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УДК 512.73

G. Faltings

The category MF in the semistable case

The categories MF over discrete valuation rings were introduced by
J.M. Fontaine as crystalline objects one might hope to associate with Galois
representations. The definition was later extended to smooth base-schemes.
Here we give a further extension to semistable schemes. As an application we
show that certain Shimura varieties have semistable models.
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§ 1. Introduction

J. M. Fontaine pioneered a theory relating p-adic étale and crystalline cohomolo-
gies. For discrete valuation rings he defined a certain category MF and a fully
faithful functor from it into Galois representations. The objects of MF are mod-
ules with filtration and Frobenius-action. Originally defined ([6]) for unramified
p-adic valuation rings, the theory was extended to smooth extensions R of them
in [4]. Here our goal is a further extension to semistable schemes. This involves
additional complications because the base-ring does not admit any Frobenius-lift.
Instead we have to pass to a divided power thickening Rcrys. This makes the com-
mutative algebra more difficult than in [4]. However for objects annihilated by p we
can find a canonical lift to a regular ring Rinf whose relation to Rcrys is similar to
that between Fontaine’s rings Ainf and Acrys. The ring Rinf is Noetherian and reg-
ular and thus more accessible to techniques from commutative algebra. Finally we
should mention that working over Rcrys has some similarity with the considerations
in [1]. As a drawback our method does not generalise well to derived categories.
As a consequence we cannot show that under log-smooth (maybe with some extra
conditions) proper maps of semistable schemes, étale direct images are crystalline.

More precisely, assume that V0 is a discrete complete valuation ring with field of
fractions K of characteristic zero, uniformiser a prime p, and perfect residue field k

of characteristic p. The base-ring R is p-adically complete, and formally étale over
V0[x0, . . . , xd]/(η) where

η = x0 · x1 · · ·xd − p.

For most considerations we may assume that it is local. We can find a ring Rinf

(local, p-adically complete) which is formally smooth over V [x̌0, . . . , x̌d] with

R = Rinf/(x̌0 · · · x̌d − p),

c⃝ G. Faltings, 2016
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and denote by Rcrys the p-adically complete divided power-hull of the ideal generated
by

η = x̌0 · · · x̌d − p ∈ Rinf .

It is obtained by adjoining divided powers ηn/n! and completing p-adically, and
admits a Hodge-filtration by ideals F r(Rcrys) which are generated by the divided
powers of order > r.

Rinf admits various Frobenius lifts. For example we may send all the x̌i to their
p-th powers. It induces an endomorphism φ on Rcrys. Note that φ(η) is divisible
by p and the quotient

φ(η)
p

= −1 +
(x̌0, . . . , x̌d)p

p

is a unit. Thus if F i(Rcrys) denotes the DP-filtration, then the restriction of φ

to F i is divisible by pi for i < p.
Furthermore we denote by ΩR the logarithmic (finite) module of differentials,

which is generated over R by the dxi/xi with the single relation

d∑
i=0

dxi

xi
= 0.

Also Ωinf denotes the corresponding module for Rinf . It is the free Rinf -module
with basis d log(x̌i), 1 6 i 6 d. We denote by ∂i the dual basis of logarithmic
derivations of Rinf or Rcrys (∂i = x̌i ∂/∂x̌i). They satisfy the identity (for 0 6 i 6 d

and φ(xi) = xp
i )

∂i(φ(r)) = pφ(∂i(r)).

A logarithmic connection ∇ on an Rinf -module M is given by endomorphisms ∇i

satisfying the Leibniz rule. It is integrable if the ∇i all commute.

§ 2. The category MF modulo p (without ∇)

We first treat objects annihilated by p, as many questions in the general case are
reduced by devissage to this. We denote by R the ring

R = Rinf/(p, ηp) = Rcrys/(p, F p).

Furthermore we fix an integer e, 0 6 e 6 p− 2. Consider triples(
L, M, Φ

)
,

where M ⊆ L are finitely generated R-modules, ηeL ⊆ M , L is flat over R, and

Φ: M ⊗R,φ R ∼= L

is an isomorphism between L and the Frobenius-transform of M . Such triples are
usually abbreviated to E.

We lift E to a triple E∞ of Rinf/(p)-modules (L∞, M∞, Φ∞).
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Define inductively projective systems Ln, Mn by

M−1 = M/(η), M0 = M, L0 = L,

Ln+1 = Mn ⊗Rinf ,φ Rinf/(p), Mn+1 = Mn ×Ln Ln+1.

Then by induction

Ln+1/Mn+1 = Ln/Mn, Ln+1/(ηp) ∼= Ln/(ηp), Mn+1/(η) = Mn/(η).

The first equality is obvious, the second follows from the third (for n instead of n + 1)
by applying Frobenius, and for the third we need that the kernel of Mn+1 → Mn

(equal to the kernel of Ln+1 → Ln) lies in ηMn+1, and this holds because it is
contained in ηpLn+1 and Mn contains ηeLn. As η lies in the maximal ideal m

of Rinf/(p), this implies that all transition maps are surjective, and that the pro-
jective limits L∞ and M∞ are finitely generated over Rinf/(p). Also

M∞ ⊗φ Rinf/(p) ∼= L∞

and M∞ contains ηeL∞.
We want to show that L∞ and M∞ are projective Rinf/(p)-modules. For this

it suffices to show that Exti
Rinf/(p)(M∞, Rinf/(p)) vanishes for i > 0, and similarly

for L∞. However the Ext-group for L∞ is obtained from that for M∞ by Frobe-
nius pushout, that is, tensoring with R∞/(p) considered as a module over itself
via Frobenius (more precisely the dual module of R∞/(p) occurs, but both are
isomorphic).

Assume p ̸= (0) is a minimal prime in the support of Exti(M∞, R∞/(p)). As
M∞ contains ηeL∞, the multiplication by ηe on Exti(L∞, R∞/(p))p factors over
Exti(M∞, R∞/(p))p. In R∞/(p) the element η is the product of the x̌j , and those
contained in p form part of a regular system of parameters of p. It follows that
for any R∞/(p)p-module N of finite length the image of multiplication by ηe on
N ⊗φ R∞/(p) is at least equal to the length of N multiplied by (p− e)height(p).

It suffices to check this for the residue-field at p. As the argument will be used
several times we give some details. Namely, assume Rinf,p has regular parameters
z1, . . . , zs. Then the Frobenius pushout of the residue-field in p is

Rinf,p/(zp
1 , . . . , zp

s ).

The image of multiplication by (z1 · · · zs)e on this module has length (p− e)s (mul-
tiply monomials with all exponents < p− e by (z1 · · · zs)e).

Applied to N equal to the localisation of the Ext-group we get the desired result
(namely, l(N) > (p − e)sl(N), thus N = (0)). As a corollary we obtain that the
original L is a free Rinf/(p, ηp)-module, and M/(η) is projective over Rinf/(p, η).
As the quotients Ln/Mn are all isomorphic it follows that L/M admits a projective
resolution of length one over Rinf . Equivalently its depth is equal to

d = dim(Rinf/(p, ηp)).

By abuse of notation we call elements of M a “basis” if they induce a basis of M/(η).
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Remark. Instead of the Ext-group we could use local cohomology Hi
m, that is,

its dual under Matlis duality.

The same arguments apply to maps. If

L → L′, M → M ′

are maps compatible with all structures (L, M, Φ), these maps extend to L∞
and M∞, and by the Ext-arguments the cokernels are free over Rinf/(p), and thus
also the kernels. So the same holds for the original maps

L → L′, M/(η) → M ′/(η).

Thus our category of triples ( L, M, Φ) is an abelian category and the functors L,
M , L/M are exact.

Before we introduce connections we first change the base-ring from Rinf/(p)
to Rcrys/(p). For this we replace L∞ by its tensor product with Rcrys/(p) and
M∞ by the Rcrys-submodule generated by M∞ and F p(Rcrys)L∞. In other words
we consider Lcrys = L⊗Rcrys/(p) and its submodule Mcrys ⊆ Lcrys with

Lcrys/Mcrys = L/M.

In all this we use the inclusion

Rinf/(p, ηp) ⊂ Rcrys/(p).

The “crys-objects” have the property that Lcrys is a projective Rcrys/(p)-module,
and

Lcrys = Mcrys/(η)⊗φ Rcrys/(p).

We recover the original objects over R by

L = Lcrys/
(
F p(Rcrys)Lcrys

)
, M = Mcrys/

(
F p(Rcrys)Lcrys

)
,

and they also form an abelian category such that Lcrys, Mcrys, Lcrys/Mcrys are exact
functors. In addition, Lcrys is free over Rcrys/(p), and the quotient Lcrys/Mcrys has
depth d. Naturally such objects are denoted by E crys. Thus our original data are
equivalent to giving objects over Rcrys satisfying the conditions above. In short
we obtain various equivalent categories over R, Rinf/(p), or Rcrys/(p). They will
be the objects annihilated by p in a category MF(R) except that we still need to
introduce connections.

§ 3. Connections, descent data

Now we can define connections. On L we assume given a logarithmic integrable
connection, that is, commuting operators∇i satisfying the Leibniz-rule. Concerning
M we require that this submodule is stable under the operators η∇i, and that the
Frobenius Φ is parallel in the sense that (for m ∈ M )

Φ(η∇i(m)) =
φ(η)

p
· ∇i(Φ(m)).
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Note that φ(η)/p ≡ −1 modulo (p, F p(Rcrys)). Also the inclusion M ⊆ L should
commute with η∇i. These induce unique connections on L∞ and (after multiplica-
tion by η) on M∞, and thus also connections on Lcrys and Mcrys. As usual this is
independent of the logarithmic Frobenius-lift φ, and allows us to define a functor D
from MF to Galois representations.

Denote by S the integral closure of R in the maximal étale extension of R[1/p].
The Frobenius is surjective on S/(p) and the projective limit

R = lim. proj.
(
S/(p)

)
(transition maps Frobenius) is a perfect ring. It consists of sequences (xn | n > 0)
with

xn = xp
n+1,

where the xn are either elements of S/(p) or of the p-adic completion Ŝ. Prominent
elements are 1 (with x0 = 1, xn a primitive pn-th root of unity) and p (with xn

a pn-th root of p). The ring
Ainf(R) = W (R)

(Witt-vectors) admits a surjective homomorphism

θ : Ainf(R) → Ŝ

with kernel generated by one element, for example by [p]− p. The surjection

Rinf → R ⊂ Ŝ

lifts to Rinf → Ainf(R), for example by mapping the variables x̌i to elements [xi]
made up from p-power roots of the xi. This also maps η to the generator of ker(θ)
exhibited before. In the following we only consider lifts R∞ → A∞ which differ
from the above by multiplying xi by units (logarithmic lifts).

As usual define Acrys(R) as the p-adically completed divided power-hull of

ker(θ) ⊂ Ainf(R).

Lift
Rcrys → R ⊂ Ŝ

somehow to a homomorphism into Acrys(R). For example use the lift above which
also commutes with Frobenius. Then

Definition 1. For an object

E crys ∈MF

annihilated by p define

D(E crys) = Hom
(
E crys, Acrys(R)/(p)

)
.



46 G. FALTINGS

Here homomorphisms are Rcrys-linear maps Lcrys → Acrys(R)/(p) (or Acrys(R)-
linear maps from Lcrys ⊗Rcrys Acrys(R) into Acrys(R)/(p)) which map Mcrys into
the e-th stage of the divided power filtration F e(Acrys(R)/(p)), respecting Frobe-
nius, which means that for m ∈ Mcrys the image of the element Φ(m) ∈ Lcrys is
equal to the divided power “φ/pe” applied to the image of m. As usual the connec-
tion ∇ makes this independent of choices (map Rcrys → Acrys(R) and Frobenius-
lift on Rcrys). By transport of structure the Galois group of S/R, equal to the étale
fundamental group of Spec(R[1/p]), acts on this.

The description of these homomorphisms can be simplified. Firstly it suffices to
consider Frobenius-linear maps into Acrys(R)/(p) modulo F p, that is, into

Acrys/((p), F p) ∼= R/(ηp),

which lift uniquely by Frobenius invariance. Furthermore

Mcrys/F p(Rcrys)Lcrys

is generated by h (the rank of Lcrys) elements mµ (a “basis”, images of generators
of M∞) and the Φ(mµ) form a basis for Linf . Also, multiplication by ηe is given
in these bases by a matrix bµ,ν dividing ηe, with coefficients in Rcrys/(p) such that
modulo F p(Rcrys)Lcrys,

ηe(Φ(mµ)) =
∑

ν

bµ,νmν .

Now if a map sends the mµ to elements ηexµ ∈ ηeR/(ηp), each Φ(mµ) goes
to (−1)exp

µ. As
ηe(Φ(mµ)) ∈ Minf

maps to the image of Φ(mµ) multiplied by ηe, it follows that the xµ satisfy the
equation

xp
µ = (−1)e

∑
ν

bµ,νxν .

Conversely, such solutions define maps. The xµ determine where to send the mµ,
which determine the images of Φ(mµ) (by divided Frobenius), and the corresponding
maps on Minf and Linf are compatible with multiplication by ηe. We can multiply
the equations for the xµ by the matrix aλ,µ describing the inclusion M ⊆ L to
obtain

(−1)e
∑

µ

aλ,µxp
µ = ηexλ,

that is, our map is compatible with the inclusion Mcrys ⊂ Lcrys.
Now solutions in R/(ηp) = R/(pp) of the equations above correspond via p-th

roots to solutions (where we replace the bµ,ν by their p-th roots) in

R/(p) = S/(p),

and these lift uniquely to S or Ŝ (if we first lift somehow the aµ,ν and bµ,ν). But
over S the equations define a finite flat algebra of rank ph which becomes étale if
we invert p. Thus we have precisely ph solutions. It follows that the functor D is
exact and faithful. In fact we have as in [4, Theorem2.6]:



THE CATEGORY MF IN THE SEMISTABLE CASE 47

Theorem 2. The functor D is (on objects annihilated by p) exact and fully faith-
ful. The essential image is stable under subobjects and quotients.

Proof. We need some general discussion. We go back to the original modules

L = Lcrys/F p(Rcrys/(p))Lcrys, M = Mcrys/F p(Rcrys/(p))Lcrys.

The connections η∇i are nilpotent on M/(η) ((η∇i)e+1 = 0) and thus ∇e+1
i van-

ishes on the image
Φ

(
M/(η)

)
⊂ L.

Thus M/(η) defines a descent of the Rcrys/(p, F p)-module L with respect to the
flat Frobenius

φ : Rcrys/(p, F 1) → Rcrys/(p, F p).

Now we show that the functor D is fully faithful. It turns out that the method
of [4] also works here. Firstly we consider the case when R is a discrete valuation
ring, with residue-field k, that is, we localise at one of the minimal primes containing
some xi. By reordering we may assume that i = 0, and the other xi become units
in R. At the beginning we adjoin all p-power roots of the remaining xj , making
the residue-field k perfect, and finally make it algebraically closed by passing to an
étale cover. Thus now

R = V0, R∞ = V0[[η]], R = k[η]/(ηp).

Also a lift Rinf → Acrys(R)/(p, F p) may be chosen invariant under the Galois group
Gal( R/R[p1/p]).

As in [4], we first determine the simple objects in MF . In [4] this is done
citing [6], but it is known that this can be replaced by simpler arguments because
we restrict the range of the filtration. The simple objects will be indexed by rational
numbers β, 0 6 β < 1, with denominator prime to p. If h is minimal with (ph−1)β
integral, write

(ph − 1)β = j0 + j1p + · · ·+ jh−1p
h−1

with integers 0 6 ji < p (this is the “decimal expansion” with the number 10
replaced by p). We furthermore assume that all digits ji 6 e 6 p − 2. Finally we
define new numbers βi as the fractional part of piβ. The digits in the p-expansion
of βi are a cyclic permutation of the ji. Then the corresponding simple object
E(β) has as L the free R-module with basis e(βi), 0 6 i < h. The submodule M

is generated by the elements ηe−jh−ie(βi), whose Φ-image is (−1)jh−ie(βi+1). The
connection ∇0 annihilates the e(βi). The image of the functor D(E(β)) consists of
maps which map e(βi) to Fqh-multiples of pβi (all coefficients conjugate). It is the
tame Galois representation indexed by β.

Now assume that E = (L, M, Φ,∇0) is simple, say of rank h. Then D(E) is
a Galois-module of order ph, and can be identified with solutions to certain equations

xp
µ = (−1)e

∑
ν

bµ,νxν .
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The equations hold in S/(p), the coefficients bµ,ν lie in R[p1/p], and the solutions
lift uniquely to S. D(E) contains a non-trivial element λ on which the wild inertia
operates trivially. The Galois-action involves the connection but if we restrict to the
absolute Galois group of R[p1/p] this modification disappears. Thus the solutions xµ

of the equations above are invariant under the wild inertia over R[p1/p] and so are
their lifts. But then the lifts must be linear combinations of fractional powers
pα/p, where the denominator of α is prime to p. Thus also our original map λ has
image contained in the subspace of S/(p) spanned by these elements. If we apply
Frobenius to such elements they are fixed under wild inertia, and the tame inertia
acts by characters with multiplicities one. Thus λ

(
Φ( M )

)
lies in the space spanned

by the pα. As it is Galois-invariant it is the direct sum of certain kpα, and λ( L )
has k-basis pα+i/p, with i such that the exponent is less than 1. Then the quotient

λ( L ) ∩ (pe/p)
λ( L ) ∩ (p(e+1)/p)

has as k-basis elements pi/p+α, where the exponent lies between e/p and (e + 1)/p.
As the divided Frobenius φ/pe maps this surjectively onto λ

(
Φ( M )

)
, the number

of basis-elements must be at least that for λ
(
Φ( M )

)
, that is, all α < 1− 1/p, and

Frobenius replaces the element indexed by α by that by the fractional part of pα.
This implies that all p-digits in the α’s are 6 p−2, and the set of α’s is the union of
the exponents occurring in a finite collection of E(β)’s. We then define a map from
(L, M, Φ) to the sum of the E(β) by mapping Φ(M) to the basis-elements e(βi) as
to the linear combinations of the pβi . It remains to show that at least one of the
maps respects connections ∇0. It is then an isomorphism (by simplicity).

The Galois-operation of wild inertia on elements of λ
(
Φ( M )

)
is trivial, but also

determined by the connection. If an element σ of wild inertia maps p1/p to ζp1/p,
with ζ a p-th root of unity, the action of σ on the image of an element z = Φ(m) ∈
Φ( M ) ⊂ L is given by the λ-image of

p−2∑
n=0

∇0(∇0 − 1) · · · (∇0 − n + 1)(z)(ζ − 1)n

n!
.

Here we use the fact that (η∇0)p−1( L) ⊆ ηM , so ∇p−1
0 vanishes on Φ( M ). If we

replace σ by σl we may replace ∇0 by l∇0, so this is a polynomial in l of degree
6 p − 1. If this is constant for 0 6 l < p, the polynomial itself is constant, and
λ sends ∇0(z) into elements annihilated by ζ − 1, or annihilated by p1/(p−1), or
elements divisible by p1−1/(p−1).

The λ-image of ∇0(z) lies in λ
(
Φ( M )

)
, thus it is a linear combination of pβ ’s,

and the only β with pβ annihilated by p1−1/(p−1) is β = (p− 2)/(p− 1). Thus the
only map to some E(β) which might not be ∇0-linear might be that for this β.
The map to E(β) has rank one and the image of L coincides with that of M . Thus
for any element m ∈ M the image of ∇0(m) lies in M (“the M for E(β)”), thus
Φ(η∇0(m)) maps to 0, and so does ∇0(Φ(m)).

We have already noticed that D(E(β)) is the irreducible Galois representation
indexed by β. It follows easily that for two such E(β), E(β′) the functor D induces
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an isomorphism on Hom’s. We claim that it induces an injection on Ext1’s. We
must check that if for an extension

0 → E(β) → E → E(β′) → 0

the extension D(E) splits, then so does the original extension. For this note that
D(E) is a tame Galois representation, so it consists of elements λ : L → S/(p) which
map Φ(M) into the tame subspace. As before we can lift to solutions of certain
equations in S, and conclude as before. The assertion follows easily.

It follows that D is fully faithful and its image is closed under forming subobjects
and quotients. For the latter, use the fact that D respects simple objects. So far
these assertions have been shown if the residue-field k is algebraically closed. For
perfect residue-field the same result follows by Galois-descent. For general k we can
make it perfect by adjoining p-power roots of the xi, i > 0. If we have a Galois-map

D(E) → D(E′),

it comes over the extension from a map

E′ → E.

This map is defined over the original R, except for the commutation with the
∇i (use Φ-invariance). It then defines a Galois-map over the extension obtained by
adjoining the p-th roots of the xi, and the rest follows as in [4]. For the convenience
of the reader we sketch the argument.

We have a map
f : ( L1, M1, Φ1) → ( L2, M2, Φ2)

in MF after adjoining sufficiently many p-power roots of units, which induces
a Galois-linear map (even before we adjoin p-power roots) after we apply D. By
Frobenius-invariance it respects connections after we adjoin only p-th roots (no
higher p-powers). If we adjoin the p-th root of u where u is part of a p-basis
of the residue-field of R we have a derivation ∂i of R with ∂i(u) = 1, inducing
∇i on L1 and L2. The commutator g = [∇i, f ] is R-linear, ηg respects the M i,
and g is the Φ-transform of ηg on the M ’s. Thus the image g( L1) is a direct
summand in L2. Furthermore, by a previous argument, the composite of g with
any λ ∈ D(E2) is annihilated by ζ − 1, ζ a primitive p-th root of unity. Thus
λ(ηg( L1)) is annihilated by p1/p(p−1), and lies in the kernel of “φ/pe”. Hence
because of Φ-invariance, λ annihilates g( L1). To derive that this image vanishes we
may make the residue-field of R algebraically closed, then assume that E2 is simple,
and finally check that for simple objects E(β) no non-trivial direct summand of L

can be annihilated by all λ’s.
The same works for subobjects of D(E). Over the extension they give quotients

of E which are defined over the original R, and the Galois-action also makes them
∇i-stable. In short the theory from [4] carries over to discrete valuation rings.
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Over general R’s we still follow the strategy of [4, proof of Theorem 2.6]. Assume
L is a representation of Gal( R/R) on an Fp-vector space L of order ph. Homomor-
phisms

L → D(E)

correspond to maps
λ : E → Hom

(
L,R/(pp)

)
which map M to (pe) and are Galois-invariant in the sense that the image lies in
the invariants under the subgroup fixing p-th roots of the xi, and the remaining
Galois-action is determined by the ∇i. If mµ denotes a “basis” of M there exist
matrices aµ,ν , bµ,ν with product ηe such that

mµ =
∑

aµ,νΦ(mν), ηeΦ(mµ) =
∑

ν

bµ,νmν .

If their λ-image is pezµ, the zµ ∈ Hom
(
L,R/(pp)

)
satisfy equations

φ(zµ) = (−1)e
∑

bµ,νzν .

The zµ lift uniquely to solutions in Hom(L,R) of the equations above (where
we use some Frobenius linear lift R∞/(p) → R). They define an Rinf -linear map
from L∞ to Hom(L,R) which sends M∞ into (pe) Hom(L,R). The images of L∞
and M∞ in Hom(L,R) then satisfy the conditions in § 2 (the image of the first is φe

applied to the image of the second), so they are both free Rinf -modules. It follows
that except for the connection ∇ they define a quotient ( L′, M ′) in the category
MF over which λ factors.

To get a connection we need that the ∇i respect the kernel. They induce linear
maps from the kernel to the cokernel which respect M ’s if multiplied by η. Also
they are the Φ-transforms of these maps on M/(η)’s. Finally by Galois-equivariance
their image is annihilated by p1/(p−1). This implies (as before) that they vanish.
Also L′∞ injects into Hom(L,R) and the map L → D(E′) is Galois-linear. Next we
claim that the rank of L′ is at most h.

It suffices to show that the rank (over Rinf/(p)) of

L∞ → Hom(L,R)

is at most h. For this we may localise at minimal primes containing p, thus assume
that R is a discrete valuation ring. (If we localise at p, the new R contains the
(p)-adic completion of the p-adic localisation of the old R.) Then the image of

L → D(E′)

corresponds to a quotient of E which has rank 6 h.
So, as in [4, proof of Theorem 2.6, section g)], we can define an adjoint E(L) of D

as the inductive limit of E’s with maps

L → D(E).
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It suffices to consider the filtering cofinal system of E’s such that L surjects onto
D(E), and to chose an E of maximal rank. Then

E(D(E)) = E,

so D is fully faithful, and its essential image is closed under subobjects and quotients.

§ 4. General objects

We want to extend the theory to more general Frobenius-crystals not necessarily
annihilated by p. We have not found a clean general description, so we give a prag-
matic one. Namely, consider objects (L, M, Φ), where L, M are Rcrys-modules,

F e(Rcrys)L ⊆ M ⊆ L,

and Φ a morphism
Φ: M ⊗φ Rcrys

∼= L.

We further assume that L has a logarithmic connection ∇, η∇ respects M , and the
usual identities hold. Finally our object should be a repeated extension (L and M

are repeated extensions) of objects E annihilated by p as before. That is, L and M

admit decreasing filtrations Mµ, Lµ such that the subquotients are annihilated by p

and define an object in MF . By devissage, Φ is then an isomorphism. This defines
an abelian category, with L and M exact functors.

We show that maps (L, M) → (L′, M ′) are strict. For this we may assume that
L′ is annihilated by p. If (L, M) admits a filtration by subobjects (Ln, Mn) with
subquotients annihilated by p, denote by L′n, M ′

n the images in L′, M ′. Then

(L′n/L′n−1, M
′
n/M ′

n−1) ⊆ (L′/M ′
n−1, M

′/M ′
n−1)

is a strict subobject (an image of objects annihilated by p), and this implies the
same for

(L′n, M ′
n) ⊆ (L′, M ′)

by induction. For example it applies to objects which are flat over Zp/(pn) and
whose reduction modulo p lies in MF .

Define
D(E) = Hom

(
E ⊗Acrys, Acrys[1/p]/Acrys

)
.

Then the functor D becomes exact and faithful once we show that D(E) has the
expected order. For this we have to count the number of possible extensions to E

of a given map
E′ → Acrys[1/p]/Acrys

where
E′ ⊂ E
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is the maximal subobject annihilated by a smaller p-power than is necessary for E.
If mµ denotes a basis of M/M ′, their images correspond to elements in R/(pp)
satisfying certain equations

xp
µ =

∑
ν

bµ,νxν + yµ,

which as usual can be reduced to equations in S/(p) or Ŝ and have the right number
of solutions. To show that D is fully faithful and that the essential image is closed
under subobjects and quotients, use the fact that we have the same simple objects
as before, and that D is still injective on Ext1’s. This follows because if D of an
extension of simple objects splits, then the total space is annihilated by p, thus we
can apply the previous theory for objects annihilated by p.

Thus we obtain:

Theorem 3. With the above definitions the functor D (on general objects) is
still exact and fully faithful, and its essential image is closed under subobjects and
quotients.

Remark. Over smooth base-schemes, objects in MF with e = 1 (p > 3) corre-
spond to finite flat group-schemes of p-power order. This is no longer the case here,
because the construction would involve a “logarithmic descent”. For example, the
Galois representation for the Tate-curve is given by an object of MF , but does not
result from a finite flat group-scheme. Concretely e = 1, E has basis m0, m1 with

φ0(m0) = m0, φ1(m1) = m1

(so M has basis ηm0, m1), and ∇ annihilates m0 while ∇(m1) = m0 dx/x. The
Galois representation is an extension of Fp by µp parametrised by p and is not
defined by a finite flat group scheme. It would be an extension of Z/(p) by µp,
which is necessarily defined by the p-th root of a unit.

§ 5. Examples

Some objects in MF over a semistable base R are obtained by base change
from the old MF ([4]) over smooth base R̃ (together with a Frobenius-lift φ).
Namely, an “old” object in MF is given by a filtered p-torsion R̃-module M iso-
morphic to grF (M), with filtration degrees between 0 and e 6 p − 2, and divided
Frobenius-maps

φi : F i ⊗φ R̃ → M

inducing
M̃ ⊗φ R̃ ∼= M.

In addition the Frobenius morphisms should be parallel for a suitable connection ∇.
Given such an object over R̃ and a homomorphism R̃ → R (which we lift to
R̃ → Rcrys) the pushforward of M is filtered and admits a connection and divided
Frobenius morphisms (whose definition involves the connection). We then obtain
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an object in our present category MF by considering M ⊗R̃ Rcrys with its sub-
object

∑
i F e−i(Rcrys)F i. This construction is compatible with associated Galois

representations. It applies for example to crystals associated to abelian schemes, or
to finite flat group-schemes of p-power order (which can be étale locally embedded
in abelian schemes).

The Galois representation Zp(1) is associated to the objects (over the base Zp)
with e = 1,

L = M = Zp,

Φ(1) = 1, ∇(1) = 0 (it maps to Acrys by sending 1 to the well-known element
t = log([1])). If x is a monomial in the xi (which we lift to a monomial x̌ in the x̌i),
then p-power roots of x define an extension of Zp by Zp(1) which is associated to
an object of MF with e = 1, L is the free module with basis-elements f , g, and
M is spanned by f , ηg with Φ-images given by

Φ(f) = f, Φ(g) =
(

φ(η)
p

)
g,

∇(f) = 0, ∇(g) = f ⊗ d log(x̌).

This example looks very much like the objects in [4] except that the connection is
logarithmic.

In the next example we still have e = 1, so p > 3. Suppose G → Spec(R) is
a semiabelian scheme over Rinf which is an abelian variety over Spec(R[1/p]). If we
assume that R is complete it can be obtained by the Mumford construction;, see [3,
Ch. 3, Corollary 7.2]. That is, there exists a semiabelian scheme G̃/R (the Raynaud
extension) which is globally an extension

T → G̃ → A,

with T a torus with character group X and A an abelian scheme. We assume for
simplicity that T is split, that is, X is constant. There exists a period map

ι : Y → G̃(R[1/p])

(Y a subgroup of X) such that G is a rigid quotient

G = G̃/ι(Y ).

ι induces a map Y → A(Rinf). More precisely we can write ι as a product

ι = ι0ι1,

where ι0 maps Y to G̃(R), and ι1 to T (R[1/p]), such that the elements of Y map
to monomials in the xi.

The module Tp(G) has a three-step filtration with submodule Xt⊗Zp(1), quotient
Y ⊗ Zp, and Tp(A) in the middle. It is defined via p-power roots of elements ι(y).
It is the amalgamated sum of the Tate-module defined by ι0 and the extension
of Y ⊗ Zp by Xt ⊗ Zp(1) defined by ι1. That is, we take the product of both total
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spaces, in it the pre-image of the diagonal in Y ⊗ Zp, and divide by the diagonal
(one factor with a minus sign) Xt ⊗ Zp(1). We need to explain what we mean by
“Tate-module defined by ι0”.

For example a pn-division point (with coefficients in a suitable ring) in “G̃/ι0(Y )”
is defined by a pair g̃ ∈ G̃(S), y ∈ Y such that png̃ = ι0(y), modulo the action by
elements z ∈ Y sending g̃ to g̃ι0(z) and y to y + pnz. The Tate-module is the
projective limit of the pn-division points.

We show that both summands come from elements of MF : for the extension
defined by ι1 this is obvious from the previous example. Thus consider the extension
given by ι0.

The universal vector extension E(G̃) of G̃ is induced from the universal vector
extension E(A) of A, and its pullback via ι0 is trivial. There exists a universal vec-
tor extension E(Y, G̃) of G̃ with such a trivialisation (that is, a homomorphism ι̃0
with domain Y ), namely, the direct sum of E(G̃) and Y ⊗Ga, where ι0 lifts in some
way into E(G̃) and by the tautological map of Y into Y ⊗Ga. Its vector part is the
direct sum of Y ⊗Ga and the vector part Lie(At)t of the universal vector extension
of A. It is of crystalline nature, that is, it lifts uniquely modulo any DP-nilpotent
ideal I, for example modulo p > 3, or the kernel of Acrys(R) → Ŝ. Its Lie-algebra
with its Hodge-filtration (of degrees −1, 0) represents the “crystalline homology” of
“G̃/ι0(Y )”. It has a filtration with subobject Lie(T ), quotient Y ⊗ Rinf , and the
crystalline homology of A in the middle. Its dual admits a Frobenius-action and
defines an object of MF with associated Galois representation the Tate-module of
“G̃/ι0(Y )”. This follows in the usual way as any element of the Tate-module defines
a sequence g̃n ∈ G̃(S) with g̃0 = 0,

g̃n − pg̃n+1 = ι0(yn), yn ∈ Y,

modulo action of zn (z0 = 0) sending gn to

gn + ι0(zn)

and yn to
yn + zn − pzn+1.

These have coefficients in the p-adic completion of S but lift to elements g̃n

in E(Y, G̃)(Acrys(R)). Modifying them by the kernel of

E(Y, G̃)(Acrys(R)) → G̃(Ŝ)

(a p-adically complete module) we may assume that they still satisfy

g̃n − pg̃n+1 = ι̃0(yn)

(but g̃0 need not vanish). In fact g̃0 lies in the kernel above and its logarithm lies
in F 0

(
Lie(E(Y, G̃)(Acrys(R))

)
. This defines the required period map.

Another example concerns the description by Deligne–Rapoport ([2]) of a local
model for Y0(p). Denote by V0 the maximal unramified extension of Zp. A versal
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deformation E(x) of a supersingular elliptic curve over the residue-field k of V0

can be described by its associated Frobenius-crystal (see [5]). Over V0[[x]] (with
Frobenius-lift φ(x) = xp) consider the object in MF [0,1](V0[[x]]) (as in [5]) with
filtered basis m0, m1 (of degrees 0, 1) with Φ(m0) = xm0 + m1, Φ(m1) = pm0.
There exists a unique Frobenius-invariant connection trivial modulo x.

Over the ring
R = V0[u, v]/(uv + p)

there exists (up to slight corrections due to differences in Frobenius-lifts) an isogeny

E(u− vp) → E(v − up)

which on the level of crystals can be described as follows: the induced map
M(E(v − up)) → M(E(u − vp)) over Rcrys sends m0 to am0 + bm1 and m1 to
cm0 + dm1. Here a = u, d = v,

b =
∞∏

n=1

(
1 +

(uv)pn

p

)±1

=
(1 + (uv)p/p) · · ·
(1 + (uv)p2/p) · · ·

,

c = (p + uv)/b. One checks that the map respects the F -filtration and Frobenius-
maps, and thus is parallel for the connections ∇. By fully faithfulness the map on
crystals is induced by an isogeny of p-divisible groups, of degree p. However this is
the same as an isogeny of the elliptic curves over R defined by these crystals. As the
Frobenius-lifts on V0[[x]] and V0[[y]] are not compatible with the maps x = u− vp,
y = v − up they have to be modified as in [5].

We also consider Shimura varieties of Hodge type. More precisely let p > 2
and consider the Shimura variety associated to a modification GSpin(2n) of the
spin-group Spin(2n). GSpin is obtained from Spin by pushout µ2 ⊂ Gm, with µ2

the kernel Spin(2n) → SO(2n). It contains a parabolic associated to a filtration
F 1 ⊂ F 0 = F 1,⊥ ⊂ V2n

0 = E, where F 1 is an isotropic line (the Hodge-structure is
most easily described by its realisation on the standard representation of SO(2n),
and there it looks like the one above). GSpin embeds into the symplectic similitudes
GSp (and the Shimura variety into the Siegel-space) via the spin-representation
S(E). Namely, S(E) is a module over the Clifford-algebra C(E). It is Z/(2)-graded
and admits a non-degenerate inner product, and Gm operates by scalars. Denote
by S+(E) one of its irreducible components and by S−(E) the other. If n is even,
both admit non-degenerate inner products, symmetric if n is divisible by 4 and
antisymmetric otherwise. If n is odd, both spaces are dual to each other and so their
sum admits an antisymmetric inner product. The image of Clifford-multiplication
by F 1 is isotropic and defines Hodge-filtrations on S(E), S±(E), and we get the
Hodge structure like that associated to an abelian variety A(E) if the inner product
is symplectic. Otherwise we tensor with a symplectic module of rank two. The reflex
field of the Shimura datum is Q, thus the Shimura variety is a closed subscheme,
defined over Q, of the moduli-space of principally polarised abelian varieties with
level structure.

It is defined by certain Tate-cycles, and already almost defined by the projection
from the Clifford-algebra C = C(E) to E. Over Q this projection uses the canonical
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isomorphism
∧

E → C(E) which maps e1 ∧ · · · ∧ em to the alternating average of
their products, in all possible orders. It is integral over Z[1/2]: if e1, . . . , e2n form
an orthogonal basis of E, map any Clifford-product of order ̸= 1 of different ei to 0.
Once we have this projection, its image E is a quadratic space (use the product
on C) whose Clifford-algebra is C. A suitable generator of det(E) identifies the two
abelian varieties to the ones given by S±(E). Also their Hodge-filtrations define
a Hodge-filtration on C(E), with Hodge-degrees 0, ±1, which induces the Hodge-
filtration on E.

A. Vasiu has shown ([8, § 4, Theorem 1], [9, Theorem5.7.1]) that for p > 5 the
normalisation of the moduli-space of abelian varieties in the canonical model of this
Shimura variety is smooth and admits an object in MF as described above (it is
locally the deformation space of this object). More precisely the crystal defining
A(E) also defines a local Zp-system on the Shimura variety, and the crystal of the
Lie-algebra gspin(E) defines the local system given by the adjoint representation.
This has been improved by M. Kisin ([7]) to p > 3. We claim that our theory of
semistableMF structures allows us to extend this to certain level-structures, giving
semistable models.

The method of proof goes as follows: we can define versal families by considering
a fixed object (E,F 1, Φ) over an unramified discrete valuation ring V0. That is,
E = V 2n

0 with the standard inner product, F ⊂ E is an isotropic line, and Φ
a Frobenius semilinear isomorphism from pE + F⊥ + p−1F to E. We then obtain
a versal family over a smooth local V0-algebra R, with quotient V0 = R/I, by fixing
a Frobenius-lift φ on R with

φ(z)− zp ∈ pIp

for any z in the augmentation ideal I of R. Define an object of MF(R) (or better
a projective system of objects modulo pr, for each r) by considering the constants
(defined over V0) E, F 1 but changing Φ to gΦ with g ∈ SO(E)(R) (or rather
a lift to GSpin(2n)). In [5] it is explained how to get a canonical connection ∇.
Here g should lie in a smooth subscheme of SO(E) whose tangent space at the
origin projects onto a complement of F 0(so(E)) (these smooth subschemes tend to
lift to the Spin group and thus give families of Hodge-structures on S±(E)). It is
associated to a polarised p-divisible group which integrates to an abelian variety if
this holds over the closed point. Then A(E) is a family of abelian schemes over the
completion of R at this closed point, with the desired higher Hodge cycles.

Now if for a discrete valuation ring V over V0, with possible high index of ram-
ification, we have a V -point in the normalisation of the moduli-scheme of abelian
varieties in the canonical model of the Shimura variety, the abelian scheme A(E)
over it admits étale Tate cycles which define the subspace

Eet ⊂ End
(
H1

et(A(E)
)
.

As the period-map for this object of MF as well as its inverse become integral after
multiplication by t, the orthogonal projection from the Clifford-algebra (essentially
the endomorphisms of H1

cr(A(E))) onto the crystalline version of E is integral if
p > 5. (The Hodge-cycle corresponding to the Tate-cycle is an endomorphism
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of objects in MF of Hodge length two.) Thus we can write V as a quotient of
V0[[u]] and denote by R the divided power-hull (of the ideal defining V ), with the
Frobenius-lift which sends u to up. The first crystalline cohomology of A(E) over V

extends to a Frobenius-crystal over R whose fibre over the common residue field k

of V and V0 lifts to V0. Then our family overR is pushforward from the versal family
over R, that is, filtrations and Frobenius match. As the connection is the unique
one compatible with Frobenius, it also matches. Thus our object over V is induced
from the versal family. The p-divisible group over R integrates to an abelian variety,
with higher Hodge-cycles as prescribed by the Shimura datum, thus Spec(R) maps
to the Siegel space and in characteristic zero over the Shimura subvariety as this
holds at one point (given by V ). Hence R is isomorphic to the completion of the
local ring of the normalisation of the Shimura variety.

In [7, Cor. 1.3.5 and Cor. 1.4.3, assertions (2, 3)] it is shown that for all p > 3
the Hodge cycles define a reductive group isomorphic to GSpin(2n) acting on the
crystalline cohomology, and again that this is induced from the example above.

In generalisation of the Deligne–Rapoport example we want to define a family
of isogenies between two copies A(E) and A(E′), over a subvariety of the product
with the moduli-space with itself. That is, in the generic fibre we want to consider
isogenies induced by the étale analogue of an inclusion E′ ⊂ E of the pre-image
of a maximal isotropic subspace modulo p, and denote by N the normalisation
of M×M in the corresponding scheme. Over it we have filtered Frobenius-crystals
given by the first crystalline cohomologies of A(E′) and A(E), as well as E′, E,
so(E′) and so(E). That is, for any map

T0 → N

and any DP-embedding
T0 ⊆ T

of schemes on which p is nilpotent, we get such filtered objects over T , with functorial
maps from their Frobenius pullbacks (the filtrations only matter on T0). If they are
compatible with the orthogonal structure they uniquely extend to T . There are
maps

so(E′) � so(E)

with mutual compositions p. They étale locally induce

E′ � E

which however are unique only up to a scalar, and up to µ2 if we require compati-
bility with the inner product. The induced maps

F 1(E′) � F 1(E)

(with composition p) exhibit N locally in the étale topology as a scheme over
V [u, v]/(uv + p).

If at a point of N one of the projections to M is smooth, then N itself is
étale at this point, and the rest is rather easy. This happens if one of the maps
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F 1(E′) � F 1(E) is an isomorphism. We thus concentrate on points where this is
not the case.

We consider a level p-structure associated to a maximal isotropic subspace E0 ⊂
E/pE. For this denote by E′ ⊂ E the pre-image of E0. It also has a non-degenerate
quadratic form (divide by p). We lift E0 to a maximally isotropic sublattice G and
write

E = G⊕H, E′ = pG⊕H,

with a maximally isotropic complement H. If we have a V -point of M×M whose
generic fibre ends up in the Shimura variety given by the level-structure, we get
over V two abelian varieties A(E), A(E′) with an isogeny between them, all given
by Tate-cycles. Then the induced maps on crystalline cohomology are induced from
a pair E′ ⊂ E as above.

For example, if n = 2, then

Spin(4) = SL(2)× SL(2), E = S+(E)⊗ S−(E)

(both factors with symplectic products) and we chose for E0 the pre-image of a line
in S−(E). Then the Deligne–Rapoport construction applied to the factor S+(E)
gives an object in MF(R) for R = V [u, v]/(uv+p) (or better an inclusion of index p

of two objects where the underlying space for the bigger one may be identified with
S+(E), which we tensor with a constant structure on S−(E) with weights −1, 0).
The relevant isotropic subspace is not constant but defined over Rcrys, but we can
apply an Rcrys-linear automorphism to remedy this. Also for later use we note that
the maps

pE ⊂ E′ ⊂ E

induce modulo the maximal ideal of Rcrys the zero maps on the Hodge lines F 1.
For general n we note that for perpendicular elements g ∈ G, h ∈ H with one of

them part of a basis we get a possible filtration F 1 generated by f = (ug, h),
f ′ = (−pg, vh). Varying g and h (up to scalars) defines a smooth algebra R

of relative dimension 2n − 3 over V0[u, v]/(uv + p). Two such possible pairs are
mapped to each other by an element of GL(G) (acting on H by duality), and this
exhausts all possible Hodge filtrations over R (the divided power-hull of V ). Over
V0[u, v]/(uv + p) we obtained such a pair by the Deligne–Rapoport construction. If
we replace the Frobenius by mΦ (for m in a suitable smooth subscheme of GL(G) of
dimension 2n− 3) the method of [5] gives a unique compatible connection ∇ (start
with the old connection and subtract (dm)m−1 and higher-order correction terms).
Thus we get a family of isogenies over a base R smooth of relative dimension 2n−3
over V0[u, v]/(uv + p). It is a versal deformation. Namely, any V -point of N such
that both induced maps

F 1(E′) → F 1(E), F 1(E) → F 1(E′)

are not isomorphisms is induced from our family (use the method from [5, Sect. 7,
Th. 10]). The filtration is induced from the versal case. The two Frobenius mor-
phisms differ by an element of G. Write it as a product of an automorphism respect-
ing filtrations and an element in the parameter-space. We then obtain the next step,
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with the additional complication that in between we have to account for the dif-
ference in Frobenius-lifts φ). At the other points one of the projection of N to M
is locally étale and the scheme is smooth. In short we apply the method from [5]
where we use the Deligne–Rapoport example as basepoint, instead of V0-points.

After that the proof proceeds as before (following [7], [8], [9]) and gives that the
normalisation N of the moduli-space of abelian varieties in the generic fibre of
the Shimura variety is locally Spec(R), that is, the completion of the local ring at
a closed point in characteristic p is formally étale over R.

There exists a (possibly higher ramified) extension V of V0 and a V -point of the
normalisation lifting the given closed point in characteristic p. The two projections
of N to M define two abelian varieties over V , linked by a pair of isogenies, and
admitting Hodge- and Tate-cycles (essentially the projections from C(E) to E)
which correspond under the étale-crystalline comparison, and are respected by the
isogenies. Over the divided power-hull of V the filtered Frobenius-crystals defined
by the abelian varieties are determined (by pullback from M) by triples (E,F, Φ)
consisting of a quadratic space, an isotropic line, and a Frobenius. The isogenies are
induced by inclusions among E’s with composition p, and image maximal isotropic
modulo p, because this holds on the étale side. Of course these inclusions also respect
Frobenius-morphisms. By versality the crystalline object over the DP-hull of V is
induced from R, and the Tate-modules of the two abelian varieties over V are the
two Galois representations induced from the Galois representations defined by the
universal object in MF(R). These two Galois representations are then associated
to abelian varieties with the appropriate Hodge- and Tate-cycles, that is, Spec(R)
maps to M×M and the two abelian varieties admit isogenies. Thus the map lifts
to a map from Spec(R) to N which is a closed immersion, or better an unramified
map. As R is normal and has the correct dimension it is a local isomorphism.

Remark. The referee has pointed out that [7, Prop. 2.3.5] may not hold in the
semistable case (on N ). However it holds on the M’s and follows for N by pullback.

It is a honour to dedicate this note to J.-P. Serre on the occasion of his 90th
birthday. He has been at the forefront of mathematics for far more than two-thirds
of this time span. I also thank the referee for his careful reading.
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