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1. Motivation

A proposal for a gravity theory with non-symmetric metric began with an idea of

Einstein to unify gravity and electromagnetism (Refs. 1, 2). In general relativity,

the metric of the Riemannian manifold is a symmetric bilinear form. Interpreted

as an invertible map from the tangent to the cotangent space, it is natural to allow

also an anti-symmetric part. While the original hope of Einstein that the anti-

symmetric part of a non-symmetric metric tensor may be directly related to the

electromagnetic force turned out to be incorrect, there is nevertheless phenomeno-

logical interest in non-symmetric gravity theories. Damour et al. (Ref. 3) discussed

the problems associated with the construction of non-symmetric gravity theories,

where theories were typically in need for treatment of ghost terms. There have since

been numerous studies on the topic (Refs. 4, 5, 6). On the other hand, generalized

geometry (Refs. 7, 8), which incorporates symmetries of string theory (T-duality, B-

transform) and spacetime geometry (diffeomorphisms) seems to offer a well-suited

geometrical framework for string theory as well as non-symmetric gravity theories.

Generalized geometry as an extension of Riemannian geometry can reproduce the
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Einstein-Hilbert and supergravity actions (Refs. 9, 10). In the present work, we con-

sider an alternative approach that naturally incorporates torsion. For a recent work

on metric connections with skew torsion in Riemannian geometry, see Ref. 11. An

alternative approach to Einstein-Hilbert type actions using structures of generalized

geometry can be found in Ref. 12.

2. Background setup in generalized geometry

We consider a vector bundle E = TM
⊕

T ∗M . The elements of the space of sections

of the vector bundle are formal sums e = X + ζ ∈ Γ(E), where X is a vector field

and ζ is a one-form. We have a natural pairing

〈X + ζ, Y + η〉 = iXη + iY ζ , (1)

which is symmetric and non-degenerate. The signature of the pairing is (d, d),

where d are the spacetime dimension of TM and T ∗M respectively. The pairing is

invariant under O(d, d) transformations. We have also a Dorfman bracket

[X + ζ, Y + η]D = [X,Y ]Lie + LXη − iY dζ , (2)

where [X,Y ]Lie is the Lie bracket of vector fields. Finally there is an anchor map

a : E → TM that maps from the vector bundle being considered here to the tangent

bundle. Thus we define a Courant algebroid: (E, 〈 , 〉, [ , ]D, a), with the following

properties:

for a function f ∈ C∞(M) and elements e1, e2 ∈ Γ(E), the Dorfman bracket [ , ]D :

Γ(E)× Γ(E) → Γ(E) satisfies the Leibniz rule

[e1, fe2]D = f [e1, e2]D + (a(e1)f)e2 (3)

and Jacobi identity

[e1, [e2, e3]D]D = [[e1, e2]D, e3]D + [e2, [e1, e3]D]D . (4)

The anchor map a obeys the homomorphism property

a ([e1, e2]D) = [a(e1), a(e2)]Lie , (5)

while the pairing 〈 , 〉 : Γ(E)× Γ(E) → C∞(M) exhibits the following properties,

a(e1)〈e2, e3〉 = 〈[e1, e2]D, e3〉+ 〈e2, [e1, e3]D〉 (6)

and

a†d〈e1, e2〉 = [e1, e2]D + [e2, e1]D , (7)

where a† : T ∗M → E∗ ≃ E. From (7), it is obvious that the Dorfman bracket is

not a Lie bracket as it is not anti-symmetric.

The following are examples of O(d, d) transformations.

B-transform:

eB
(

V

ζ

)

=

(

1 0

BT 1

)(

V

ζ

)

(8)



December 15, 2015 1:58 WSPC Proceedings - 9.75in x 6.5in main page 3

3

B : TM → T ∗M where B ∈ Ω2(M) is a two-form.

This orthogonal transformation is well known in string theory and will be a central

object in our current study.

β-transform:

eβ
(

V

ζ

)

=

(

1 βT

0 1

)(

V

ζ

)

(9)

β : T ∗M → TM where β ∈ X
2(M) is a bi-vector.

We refer interested readers to Ref. 13 for an application in non-commutative ge-

ometry.

Diffeomorphism:

ON

(

V

ζ

)

=

(

NT 0

0 N−1

)(

V

ζ

)

(10)

N : TM → TM where N |p∈M ∈ GL(d).

3. Deformations

Within the context of satisfying the Courant algebroid properties (3) - (7), we

propose the following deformations

〈e1, e2〉 → 〈e1, e2〉
′

= 〈eG(e1), eG(e2)〉 (11)

[e1, e2]D → [e1, e2]
′

D = e−G [eG(e1), e
G(e2)]D , (12)

for elements e1 = X + ζ, e2 = Y + η. We have introduced here a non-symmetric

metric G = g + B, which is composed of a symmetric g and an anti-symmetric B

as an invertible map G : TM → T ∗M and eG : E → E : eG(e) = e + G (a(e),−).

4. Computations

The deformations (11) and (12) preserve the Courant algebroid properties.

Given elements X+ ζ and Y +η, deformation (11) corresponds to the pairing being

deformed with the symmetric metric g,

〈X + ζ, Y + η〉′ = 〈X + ζ, Y + η〉+ 2g (X,Y ) , (13)

while for the deformed Dorfman bracket, it is straightforward to compute from (12)

by using the definition of Dorfman bracket that

[X + ζ, Y + η]
′

D

= [X + ζ, Y + η]D +XG(Y,−)− Y G(X,−) + dG(X,Y )

−G(Y, [X,−]Lie)− G([X,Y ]Lie,−) + G(X, [Y,−]Lie)

= [X + ζ, Y + η]D + 2g(∇X,Y ) . (14)
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We find that the bracket is twisted by a connection ∇ in which the non-symmetric

metric G = g +B is encoded. From (14),

2g(∇ZX,Y ) = XG(Y, Z)− Y G(X,Z) + ZG(X,Y )

−G(Y, [X,Z]Lie)− G([X,Y ]Lie, Z) + G(X, [Y, Z]Lie) (15)

is a generalized version of the Koszul formula that involves torsion, while the original

formula defines the torsion-free Levi-Civita connection. Note the unusual ordering

of arguments in (15). From the generalized Koszul formula (15), we compute the

torsion connection

g(∇XY, Z) = g(∇LC
X Y, Z) +

1

2
H(X,Y, Z) , (16)

where H(= dB) is an anti-symmetric 3-form and∇LC is the Levi-Civita connection.

For contortion

K(X,Y, Z) =
1

2
(g(T (X,Y ), Z) + g(T (Z,X), Y ) + g(T (Z, Y ), X)) , (17)

we can deduce from the deformed property (6) that

2K(X,Y, Z) = H(X,Y, Z) = g(T (X,Y ), Z) . (18)

On the other hand, from the deformed version of property (7), we have metricity of

the connection

g(∇XY, Z) + g(∇XZ, Y ) = Xg(Y, Z) . (19)

5. Results

The connection that appears in the deformation is found to be

g ◦ ∇ = g ◦ ∇LC +K (20)

with contortion K. We find that the correspondingly deformed equation (6) gives

us a totally anti-symmetric contortion K = H/2 = dB/2. The contortion is closed

under the deformed Jacobi identity (4), whereas the deformed equation (7) gives us

the metricity condition, see Ref. 14 for further computational details and results.

Having the connection (20), we compute the Ricci tensor in components

Rjl = RLC
jl − 1

2
∇LC

i H i
jl − 1

4
H i

lm H m
ij . (21)

It turns out to be non-symmetric due to the anti-symmetric second term. When (21)

is treated as a vacuum field equation, that is, let Rjl = 0, we have the corresponding

non-symmetric gravity action

SG =
1

16πGN

∫

ddx
√−g

(

RLC − 1

12
HijkH

ijk

)

, (22)
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where GN is Newton’s gravitational constant in d dimensions. Varying with respect

to g and B implies the field equations:

δS

δglj
= 0 ,

δS

δBlj
= 0 ⇒ Rjl = 0 . (23)

Note the ordering of the indices, which is only a matter of convention.

6. Discussions

In string theory, the non-linear sigma model on worldsheet Σ, with worldsheet

metric γµν for µ, ν = 0, 1,

Snlsm =
1

4πα′

∫

Σ

d2σ
√
γ

(γµνgmn(X) ∂µX
m∂νX

n

+iǫµνBmn(X) ∂µX
m∂νX

n

+α′φ(X)R(γ)) , (24)

where m,n = 0, 1, · · · , 25, in 26-dimensional spacetime, describes the string propa-

gation in background fields: metric g, Kalb-Ramond B and dilaton φ. Beta func-

tions

βµν(g) = α′RLC
µν − α′

4
HµλκH

λκ
ν + 2α′∇µ∇νφ (25)

βµν(B) = −α′

2
∇λHλµν + α′∇λφHλµν (26)

βµν(φ) = −α′

2
∇2φ+ α′∇µφ∇µφ− α′

24
HµνλH

µνλ , (27)

which follow from (24) are required to vanish in order to preserve the Weyl invariance

in string theory as a quantum theory. The low-energy closed bosonic string action

(Ref. 15)

Seff =
1

2κ2

∫

d26X
√−g e−2φ

(

RLC − 1

12
HabcH

abc + 4gab∂aφ∂bφ

)

(28)

has been derived as the effective string action that gives the equations of motion,

which are equal to the vanishing beta functions (25), (26) and (27).

We notice that our non-symmetric Ricci tensor (21) contains the beta functions

(25) and (26) and our non-symmetric gravity action (22) resembles the closed string

effective action (28) without dilaton. Our action (22) is effectively an action, where

its equations of motion describe a Ricci flow. A closely related work has previously

appeared in Ref. 16 in the scope of supergravity.

While in string theory, the spacetime dimension of (28) is determined during the

derivation of the beta function (27), the dimension d of our similarly Ricci-flat space-

time theory (22) is unrestricted. Recall that our Courant algebroid deformations
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involve only the tangent bundle. Interestingly, the combination of g+B in the non-

linear sigma model (24), which was a motivation in the pursuit of non-symmetric

gravity theory, appears to be at equal footing in our deformations (11) and (12). De-

forming the Einstein-Hilbert action has led us to an Einstein-Kalb-Ramond theory

(Ref. 17).
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