$$

where

$$b_l = \int_{U(n)} g \circ t_l \, dg \in \mathbb{K}[M_p].$$

For any g_1 in $U(n)$, we have

$$g_1 \circ b_l = \int_{U(n)} g_1 \circ (g \circ t_l) \, dg = \int_{U(n)} ((g_1 \circ g) \circ t_l) \, dg$$

$$= \int_{U(n)} ((g_1 \circ g) \circ t_l) \, d(g_1 \circ g) = b_l. \quad (23)$$

Thus b_l belongs to $\mathbb{K}[M_p]^{U(n)}$, x belongs to $\mathbb{K}[M_p]^{U(n)} \cdot S$. Hence

$$(\mathbb{K}[M_p] \cdot S)^{U(n)} \subseteq \mathbb{K}[M_p]^{U(n)} \cdot S.$$

Therefore, we obtain

$$(\mathbb{K}[M_p] \cdot S)^{U(n)} = \mathbb{K}[M_p]^{U(n)} \cdot S.$$

By extending the ground field \mathbb{K} of $U(n)$, the property is extended to $GL(n, \mathbb{K})$. Therefore, we conclude that

$$(\mathbb{K}[M_{n,p}] \cdot S)^{GL(n, \mathbb{K})} = \mathbb{K}[M_{n,p}]^{GL(n, \mathbb{K})} \cdot S.$$

This complete the proof of the lemma.

Then, the integrality of $Z_n(P)$ is transferred to another ring $K_{n,p}^{GL(n, \mathbb{K})}$ by the following proposition.
Proposition 4.9 There is a ring homomorphism $\theta : B_{nK}/S_{nK} \rightarrow K^{GL(n,K)}_{n,p}$ induced from the long exact sequence:

$$0 \rightarrow L^{GL(n,K)} \rightarrow \mathbb{K}[M_{n,p}]^{GL(n,K)} \rightarrow K^{GL(n,K)}_{n,p} \rightarrow H^1(\text{GL}(n, \mathbb{K}), L) \rightarrow \ldots,$$

which is injective.

Proof. By Theorem 4.2, we have $\mathbb{K}[M_{n,p}]^{GL(n,K)} = B_{nK}$. By Lemma 4.8, we have

$L^{GL(n,K)} = (\mathbb{K}[M_{n,p}] \cdot (\{(a_i|b_i)\}_{i=1}^p))^{GL(n,K)} = \mathbb{K}[M_{n,p}]^{GL(n,K)} \cdot (\{(a_i|b_i)\}_{i=1}^p) = B_{nK} \cdot (\{(a_i|b_i)\}_{i=1}^p) = S_{nK}$.

Hence Long exact sequence 21 becomes into:

$$0 \rightarrow S_{nK} \rightarrow B_{nK} \rightarrow K^{GL(n,K)}_{n,p} \rightarrow H^1(\text{GL}(n, \mathbb{K}), L) \rightarrow \ldots \quad (25)$$

Therefore, there is an injective module homomorphism θ from B_{nK}/S_{nK} to $K^{GL(n,K)}_{n,p}$. By definition of θ with respect to Exact sequence 20, for any $a, b \in B_{nK}/S_{nK}$, we have

$$\theta(a \cdot b) = \theta(a) \cdot \theta(b).$$

Thus the module homomorphism θ is also a ring homomorphism. As such, we conclude that the ring homomorphism θ is injective. \qed

Therefore, we only need to prove that $K_{n,p}$ is integral. This is the content of the following proposition.

Proposition 4.10 For $n > 1$, $K_{n,p}$ is an integral domain.

Proof. We prove the proposition by induction on the number of the vectors or covectors p. Let us start with $p = 1$. When $p = 1$, $K_{n,1} = \mathbb{K}[M_{n,1}]/(\sum_{k=1}^n a_{1,k} \cdot b_{1,k})$. Let us define the degree of a monomial in $\mathbb{K}[M_{n,1}]$ to be the sum of the degrees in all the variables. Let the degree of a polynomial f in $\mathbb{K}[M_{n,1}]$ be the maximal degree of the monomials in f, denoted by $\deg(f)$. Suppose that $\sum_{k=1}^n a_{1,k} \cdot b_{1,k}$ is a reducible polynomial in $\mathbb{K}[M_{n,1}]$, we have

$$\sum_{k=1}^n a_{1,k} \cdot b_{1,k} = g \cdot h,$$

where $g, h \in \mathbb{K}[M_{n,1}]$, $\deg(g) > 0$ and $\deg(h) > 0$. Since $\mathbb{K}[M_{n,1}]$ is an integral domain, $2 = \deg(gh) = \deg(g) + \deg(h)$, so we have $\deg(g) = \deg(h) = 1$. Suppose that

$$g = \lambda_0 + \lambda_1 \cdot c_1 + \ldots + \lambda_r \cdot c_r,$$

$$h = \mu_0 + \mu_1 \cdot d_1 + \ldots + \mu_s \cdot d_s,$$

where $\lambda_1, \ldots, \lambda_r, \mu_1, \ldots, \mu_s$ are non zero elements in \mathbb{K}, c_1, \ldots, c_r (d_1, \ldots, d_s resp.) are different elements in $\{a_{1,k}, b_{1,k}\}_{k=1}^n$. Since there is no square in $g \cdot h$, we have

$$\{c_1, \ldots, c_r\} \cap \{d_1, \ldots, d_s\} = \emptyset.$$

Because there are n monomials in gh, we obtain

$$r \cdot s = n.$$

Moreover, there are $2n$ variables in $g \cdot h$, we have

$$r + s = 2n,$$

thus

$$r \cdot s \geq 2n - 1.$$
Since \(n > 1 \), we obtain that
\[
r \cdot s \geq 2n - 1 > n = r \cdot s,
\]
which is a contradiction. We therefore conclude that \(\sum_{k=1}^{n} a_{1,k} b_{1,k} \) is an irreducible polynomial in \(\mathbb{K}[M_{n,p}] \). Since \(\mathbb{K}[M_{n,1}] \) is an integral domain, we obtain that \(K_{n,1} \) is an integral domain. Suppose that the proposition is true for \(p = m + 1 \). When \(p = m + 1 \),
\[
K_{n,m+1} = \mathbb{K}\left[\{a_{i,k}, b_{i,k}\}_{i,k=1}^{m+1,n}\right] / \left(\sum_{k=1}^{n} a_{i,k} b_{i,k} \right)_{i=1}^{m+1}
\]
(26)
we have \(K_{n,m} \) is an integral domain by induction, thus \(K_{n,m}\left[\{a_{m+1,k}, b_{m+1,k}\}_{k=1}^{n}\right] \) is an integral domain. By the above argument, the polynomial \(\sum_{k=1}^{n} a_{m+1,k} b_{m+1,k} \) is an irreducible polynomial over \(\mathbb{K}\left[\{a_{m+1,k}, b_{m+1,k}\}_{k=1}^{n}\right] \). Moreover, \(a_{m+1,k}, b_{m+1,k} \) (\(k = 1, \ldots, n \)) are not variables that appear in \(K_{n,m} \), so \(\sum_{k=1}^{n} a_{m+1,k} b_{m+1,k} \) is an irreducible polynomial over \(K_{n,m}\left[\{a_{m+1,k}, b_{m+1,k}\}_{k=1}^{n}\right] \). Hence \(K_{n,m+1} \) is an integral domain.

We therefore conclude that \(K_{n,p} \) is an integral domain for any \(p \geq 1 \) and \(n > 1 \). \(\square \)

Proof of Theorem 4.7. By Proposition 4.10, the ring \(K_{n,p} \) is an integral domain, we deduce that the invariant ring \(K_{n,p}^{GL(n, \mathbb{K})} \) is an integral domain. By Proposition 4.9, there is an injective ring homomorphism \(\theta \) from \(B_{n,K}/S_{n,K} \) to \(K_{n,p}^{GL(n, \mathbb{K})} \), so \(B_{n,K}/S_{n,K} \) is an integral domain. Moreover, by Theorem 4.6 \(Z_{n}(\mathcal{P}) \cong B_{n,K}/S_{n,K} \), we conclude that for \(n > 1 \), the rank \(n \) swapping ring \(Z_{n}(\mathcal{P}) \) is an integral domain.

Remark 4.11 The ring \(Z_{1}(\mathcal{P}) \) is not an integral domain, since
\[
D = xy \cdot yz = \det \begin{pmatrix} xy & xz \\ yz & yz \end{pmatrix}
\]
is zero in \(Z_{1}(\mathcal{P}) \), but we have \(xy \) and \(yz \) are not zero in \(Z_{1}(\mathcal{P}) \) whenever \(x \neq y, y \neq z \).

4.3 Rank \(n \) Swapping Multifraction Algebra of \(\mathcal{P} \)

After Theorem 4.7, we define rank \(n \) swapping multifraction algebra of \(\mathcal{P} \) without any obstruction.

Definition 4.12 [Rank \(n \) Swapping Fraction Algebra of \(\mathcal{P} \)] Let \(Q_{n}(\mathcal{P}) \) be the total fraction ring of \(Z_{n}(\mathcal{P}) \). The rank \(n \) swapping fraction algebra of \(\mathcal{P} \) is the total fraction ring \(Q_{n}(\mathcal{P}) \) equipped with the swapping bracket, denoted by \((Q_{n}(\mathcal{P}), \{\cdot, \cdot\})\).

Let \(CR_{n}(\mathcal{P}) = \{[x, y, z, t] = \frac{xy}{zt} : [y, t] \in Q_{n}(\mathcal{P}) \} \) be the set of all the cross fractions in \(Q_{n}(\mathcal{P}) \). Let \(B_{n}(\mathcal{P}) \) be the sub fraction ring of \(Q_{n}(\mathcal{P}) \) generated by \(CR_{n}(\mathcal{P}) \).

Similar to Proposition 2.9, we have the following.

Proposition 4.13 The sub fraction ring \(B_{n}(\mathcal{P}) \) is closed under swapping bracket.

Definition 4.14 [Rank \(n \) Swapping Multifraction Algebra of \(\mathcal{P} \)] Let \(n \geq 2 \), the rank \(n \) swapping multifraction algebra of \(\mathcal{P} \) is the sub fraction ring \(B_{n}(\mathcal{P}) \) equipped with the closed swapping bracket, denoted by \((B_{n}(\mathcal{P}), \{\cdot, \cdot\})\).
Then the ring homomorphism \(I \) from \(\mathcal{B}(\mathcal{R}) \) to \(C^\infty(H_n(S)) \) for any \(n > 1 \), induces the homomorphism \(I_n \) from \(\mathcal{B}_n(\mathcal{R}) \) to \(C^\infty(H_n(S)) \) by extending the following formula on generators to \(\mathcal{B}_n(\mathcal{R}) \):

\[
I_n([x, y, z, t]) = B_0(x, y, z, t),
\]

for any \([x, y, z, t] \in CR_n(\mathcal{R})\). By the rank \(n \) cross ratio condition, the homomorphism \(I_n \) is well-defined. Then we rephrase Theorem 1.1 as follows.

Theorem 4.15 [F. Labourie [L12]] *With the same conditions as in Theorem 1.1, for any \(b_0, b_1 \in \mathcal{B}_n(\mathcal{R}) \), we have*

\[
\lim_{n \to \infty} \{I_n(b_0), I_n(b_1)\}_{S_n} = I_n \circ \{b_0, b_1\}.
\]

Hence the rank \(n \) swapping multifraction algebra \((\mathcal{B}_n(\mathcal{R}), \{\cdot, \cdot\})\) characterizes the Hitchin component \(H_n(S) \) for a fixed \(n > 1 \).

5. Cluster \(\mathcal{X}_{PGL(2,\mathbb{R}),D_k}\)-space

Even though the rank \(n \) swapping multifraction algebra \((\mathcal{B}_n(\mathcal{P}), \{\cdot, \cdot\})\) characterizes the \(PSL(n, \mathbb{R}) \) Hitchin component asymptotically, we still have the rank \(n \) swapping multifraction algebra \((\mathcal{B}_n(\mathcal{P}), \{\cdot, \cdot\})\) characterizes the related object—cluster \(\mathcal{X}_{PGL(n,\mathbb{R}),D_k}\)-space without this asymptotic behavior where \(D_k \) is a disc with \(k \) special points on the boundary. We will show a simple case when \(n = 2 \). We show that the cluster dynamic of \(\mathcal{X}_{PGL(2,\mathbb{R}),D_k}\) can be demonstrated in the rank 2 swapping algebra. As a byproduct, we reprove that the Fock-Goncharov Poisson bracket for \(\mathcal{X}_{PGL(2,\mathbb{R}),D_k}\) is independent of the ideal triangulation.

5.1 Cluster \(\mathcal{X}_{PGL(2,\mathbb{R}),D_k}\)-space and rank 2 swapping algebra

Let \(S \) be an oriented surface with non-empty boundary and a finite set \(P \) of special points on boundary, considered modulo isotopy. In [FG06], Fock and Goncharov introduced the moduli space \(\mathcal{X}_{G,S}(\mathcal{A}_{G,S} \text{ resp.}) \) which is a pair \((\nabla, f)\), where \(\nabla \) is a flat connection on the principal \(G \) bundle on the surface \(S \), \(f \) is a flat section of \(\partial S \backslash P \) with values in the flag variety \(G/B \) (decorated flag variety \(G/U \) resp.). They found that the pair of two moduli spaces \((\mathcal{X}_{G,S}, \mathcal{A}_{G,S})\) is equipped with a cluster ensemble structure. Particularly, the moduli space \(\mathcal{X}_{G,S} \) is called the cluster \(\mathcal{X}_{G,S}\)-space. Moreover, each one of the moduli spaces \(\mathcal{X}_{G,S}, \mathcal{A}_{G,S} \) is equipped with a positive structure. When the set \(P \) is empty, the hole on the surface \(S \) should be regarded as the puncture, the positive part of \(\mathcal{X}_{PGL(2,\mathbb{R}),S} \) is related to the Teichmüller space of \(S \), and the positive part of \(\mathcal{A}_{SL(2,\mathbb{R}),S} \) is related to Penner’s decorated Teichmüller space [P87]. The fact that Penner’s decorated Teichmüller space is related to a cluster algebra was independently observed by M. Gekhtman, M. Shapiro, and A. Vainshtein [GSV05].

When \(D_k \) is a disc with \(k \) special points on the boundary, the generic cluster \(\mathcal{X}_{PGL(2,\mathbb{R}),D_k}\)-space corresponds to the generic configuration space \(Conf_{2,k} \) of \(k \) flags in \(\mathbb{R}^n \) up to projective transformations. Given a generic configuration of \(k \) flags \((m, y, z, t), n, x, \ldots \) in \(\mathbb{R}^n \), let \(P_k \) be the associated convex \(k \)-gon with \(k \) vertices \(m, y, z, t, n, x, \ldots \) as illustrated in Figure 7. The ideal triangulation of \(D_k \) corresponds to the triangulation of \(P_k \). Given a triangulation \(\mathcal{T} \) of the \(k \)-gon \(P_k \), for any pair of triangles \((\Delta_{xyz}, \Delta_{xzt})\) of \(\mathcal{T} \) where \(x, y, z, t \) are anticlockwise ordered, the Fock-Goncharov coordinate [FG06] corresponding to the inner edge \(xz \) is

\[
X_{xz} = -\frac{\Omega(\hat{y}^1 \land \hat{z}^1)}{\Omega(\hat{y}^1 \land \hat{z}^1)} \cdot \frac{\Omega(\hat{t}^1 \land \hat{x}^1)}{\Omega(\hat{y}^1 \land \hat{z}^1)}.
\]
By definition \(X_{xz} = X_{zx} \), so there are \(k-3 \) different coordinates.

Definition 5.1 [FOCK-GONCHAROV ALGEBRA] Let \(A(T) \) be the fraction ring generated by \(k-3 \) Fock-Goncharov coordinates for the triangulation \(T \), the natural Fock-Goncharov Poisson bracket \(\{\cdot,\cdot\}_2 \) is defined on the fraction ring \(A(T) \) by extending the following map on the generators:

\[
\{X_{ab},X_{cd}\}_2 = \varepsilon_{ab,cd} \cdot X_{ab} \cdot X_{cd}
\]

for any inner edges \(ab, cd \), where the value of \(\varepsilon_{ab,cd} \) only depend on the anticlockwise orientation of \(P_k \) as illustrated in Figure 7. More precisely, \(\varepsilon_{ab,cd} = 1(\varepsilon_{ab,cd} = -1 \text{ resp.}) \) when \(a = c \) and \(\Delta_{abd} \) is a triangle of \(T \) such that \(a, b, d \) are ordered anticlockwise(clockwise resp.) in \(P_k \); otherwise \(\varepsilon_{ab,cd} = 0 \).

The Fock-Goncharov algebra of \(T \) is a pair \((A(T),\{\cdot,\cdot\}_2) \).

Definition 5.2 Let \(P \) be the vertices of the convex \(k \)-gon \(P_k \). We define an injective ring homomorphism \(\theta_T \) from \(A(T) \) to \(B_2(P) \), by extending the following map on the generators:

\[
\theta_T(X_{xz}) := -\frac{yz}{tz} \cdot \frac{tx}{yx}
\]

for any inner edge of \(T \).

Theorem 5.3 The injective ring homomorphism \(\theta_T \) is Poisson with respect to the Poisson bracket \(\{\cdot,\cdot\}_2 \) and the swapping bracket \(\{\cdot,\cdot\} \).

Proof. By direct calculations, for any inner edge \(ab \) of the triangulation \(T \), we have

\[
\left\{ab, \frac{yz}{tz} \cdot \frac{tx}{yx}\right\} = \begin{cases}
1 & \text{if } ab = zx; \\
-1 & \text{if } ab = xz; \\
0 & \text{otherwise.}
\end{cases}
\]

(29)

The theorem follows from the above equation and the Leibniz’s rule. \(\square \)

5.2 Cluster dynamic in rank 2 swapping algebra

The cluster \(\mathcal{X} \)-space is introduced by Fock and Goncharov [FG06] by using the same set-up as the cluster algebra [FZ02]. We consider the case for the cluster \(\mathcal{X}_{\text{PGL}(2,\mathbb{R}),D_4} \)-space.
Definition 5.4 [cluster $X_{PGL(2,R),D_k}$-space [FG04] [FG06]] Let I_T be the set of $k - 3$ inner edges of the triangulation T of D_k. The function ε from $I_T \times I_T$ to \mathbb{Z} is defined as in Definition 5.1, a seed is $I_T = (I_T, \varepsilon)$.

A mutation at the edge $e \in I_T$ changes the seed I_T to a new one $I_T' = (I_T', \varepsilon')$, where the edge e of the triangulation T is changed into the edge e' of T by a flip illustrated in Figure 8. We identify I_T with I_T' by identifying e with e', where

$$\varepsilon'_{i,j} = \begin{cases}
-\varepsilon_{i,j} & \text{if } e \in \{i, j\}; \\
\varepsilon_{i,j} + \varepsilon_{i,e} \max \{0, \varepsilon_{i,e} \varepsilon_{e,j} \} & \text{if } e \notin \{i, j\}.
\end{cases}$$

A cluster transformation is a composition of mutations and automorphisms of seeds.

We assign to the seed I_T ($I_{T'}$, resp.) the split tori \mathbb{T}_T ($\mathbb{T}_{T'}$, resp.) associated to the Fock-Goncharov coordinates $\{X_i\}_{i \in I_T}$ ($\{X'_i\}_{i \in I_{T'}}$, resp.). Then the transition function from \mathbb{T}_T to $\mathbb{T}_{T'}$ is

$$\mu_e(X'_i) = g_e(X_i) = \begin{cases}
X_i(1 + X_e)^{-\varepsilon_{i,e}} & \text{if } e \neq i, \varepsilon_{i,e} \leq 0; \\
X_i(1 + X_e^{-1})^{-\varepsilon_{i,e}} & \text{if } e \neq i, \varepsilon_{i,e} > 0; \\
x_i^{e-1} & \text{if } i = e.
\end{cases}$$

Any two triangulations are related by a composition of flips, therefore any two split tori are also related by a composition of the rational functions as above.

The cluster $X_{PGL(2,R),D_k}$-space is obtained by gluing all the possible algebraic tori \mathbb{T}_T according to the transition functions described as above.

We show the cluster dynamic of $X_{PGL(2,R),D_k}$ in the rank 2 swapping algebra as follows.

Lemma 5.5 The triangulation T' is the flip of T at the edge e. Then

$$\theta_T \circ g_e(X_i) = \theta_{T'}(X'_i).$$

Proof. Let us consider the case where $e = xz$ and the triangulations T, T' is illustrated in Figure 8. For $i = xz$, we have

$$\theta_{T'}(X'_{xz}) = -\frac{zt}{xt} \cdot \frac{xy}{zy}.$$
Zhe Sun

\[\theta_T \circ g_e(X_{xz}) = \theta_T \left(\frac{1}{X_{xz}} \right) = -\frac{tz}{yz} \cdot \frac{yx}{tx}. \]

By the rank 2 swapping algebra relations:

\[
\begin{align*}
yz \cdot tz \cdot ty + tz \cdot zy \cdot yt &= 0, \\
tx \cdot xy \cdot yt + yx \cdot xt \cdot ty &= 0,
\end{align*}
\]

we obtain

\[\theta_T \circ g_e(X_{xz}) = \theta_T'(X_{xz}). \]

For \(i = xy \), we have

\[\theta_T'(X_{xy}) = -\frac{my}{ty} \cdot \frac{tx}{mx}, \]

\[\theta_T \circ g_e(X_{xy}) = \theta_T \left(X_{xy} \cdot (1 + X_{xz}^{-1}) \right) = -\frac{my}{ty} \cdot \frac{zx}{mx} \left(1 - \frac{tz}{yz} \cdot \frac{yx}{tx} \right). \]

By the rank 2 swapping algebra relation:

\[
\begin{align*}
yz \cdot ty \cdot zx + yx \cdot tz \cdot zy - yz \cdot zy \cdot tx &= 0,
\end{align*}
\]

we obtain

\[\theta_T \circ g_e(X_{xy}) = \theta_T'(X_{xy}). \]

We have same results for the other inner edges and the other cases different from the one illustrated in Figure 8, by the similar arguments. We therefore conclude that

\[\theta_T \circ g_e(X_i) = \theta_T'(X_i). \]

\[\Box \]

Proposition 5.6 The homomorphism \(\mu_e \) preserves the Poisson bracket, so the Poisson bracket \(\{\cdot,\cdot\}_2 \) does not depend on the triangulation \(\mathcal{T} \).

Proof. We need to prove that

\[\{\mu_e(X'_i),\mu_e(X'_j)\}_2 = \mu_e \left(\{X'_i,X'_j\}_2 \right), \]

which is equivalent to

\[\{g_e(X_i),g_e(X_j)\}_2 = \epsilon'_{i,j} \cdot g_e(X_i) \cdot g_e(X_j). \]

Since \(\theta_T' \) is injective, we only need to prove that

\[\theta_T \circ \{g_e(X_i),g_e(X_j)\}_2 = \theta_T \left(\epsilon'_{i,j} \cdot g_e(X_i) \cdot g_e(X_j) \right). \]

By Theorem 5.3 and Lemma 5.5, we have

\[
\begin{align*}
\theta_T \circ \{g_e(X_i),g_e(X_j)\}_2 &= \{\theta_T \circ g_e(X_i),\theta_T \circ g_e(X_j)\} \\
&= \{\theta_T'(X'_i),\theta_T'(X'_j)\}_2 \\
&= \epsilon'_{i,j} \cdot \theta_T'(X_i) \cdot \theta_T'(X_j) = \theta_T \left(\epsilon'_{i,j} \cdot g_e(X_i) \cdot g_e(X_j) \right).
\end{align*}
\]

We therefore conclude that the homomorphism \(\mu_e \) preserves the Poisson bracket. \(\Box \)

Remark 5.7 For \(n \) in general, the generalized injective ring homomorphism \(\theta_{T_n} \) is shown in [Su15], where the set \(\mathcal{P} \) has \((n-1) \cdot k \) elements, each flag of \(\mathbb{RP}^{n-1} \) corresponds to \(n-1 \) points near each other on the boundary \(S^1 \). We expect to glue the rank \(n \) swapping algebras for the purpose of characterizing \(X_{\text{PGL}(n,\mathbb{R})} \) for the surface case.

20
Acknowledgements

This article is the first part of my thesis [Su14] under the direction of François Labourie at university of Paris-Sud. I am deeply indebted to François Labourie for suggesting the subject and for the guidance without which this work would not have been accomplished. I also thank to Vladimir Fock for discussions and for suggesting many improvements to this article. I also thank Jean Benoît Bost and Laurent Clozel for suggesting relevant references. Finally, I am grateful to my home institute University of Paris-Sud, Max Planck Institute for Mathematics and Yau Mathematical Sciences Center at Tsinghua University for their hospitality.

References

L07 F. Labourie, Cross Ratios, Surface Groups, SL(n,R) and Diffeomorphisms of the Circle, Publications de l’IHES, n. 106, 139-213 (2007).
Rank n swapping algebra for the $\text{PSL}(n, \mathbb{R})$ Hitchin component

Su1511 Z. Sun, *Quantization of rank n swapping algebra*, in preparation.

Zhe Sun sunzhe1985@gmail.com
Room 106, Jing Zhai Building, Tsinghua University, Hai Dian District, Beijing, 100084, China