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SHELLS OF TWISTED FLAG VARIETIES AND THE ROST

INVARIANT

S. GARIBALDI, V. PETROV, AND N. SEMENOV

Abstract. We introduce two new general methods to compute the Chow
motives of twisted flag varieties and settle a 20-year-old conjecture of Markus
Rost about the Rost invariant for groups of type E7.
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1. Introduction

A twisted flag variety over an arbitrary field — such as a quadric or a Severi-
Brauer variety — “typically” has no rational points. In such a case, the Chow
motive of the variety provides one of the few tools for studying its geometry. In
this article, we introduce two new general methods to compute the Chow motive
of such a variety.

Chow motives were introduced by Alexander Grothendieck, and they have since
become a fundamental tool for investigating the structure of algebraic varieties.
Computing Chow motives has also proved to be valuable for addressing questions
on other topics. As examples, we mention:

• Voevodsky’s proof of the Milnor conjecture relied on Rost’s computation of
the motive of a Pfister quadric.

• Progress on the long-standing Kaplansky problem about possible values of
the u-invariant relied on the Chow motives and Chow rings of quadrics and
quadratic Grassmannians, see [Vi07].
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• The structure of the powers of the fundamental ideal in Witt rings ([Ka04]),
excellent connections in the motives of quadrics ([Vi10]), the proof of the hy-
perbolicity conjecture for orthogonal involutions ([Ka10]), the proof of Hoff-
mann’s conjecture on the higher Witt indexes of quadratic forms ([Ka03]),
an incompressibility results as in [Ka13] rely on analyzing the Chow motive
of generalized Severi-Brauer varieties and products of quadrics.

• The motive of the Borel variety for E8 as in [PSZ] and [PS12] was used to
answer a question of Serre [Sem] and other questions about finite subgroups
of E8 [GaSe].

• Karpenko and others proved many results on isotropy of involutions on
central simple algebras by analyzing motivic decompositions of projective
homogeneous varieties, culminating in the paper [KaZ] by Karpenko and
Zhykhovich which also treats unitary Grassmannians.

We illustrate the power of the general methods developed in this paper by calcu-
lating the Chow motives of some twisted flag varieties for which this computation
was previously not possible.

First method: shells. Our first method (§4) generalizes Vishik’s shells of qua-
dratic forms from [Vi03] and extends Karpenko’s result on the upper motives from
[Ka13]. Karpenko proved that any indecomposable direct summand of the Chow
motive of a twisted flag variety of inner type is isomorphic to a Tate twist of the
upper motive of another twisted flag variety. Thus, the study of motivic decom-
positions of twisted flag varieties is reduced to the study of the upper motives.
For generically split varieties, the structure of upper motives was determined in
[PSZ], but apart from this case there are unfortunately very few results about the
structure of upper motives.

Our method is aimed to address this lack. It turns out that one can subdivide
algebraic cycles on twisted flag varieties into several classes, called shells. Direct
summands of the Chow motives of twisted flag varieties starting in the same shell
are of the same nature, and our first main result (Theorem 4.10) asserts that one
can shift these direct summands inside shells under the condition of existence of
a certain cycle α. This condition is essential; the theorem does not hold without
it. Moreover, this condition is automatically satisfied for quadrics, so the notion of
shell given here generalizes Vishik’s shells for quadrics.

We use the shell method to prove that certain “big” direct summands are inde-
composable.

Second method. Our second method (Theorem 6.4) is based on a formula of
Chernousov and Merkurjev from [CM]. This method provides a broad generaliza-
tion of the generic point diagram, which is a standard tool in the theory of Chow
motives. Namely, if α is a cycle on a twisted flag G-variety X, which is defined over
the function field of a twisted flag G-variety X ′ (where G is a semisimple algebraic

group), then the cycle α × 1 + β on the product X ×X
′
is defined over the base

field for a certain cycle β. Unfortunately, the generic point diagram does not give
a precise formula for β, and one works with undefined coefficients. Our method
allows one to compute β explicitly — see Example 6.5 for an illustration. Moreover,
our result provides an explicit algorithmic description of all rational cycles on the

product X ×X
′
, and in particular of all rational projectors (by taking X = X ′).
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We use this method in Section 8 to construct new projectors for Chow motives of
E6-varieties. We do not know any alternative way of doing this.

Our two methods are complementary to each other. The first method is designed
to eliminate certain motivic decomposition types, and the second one to prove that
the remaining decomposition types are realizable.

Algorithm. We also provide in section 5 an algorithm to calculate the multiplica-
tion table for the equivariant and ordinary Chow rings of twisted flag varieties and
the equivariant and ordinary Steenrod operations modulo p. This algorithm is a
generalization of one described by Knutson and Tao in [KnT] for Grassmannians.
This section of the paper can be read independently of the rest.

Applications. To demonstrate our methods, we provide a complete classification
of motivic decompositions of all twisted flag varieties of inner type E6 (see Sec-
tion 8).

We also use our methods to prove results relating isotropy of certain groups with
values of the Rost invariant. Recall that the Rost invariant is a map

(1.1) rG : H1(k,G) → H3(k,Q/Z(2))

that is functorial in k and defined for every simple simply connected algebraic group
G. For such G, it is, roughly speaking, the first nonzero invariant [KMRT, §31],
and it generates the group of invariants with codomain H3(∗,Q/Z(2)) [GaMS]. It
plays an important role in the study of quadratic forms (where it is known as the
Arason invariant) and it was crucial in Bayer and Parimala’s proof of the Hasse
Principle Conjecture II for classical groups in [BP] and the proof of all known cases
of the conjecture for exceptional groups. Generally speaking, such cohomological
invariants are important because they provide a way to transform questions about
the pointed set H1(k,G) into questions about an abelian group like H3(k,Q/Z(2)).
For the definition and basic properties of the Rost invariant, see the portion of the
book [GaMS] written by Merkurjev and Garibaldi.

More than 20 years ago, Markus Rost conjectured1 that the Rost invariant for
groups of type E7 detects rationality of parabolic subgroups. We combine the mo-
tivic techniques developed here to prove his conjecture, which appears as Theorem
10.10 below. Moreover, Tonny Springer raised the general question of possible rela-
tions between the Rost invariant and rationality of parabolic subgroups for groups
of type E7 in [Sp06]; Theorems 10.10 and 10.18 settle this.

We prove analogous results for all parabolic subgroups of groups of type El,
including E8 at the prime 3 (Theorems 10.10, 10.18, and 10.23). Note that usually
results for primes bigger than 2 are substantially more complicated than the version
for 2. Our methods work in the same manner for all primes.

Further, our results on the Rost invariant give some classification results for
algebraic groups over function fields of p-adic curves (Corollaries 10.17 and 10.25).

We remark that we do not use the second method to prove these results about
the Rost invariant, nor do we need the full generality of shells. (The full generality
of both methods is essential, however, for the decomposition of the E6-varieties
in Section 8.) For our Rost invariant results, it suffices to use just the first shell,
the algorithm to compute the Steenrod operations (applied only to E7-varieties),
Karpenko’s upper motive, and Proposition 3.2 below due to De Clercq (which is a

1Letter to Jean-Pierre Serre, dated November 1992.
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generalization of Karpenko’s [Ka10, Prop. 4.6]). On the other hand, we believe that
we would not have found any of the proofs in the present article without developing
the general methods first.

In summary, the applications to groups of type El are substantially stronger than
previous results, which were obtained using algebraic and cohomological techniques.
Furthermore, our proofs are more “conceptual” in that the difficult work is part
of the new motivic techniques, which are completely general, as opposed to being
specific to the group. Also, all results of the present article apart from a few
technical statements hold over fields of any characteristic, even if the characteristic
equals a torsion prime of the group.

Finally, our methods are also new for groups of classical types, and can be
applied to study, for example, the generalized Severi-Brauer varieties and quadratic
or symplectic Grassmannians.

2. Background on algebraic groups and motives

Algebraic groups. Detailed information on algebraic groups can be found in
[Sp98] and [KMRT].

2.1. Let k be a field and G a semisimple linear algebraic group of inner type over
k. We write Φ for the root system of G, Φ+ resp. Φ− for the set of positive
resp. negative roots, and ∆ for the Dynkin diagram of G and by abuse of notation
also for the set of vertices or simple roots. We enumerate the simple roots following
Bourbaki, and we recall the precise numbering for groups of type E in (8.1) and
(10.1) below.

For every subset Θ of ∆, there is a projective homogeneous G-variety XΘ of
parabolic subgroups of type Θ; these are the twisted flag varieties of G. We nor-
malize the notation so that X∅ = Spec k, X{α} corresponds to a maximal parabolic
subgroup, and X∆ is the Borel variety. We occasionally omit the braces and write
X1,2 for X{1,2}, for example. If G is a split group, then in the same way we write
PΘ for a standard parabolic subgroup of type Θ so that XΘ ≃ G/PΘ.

2.2. The Tits index of the group G is the set of vertices i ∈ ∆ such that the variety
Xi has a rational point; we draw it by circling those vertices in the Dynkin diagram
of G. The possible Tits indexes have been determined in [Ti66], or see [Sp98, §17]
or [PSt].

Let S be a maximal k-split torus of G and following [Ti66] put Gan for the
derived subgroup [ZG(S), ZG(S)] of the reductive group ZG(S). The subgroup Gan

is called the semisimple anisotropic kernel of G. It is semisimple and k-anisotropic,
and it is uniquely determined by G up to G(k)-conjugacy because the maximal
k-split tori are conjugate under G(k). The Dynkin type of Gan equals ∆ \L, where
L is the Tits index of G, and the Tits index of Gan is empty.

Rost invariant. The Rost invariant from (1.1) takes values in the groupH3(k,Q/Z(2)),
which is defined to be the direct sum over all primes p of lim−→m

H3(k,Z/pmZ(2)),

where

Hd+1(k,Z/pmZ(d)) :=

{
Hd+1(k, µ⊗d

pm) if char k 6= p;

H1(k,Kd(ksep)/p
m) if char k = p,

the groups on the right are Galois cohomology, and ksep is a separable closure of
k, see [GaMS, pp. 151–154]. One defines H3(k,Z/nZ(2)) analogously for com-
posite n, and it is naturally identified with the n-torsion in H3(k,Q/Z(2)). Note
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that H1(k,Z/nZ(0)) is the Galois cohomology group H1(k,Z/nZ) regardless of the
characteristic of k.

There is a cup product map

(
×dK1(k)

)
×H1(k,Z/nZ) → Hd+1(k,Z/nZ(d)),

and we call elements of the image (including zero) symbols.

Chow motives.

2.3. By a variety we always mean a reduced separated scheme of finite type over
a field. Let p be a prime number. For a smooth projective variety X over k,
we write CH(X) for its Chow ring modulo rational equivalence and set Ch(X) :=
CH(X) ⊗ Fp. We write deg for the degree map CH0(X) → Z, and for a field
extension K/k we write XK for the corresponding extension of scalars. A cycle
α ∈ Ch(XK) is called rational (with respect to k), if it lies in the image of the
restriction map Ch(X) → Ch(XK). A subgroup of Ch(XK) is called rational if all
its elements are rational.

2.4. We consider the category of Chow motives over k with Fp-coefficients (see
[Ma] or [EKM, §64]). The motive of a variety X is denoted by M (X). For a
field extension K/k and a motive M we denote by MK the respective extension of
scalars. The shifts of Tate motives are denoted by Fp(i).

2.5. Let X be a smooth projective irreducible variety over k. A motive M = (X, π)
for a projector π is called geometrically (resp., generically) split, if over some field
extension F of k (resp., over k(X)) it is isomorphic to a finite sum

⊕
i∈I Fp(i) of

Tate motives for some multiset of non-negative indexes I. The field F is called a
splitting field of M , and for a cycle α ∈ Ch(X) we set ᾱ = αF .

For a twisted flag variety X , the motive M (X) is geometrically split (see [Kö,
Theorem 2.1]), and we denote by X the scalar extension of X to a splitting field of
its motive. The Chow ring of X is independent of the choice of splitting field. Its
structure is explicitly described in Section 5.

We define the Poincaré polynomial of a geometrically split motive M by the
formula P (M, t) =

∑
i∈I t

i ∈ Z[t]. The Poincaré polynomial is independent of
the choice of a splitting field F . We define the dimension of M to be dimM :=
max I −min I. An explicit formula for P (M (X), t) for a twisted flag variety X is
given in [PS10, §2].

In a similar way we define the Poincaré polynomial of a finite-dimensional Z≥0-
graded vector space A∗ as P (A∗, t) =

∑
i≥0 dimAi · ti.

2.6 (Krull-Schmidt). For a motive M we say that the Krull-Schmidt theorem holds
for M , if for any two motivic decompositions of M

M ≃ M1 ⊕ . . .⊕Ma ≃ N1 ⊕ . . .⊕Nb

with all motives Mi, Nj indecomposable, we have a = b and there exists a permu-
tation σ of {1, . . . , a} such that Mi ≃ Nσ(i) for all i = 1, . . . , a.

By [CM] the Krull-Schmidt theorem holds for all twisted flag varieties in the
category of motives with Fp-coefficients.
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3. Karpenko’s theorem on upper motives and generic points of

motives

Let G be a semisimple linear algebraic group of inner type over a field k, X
be a twisted G-homogeneous flag variety over k, p a prime number, and U(X)
the (unique) indecomposable direct summand of the Chow motive of X with Fp-

coefficients such that Ch0(U(X)) 6= 0. The set of isomorphism classes of the motives
U(Y ) for all twistedG-homogeneous flag varieties Y is called the set of upper motives
of G.

3.1. Proposition (Karpenko, [Ka13, Theorem 3.5]). Every indecomposable sum-
mand of X is isomorphic to a Tate shift of an upper motive U(Y ), where Y runs
over all twisted G-homogeneous flag varieties over k such that the Tits index of
Gk(Y ) contains the Tits index of Gk(X). �

We also need a result of De Clercq:

3.2. Proposition (De Clercq, [DC, Thm. 1.1]). Let X and Y be twisted flag
varieties, and let M and N be direct summands of M (X) and M (Y ) respec-
tively. If Nk(X) is an indecomposable direct summand of Mk(X) and every cycle

in Ch(Y ×X) which is defined over k(X)(Yk(X)) is defined over k(Y ), then N is a
direct summand of M . �

3.3. Definition. Let now X be a smooth projective irreducible variety and M =
(X, π) a geometrically split motive. Assume that over a splitting field F of M the
motive MF ≃ ⊕

i∈I∪{l} Fp(i) for a multiset I of indexes such that every i ∈ I is

bigger than l. Then Chl(MF ) ≃ Fp, and any nonzero element in Chl(MF ) is called
a generic point of M ; we abuse language and write “the” generic point.

The following two results are well-known:

3.4. Lemma. Let X be a twisted flag G-variety. The generic point of a direct
summand of the motive of X is rational (i.e., defined over k).

Proof. Follows from Prop. 3.1. �

3.5. Lemma. If, in the notation of Definition 3.3, M is generically split, then the
generic point of M is rational.

Proof. Let in the notation of Definition 3.3 M = (X, π). The motive Mk(X) is a
direct sum of shifted Tate motives. Let l be the smallest integer such that the Tate
motive Fp(l) is a direct summand of Mk(X). This Tate motive is defined by two

cycles a ∈ Chl(Xk(X)) and b ∈ Chl(Mk(X)) with deg(ab) = 1 and in the Sweedler
notation

π̄ = a× b+ x(1) × x(2)

with codimx(2) > l. We want to show that b is defined over k.
Consider Mk(X). By the generic point diagram ([PSZ, Lemma 1.8]) the cycle

b× 1 + y(1) × y(2)

with codim y(1) < l is rational. Hence, the product of the above cycles equals

pt× b+ z(1) × z(2),
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where codim z(1) < dimX and pt is the class of a rational point on X , and is
rational. Taking the push-forward with respect to the second projection

X ×X → X,

one sees that b is rational. �

4. Shells

The content of this section is a generalization of the notion of shells for quadratic
forms invented by Vishik (see [Vi03]) and Karpenko’s result quoted as Proposition
3.1 above. Let X denote a twisted G-homogeneous flag variety that is not a point.

4.1. Definition (big shells). For each set Ψ of vertices of the Dynkin diagram ∆ of
G, we put KΨ for the function field of the variety XΨ. Define the (big) shell SH6Ψ

of X to be the union for all i of the b ∈ Chi(X) such that

(1) b is defined over KΨ and
(2) there is an a ∈ Chi(X) defined over KΨ such that deg(ab) = 1 ∈ Fp.

Note that each shell is closed under multiplication by elements of F×
p , and that

the shells depend on the prime p (even though the Poincaré polynomial of Ch(X)
does not).

4.2. Examples. A shell SH6Ψ is nonempty iff X ×KΨ has a zero-cycle of degree
not divisible by p. Consequently, for Θ ⊆ ∆ such that X = XΘ, the shell SH≤Θ is
always nonempty. We call it the first shell of X .

For Ψ = ∆ or more generally for any Ψ such that KΨ splits G, SH6Ψ is the set

of nonzero homogeneous elements of Ch(X), because the pairing (a, b) 7→ deg(ab)
on Ch(X) is non-degenerate. We call this the last shell of X .

4.3. Example. If Ψ ⊆ Ψ′, then there is a natural surjection XΨ′ → XΨ, hence an
inclusion KΨ ⊆ KΨ′ , so SH6Ψ ⊆ SH6Ψ′ .

4.4. Definition. A (p,Θ)-index S of G is a set Θ ⊆ S ⊆ ∆ such that there exists
an extension L of k with the properties that (a) the Tits index of GL is S and (b)
every finite extension of L has degree a power of p.

The set of (p,Θ)-indexes of G is a partially ordered set (by inclusion). We
define the height of X = XΘ as the maximal number of elements in a chain of
(p,Θ)-indexes of G.

4.5. Proposition. Let {Si | i ∈ I} be the set of (p,Θ)-indexes of G.

(1) Every nonempty shell on X = XΘ equals SH6∩j∈JSj for some subset J ⊆ I.
(2) Suppose that Θ ⊆ Ψ,Ψ′ ⊆ ∆ are such that, for every i, if Ψ′ ⊂ Si then

Ψ ⊂ Si. Then SH6Ψ ⊆ SH6Ψ′ .

Proof. First suppose that Ψ,Ψ′ ⊆ ∆ are such that there exists a finite extension F
of KΨ′ of degree not divisible by p such that XΨ(F ) 6= ∅. Put E for the fraction
field of the integral domain F ⊗KΨ; it is the function field of the F -variety XΨ×F .
The diagram

Ch(X ×KΨ)

**❚❚❚
❚❚

❚❚
❚❚

// Ch(X × E)

��

Ch(X × F )
resE/Foo Ch(X ×KΨ′)

resF/K
Ψ′oo

rr❡❡❡❡❡❡❡
❡❡❡

❡❡❡
❡❡❡

❡❡❡
❡❡❡

❡❡

Ch(X)
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commutes where all the arrows are scalar extension. Each b ∈ SH6Ψ is the image
of some b0 ∈ Ch(X × KΨ) and we consider the image of b0 in Ch(X × E). As
XΨ(F ) is nonempty, E is a purely transcendental extension of F , hence resE/F is
an isomorphism by [FlOV, Prop. 2.1.8]. The arrow resF/KΨ′

is also an isomorphism,
so the image of b0 in Ch(X×KΨ′) maps to b ∈ SH6Ψ′ , proving that SH6Ψ ⊆ SH6Ψ′ .

For (2), there is a finite extension F of KΨ′ of degree not divisible by p such that
the Tits index of GF is Si for some i; necessarily this Si contains Ψ

′, hence also Ψ,
i.e., XΨ(F ) is nonempty. The previous paragraph gives (2).

Now let Ψ be an arbitrary subset of ∆ such that SH6Ψ is nonempty. Then
there is a finite extension F of KΨ of degree not divisible by p such that XΘ(F ) is
nonempty and the Tits index of GF contains both Ψ and Θ, i.e., XΘ∪Ψ ×KΨ has
a zero-cycle of degree not divisible by p. By the previous paragraph, we find that
SH6Ψ = SH6Ψ∪Θ.

For (1), let Ψ0 ⊆ ∆ be such that SH6Ψ0
is nonempty. By the previous paragraph,

we may assume that Ψ0 ⊇ Θ. Put Ψ for the intersection of all the Si’s containing
Ψ0. By (2), SH6Ψ = SH6Ψ0

, hence (1). �

4.6. Example (Quadrics). In [Vi03] Vishik describes a subdivision of the Chow
group of projective quadrics into shells.

Let p = 2 and let q be an anisotropic regular quadratic form over k of dimension
n+2 and X the projective quadric given by the equation q = 0. Since in the present
article we consider the groups of inner type only, we assume that the discriminant
of q is trivial, if n is even.

Let h ∈ Ch1(X) be the class of a hyperplane section of X and ls, s = 0, . . . , [n/2],
the classes of s-dimensional subspaces on X . Then the Chow group Ch∗(X) has a
basis

{hs, ls | s = 0, . . . , [n/2]}.
Let i1 < · · · < ir be the splitting pattern of q (in the usual sense of [EKM,

p. 104], as opposed to the variation used in [Vi03, p. 31]) and set i0 = 0. Then the
cycles {hs, ls | it−1 ≤ s ≤ it−1} belong to the shell t ∈ N in the notation of Vishik.

In our notation the cycles {hs, ls | 0 ≤ s < it} belong to SH6{it}, and the cycles
{hs, ls | it−1 ≤ s < it} belong to SH6{it} \ SH6{it−1}.

4.7. Example. Suppose the set of (p,Θ)-indexes of G is contained in {S1, . . . , Sr}
such that S1 ⊂ S2 ⊂ · · · ⊂ Sr = ∆. Then by Proposition 4.5(1), the nonempty
shells of S are

SH6Θ = SH6S1
⊆ SH6S2

⊆ · · · ⊆ SH6Sr = SH6∆.

This situation occurs in Example 4.6, where we find r distinct (2, {1})-indexes and
r distinct shells.

4.8. Definition (small shells). For each set Ψ of vertices of the Dynkin diagram of

G, we set the (small) shell SHΨ to be the union for all i of the cycles b ∈ Chi(X)
such that b is the generic point of an indecomposable direct summand M of the
motive of X such that M is isomorphic to a Tate twist of U(XΨ). In particular, by
the proof of [Ka13, Th. 3.5], SHΨ ⊆ SH6Ψ.

We remark that the big shells reflect the splitting behavior of the group G and
the small shells reflect the motivic behavior of G.

We say that a motive M starts in the shell SHΨ (resp. in codimension l), if its

generic point belongs to SHΨ (resp. to Chl(X)).
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4.9. Lemma. Let X be a smooth projective variety over k and M an indecomposable
geometrically split motive with a splitting field F satisfying the following conditions:

(1) the kernel of the natural map End(M) → End(MF ) consists of nilpotent
correspondences;

(2) MF ≃ ⊕
i∈I∪{l} Fp(i) for a multiset I of indexes such that every i ∈ I is

bigger than l;
(3) there exist two morphisms α : M → M (X) and β : M (X) → M such that

the composition β ◦ α : M → M maps over F the generic point of MF

identically on itself.

Then M is isomorphic to a direct summand of M (X).

Proof. Let M = (Y, π) for some smooth projective variety Y over k. Since M is
geometrically split, the ring End(MF ) is finite, and therefore some power, say n, of
β̄ ◦ ᾱ ∈ End(MF ) is a projector. This projector is non-zero by condition 3). Since
M is indecomposable, this projector must be equal to π̄.

Denote α′ := α ◦ (β ◦ α)◦(n−1) : M → M (X). Then β̄ ◦ ᾱ′ = π̄. By condition 1)
β ◦ α′ = π + ν for some nilpotent correspondence ν. Denote β′ := (π + ν)−1 ◦ β.
Then β′ ◦ α′ = π, and the lemma follows. �

The following theorem is known for smooth projective quadrics by [Vi03].

4.10. Theorem. Let b ∈ Chl(X) ∩ SHΨ be the generic point of an indecomposable
direct summand M of M (X) and α ∈ Cht(X) a cycle defined over k. If the cycle
b′ := b·α is in SH6Ψ, then there is an indecomposable direct summand M ′ of M (X)
with generic point b′ and isomorphic to M(t).

The results of Section 8 below show that one cannot in general weaken any
condition of the theorem.

Proof of Theorem 4.10. Set Y = XΨ. By assumptions M is isomorphic to N(l) for
the upper motive N = U(Y ). Let d′ be a cycle dual to b′ in the definition of shells.
Then d′ is defined over k(Y ).

Define a sequence of morphisms

M(t) = N(t+ l)
α−→ Y (t+ l)

β−→ X
γ−→ X(t)

δ−→ M(t),

where α is an embedding of N(t+ l) as a direct summand of Y (t+ l),

β̄ = 1× d′ + y(1) × x(2) ∈ ChdimY+l+t(Y ×X)

with codim y(1) > 0,

γ̄ = (α× 1) ·∆X ∈ ChdimX−t(X ×X),

and δ is the projection onto the direct summand.
To finish the proof it suffices to notice that the composition δ ◦ γ ◦ β ◦ α maps

Fp(t+ l) to Fp(t+ l) identically over k̄ and apply Lemma 4.9. �

4.11. Corollary. Let b ∈ Chl(X) be a rational cycle from the first shell of X. Then
there is an indecomposable direct summand of X with generic point b isomorphic
to the l-th Tate shift of the upper motive of X. �



10 S. GARIBALDI, V. PETROV, AND N. SEMENOV

5. Multiplication and Steenrod operations

5.1. Let G0 be a split adjoint semisimple group. We fix a parabolic subgroup P con-
taining a Borel subgroup B containing a maximal split torus T of G0. Occasionally
we need to perform explicit calculation in CH∗(G0/P ) or in Ch∗(G0/P ) considered
as a ring or (in the latter case) as a module over the Steenrod algebra. In this
section, we provide algorithms for doing so based on passing to the T -equivariant
cohomology described in [Bri], as was done for Grassmannians in [KnT]. There is
a diverse literature studying the equivariant Chow rings, of which we indicate as
examples [FoK], [GKM], [HHH], [Ty], [GHZ], and the references therein.

It is well-known (see e.g. [Kö]) that CH∗(G0/P ) has an additive basis consisting

of the classes of Schubert subvarieties Xw = [BwP/P ], where w ∈ W/WP , W stands
for the Weyl group of G0 and WP stands for the Weyl group of (a Levi subgroup
of) P . We identify the cosets in W/WP with their minimal representatives. The
dimension of Xw is l(w), the minimal length of w in the simple reflections.

Sometimes it is more convenient to enumerate the generators as

Zw = Xw0wwP
0
,

where w0 is the longest element of W and wP
0 is the longest element of WP . Then

the codimension of Zw is l(w), in particular, we have

pt = X1 = Zw0wP
0
.

Note that Zw is the Poincaré dual to Xw in the sense that

Xu · Zw = δu,w pt.

If Q ⊆ P is another parabolic subgroup, the pull-back map

CH∗(G0/P ) → CH∗(G0/Q)

is injective and sends Zw in CH∗(G0/P ) to Zw in CH∗(G0/Q). Sometimes we write
Z[i1,...,il] for Zw with w = si1 · · · sil a reduced decomposition.

5.2. Remark (Comparison with other algorithms). There are many recipes in the
literature for computing the multiplication table in the basis Zw, a.k.a. the gener-
alized Littlewood-Richardson coefficients, see e.g. [De]. But as far as the authors
know, only the one in [DuZ] and [Du] can be adapted to computing also the Steen-
rod operations. It is based on the consideration of the Bott-Samelson resolution of
G0/B. This resolution is a toric variety, and the structure of its Chow ring and
the structure of its Steenrod algebra are both well-known, and one finds explicit
combinatorial formulas. The algorithm presented below is in terms of equivariant
cohomology, so is more general than the Duan-Zhao algorithm. Also, our practical
experience in performing the calculations used below in Lemma 10.8 suggests that
our algorithm can be substantially faster.

5.3. Let T̂ be the group of characters of T , that is the root lattice of G0, with basis
consisting of fundamental roots α1, . . . , αn. (In particular, n is the rank of G.) The

ring CH∗
T (pt) coincides with the symmetric algebra S(T̂ ) ≃ Z[α1, . . . , αn] of T̂ .

Observe that the pullback of the structural map gives CH∗
T (G0/P ) the structure

of a CH∗
T (pt)-module. We have

T̂ ⊂ CH∗
T (pt) → CH∗

T (G0/P ) ։ CH∗(G0/P ),
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the last map is surjective with kernel generated by the image of T̂ , see [Bri, Sec-
tion 2.3].

5.4. There are T -equivariant analogs of Schubert classes ZT
w whose images in CH∗(G0/P )

are Zw. The T -fixed points of G0/P are parametrized by W/WP , see [GHZ, Sec-
tion 2]. Let ιw be the pull-back map

CH∗
T (G0/P ) → CH∗

T (pt)

induced by the inclusion of the fixed point corresponding to w ∈ W/WP . Then the
direct sum map

CH∗
T (G0/P )

⊕w∈W/WP
ιw

−֒−−−−−−−→
⊕

w∈W/WP

CH∗
T (pt)

is injective, see [GHZ, Theorem 2.1].

5.5. Lemma (cf. [KnT, §2]). Fix w ∈ W/WP .

(1) ιu(Z
T
w ) = 0 for all u 6≥ w in the strong Bruhat order.

(2) ιw(Z
T
w ) =

∏

α∈Φ+, w−1(α)∈Φ−

α.

(3) For any x ∈ CH∗
T (G0/P ) with ιu(x) = 0 for all u 6≥ w, the polynomial

ιw(x) is divisible by ιw(Z
T
w ) in CH∗

T (pt).

Actually ιv(Z
T
w ) can be computed via the generalized Billey formula ([Ty, The-

orem 7.1]). Namely, if v = si1 . . . sil is a reduced decomposition, we have

(5.1) ιv(Z
T
w ) =

∑

sij1
...sijk

∈R(w)

r(j1) . . . r(jk),

where r(j) = si1 . . . sij−1
(αij ) and R(w) is the set of all reduced decompositions of

w. Properties (1) and (2) immediately follow, and (3) follows from (2) and [GHZ,
(2.12)].

Now we describe an algorithm to compute the ring structure and the action of
the Steenrod algebra on Ch∗(G0/P ).

Elimination procedure. The core of the algorithm is the following elimination
procedure which takes as input x ∈ CHm

T (G0/P ) and returns aw ∈ CH∗
T (pt) for

w ∈ W/WP such that x =
∑

w awZ
T
w .

5.6. Assume we are given ιw(x) for all w ∈ W/WP with l(w) ≤ m.
Extend the Bruhat order to a linear order on W/WP . We remark that the

elimination procedure (but not the final result) formally depends on the extension
of the Bruhat order. Let u ∈ W/WP be the minimal element such that ιu(x) 6= 0.
If such u does not exist, then x = 0.

Then by Lemma 5.5(3) ιu(x) is divisible by ιu(Z
T
u ). In particular, since deg(ιu(x)) =

m and deg(ιu(Z
T
u )) = l(u) by Lemma 5.5(2), we have l(u) ≤ m.

Assume l(u) < m. Using the explicit formula of Lemma 5.5(2) we compute the

quotient polynomial bu := ιu(x)
ιu(ZT

u ) and set x′ := x − bu · ZT
u . Now we apply the

same procedure to x′ instead of x. Observe that by construction ιu(x
′) = 0 and

ιw(x
′) = 0 for w < u by Lemma 5.5(1). Therefore eventually we will arrive to the

situation when either x = 0 or l(u) = m.
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Consider now all v ∈ W/WP such that l(v) = m. Since these v’s have the same
length, they are incomparable in the Bruhat order. Therefore the same considera-

tion shows that bv := ιv(x)
ιv(ZT

v ) are integers. Set y := x−∑
l(v)=m bvZ

T
v .

We claim that y = 0. Indeed, assume y 6= 0. Let u be the minimal element such
that ιu(y) 6= 0. Then again ιu(y) is divisible by ιu(Z

T
u ). But deg(ιu(y)) = m and

deg(ιu(Z
T
u )) = l(u) > m. This finishes our elimination procedure.

Multiplication, Steenrod operations.

5.7. Multiplication. Let u, v ∈ W/WP . Using the elimination procedure, we com-
pute the expansion

ZT
u · ZT

v =
∑

w∈W/WP

awZ
T
w with aw ∈ CH∗

T (pt).

Therefore

Zu · Zv =
∑

w∈W/WP

āwZw in CH∗(G0/P ),

where āw is the image of aw under the homomorphism

CH∗
T (pt) → CH∗(pt) = Z

that sends a polynomial to its constant term.

5.8. Steenrod operations. Let p be a prime number and assume char k 6= p. For
x ∈ Ch∗(G0/P ) let

S•(x) =
∑

j≥0

Sj(x)tj ∈ Ch∗(G0/P )[t]

denote the total Steenrod operation (see e.g. [Bro]).
Recall that CH∗

T (pt) is the polynomial ring Z[α1, . . . , αn] in simple roots. Set
Ch∗T (pt) := CH∗

T (pt)/p.
The total Steenrod operation on Ch∗T (pt) is given by

Fp[α1, . . . , αn]
S•

−−→ Fp[α1, . . . , αn][t]
αj 7→ αj + tαp

j .

Let u ∈ W/WP , j ≥ 0. Using the elimination procedure, we find the expansion

Sj(ZT
u ) =

∑

v∈W/WP

avZ
T
v with av ∈ Ch∗T (pt).

Then

Sj(Zu) =
∑

v∈W/WP

āvZv.

5.9. Chern classes. There is an effective procedure to compute the T -equivariant
Chern classes of a G0-equivariant vector bundle V on G0/P . Indeed, the r-th Chern
class cTr (V ) of V is the image of the Chern class cG0

r (V ) under the map

CH∗
G0

(G0/P ) → CH∗
T (G0/P ),

so it lies inside CH∗
T (G0/P )W (the Weyl group action as in [Ty, Section 4]), and

its value is determined by one entry, namely,

ιw(c
T
r (V )) = w(ι[](c

T
r (V ))).
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The entry at [] can be computed through the map

CH∗
G0

(G0/P ) → CH∗
P (pt) → CH∗

T (pt),

and it coincides with the r-th elementary symmetric function in roots of V . Then
one applies the elimination procedure. We now illustrate this.

5.10. Example. Let G0 be the split group of type G2 and P its parabolic subgroup
of type 2. There are exactly two 5-dimensional twisted G0-homogeneous flag vari-
eties: a projective quadric, which is the variety of parabolic subgroups of type 1,
and G0/P (which is not a quadric). We compute some products in CH∗(G0/P ).

The representatives of minimal length inW/WP in the (decreasing) Bruhat order
are:

Z[2,1,2,1,2], Z[1,2,1,2], Z[2,1,2], Z[1,2], Z[2], Z[].

Put ι := ⊕w∈W/WP
ιw .

Let us compute, say, ι[2,1,2,1,2](Z
T
[2]). By (5.1) we have

ι[2,1,2,1,2](Z
T
[2]) = r(1) + r(3) + r(5) = α2 + s1s2(α1) + s2s1s2s1(α2) = 6α1 + 4α2

Computing the other entries in the same way we get

(5.2) ι(ZT
[2]) = (6α1 + 4α2, 6α1 + 3α2, 3α1 + 3α2, 3α1 + α2, α2, 0).

Let us compute (ZT
[2])

2. Squaring (5.2) we obtain:

ι((ZT
[2])

2) = ((6α1+4α2)
2, (6α1+3α2)

2, (3α1+3α2)
2, (3α1+α2)

2, α2
2, 0).

Applying the elimination procedure we get

ι[1,2]((Z
T
[2])

2 − α2Z
T
[2]) = 3α1(α1 + α2),

but

ι[1,2](Z
T
[1,2]) = α1(α1 + α2),

so

(ZT
[2])

2 = α2Z
T
[2] + 3ZT

[1,2]

and, in particular, Z2
[2] = 3Z[1,2].

Continuing this way we can recover the whole multiplication table in CH∗
T (G0/P )

and CH∗(G0/P ).
Let us compute S1(ZT

[1,2,1,2]) for p = 2 now. The generalized Billey formula (5.1)

gives

ι(ZT
[1,2,1,2]) = ((α1 + α2)(3α1 + 2α2)(2α1 + α2)(3α1 + α2),

α1(3α1 + 2α2)(2α1 + α2)(3α1 + α2), 0, 0, 0, 0)

= ((α2
1 + α2

2)α1α2, α2
1α2(α1 + α2), 0, 0, 0, 0).

Substituting α1 7→ α1 + tα2
1, α2 7→ α2 + tα2

2, taking modulo 2 and taking the
coefficient at t we get:

S1(ι(ZT
[1,2,1,2])) = ((α2

1 + α2
2)(α

2
1α2 + α1α

2
2), α3

1α2(α1 + α2), 0, 0, 0, 0)

and the elimination procedure gives

S1(ZT
[1,2,1,2]) = α1Z

T
[1,2,1,2] + ZT

[2,1,2,1,2].

In particular, S1(Z[1,2,1,2]) = Z[2,1,2,1,2] = pt.
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Now we compute the second Chern class cT2 of the tangent bundle of G0/P . The
roots of this bundle are:

α2, α1 + α2, 3α1 + 2α2, 2α1 + α2, 3α1 + α2.

The total Chern class equals

(1 + tα2)(1 + t(α1 + α2))(1 + t(3α1 + 2α2))(1 + t(2α1 + α2))(1 + t(3α1 + α2)).

The coefficient at t2 is 29α2
1 + 14α2

2 + 42α1α2. Now

s2(29α
2
1 + 14α2

2 + 42α1α2) = 29α2
1 + α2

2 + 16α1α2,

s1(29α
2
1 + α2

2 + 16α1α2) = −10α2
1 + α2

2 − 10α1α2,

s2(−10α2
1 + α2

2 − 10α1α2) = −10α2
1 + α2

2 − 10α1α2,

s1(−10α2
1 + α2

2 − 10α1α2) = 29α2
1 + α2

2 + 16α1α2,

s2(29α
2
1 + α2

2 + 16α1α2) = 29α2
1 + 14α2

2 + 42α1α2,

so we have

ι(cT2 ) = (29α2
1 + 14α2

2 + 42α1α2, 29α2
1 + α2

2 + 16α1α2, −10α2
1 + α2

2 − 10α1α2,

− 10α2
1 + α2

2 − 10α1α2, 29α2
1 + α2

2 + 16α1α2, 29α2
1 + 14α2

2 + 42α1α2).

By the elimination procedure we obtain:

cT2 = (29α2
1 + 14α2

2 + 42α1α2)Z
T
[] − 13(2α1 + α2)Z

T
[2] + 13ZT

[1,2].

In particular, the ordinary second Chern class of the bundle equals 13Z[1,2].

6. Chernousov-Merkurjev formula

Recall that G denotes a semisimple algebraic group of inner type. Let X and X ′

be twisted G-homogeneous flag varieties. We present G as a twisted form of a split
group G0. Then X and X ′ are twisted forms of G0/P and G0/P

′ resp. for some
standard parabolic subgroups P , P ′ of G0. We say that X and X ′ are homogeneous
varieties of type P and P ′ respectively.

In [CM, Proposition 13] Chernousov and Merkurjev construct a filtration by
closed subvarieties onX×X ′ such that the successive differences are affine fibrations
over Yw of rank l(WPwWP ′), where w runs over the representatives of WP \W/WP ′ ,
W , WP , WP ′ are the Weyl groups of G0, P , P ′ resp., l(WPwWP ′ ) is the length of
the minimal representative of the double coset WPwWP ′ , and Yw is a twisted form
of G0/Qw with Qw = RuP · (P ∩ wP ′w−1), where RuP stands for the unipotent
radical of P . Note that by [CM, Lemma 7] Qw is a standard parabolic subgroup of
G0 and is contained in P .

By [NeZ, Theorem 4.4] we get:

6.1. Proposition. In the above notation

CH∗(X ×X ′) ≃
⊕

w∈WP \W/WP ′

CH∗−dimX−dimX′+dimYw+l(WPwWP ′)(Yw).

6.2. Remark. Theorem 4.4 in [NeZ] is proved for any oriented cohomology theory
using resolution of singularities. So, it is assumed there that char k = 0. For Chow
groups this is not necessary, cf. [EKM, Theorem 66.2].
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6.3. Example. If G is a special orthogonal group, and X = X ′ = X1 is a projective
quadric of dimension at least 5, then

CH∗(X ×X) ≃ CH∗(X)⊕ CH∗−1(X1,2)⊕ CH∗−dimX(X).

We now develop an important tool to produce rational projectors.
Let w ∈ WP \W/WP ′ and f : Y w → X be the natural map induced by the

inclusion Qw ⊂ P .

For a Schubert cycle β = [BuQw/Qw] ∈ CH∗(Y w), u ∈ W , define an element
β⋆(1) ∈ CH∗(X ′) as

β⋆(1) =

{
[BuwP ′/P ′], if l(uwWP ′) = l(uWQw ) + l(WPwWP ′ );

0, otherwise,

and for an arbitrary β ∈ CH∗(Y w) define β⋆(1) by linearity.
Fix a rational cycle α ∈ CH∗(Y w) and for a cycle x ∈ CH∗(X) define

α⋆(x) = (α · f∗(x))⋆(1) ∈ CH∗(X ′).

6.4. Theorem. In the preceding notation, for α ∈ CH∗(Y w)

α⋆ : CH(X) → CH(X ′)

is the realization of a rational cycle on X × X ′. Moreover, the realization of any
rational cycle on X ×X ′ can be constructed in this way.

In particular, if P = P ′, then for α ∈ ChdimYw−dimX+l(WPwWP )(Y w) some
power of α⋆ is the realization of a rational projector on X, and the realization of
any rational projector on X can be constructed in this way.

Proof. Let X and X ′ be homogeneous G-varieties of type P and P ′. Consider the
following diagram

G0/(P ∩ wP ′w−1)

#

�

j
,,

�

� //

π′

��

Γw
i

//

π
ww♦♦♦

♦♦
♦♦
♦♦
♦♦
♦♦

G0/P ×G0/P
′

pr2 //

pr1xx♣♣♣
♣♣
♣♣
♣♣
♣
♣

G0/P
′

G0/Qw
f // G0/P

where the maps π′ and f are induced by inclusions P ∩ wP ′w−1 ⊂ Qw ⊂ P ,
G0/(P ∩ wP ′w−1) is considered as a subvariety of G0/P ×G0/P

′ under the map

j : g(P ∩ wP ′w−1) 7→ (gP, gwP ′), g ∈ G0,

Γw is the closure in G0/P ×G0/P
′ ×G0/Qw of the image of the graph of π′ under

the map j × id, and i and π are induced by the projections.
The proof in [NeZ] shows that the image of an element α ∈ CH∗(G0/Qw) under

the isomorphism of Proposition 6.1 equals i∗π
∗(α). Further, we identify the image

of α with its realization, i.e., with the homomorphism

α⋆ : CH∗(G0/P ) → CH∗(G0/P
′)

x 7→ (pr2)∗(i∗π
∗(α) · pr∗1(x)).

The above diagram and the projection formula show that

α⋆(x) = (pr2)∗(i∗π
∗(α) · pr∗1(x)) = (pr2)∗(i∗(π

∗(α) · i∗pr∗1(x)))
= (pr2)∗(i∗π

∗(α · f∗(x))) = (α · f∗(x))⋆(1).(6.1)
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In particular, to compute α⋆(x), we just need to know the image of β⋆(1) for
each element β ∈ CH∗(G0/Qw). One sees directly that for a Schubert cycle β =

[BuQw/Qw]

(6.2) β⋆(1) =

{
[BuwP ′/P ′], if l(uwWP ′) = l(uWQw) + l(WPwWP ′ );

0, otherwise.

To finish the proof of the theorem it remains to set P ′ = P and note that in
End(M (X)) some power of any element is a projector. �

6.5. Example. Let A be a central simple algebra of degree n+ 1, G = PGL1(A),
P = P1, and P ′ = Pn. Then G0 = PGLn+1, X is the Severi-Brauer variety
SB(A), X ′ = SB(Aop), W = Sym({1, . . . , n+1}) is the symmetric group on letters
1, . . . , n+ 1, WP = Sym({2, . . . , n+ 1}), and WP ′ = Sym({1, . . . , n}).

The minimal representatives of the cosets W/WP ′ are

{1, sn, sn−1sn, . . . , s1 · · · sn−1sn},
where si = (i, i + 1) is a simple transposition, and the minimal representatives of
the cosets W/WP are

{1, s1, s2s1, . . . , sn · · · s2s1}.
The minimal representatives of the double cosetsWP \W/WP ′ are {1, s1 · · · sn−1sn}.
Take w = 1. Then Qw = P1,n.

By Proposition 6.1 we have

CH∗(SB(A)× SB(Aop)) ≃ CH∗−1(SB1,n(A)) ⊕ CH∗(SB(A)),

where SB1,n(A) is the variety of parabolic subgroups of type P1,n (known also as
the incidence variety).

Take (a rational) α = 1 ∈ CH0(G0/P1,n). Let h1 and hn be the Schubert

cycles in CH1(G0/P ) and CH1(G0/P
′). All Schubert cycles in CH∗(G0/P ) equal

1, h1, . . . , h
n
1 . We compute α⋆(h

i
1) now.

We have α⋆(h
i
1) = (f∗(hi

1))⋆(1). The cycle h
i
1 equals [BviP/P ] with vi = sn−i · · · s1

and f∗(hi
1) = [Bviv0P1,n/P1,n] with v0 = s2 · · · sn. By formula (6.2)

(f∗(hi
1))⋆(1) =





hn, if i = n;

1, if i = n− 1;

0, otherwise.

Thus α as an element in CH∗(G0/P ×G0/P
′) equals h1× 1+1×hn. So, the latter

cycle is rational.

7. Weak special correspondences

7.1.Definition. Let p be a prime number, andX be a smooth projective irreducible
variety over k of dimension b(p− 1) for some b. A cycle ρ ∈ Chb(X ×X) is called

a weak special correspondence, if ρk(X) = H × 1− 1×H for some H ∈ Chb(Xk(X)),

π̄ := c · ρp−1
k(X) is a projector for some c ∈ F×

p , and

(Xk(X), π̄) ≃
p−1⊕

i=0

Fp(bi).
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7.2. Lemma (Rost, [Ro07, Section 9]). Assume that X possesses a weak special
correspondence, has no zero-cycles of degree coprime to p, and char k = 0. Then
dimX = pn − 1 for some n.

7.3. Lemma. Assume that p ∈ {2, 3}. Let X be a smooth projective irreducible
variety over k of dimension b(p−1) with no zero-cycles of degree coprime to p, and

π a projector over k such that (Xk(X), πk(X)) ≃
⊕p−1

i=0 Fp(bi). Then X possesses a
weak special correspondence.

Proof. Denote π̄ = πk(X) and X = Xk(X). Since (X, π̄) ≃ ⊕p−1
i=0 Fp(bi), the

projector π̄ equals
∑p−1

i=0 hi × gi for some hi ∈ Chbi(X) and gi ∈ Chbi(X) with
deg(higi) = 1 for all i.

Note first that πt ◦ π contains at most p summands and is non-zero, since

(gp−1 × hp−1) ◦ (h0 × g0) = d · h0 × hp−1 6= 0,

where d = deg(g0gp−1) ∈ F×
p . Therefore, since X has no zero-cycles of degree

coprime to p, we can assume that gi = hp−1−i for all i. In particular, this proves
our lemma for p = 2.

Write f : Spec k(X) → X for the generic point. By the generic point diagram

(see [PSZ, Lemma 1.8]) there is a cycle α ∈ Chb(X ×X) such that β := h1 × 1+α
is defined over k and (id∗X × f)(α) = 0.

Consider π̄ ◦ β ◦ π̄. A direct computation shows that this cycle equals ρ1 :=
h1 × 1 + a11 × h1 for some a1 ∈ Fp. By symmetry we can assume that a1 6= 0. If
p = 3, then set c = deg(h2

1)
−1 ∈ F×

p . The cycle ρ21 = h2
1 × 1 − a1h1 × h1 + 1 × h2

1.
Since X has no zero-cycles of degree coprime to p, we have a1 = −1. Moreover,
c · ρ21 is a projector. Thus, ρ1 is a weak special correspondence on X . �

7.4. Remark. Using messier computations one can also prove the above Lemma
for p = 5.

7.5. Lemma. Let X be a smooth projective irreducible variety over k with chark = 0
and M a direct summand of its motive. Assume that M is indecomposable and
generically split and Mk(X) ≃

⊕
i∈I∪{0} Fp(i) for some multiset of positive indexes

I.
Then there exists a smooth projective irreducible variety Y over k such that M

is isomorphic to an upper direct summand of M (Y ) and dimM = dimY .

Proof. Let Y ′ be a closed irreducible subvariety of X of minimal dimension with
respect to the property that Y ′

k(X) has a zero-cycle of degree coprime to p.

By [Sem, Lemma 7.1] there exists a smooth projective irreducible variety Ỹ ′

birational to Y ′ such that both Ỹ ′
k(X) andX

k(Ỹ ′)
have zero-cycles of degree coprime

to p. Since the upper motive M of X is generically split, Rost nilpotence holds
for its endomorphism ring, i.e., the kernel of the natural map End(M) → End(M)
consists of nilpotent correspondences by [ViZ, Prop. 3.1]. Therefore M is also an

upper direct summand of Ỹ ′. Hence, dimY ′ = dim Ỹ ′ ≥ dimM .
Let now Y ′′ be the generic point of M (see Lemma 3.5). Obviously, Y ′′

k(X) in not

0 in Ch(Xk(X)), and therefore without loss of generality we can assume that Y ′′ is
represented by a closed subvariety of X , which we denote by the same letter. By
[KaM, Remark 5.6] the variety Y ′′ has the property that Y ′′

k(X) has a zero-cycle of
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degree coprime to p. Since dimY ′′ = dimM , the dimension of Y ′′ is minimal with
respect to this property.

Therefore by [Sem, Lemma 7.1] there exists a smooth projective irreducible va-
riety Y birational to Y ′′ with required properties. �

The following statement for p = 2 might be called a binary motive theorem.

7.6. Corollary. Assume that p ∈ {2, 3} and chark = 0. Let X be a smooth
projective irreducible variety with no zero-cycles of degree coprime to p and M

a direct summand of M (X). If Mk(X) ≃ ⊕p−1
i=0 Fp(bi) for some integer b, then

dimM = pn − 1 for some n. �

7.7. Proposition. Let G be a split semisimple algebraic group of inner type over
a field k with char k = 0 and ξ ∈ H1(k,G). Let p ∈ {2, 3}. Consider a twisted

ξG-homogeneous flag variety X and write

M (Xk(X)) ≃ ⊕i∈IFp(i)
⊕

⊕j∈JNj

with indecomposable direct summands Nj of positive dimension.
Assume that the following conditions hold:

(1) For all j the motives Nj are defined over k. Moreover, there exist twisted

flag varieties Yj over k such that Nj = U(Yj) and every cycle in Ch(Yj ×X)
which is defined over k(Yj)(Xk(Yj)) is defined over k(Yj).

(2) The variety X has no zero-cycles of degree coprime to p.
(3) Let Q(t) denote the Poincaré polynomial of the (graded by codimension)

subgroup of Ch∗(X) generated by the rational cycles of the first shell. As-
sume ∑

i∈I t
i

Q(t)
=

p−1∑

l=0

tbl

for some b.

Then b = pn−1
p−1 for some integer n.

Proof. Since by assumption the motives Nj are defined over k, we use for simplicity
the same notation Nj over k and over k(X).

Since Nj are defined over k, are indecomposable over k(X) and have positive
dimension, we can apply Proposition 3.2. So,

M (X) ≃ U ⊕
⊕

j∈J

Nj

over k, where U is a motive with Poincaré polynomial
∑

i∈I t
i, since by our as-

sumptions Uk(X) ≃ ⊕i∈IFp(i).
It follows from Theorem 4.10 that U ≃ ⊕s∈SM(s) for some motive M and

Q(t) =
∑

s∈S ts. In particular, by assumption (3), P (M, t) =
∑p−1

l=0 tbl. The
proposition follows now from Corollary 7.6. �

8. Applications to motives of twisted flag varieties: type E6

The goal of this section is to provide a complete classification of all possible mo-
tivic decompositions of twisted G-homogeneous flag varieties for G a group of inner
type E6. Note that with Fp-coefficients and p 6= 2, 3, every twisted G-homogeneous
flag variety is a direct sum of Tate motives, and the case p = 2 was settled in [PSZ,
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p. 1048]. Therefore we only consider F3-coefficients here. All decomposition types
are collected in Table 8A.

Throughout we will refer to the Tits algebra A of G, by which we mean a Tits
algebra for the vertex 1 in the sense of [Ti71, 6.4.1]. (This is a special case of the
more general theory of Tits algebras from [Ti71] or [KMRT, §27].) This algebra
A is a central simple algebra of degree 27 and is determined up to isomorphism
or anti-isomorphism by G. By D we denote the underlying central simple division
algebra.

J3(G) Θ M (XΘ)
(2, 1) 2 M2,1 ⊕M2,1(1)

4 M2,1 ⊕ (⊕j∈J2,1R2,1(j))⊕M2,1(9)
{2, 4} M (X4)⊕ M (X4)(1)

any other
⊕

i∈I2,1
Θ

R2,1(i)

(1, 1) 2 M1,1 ⊕ (⊕7
i=4R1,1(i))⊕M1,1(1)

4 M1,1 ⊕ (⊕j∈J1,1R1,1(j))⊕M1,1(9)
{2, 4} M (X4)⊕ M (X4)(1)

any other
⊕

i∈I1,1
Θ

R1,1(i)

(0, 1) any
⊕

i∈I0,1
Θ

R0,1(i)

(1, 0) 2
⊕

i=0,1,10,11,20,21 F3(i)⊕
⊕

j∈J1,0
2

M (SB(D))(j)

4
⊕

i=0,1,9,10,10,11,19,20,20,21,29,30 F3(i)⊕
⊕

j∈J1,0
4

M (SB(D))(j)

{2, 4} M (X4)⊕ M (X4)(1)
any other

⊕
i∈I1,0

Θ
M (SB(D))(i)

(0, 0) any ⊕i∈I0,0
Θ

F3(i)

Table 8A. Motivic decomposition of twisted flag varieties of E6

mod 3

Motive Poincaré polynomial

M2,1
(t4+1)(t12−1)(t6+t3+1)

t2−1

M1,1 t20+t18+t17+t16+t14+t13+t12+t11+2t10+t9+t8+t7+t6+t4+t3+t2+1

Rj1,j2
(t3

j1
−1)(t4·3

j2
−1)

(t−1)(t4−1)

Table 8B. Poincaré polynomials of some motives from Table 8A

Multiset of indexes Polynomial

Ij1,j2Θ
P (XΘ,t)

P (Rj1,j2 ,t)

Jj1,1 P (X4,t)−P (Mj1,1,t)(1+t9)

P (Rj1,1,t)

J1,0
2

P (X2,t)−(1+t+t10+t11+t20+t21)
1+t+t2

J1,0
4

P (X4,t)−(1+t+t10+t11+t20+t21)(1+t9)
1+t+t2

Table 8C. Multisets of indexes appearing in Table 8A
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Left column: the J-invariant. Let G0 be a split semisimple algebraic group
over k and p be a prime. Denote G = G0 ×k ksep, where ksep is a separable closure
of k. It is known that

Ch∗(G) ≃ Fp[x1, . . . , xr]/(x
pk1

1 , . . . , xpkr

r )

with deg xi = di for some integers r, ki, and di. We order the generators so that
d1 ≤ . . . ≤ dr and fix one such isomorphism between Ch∗(G) and this polynomial
ring.

Let now ξ ∈ Z1(k,G0) be a cocycle and consider the composite map

Ch(ξ(G0/B))
res−−→ Ch(ξ(G0/B)×k ksep)

≃−→ Ch(G0/B ×k ksep) → Ch(G),

where B is a Borel subgroup of G0 defined over k, the first map is the restriction
map, the second map is induced by the isomorphism

ξ(G0/B)×k ksep ≃ G0/B ×k ksep

given by ξ, and the third map is induced by the canonical quotient map. According
to [PSZ, Definition 4.6] one can associate an invariant

Jp(ξ) = (j1, . . . , jr) ∈ Zr

which measures the “size” of the image of this composite map. It does not depend
on the choice of a separable closure ksep.

Formally speaking, Jp(ξ) is an invariant of ξ, not of ξ(G0). But if G0 is simple
and not of type D or p 6= 2, then the degrees di are pairwise distinct, and it is a
well-defined invariant of the twisted form G = ξ(G0) and we denote this invariant
by Jp(G). For the excluded case where G0 has type D and p = 2, see [QSZ].

We remark that some constraints on the J-invariants are classified in [PSZ,
Table 4.13]. E.g., if G0 (equivalently, G) is adjoint of type E6 and p = 3, then
r = 2, d1 = 1, d2 = 4, k1 = 2, k2 = 1, j1 ∈ {0, 1, 2}, and j2 ∈ {0, 1}. We
prove below that there are actually further constraints on the J-invariant, see e.g.
Corollary 8.10.

Remaining columns. For the second column, recall that the simple roots of E6

are numbered as in the diagram

(8.1)
q q q q q

q

1 3 4 5 6

2

The motives Mj1,j2 and Rj1,j2 listed in the third column are indecomposable, and
the latter is the upper motive of the variety of Borel subgroups. Their Poincaré
polynomials are given in Table 8B. The multisets of indexes Ij1,j2Θ and Jj1,j2 in
Table 8A are defined as follows: an integer i appears in the multiset s times iff s is
the coefficient at ti of the respective polynomial given in Table 8C.

Each row of Table 8A occurs over a suitable field for a suitable group. The rest
of this section and the next section are devoted to the proof of these tables.

By [PS10, Prop. 4.2] the Tits algebra A is split iff the first slot j1 in J3(G) equals
0. If j1 = 0, then every projective homogeneous G-variety is generically split over
a field extension of degree coprime to 3 and this case was settled in [PSZ]. This
immediately gives all rows of Table 8A with j1 = 0.
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Picard groups and Tits algebras. In this article we use some relations between
rationality of the Picard groups of twisted flag varieties and their Tits algebras, see
[MT95]. E.g., if all Tits algebras of a group G of inner type are split algebras, then
the Picard groups of all twisted flag varieties for the group G are rational.

In this section, G has inner type E6, and it follows from [MT95] that the Picard
groups of varieties X2, X4, and X2,4 are always rational.

We start now with some general observations.

8.1. Lemma. Let ∆ be a Dynkin diagram (not necessarily of type E6) and Ψ ⊆ Θ ⊆
∆ two subsets of its vertices. Assume that XΘ has a rational point over k(XΨ),
and

P (XΘ, t)/P (XΨ, t) = t+ 1.

Then M (XΘ) = M (XΨ)⊕ M (XΨ)(1).

Proof. Since Ψ ⊆ Θ, we have a natural map f : XΘ → XΨ. The fibre Z of f
over k(XΨ) is a twisted flag variety over k(XΨ). By the assumptions the Poincaré
polynomial P (Z, t) = P (XΘ, t)/P (XΨ, t) = t + 1, and Z has a rational point.
Therefore Z is isomorphic to P1.

Now by [PSZ, Lemma 3.3] f is a locally trivial fibration with fiber P1. Therefore
[PSZ, Lemma 3.2] implies the claim. �

This lemma with Ψ = {4} and Θ = {2, 4} and the classification of Tits indices
immediately imply all rows of Table 8A for X2,4.

8.2. Lemma. If X2 has a zero-cycle of degree coprime to 3, then J3(G) = (0, 0) or
(1, 0) and the index of A is 1 or 3 respectively.

Proof. As J3(G) is unchanged if we replace k with an extension of degree coprime to
3 [PSZ, Prop. 5.18(2)], we may assume that X2 has a k-point. By the classification
of Tits indexes, G is split or has semisimple anisotropic kernel of type 2A2.

In the second case indA = 3 and therefore J3(PGL1(A)) = (1). Thus, by [PS10,
Prop. 3.9(2)] J3(G) = (1, 0). �

8.3. Lemma. The upper motives of X2 and X4 are isomorphic. If every zero-cycle
on X2 has degree divisible by 3 and the Tits algebra of G is not split, then the
dimension of its upper motive equals 20.

Proof. By hypothesis on X2, G is anisotropic and the Tits 3-indexes of GK as K
varies over all extensions K of k are empty, all of ∆, and {2, 4}. The claim on upper
motives follows. Moreover, as in Example 4.7, there are (at most) two different big
shells, the first shell SH6{2} and the last shell SH6{1}.

As before write U(X2) for the upper motive of X2. An explicit computation of
the decomposition of [CGM, Theorem 7.5] for M (X2) shows that over k(X2) the
motive of X2 contains exactly six Tate motives: F3, F3(1), F3(10), F3(11), F3(20),
and F3(21), and, by assumption, the variety X2 does not have a zero-cycle of degree
coprime to 3. Therefore the number of Tate motives contained in U(X2) over k(X2)
is divisible by 3.

Fix a generator h of the Picard group of X2; it is unique up to sign. This cycle
is defined over k. Therefore, by Theorem 4.10 the motive U(X2)(1) is a direct
summand of M (X2). All this implies that dimU(X2) = 20. �
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8.4. Lemma. Let J3(G) = (j1, j2) with j1 6= 0 and Mj1,j2 denote the upper motive
of X2. If J3(G) 6= (1, 0), then

M (X2) ≃ Mj1,j2 ⊕Mj1,j2(1)⊕
⊕

i∈I1

Rj1,j2(i) and

M (X4) ≃ Mj1,j2 ⊕Mj1,j2(9)⊕
⊕

i∈I2

Rj1,j2(i)

for some multisets of indexes I1 and I2 (depending on j1, j2).

Proof. The formula for X2 immediately follows from the proof of Lemma 8.3 and
from Karpenko’s theorem.

Consider now X4. An explicit computation of the decomposition of [CGM,
Theorem 7.5] for M (X4) shows that over k(X4) its motive contains exactly 6 Tate
motives: F3, F3(9), F3(10), F3(19), F3(20), F3(29). Since the upper motives of X2

and X4 are isomorphic, we get

M (X4) = Mj1,j2 ⊕Mj1,j2(9)⊕
⊕

i∈I2

Rj1,j2(i)

for some multiset of indexes I2. �

Note that

P (E6/P2, t) =
(t4+1)(t12−1)(t6+t3+1)

t−1 and

P (E6/P4, t) =
(t5−1)(t3+1)(t8−1)(t6+t3+1)(t12−1)

(t−1)(t2−1)2 .

So, to finish the proof Tables 8A–8C, it suffices to compute the Poincaré polynomials
of M2,1 and M1,1, to find motivic decompositions for J3(G) = (1, 0), and to exclude
the case J3(G) = (2, 0).

8.5. Lemma. P (M2,1, t) =
(t4+1)(t12−1)(t6+t3+1)

t2−1 .

Proof. If 2 ∈ I1 (in the notation of Lemma 8.4), then by Theorem 4.10, 3 ∈ I1,
since for any α ∈ Ch2(X2) one has α · h 6= 0. And if 3 ∈ I1, then 4 ∈ I1, since for

any β ∈ Ch3(X2) one has β · h 6= 0.
Thus, if I1 is non-empty, then it contains an index ≥ 4. But the Poincaré

polynomial of R2,1 equals (1 + t4 + t8)(t9 − 1)/(t− 1), in particular, has dimension
16.

But by Lemma 8.4 we have

P (X2, t) = (t+ 1)P (M2,1, t) + tmP (R2,1, t) +Q(t)

where m ≥ 4, degP (M2,1, t) = 20 by Lemma 8.3 and the polynomial Q(t) ∈ Z[t]
has non-negative coefficients. Comparing the terms gives a contradiction. �

8.6. Lemma. Assume J3(G) = (1, 1). Then there exists a direct summand of the
motive of X2 starting in codimension 4.

Proof. LetX = X ′ = X2. A direct computation of all parameters of Proposition 6.1
shows that

CH∗(E6/P2 × E6/P2) ≃ CH∗(E6/P2)⊕ CH∗−1(E6/P2,4)⊕ CH∗−6(E6/P1,2,6)

⊕CH∗−11(E6/P2,4)⊕ CH∗−21(E6/P2),

where E6 stands for the split group of type E6.
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Let hi denote the generator of Ch1(Xi). Since J3(G) = (1, 1), by [PS10, Propo-

sition 4.2] h3
1 is rational. Consider the rational cycle α = h6

1 · c9 ∈ Ch15(E6/P1,2,6),

where c9 stands for the 9-th Chern class of the tangent bundle to X1,2,6. Another
direct computation using Section 5 and formulas (6.1) and (6.2) shows that the

realization α⋆ : Ch∗(X) → Ch∗(X) maps Chi(X) to zero for i ≤ 3, and maps h4
2

to −h4
2 (mod 3). In particular, by Theorem 6.4 α defines a projector with generic

point of codimension 4. �

8.7.Lemma. P (M1,1, t) = t20+t18+t17+t16+t14+t13+t12+t11+2t10+t9+t8+t7+t6+t4+t3+t2+1.

Proof. If 2 ∈ I1 or 3 ∈ I1 (in the notation of Lemma 8.4), then the same argument
as in the proof of Lemma 8.5 implies that 3, 4, 5, 6, 7 ∈ I1. We have:

P (X2, t) = P (M1,1, t)(1 + t) + P (R1,1, t)Q1,1(t)

with Q1,1(t) = t3 + t4 + t5 + t6 + t7 +Q(t) and

P (M1,1, t) = 1 + t10 + t20 + P (R1,0, t)S(t)

for some polynomials Q and S with non-negative coefficients. Comparing the terms
we come to a contradiction.

Thus, 2 and 3 6∈ I1. By Lemma 8.6 4 ∈ I1. Therefore 5, 6, 7 ∈ I1.
Since 2, 3 6∈ I1, these codimensions belong to the upper motive M1,1. Therefore

P (M1,1, t) = 1 + t10 + t20 + t2 + t3 + Q1 for some Q1 ∈ Z[t] with non-negative
coefficients. Since P (M1,1) − (1 + t10 + t20) is divisible by 1 + t + t2, we have
Q1 = t4 +Q2 for some Q2 ∈ Z[t] with non-negative coefficients.

By symmetry of the projector, Q2 = t18 + t17 + t16 + Q3 for some Q3 ∈ Z[t]
with non-negative coefficients, and this together with above polynomial identities
implies that Q3 = Q4 · t6 for some Q4 ∈ Z[t], and degQ3 = 15 < dimR1,1+6 = 16.
Therefore I1 ⊂ {4, 5, 6, 7}, and, thus, I1 = {4, 5, 6, 7}. �

In the following statements we assume that char k = 0 so that me way apply
Proposition 7.7. However, we will remove this restriction in Corollary 10.4.

8.8. Lemma. If J3(G) = (1, 0) and chark = 0, then X2 has a zero-cycle of degree
coprime to 3, and in particular M1,0 ≃ F3.

Proof. Assume X2 has no zero-cycles of degree coprime to 3. Let A be the Tits
algebra of G and D the underlying division algebra. Denote by Y the Severi-Brauer
variety SB(D) of D. Since J3(G) = (1, 0), indA = 3 and by [PS10, Theorem 5.7(3)]
the variety X2 is not generically split, and, hence, ind(Ak(X2)) = 3. Therefore the
motive of Yk(X2) is indecomposable [Ka95, Th. 2.2.1].

Moreover, over k(X2) the motive M (X2) is isomorphic to

⊕i=0,1,10,11,20,21F3(i)⊕ (⊕j∈JM (Yk(X2))(j))

for some multiset of indexes J by [CGM, Theorem 7.5].
Pick a generator h of the Picard group ofX2. The proof of Lemma 8.3 shows that

this is a rational cycle from the first shell. Now all conditions of Proposition 7.7 are
satisfied and the parameter b in that proposition equals 10. This is a contradiction,
because 10 6= 3n−1

2 for any n. �
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8.9. Corollary. If chark = 0 and J3(G) = (1, 0), then

M (X2) ≃ ⊕i=0,1,10,11,20,21F3(i)⊕ (⊕j∈J1,0
2

M (SB(D))(j)) and

M (X4) ≃ ⊕i=0,1,9,10,10,11,19,20,20,21,29,30F3(i)⊕ (⊕j∈J1,0
4

M (SB(D))(j)).

8.10. Corollary. Assume that chark = 0. Then J3(G) 6= (2, 0).

Proof. Let A be the Tits algebra of G and D the underlying division algebra. The
index of A equals 3i for some i = 0, . . . , 3.

Assume J3(G) = (2, 0). Then the Borel variety and SB(A) have a common upper

motive. In particular, the Poincaré polynomial of this motive equals t3
j1

−1
t−1 . Hence,

indA = 3j1 = 9.
Let K = k(SB3(D)). Then by the index reduction formula indDK = 3 (see

[ScvB]). Therefore J3(GK) = (1, 0). (The second entry is zero because each entry
in the J-invariant is non-increasing under field extensions.)

Since J3(G) = (2, 0), the variety X2 has no zero-cycles of degree coprime to 3
(see Lemma 8.2). Therefore by Lemma 8.8 (X2)K has a zero-cycle of degree 1 mod
3.

On the other hand, since by the index reduction formula indDk(X2) = 3 (see
[MPW]), the variety SB3(D)k(X2) has a rational point. Thus, by Lemma 4.9 the
motives U(X2) and U(SB3(D)) are isomorphic.

By Lemma 8.3 dimU(X2) = 20. On the other hand,

dimU(SB3(D)) ≤ dimSB3(D) = dimGr(3, 9) = 18 < 20,

which is a contradiction. �

9. Reduction to characteristic zero

We now prove a general mechanism for transferring results from characteristic 0
to a field of prime characteristic.

Fix a prime number ℓ and m ≥ 1. Construct a complete discrete valuation ring
R with residue field k of characteristic p (possibly equal to 0 or ℓ) and fraction field
K of characteristic zero. In case ℓ = p, we enlarge R if necessary to include the
ℓm-th roots of unity. We have a split exact sequence:

(9.1) 0 −→ Hd+1(k,Z/ℓmZ(d))
iKk−−→ Hd+1

nr (K,µ⊗d
ℓm )

∂K−−→ Hd(k,Z/ℓmZ(d− 1)) −→ 0

where Hd+1
nr denotes the subgroup of elements x such that nx is killed by the

maximal unramified extension of K for some n not divisible by p, see [GaMS, p. 18]
if p 6= ℓ and [Kato 82, Th. 3 and p. 235] if p = ℓ. The explicit formulas for iKk shows
that it sends symbols in Hd+1(k,Z/ℓmZ(d)) to symbols in ker ∂K . When m = 1,
[GaPe, 16.1] gives the converse that symbols in ker ∂K are images of symbols in
Hd+1(k,Z/ℓZ(d)).

9.1. Lemma. In the above notation an element ξ ∈ Hd+1(k,Z/ℓZ(d)) is a symbol
over some finite extension of k of degree not divisible by ℓ if and only if there is a
finite extension of K not divisible by ℓ over which iKk (ξ) is a symbol.

Proof. The “if” direction is clear, using that symbols in the image of iKk are images
of symbols. For “only if”, one immediately reduces to the case where the given
extension E of k is purely inseparable. But, since [E : k] is not divisible by ℓ, we
have ℓ 6= p, and the mod-ℓ Galois cohomology groups over k and E are the same,
so in that case ξ is already a symbol over k. �
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9.2. Lemma. If ξ ∈ Hd+1(k,Z/2Z(d)) is such that resL/k(ξ) is a symbol for some
odd-degree extension L of k, then ξ is a symbol.

Proof. If chark 6= 2, the claim concerns the Galois cohomology groupHd+1(k,Z/2Z),
and the lemma is a result of Rost [Ro99]. Otherwise, char k = 2 and we take R
and K as above with ℓ = 2 and m = 1. Combining Rost’s result and the previous
lemma completes the proof. �

Here is the promised reduction:

9.3. Proposition. Let G be a simple simply connected linear algebraic group over
k and let ℓm be the largest power of the prime ℓ dividing the order of the Rost
invariant rG. Define R and K as above. Then:

(1) There is a simple simply connected linear algebraic group H over K that
has the same Dynkin type and the same Tits index as G.

(2) For every ξ ∈ H1(k,G), there is a ζ ∈ H1(K,H) so that:
(a) The mod-ℓ component of rG(ξ) is zero in H3(k,Z/ℓmZ(2)) (resp., a

symbol in H3(k,Z/ℓZ(2)) if and only if the mod-ℓ component of rH(ζ)
is zero in H3(K,Z/ℓmZ(2)) (resp., a symbol in H3(K,Z/ℓZ(2))). If
the mod-ℓ component of rG(ξ) is a sum of ≤ r symbols in H3(k,Z/ℓmZ(2))
with a common slot, then the mod-ℓ component of rH(ζ) is a sum of
≤ r symbols in H3(K,Z/ℓmZ(2)) with a common slot.

(b) For every finite extension L/K, the Tits indexes of the twisted forms
(ζH)L and (ξG)L̄ are equal, where L̄ is the residue field of L.

(c) For Xζ
Θ a twisted flag variety for ζH and Xξ

Θ the corresponding variety
for ξG,

degCH0 X
ζ
Θ = degCH0 X

ξ
Θ

as subgroups of Z.

Proof. We can find a semisimple group scheme G over R of the same Dynkin type
as G whose special fiber is G and whose generic fiber GK is also of the same Dynkin
type as G. Denote it by H . One can lift ξ to a class in H1

ét(R,G) which we also
denote by ξ. Let ζ be the image of ξ in H1(K,GK). By [Gi00, Theorem 2] one has
a commutative diagram

H1(K,H)
rH // H3(K,Q/Z(2)) H3(K,Z/ℓmZ(2))oo

H1
ét(R,G)

OO

��
H1(k,G)

rG // H3(k,Q/Z(2))

iKk ◦h∗

OO

H3(k,Z/ℓmZ(2))oo

±iKk

OO

where h∗ is an automorphism that restricts to ±1 on H3(k,Z/ℓmZ), hence the first
sentence of (a). For the second sentence, the explicit formulas for iKk show that it
sends a sum of ≤ r symbols with a common slot to a sum of ≤ r symbols with a
common slot.

The Tits indexes of (ζH)L and (ξG)L̄ are the same by [DG, Exposé 26, 7.15],

hence (b). It follows that degCH0 X
ζ
Θ ⊆ deg CH0 X

ξ
Θ. For equality, in view of (b) it

suffices to check that for every finite extension k′ of k, there exists an extension K ′

of K with residue field k′ such that [K ′ : K] = [k′ : k], which is a routine exercise
because the valuation is Henselian. �
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Claim (2b) in the proposition is well known in some special cases, for example
whenG is the special orthogonal group of a quadratic form as in [Lam, Prop. VI.1.9(1)]
or G is PGLn as in [JaW, Th. 2.8(b)] (which does not require the valuation to be
discrete).

We illustrate the proposition by applying it in its typical manner. We number
the simple roots of E7 as in (10.1).

9.4. Corollary. Let G be a simple algebraic group of type E7 over a field k. If the
twisted flag variety X7 has a zero-cycle of odd degree, then X7 has a k-point.

Proof. The claim holds when char k = 0 by [GiSe, Cor. 3.5], so assume char k is
prime. For K as defined earlier in this section, Prop. 9.3(2c) gives that X7(K)
has a zero-cycle of odd degree, hence X7(K) 6= ∅ by ibid., hence X7(k) 6= ∅ by
Prop. 9.3(2b). �

10. Applications to the Rost invariant

10a. Type E6. We now return to the setting of §8.
10.1. Lemma. Let G be a group of inner type E6 over a field k. If J3(G) = (0, 0),
then G is isotropic.

Proof. By [PSZ, Corollary 6.7] since J3(G) = (0, 0), G splits over a field extension
of k of degree coprime to 3. Therefore the Tits algebra of G (of degree 27) is split,
so we may speak of the Rost invariant of G. Clearly, its 3-component must be zero.

If char k 6= 2, 3, then by [Ro91] the variety X1 has a rational point. Propo-
sition 9.3 implies that the same holds over any field of prime characteristic. In
particular, G is isotropic. �

10.2. Lemma. Let G be a group of inner type E6 and A a Tits algebra of G.
Assume that indA ≤ 3. Then G × k(SB(A)) is isotropic if and only if X2 has a
zero-cycle of degree not divisible by 3.

Proof. Suppose first that chark = 0, G is anisotropic, Gk(SB(A)) is isotropic,
and every zero-cycle of X2 has degree divisible by 3. We know by Lemma 8.8,
Corollary 8.10, and Lemma 10.1 that j2 = 1. Since Gk(SB(A)) is isotropic and
Ak(SB(A)) is split, X2 has a zero-cycle over k(SB(A)) of degree 1 or 2, hence
J3(Gk(SB(A))) = (0, 0) by Lemma 8.2.

On the other hand, indAk(X∆) = 1. Therefore, the upper motives U(X∆) and
U(SB(A)) are isomorphic. Their Poincaré polynomials equal

(1 + t4 + t8)(t3
j1 − 1)/(t− 1)

and (tindA− 1)/(t− 1) respectively. In particular, they are not equal for any values
of j1 and indA. Contradiction, so the “only if” direction is proved if char k = 0
and G is anisotropic; this is the crux case.

If G is isotropic, then it is split or has semisimple anisotropic kernel of type
2A2 or D4. In the first two cases, X2 has a rational point and in the third case it
has a point over a quadratic extension of k. Thus we have proved “only if” when
chark = 0 or G is isotropic.

So consider the case where char k is a prime p, Gk(SB(A)) is isotropic, and G is
anisotropic; in particular, A is not split, hence, by our assumptions has index 3.
Then there is a simply connected isotropic group G′ (with anisotropic kernel of
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type 2A2) and a class η ∈ H1(k,G′) such that G is isomorphic to G′ twisted by
η. We control the mod-3 portion rG′(η)3 of the Rost invariant of η, which belongs
to H3(k,Z/3Z(2)). Clearly, G′ is split by k(SB(A)), so our hypothesis on G gives
that k(SB(A)) kills rG′(η)3. It follows that rG′(η)3 = (ζ) · [A] for some ζ ∈ k×/k×3

by [Pey] and [Ka98, Prop. 5.1], hence by [GaQu] we may replace η by a twist by
the class of a cocycle with values in the center of G′ and so assume that rG′(η)3 is
zero.

One can find a simply-connected group H of inner type E6 over a field K of
characteristic 0 lifting G′ and ζ ∈ H1(K,H) lifting η as in Proposition 9.3. In
particular, rH(ζ)3 = 0. Denote by AH the Tits algebra of H . By [Ro91] the
twisted form is isotropic over K(SB(AH)), and, thus, by Proposition 9.3(2c) and
the characteristic zero case, we have proved the “only if” part.

Now suppose that there is an extension L/k of degree not divisible by 3 so that
X2(L) is not empty. If A has index 1, then J3(G) = (0, 0) by Lemma 8.2, and so
G is k-isotropic by Lemma 10.1. If A has index 3, then L ⊗k k(SB(A)) is a field
of dimension not divisible by 3 over k(SB(A)), hence the “if” statement follows by
the index 1 case. �

10.3. Remark. In case chark 6= 2, one can use the Rost invariant to define a
class r(G) ∈ H3(k,Z/2Z) depending only on G, see [GaGi, §7]. If L/k is an
extension such that X2(L) is nonempty, then certainly r(G) is killed by L, hence
[L : k]r(G) = 0. It follows that deg CH0(X2) is contained in o(r(G))Z, for o(r(G))
the order of r(G), which is 1 or 2. One can show that the conditions in Proposition
10.2 are equivalent to deg CH0(X2) = o(r(G))Z.

10.4. Corollary. Lemma 8.8, Corollary 8.9, and Corollary 8.10 hold in any char-
acteristic.

Proof. Clearly, it suffices to prove only Lemma 8.8, so assume J3(G) = (1, 0). Then
G is split by an extension of degree not divisible by 9 [PSZ, Prop. 6.6], so indA = 3
and J3(Gk(SB(A))) = (0, 0). Therefore by Lemma 10.1 Gk(SB(A)) is isotropic and by
Lemma 10.2 X2 has a zero-cycle of degree coprime to 3. �

10.5. Corollary. Let G be a group of inner type E6 with Tits algebra A. If G ×
k(SB(A)) is isotropic, then A has index dividing 3.

Proof. Since Lemma 8.8 and Corollary 8.10 hold in any characteristic, we can repeat
the first two paragraphs of the proof of Lemma 10.2 without any restriction on the
characteristic of k to see that X2 has a zero-cycle of degree not divisible by 3. �

We summarize the relationship between the mod-3 J-invariant of G and its Tits
index and Tits algebra in Table 10A. We use here that by [Ju, Prop. 5.3] j1 = 1 iff
indA = 3.

10.6. Proposition. Let G be a simply connected group of inner type E6 over k such
that X2 has a zero-cycle of degree 1. Write Z for the center of G.

(1) The Rost invariant rG is injective on the image of H1(k, Z) → H1(k,G).
(2) For ξ ∈ H1(k,G), if the mod-3 component of the Rost invariant rG(ξ) is a

symbol, then

gcd{[L : k] | L kills ξ} = o(rG(ξ)).
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J3(G) (0, 0) (1, 0) (0, 1) (1, 1) (2, 1)

Tits index of G split q q q q q

q

❡

❡

· · · anisotropic · · ·
index of A 1 3 1 3 9 or 27

Table 10A. Dictionary relating the mod-3 J-invariant of G, the
Tits index of G over a 3-closure of k, and the Tits algebra A of G

Proof. Write A for the Tits algebra of G. If A is split, then G is split and H1(k, Z)
has zero image inH1(k,G), so (1) holds. If A has index 3, thenH1(k, Z) is identified
with k×/k×3 and the composition

H1(k, Z) → H1(k,G) → H3(k,Q/Z(2))

is x 7→ ±x · [A] by [GaQu]. By twisting, it suffices to show that this map has zero
kernel. But if x · [A] is zero, then x is a reduced norm from A, i.e., there is a
cubic extension L of k in A so that x = NL/k(y) for some y ∈ L by Merkurjev-
Suslin if chark 6= 3 and by [Gi00, Th. 6a] if char k = 3. Now L splits A, so G is
L-split and y is in the kernel of H1(L,Z) → H1(L,G). As G/Z is rational as a
variety over L, the Gille-Merkurjev Norm Principle implies that x is in the kernel
of H1(k, Z) → H1(k,G), completing the proof of (1).

As for (2), one quickly reduces to the case where rG(ξ) is zero (because the mod-
2 and mod-3 components of rG(ξ) are symbols — for 2 this is by Lemma 9.2), X2

has a rational point, and A has index 3. There is a cubic extension of k splitting
A, hence splitting G, hence killing ξ. On the other hand, ξG × k(SB(A)) is split,
so by Lemma 10.2 the ξG-variety X2 has a point over extensions L1, . . . , Lr such
that gcd{[Li : k]} is not divisible by 3. Over each Li, ξ is in the kernel of the map
H1(Li, G) → H1(Li, G/Z) by Tits’s Witt-type Theorem, so is equivalent to the
class of a cocycle z with values in Z. By (1), ξ is killed by Li. This proves (2). �

10b. Type E7. For use in this subsection and the next, we recall that the simple
roots of E7 and E8 are numbered like this:

(10.1)
E7

q q q q q q

q

1 3 4 5 6 7

2
q q q q q q q

q

1 3 4 5 6 7 8

2
E8

A group G of type E7 has (essentially) one Tits algebra, as explained in [Ti71,
6.5.1]. It is a central simple algebra of exponent dividing 2 and index dividing 8.

10.7. Proposition. Let G be an anisotropic group of type E7 with Tits algebra H.
If Gk(SB(H)) is split, then indH = 2.

Proof. Let J2(G) = (j1, j2, j3, j4), ji = 0, 1, be the J-invariant of adjoint E7 (see
[PSZ, Section 4.13]). Since G is anisotropic and Gk(SB(H)) is split, j1 = 1 by [PS10,
Proposition 4.2].

Moreover, the upper motives of the variety of Borel subgroups X∆ and of SB(H)
are isomorphic. Their Poincaré polynomials equal

(1 + t)(1 + t3)j2(1 + t5)j3(1 + t9)j4 and
tindH − 1

t− 1
.

Since they are equal, we have j2 = j3 = j4 = 0 and indH = 2. �
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The following lemma provides a crucial computation for the proof of Theorems
10.10 and 10.18 below, which settle Rost’s question described in the introduc-
tion. The proof involves a computer calculation, which we did via two independent
methods: the one described in section 5 and the one in [DuZ]. Alternatively, the
paper [KonoI] computes the Steenrod operations on Ch(X∆), and presumably the
computer calculation here could be replaced by an argument connecting their com-
putation with X7.

10.8. Lemma. Assume that the variety X7 does not have a zero-cycle of odd degree,
the Tits algebras of G are split, and chark 6= 2. Then F2(9) is a direct summand
of the motive U(X7) over k(X7).

Proof. Let h ∈ Ch1(X7), e5 ∈ Ch5(X7), and e9 ∈ Ch9(X7) denote some Schubert
cycles. Then independently of the choice of these cycles, the elements h9, e5h

4, and
e9 form an F2-basis of Ch9(X7). Note also that the cycle h is rational, since the
Tits algebras of G are split.

We claim that the cycles e5h
4, e9, and e5h

4 + e9 are not rational.
Indeed, a direct computation of Steenrod operations modulo 2 shows that

e5h
5 · S8(e5h

4) = e9h · S8(e9) = (e5h
5 + e9h)S

8(e5h
4 + e9) = pt,

where pt denotes the class of a rational point on X7. Since by our assumptions X7

has no zero-cycles of odd degree, the only rational cycle in Ch9(X7) is h
9.

But the cycle h9 does not lie in the first shell. Indeed, an explicit computation
of the decomposition of [CGM, Theorem 7.5] for M (X7) shows that over k(X7)
its motive contains exactly the following Tate motives: F2, F2(1), F2(9), F2(10),
F2(17), F2(18), F2(26), and F2(27), and that the cycle from the dual codimension
that corresponds to the Tate motive F2(9) equals Z[1,3,4,2,5,4,3,1,7,6,5,4,2,3,4,5,6,7] in
the notation of Section 5. A direct computation using Poincaré duality shows that
this cycle is not dual to h9.

Since generic points of direct summands of X7 are rational, no shift of U(X7) of
X7 starts in codimension 9. Therefore the Tate motive F2(9), which belongs to the
first shell, must be a summand of U(X7)k(X7). �

10.9. Lemma. Assume that G is anisotropic, the variety X7 has no zero-cycles of
odd degree, the Tits algebras of G are split, and char k 6= 2. Then the height of X1

equals 3 and Gk(X1) has semisimple anisotropic kernel of type D6.

Proof. The (2, {1})-indexes of G are {1}, Ψ := {1, 6, 7}, and ∆, so by Example 4.7
the nonempty shells on X1 are the first shell, which is contained in SH6Ψ, which is
contained in the last shell.

By [PS10, Th. 5.7(6)] the varietiesX1 andX7 are not generically split. Therefore
by the Tits classification [Ti66] the height of X1 is 2 or 3. Assume that it is two.
Then the upper motives U(X7) and U(X1) are isomorphic.

By Lemma 10.8 the motive U(X7) has the property that F2(9) is its direct
summand over k(X7). On the other hand, a direct computation using [CGM,
Th. 7.5] shows that F2(9) is not a direct summand of the motive of X1 over k(X7).
Contradiction. �

10.10.Theorem. Let G0 be a split, simply connected group of type E7, ξ ∈ H1(k,G0),
and G = ξ(G0). The following conditions are equivalent

(1) 6rG0
(ξ) = 0 and the mod-2 component of rG0

(ξ) is a symbol;
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(2) the G-variety X7 has a rational point;
(3) the element ξ lifts to H1(k,E6), where E6 stands for the split simply con-

nected group of type E6.

This result settles the question raised in the last sentence of [Sp06], which asked
whether there exists a criterion on rG0

(ξ) for whether (3) holds.
The proof uses the following notion: suppose α : H → G0 is a homomorphism

of absolutely simple simply connected groups. Then the composition H1(−, H)
α−→

H1(−, G0)
rG0−−→ H3(−,Q/Z(2)) equals nαrH for some nonnegative integer nα called

the Dynkin index of α, see [GaMS, pp. 122, 123] for its basic properties. It can be
calculated from root system data as follows. Let T be a maximal torus of G0 and
U be a maximal torus in H such that α(U) ⊆ T . There is a unique Weyl-invariant
quadratic form q on the coroot lattice Hom(Gm, T ) that takes the value 1 on short
coroots, and the Dynkin index nα is the value of q on the image under α of a short
coroot in Hom(Gm, U).

Proof of Theorem 10.10. Assume (1), and that (2) fails; we seek a contradiction.
By Proposition 9.3 we may assume that chark = 0. A X7 has no rational point, it
has no zero-cycle of odd degree as in Cor. 9.4.

By Lemma 10.9, the anisotropic kernel of Gk(X1) has type D6 and, thus, equals
Spin(q) for a 12-dimensional quadratic form q with trivial discriminant and trivial
Clifford invariant. Because the inclusion D6 ⊂ E7 has Dynkin index 1, the Arason
invariant of q is also a symbol. This gives a contradiction with [Ga09a, Lemma 12.5],
hence (1) ⇒ (2).

(3) obviously implies (1). Assume (2). By Tits’s Witt-type theorem, ξ is equiv-
alent to the class of a cocycle taking values in the parabolic subgroup P7. Let L be
the Levi part of P7. By [DG, Exp. XXVI, Cor. 2.3] H1(k, P7) = H1(k, L). Then
ξ ∈ H1(k, L) comes from H1(k,E6) by the exact sequence

1 → E6 → L → Gm → 1

and by Hilbert 90. �

The split simply connected group E6 contains a split group G2 of that type, and
the inclusion G2 ⊂ E6 has Dynkin index 1.

10.11. Corollary. The map H1(k,G2) → H1(k,G0) identifies H1(k,G2) with the
subset

{ξ ∈ H1(k,G0) | rG0
(ξ) is a symbol in H3(k,Z/2Z(2))}.

For each such ξ, the kernel of the Rost invariant H1(k, ξ(G0)) → H3(k,Z/12Z(2))
is zero.

In the statement, G0 is split simply connected of type E7, as in Theorem 10.10.
But note that the statement holds verbatim if G0 is instead taken to be E6.

Proof. The Rost invariant rG2
identifies H1(k,G2) with the set of symbols in

H3(k,Z/2Z(2)), cf. [GaMS, p. 44]. Hence, as the total inclusion G2 ⊂ E6 ⊂ G0

has Dynkin index 1, the image of H1(k,G2) is contained in the displayed set. Con-
versely, if ξ, ξ′ are in the displayed set and rG0

(ξ) = rG0
(ξ′), then ξ, ξ′ come from

H1(k,E6) by Theorem 10.10, hence ξ = ξ′ by the analogous property for E6. The
second claim follows from the first by twisting. �
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10.12. Remark. This corollary includes as a special case that ker rG0
= 0. So it

gives a fourth proof of this statement, with the first three being Garibaldi (2001),
Chernousov (2003), and Petrov-Semenov [PS10].

It is conjectured that the Rost invariant H1(k, ξ(G0)) → H3(k,Z/12Z(2)) has
zero kernel whenever ξ satisfies Theorem 10.10(1), see [Ga09b, 11.11].

10.13. Corollary. If chark = 0, k(
√
−1) has cohomological dimension ≤ 2, and

rG0
(ξ) is a symbol in H3(k,Z/2Z), then the natural map

H1(k, ξ(G0)) →
∏

orderings v of k

H1(kv, ξ(G0))

has zero kernel.

That is, the “Hasse Principle Conjecture II” holds for the group ξ(G0). This is
new. The analogous statement in prime characteristic is Serre’s “Conjecture II”,
which is known for these groups by, e.g., [Gi01].

Proof of Cor. 10.13. The hypothesis on k gives that

H3(k,Q/Z(2)) = H3(k,Z/2Z),

and the claim is obvious from Corollary 10.11 and the injectivity of the map
H3(k,Z/2Z) → ∏

H3(kv,Z/2Z). �

We can also prove a new case of the local-global principle studied in [PaPr]. A
global field k is a number field or a finite extension Fp(t). We write kv for the
completion of k with respect to a valuation v.

10.14. Corollary. Let C be a proper, smooth, and geometrically integral curve over
a global field k. If

(1) G is the base change to k(C) of a simply connected group of type E7 with
trivial Tits algebras over k; or

(2) G = ξ(G0) for some ξ ∈ H1(k(C), G0) such that rG0
(ξ) is a symbol in

H3(k(C),Z/2Z(2)),

then the natural map

H1(k(C), G) →
∏

valuation v of k

H1(kv(C), G)

has zero kernel.

Proof. Suppose we are in case (2) and x ∈ H1(k(C), G) has zero image inH1(kv(C), G)
for all v. Then rG(x) has zero image under

H3(k(C),Z/12Z(2)) →
∏

v

H3(kv(C),Z/12Z(2)),

hence rG(x) equals zero by [Kato 86, Th. 0.8(2)], and Corollary 10.11 gives the
claim.

In case (1), let ξ ∈ H1(k,G0) be such that G = ξG0 × k(C). Then rG0
(ξ)

belongs to H3(k,Q/Z(2)) = H3(k,Z/2Z(2)), so it is necessarily a symbol, i.e., (1)
is a special case of (2). �
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With this same kind of proof, combined with the arguments from [HHK, §4.3],
one can also prove a local-global principle for ξ(G0) as in Corollaries 10.13 and
10.14, but with the field replaced by the function field of a curve over a complete
discretely valued field.

10.15. Lemma. Let q be a regular 12-dimensional quadratic form with trivial dis-
criminant over a field k with char k 6= 2 such that the respective special orthogonal
group has J-invariant (0, 1, 0). Then q is isotropic.

Proof. Assume that q is anisotropic.
Let G be the orthogonal group corresponding to q. By [PS10, Prop. 4.2] the

Clifford invariant of q is trivial. Therefore by the classification of 12-dimensional
quadratic forms q has splitting pattern (2, 4). Let Q = X1 be the projective quadric

given by q = 0 and h ∈ Ch1(X1) the unique Schubert cycle.
By Example 4.6, there are exactly two (non-empty) shells on Q, namely, SH6{1}

(the first shell) and SH6{3}. The powers hi ∈ Chi(X1) are rational and lie in the
first shell if i = 0, 1 and in SH6{3} \ SH6{1} if i = 2, 3, 4, 5.

Since J2(G) = (0, 1, 0), the Poincaré polynomial of the upper motive U(X∆) of
the Borel variety equals t3 + 1. Moreover, since q has height two, U(X∆)k(Q) is
indecomposable.

We have the following motivic decomposition over k(Q):

M (Qk(Q)) ≃ ⊕i=0,1,9,10F2(i)
⊕

⊕5
i=2U(X∆)k(Q)(i).

So, all conditions of Proposition 7.7 are satisfied and the parameter b of that
Proposition equals 9. This is a contradiction, since 9 6= 2n − 1 for any n. (In
the proof of Proposition 7.7 in case X is a projective quadric, one can use [Vi10,
Theorem 2.1] instead of Corollary 7.6. Then the restriction char k = 0 is substituted
by the restriction char k 6= 2.) �

10.16. Proposition. Let G be an adjoint group of type E7 with J2(G) = (0, 1, 0, 0)
over a field k with char k 6= 2. Then X7 has a rational point.

Proof. Since j1 = 0, the Tits algebras of G are split.
If G is isotropic with anisotropic kernel of type D6, then we get a contradiction

with Lemma 10.15, so assume that G is anisotropic. Then X7 has no zero-cycles of
odd degree by Corollary 9.4, so by Lemma 10.9 the height of X1 equals 3 and the
semisimple anisotropic kernel G′ of Gk(X1) has type D6.

Since the J-invariant is non-increasing under field extensions and since Gk(X1)

is not split, the J-invariant of Gk(X1) also equals (0, 1, 0, 0). Therefore by [PSZ,
Cor. 5.19] we have J2(G

′) = (0, 1, 0), and again we get a contradiction with
Lemma 10.15. �

10.17. Corollary. Let C be a smooth projective irreducible curve over Qp, G0 be a
split simply-connected group of type E7 over Qp(C) and ξ ∈ H1(Qp(C), G0). Then:
6rG0

(ξ) = 0 iff ξ(G0) is isotropic.

Proof. Note first that the order of the Rost invariant rG0
is 12 and that “if” is easy.

Assume 6rG0
(ξ) = 0. Then the mod-4 component of the Rost invariant of ξ lies

in H3(k(C),Z/2) and so is a symbol by [PaSu98, Th. 3.9] or [Leep]. Theorem 10.10
gives that ξ(G0) is isotropic. �
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We remark that, using the theory of Bruhat-Tits buildings J. Tits shows in [Ti90,
Proposition 2(B)] that there is an anisotropic group of type E7 with trivial Tits
algebras over Qp(t). That is, there exists ξ ∈ H1(Qp(t), G0) such that ξ(G0) is
anisotropic.

10.18. Theorem. Let G0 be a split, simply connected group of type E7 over a field
k, ξ ∈ H1(k,G0), and G = ξ(G0). The following conditions are equivalent

(1) there is an odd-degree extension L/k so that rG0
(ξL) is a sum of two symbols

in H3(L,Z/2Z(2)) with a common slot;
(2) the G-variety X1 has a zero-cycle of odd degree;
(3) G becomes isotropic over an odd-degree extension of k.

Proof. The implication (2)⇒ (3) is trivial and (3)⇒ (1) is [Ga09b, p. 70, Prop. A.1].
So assume (1); we prove (2), We may replace k with L and so assume that rG0

(ξ)
is a sum of two symbols in H3(k,Z/2Z(2)). We may assume that char k = 0 by
Proposition 9.3.

The J-invariant J2(G) is (0, 0, 0), (1, 0, 0), (1, 1, 0), or (1, 1, 1) because G is sim-
ply connected. In the first two cases, X7 has a rational point (by Cor. 9.4 and
Prop. 10.16 respectively), hence (2). So we can assume that J2(G) = (1, 1, j3) for
some j3.

By hypothesis, there is a regular quadratic form q over k of dimension 12 whose
Arason invariant equals rG0

(ξ). We assume that q is anisotropic, for otherwise
rG0

(ξ) is a symbol and X7 has a rational point by Theorem 10.10, hence (2). We
denote the corresponding projective quadric by Q. Over k(X7) the Rost invariant
rG0

(ξ) is a symbol, hence the form q is isotropic over k(X7). Conversely, the
Rost invariant of ξ over k(Q) is a symbol, so by Theorem 10.10 X7 has a k(Q)-
point. Therefore the upper motives U(X7) and U(Q) are isomorphic. Moreover,
M (Q) ≃ U(Q)⊕ U(Q)(1). Therefore, since X7 has height 2, we have

M (X7) ≃ U(Q)⊕ U(Q)(1)⊕ U(Q)(17)⊕ U(Q)(18)⊕⊕i∈IU(X∆)(i),

where I is some multiset of indexes. The Poincaré polynomial of U(X∆) equals

(t3 + 1)(t5 + 1)(t9 + 1)j3 ,

and P (X7, t) − (1 + t + t17 + t18)P (U(Q), t) is divisible by P (U(X∆), t). An easy
computation shows then that j3 = 0.

Consider now the variety X1 over K := k(X1). A direct computation using
[CGM, Theorem 7.5] gives the following decomposition over K:

M (X1) ≃ F2 ⊕ M (X ′
3)(1)⊕ M (X ′

6)(8)⊕ M (X ′
3)(17)⊕ F3(33),

where X ′
3 and X ′

6 are Spin(q)-homogeneous varieties of types 3 and 6 (here the
enumeration of simple roots comes from the embedding D6 < E7, i.e., X

′
3 is a con-

nected component of the maximal orthogonal Grassmannian and X ′
6 is the variety

of isotropic planes).
The variety X ′

3 is generically split. Therefore M (X ′
3) is a direct sum over k of

Tate twists of the motive U(X∆). The variety X ′
6 has height 2 and is a direct sum

over k of Tate shifts of the motives U(X∆) and U(Q).
But J2(Gk(X1)) = (1, 1, 0) by Lemma 10.9 and Proposition 10.16. Therefore the

motives U(X∆)k(X1) and U(Q)k(X1) are indecomposable. If X1 has no zero-cycles
of odd degree, then we can apply Proposition 7.7, which gives a contradiction, since
33 6= 2n − 1 for any n. Therefore, (1) ⇒ (2). �



34 S. GARIBALDI, V. PETROV, AND N. SEMENOV

10.19.Remark. For G = ξ(G0) of type E7, it is known that (1) for any extension L
of k such that X7(L) 6= ∅, we have resL/k(4rG0

(ξ)) = 0 iff X1×L has a zero-cycle of
degree not divisible by 3 (by [Ro91] and Prop. 9.3) and (2) there exists a separable
extension K of k of dimension 1 or 2 such that X7(K) 6= ∅ (by [Ga09b, 12.13] and
Prop. 9.3). As 4rG0

(ξ) ∈ H3(k,Z/3Z(2)), combining these observations gives: X1

has a zero-cycle of degree 1 iff X1 has a zero-cycle of odd degree and 4rG0
(ξ) = 0.

Table 10B summarizes what we have proved about the relationships between the
Rost invariant, and the Tits index for groups of type E7 at the prime 2; it also
gives a description of J-invariant for simply connected groups of type E7 for fields
of characteristic 0. The equivalence for the J-invariant (1, 1, 0) follows from the
proof of Theorem 10.18.

J2(G) (0, 0, 0) (1, 0, 0) (1, 1, 0) (1, 1, 1)

Tits index of G split q q q q q q❡ ❡ ❡

q

q q q q q q❡

q

anisotropic

rG0
(ξ) 0

nonzero symbol in
H3(K,Z/2Z(2))

sum of two symbols
with a common slot in
H3(K,Z/2Z(2))

otherwise

Table 10B. Dictionary relating the mod-2 J-invariant of G, the
Tits index of G over a 2-closure K of k, and the Rost invariant
rG0

(ξK), for G0 split simply connected of type E7.

10.20. Remark. For completeness’ sake, we mention the analogous results for a
group G of type E7 at the prime 3. (The case of primes > 3 being trivial.) There
is an extension L of k of degree not divisible by 3 over which G has trivial Tits
algebras and the homogeneous variety X7 has a rational point [Ga09b, 13.1]. It
follows that the mod-3 component of r(GL) is a symbol. The mod-3 component of
r(GL) is zero iff X1,6,7 has an L-point.

10c. Type E8. Recall the following known result:

10.21.Proposition. Let G0 be a split group of type E8 over a field k, ξ ∈ H1(k,G0),
G = ξ(G0) and p an odd prime. If the mod-p component of rG0

(ξ) is zero, then G
is split over a field extension of degree not divisible by p.

The proposition is trivial for p ≥ 11 and p = 7 amounts to noting that 7 does
not divide 120, see [Ti92, p. 1135]. The cases p = 3, 5 are more substantial and are
the main results of two papers of Chernousov, see [C95] or [Ga09b, Prop. 15.5] for
the mod-5 case and [C10] for the mod-3 case. We give a short proof of the p = 3
case using the methods of this paper.

Proof of Prop. 10.21 for p = 3. By Proposition 9.3 we can assume that chark = 0.
Replacing k by an extension of degree coprime to 3, we can assume that the Rost
invariant rG0

(ξ) is zero.
Consider the variety X of parabolic subgroups of G of type 7. By the classifica-

tion of Tits indexes, G has a parabolic of type 8 over k(X), hence the semisimple
anisotropic kernel of Gk(X) is contained in a simply connected subgroup of type
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E6. But the Rost invariant of the split E6 has zero kernel, so it follows that X is
generically split.

Therefore by [PS10, Th. 5.7] J3(G) = (0, 0), hence by [PS10, Prop. 3.9(3)] G
splits over a field extension of degree coprime to 3. �

The conclusion of Prop. 10.21 is false in general for the omitted prime p = 2,
e.g., in case k = R. For p = 2, one needs to inspect also the degree 5 invariant
constructed in [Sem].

10.22. Lemma. Let G be a group of type E8 over a field k with chark = 0. If
J3(G) = (1, 0), then X8 is isotropic over a field extension of degree coprime to 3.

Proof. Assume that X8 has no zero-cycles of degree coprime to 3. By [PS10, The-
orem 5.7(8)] X8 is not generically split. Therefore, since J3(G) = (1, 0), the motive
U(X∆)k(X8) is indecomposable.

We have the following motivic decomposition over k(X8):

M (X8) ≃ ⊕i=0,1,28,29,56,57F3(i)⊕ (⊕j∈JU(X∆)(j))

for some multiset of indexes J .
Moreover, the Picard group of X8 is rational, since the Tits algebras of G are

split. It follows that the (unique) generator of the Picard group lies in the first
shell. This leads to a contradiction with Proposition 7.7, since 28 6= (3n − 1)/2 for
any n. �

With Lemma 10.22 in hand, we can significantly strengthen Prop. 10.21 by giving
criteria for rG0

(ξ) to be a symbol over an extension of degree not divisible by some
odd prime p. For p ≥ 5, this happens for every ξ (see [Ga09b, 14.7, 14.13] for the
case p = 5). For p = 3, we have:

10.23. Theorem. Let G0 be a split group of type E8 over a field k, ξ ∈ H1(k,G0),
and G = ξ(G0). The following conditions are equivalent:

(1) rG0
(ξ) is a symbol over a field extension of degree coprime to 3;

(2) The G-homogeneous variety X7,8 is isotropic over a field extension of degree
coprime to 3;

(3) G is isotropic over a field extension of degree coprime to 3.

Proof. We assume (1) and prove (2). Without loss of generality we can assume
that the even and the mod-5 components of the Rost invariant of ξ are zero.

By Proposition 9.3 we can assume that chark = 0. Assume rG0
(ξ) is a symbol

over a field extension of degree coprime to 3; by Prop. 10.21 we can assume that it
is not zero. Consider its generic splitting variety D. The upper motive of D is a
generalized Rost motive R with Poincaré polynomial 1 + t4 + t8 (see e.g. [NSZ]).

Let X∆ denote the variety of Borel subgroups of G. Then it is obvious that R
splits over k(X∆). On the other hand, the kernel of the Rost invariant is trivial
modulo 3 by Prop. 10.21. Therefore the upper motives ofD andX∆ are isomorphic.
Thus, J3(G) = (1, 0). By Lemma 10.22 X8 is isotropic over a field extension L of
degree coprime to 3. But then X7 is also isotropic over an extension of L of degree
dividing 2.

Finally, (2) obviously implies (3), and (3) implies (2) by the classification of
possible Tits indexes in [Ti66]. Property (2) easily implies (1). �
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10.24. Remark. If one attempts to sharpen the theorem by deleting the text “over
a field extension of degree coprime to 3”, the implication (2) ⇒ (1) still holds but
(1) ⇒ (2) fails. Indeed, for ξ ∈ H1(R, G0) such that ξ(G0) is the compact E8,
rG0

(ξ) is zero.

Table 10C summarizes what we have proved about the relationship between the
Rost invariant, J-invariant, and Tits indexes for groups of type E8 at the prime
3. Note that we proved the equivalent description for Tits indexes and the Rost
invariant over fields of arbitrary characteristic, and the equivalent description for
the J-invariant only for fields of characteristic 0.

Note also that for every k, there is a versal torsor ξ ∈ H1(K,G0) for some
extension K/k, and that for such a ξ, J3(G) is maximal [PSZ, p. 1036], i.e., (1, 1).
By Theorem 10.23, the 3-torsion part of rG0

(ξ) is not a symbol in H3(L,Z/3Z(2))
for every extension L/K of degree not divisible by 3.

J3(G) (0, 0) (1, 0) (1, 1)

Tits index of G split q q q q q q q❡ ❡

q

anisotropic

rG0
(ξ) 0 nonzero symbol otherwise

Table 10C. Dictionary relating the mod-3 J-invariant of G, the
Tits index of G over a 3-closure K of k, and the Rost invariant of
rG0

(ξK), for G0 split of type E8.

10.25. Corollary. Let C be a smooth projective irreducible curve over Qp with
p 6= 3. If G is a group of type E8 over Qp(C), then the G-variety X7,8 is isotropic
over a field extension of degree coprime to 3.

Proof. By [PaSu10, Theorem 3.5] each element in H3(Qp(C),Z/3) is a symbol over
a field extension of degree coprime to 3. Therefore by Theorem 10.23 the variety
X7,8 is isotropic over a field extension of degree coprime to 3. �
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