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Tetramodules over a bialgebra form a 2-fold

monoidal category

Boris Shoikhet

Abstract. Let B be an associative bialgebra over any field. A module over B
in the sense of deformation theory is a tetramodule over B. All tetramodules
form an abelian category. This category was studied by R.Taillefer [Tai1,2]. In
particular, she proved that for any bialgebra B, the abelian category Tetra(B)
has enough injectives, and that Ext

q

(B,B) in this category coincides with the
Gerstenhaber-Schack cohomology of B.
We prove that the category Tetra(B) of tetramodules over any bialgebra B is a
2-fold-monoidal category, with B a unit object in it. Roughly, this means that the
category Tetra(B) admits two monoidal structures, with common unit B, which
are compatible in some rather non-trivial way (the concept of an n-fold monoidal
category is introduced in [BFSV]). Within (yet unproven) 2-fold monoidal ana-
logue of the Deligne conjecture, our result would imply that RHom

q

(B,B) in the
category of tetramodules is naturally a homotopy 3-algebra.

Introduction

This paper contains a part of results of our 2009 archive preprint [Sh1], presented at a glance
suitable for a journal publication. It covers a construction of a 2-fold monoidal structure on
the category of tetramodules, with all necessary definitions, and an overview of the results of
R.Taillefer [Tai1,2] on tetramodules and the Gerstenhaber-Schack cohomology [GS] (formerly
served as Appendix in [Sh1]), as well as a computation of the Gerstenhaber-Schack cohomology
for the free commutative cocommutative bialgebra S(V ), for a V is a vector space.

Our approach to the n-fold monoidal Deligne conjecture from [Sh1] still remains unfinished,
and is not considered here.

The paper is organized as follows.
In Section 1 we recall, in some detail, the definition of n-fold monoidal categories from

[BFSV].
In Section 2 we define the abelian category of tetramodules over a bialgebra, and construct

a 2-fold monoidal category structure on it. This Section is the core of the paper.
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In Section 3 we recall (with proofs) some of results of R.Taillefer [Tai1,2], which give a
relation between our results in Section 2, and deformation theory of associative bialgebras. We
slightly modify the original proof in presentation (with the same main ideas), which, we hope,
makes it more readable. As an application, we compute the Gerstenhaber-Schack cohomology
of the free commutative cocommutative bialgebra S(V ) (the answer is well-known to specialists,
but we were unable to find any published proof of it).

The main application of the results of Section 2 claims, modulo the Deligne conjecture for
n-fold monoidal abelian categories, that RHom

q

Tetra(A)(A,A) is a homotopy 3-algebra, when the

bialgebra A is a Hopf algebra (over any field). However, the n-fold monoidal Deligne conjecture
is unproven yet (for n > 1). In [Sh1], we tried to use some constructions of [Sch] to prove it,
but (so far) we did not succeed in this direction.

We suggested a new approach to the n-fold monoidal Deligne conjecture, based on the
Kock-Toën’s simplicial Deligne conjecture [KT], and on the Leinster’s definition [L] of weak
Segal monoids. Our recent paper [Sh2] is a first step in realization of this approach. We hope
to complete it in our next papers.
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1 n-fold monoidal categories

1.1 Introduction

An n-fold monoidal category C is a category with n monoidal structures ⊗1, . . . ,⊗n : C ×C → C
which obey some compatibility relations, which may seem complicated when are written down
explicitly. They were introduced in [BFSV], with the following motivation.

When C is a (1-)monoidal category, its nerve NC a simplicial H-space, up to a homotopy. In
fact, all homotopies between (the higher) homotopies can be chosen in a coherent way, such that
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the classifying space BC becomes an algebra over the topological Stasheff operad. It implies
that the group completion of BC is a 1-fold loop space, BC = ΩX for some connected space X.

The n-fold loop spaces Ωn(X) are defined iteratively, Ωn(X) = Ω(Ωn−1(X)). The n-fold
monoidal categories are defined iteratively, in a similar way. The definition achieves the following
goal: the group completion of the classifying space BC, for an n-fold monoidal category C, is
an n-fold loop space.

1.2 Definition

Definition 1.1. A (strict) monoidal category is a category C together with a functor ⊗ : C×C →
C and an object I ∈ Ob(C) such that

1. ⊗ is strictly associative;

2. I is a strict two-sided unit for ⊗.

A monoidal functor (F, η) : C → D between monoidal categories is a functor F such that F (IC) =
ID with a natural transformation

ηA,B : F (A)⊗ F (B) → F (A⊗B) (1.1)

which satisfies the following conditions:

1. Internal associativity: the following diagram commutes

F (A)⊗ F (B)⊗ F (C)
ηA,B⊗idF (C)

//

idF (A)⊗ηB,C

��

F (A⊗B)⊗ F (C)

ηA⊗B,C

��

F (A)⊗ F (B ⊗ C)
ηA,B⊗C

// F (A⊗B ⊗ C)

(1.2)

2. Internal unit conditions: ηA,I = ηI,A = idF (A).

The crucial in this definition is that the map η is not required to be an isomorphism.
Denote by MCat the category of (small) monoidal categories and monoidal functors.

1.2.1

Definition 1.2. A 2-fold monoidal category is a monoid in MCat. This means, that we are
given a monoidal category (C,⊗1, I), and a monoidal functor (⊗2, η) : C × C → C which satisfies
the following axioms:
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1. External associativity: the following diagram commutes in MCat

C × C × C
(⊗2,η)×idC

//

idC×(⊗2,η)
��

C × C

(⊗2,η)
��

C × C
(⊗2,η)

// C

(1.3)

2. External unit conditions: the following diagram commutes in MCat

C × I
⊆

//

∼=
��

C × C

(⊗2,η)
��

I× C
⊇

oo

∼=
��

C
= // C C

=oo

(1.4)

Note that the role of the monoidal structures ⊗1 and ⊗2 in this definition is not symmetric.
Explicitly the definition above means that we have an operation ⊗2 with the two-sided unit

I (the same that for ⊗1) and a natural transformation

ηA,B,C,D : (A⊗2 B)⊗1 (C ⊗2 D) → (A⊗1 C)⊗2 (B ⊗1 D) (1.5)

The internal unit conditions are: ηA,B,I,I = ηI,I,A,B = idA⊗2B , and the external unit conditions
are: ηA,I,B,I = ηI,A,I,B = idA⊗1B. As well, one has the morphisms

ηA,I,I,B : A⊗1 B → A⊗2 B (1.6)

and
ηI,A,B,I : A⊗1 B → B ⊗2 A (1.7)

The internal associativity gives the commutative diagram:

(U ⊗2 V )⊗1 (W ⊗2 X)⊗1 (Y ⊗2 Z)
ηU,V,W,X⊗1idY ⊗2Z //

idU⊗2V
⊗1ηW,X,Y,Z

��

(
(U ⊗1 W )⊗2 (V ⊗1 X)

)
⊗1 (Y ⊗2 Z)

ηU⊗1W,V ⊗1X,Y,Z

��

(U ⊗2 V )⊗1

(
(W ⊗1 Y )⊗2 (X ⊗1 Z)

) ηU,V,W⊗1Y,X⊗1Z // (U ⊗1 W ⊗1 Y )⊗2 (V ⊗1 X ⊗1 Z)

(1.8)
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The external associativity condition gives the commutative diagram:

(U ⊗2 V ⊗2 W )⊗1 (X ⊗2 Y ⊗2 Z)
ηU⊗2V,W,X⊗2Y,Z

//

ηU,V ⊗2W,X,Y ⊗2Z

��

(
(U ⊗2 V )⊗1 (X ⊗2 Y )

)
⊗2 (W ⊗1 Z)

ηU,V,X,Y ⊗2idW⊗1Z

��

(U ⊗1 X)⊗2

(
(V ⊗2 W )⊗1 (Y ⊗2 Z)

) idU⊗1X
⊗2ηV,W,Y,Z

// (U ⊗1 X)⊗2 (V ⊗1 Y )⊗2 (W ⊗1 Z)

(1.9)
Finally, [BFSV] gives

Definition 1.3. Denote by MCatn the category of (small) n-fold monoidal categories. Then
an (n+ 1)-fold monoidal category is a monoid in MCatn.

This gives the following compatibility axiom: for 1 ≤ i < j < k ≤ n the following diagram
is commutative:

(

((A1 ⊗k A2)⊗j (B1 ⊗k B2)
)

⊗i

(

(C1 ⊗k C2)⊗j (D1 ⊗k D2)
)

ηjk
⊗iη

jk

ss❤❤❤
❤❤
❤❤
❤❤
❤❤
❤❤
❤❤
❤❤
❤❤
❤❤
❤❤
❤❤
❤❤
❤❤
❤❤
❤❤
❤❤
❤❤
❤❤
❤❤
❤

ηij

��
(

(A1 ⊗j B1)⊗k (A2 ⊗j B2)
)

⊗i

(

(C1 ⊗j D1)⊗k (C2 ⊗j D2)
)

ηik

��

(

(A1 ⊗k A2) ⊗i (C1 ⊗k C2)
)

⊗j

(

(B1 ⊗k B2) ⊗i (D1 ⊗k D2)
)

ηik
⊗jη

ik

��
(

(A1 ⊗j B1)⊗i (C1 ⊗j D1)
)

⊗k

(

(A2 ⊗j B2)⊗i (C2 ⊗j D2)
)

ηij
⊗kη

ij

++❱❱
❱❱

❱❱
❱❱

❱❱
❱❱

❱❱
❱❱

❱❱
❱❱

❱❱
❱❱

❱❱
❱❱

❱❱
❱❱

❱❱
❱❱

❱❱
❱❱

❱❱

(

(A1 ⊗i C1)⊗k (A2 ⊗i C2)
)

⊗j

(

(B1 ⊗i D1)⊗k (B2 ⊗i D2)
)

ηjk

��
(

(A1 ⊗i C1)⊗j (B1 ⊗i D1)
)

⊗k

(

(A2 ⊗i C2)⊗j (B2 ⊗i D2)
)

(1.10)

1.3 Examples

Example 1.4. Let A be an associative algebra. The category Bimod(A) of A-bimodules is
monoidal (1-fold monoidal), with ⊗A as the monoidal product. The tautological bimodule A is
the unit in this monoidal category.
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Example 1.5. Let B be an associative bialgebra over a field k (see Section 2.1 below for
definition). The category of left B-modules is monoidal, with the following monoidal structure.
LetM,N be two left B-modules, thenM⊗kN is naturally a B⊗kB-module. Now the coproduct
∆: B → B⊗kB is a homomorphism of algebras; this makes M⊗kN a B-module. Let ε : B → k
be the counit in B, it endows k with a B-module structure. This left B-module k is the unit in
this monoidal category.

Example 1.6. According to a result of Joyal and Street [JS], there are just few examples for
n ≥ 2 when the map ηijA,B,C,D are isomorphisms for any A,B,C,D and any 1 ≤ i < j ≤ n
and when there is a common unit object for all n monoidal structures. For n = 2 any such
category is equivalent as a 2-fold monoidal category to a category with A⊗1 B = A⊗2 B with
a braiding cA,B : A ⊗ B → B ⊗ A defining a structure of a braided category (see, e.g., [ES]) on
C. Then we can construct a map ηA,B,C,D : (A ⊗ B) ⊗ (C ⊗D) → (A ⊗ C) ⊗ (B ⊗D) just as
ηA,B,C,D = id ⊗ c23 ⊗ id. This construction gives a 2-fold monoidal category. For n > 2 and
ηA,B,C,D isomorphisms one necessarily has A⊗iB = A⊗jB for any i, j and all ⊗i are symmetric.
See the Fiedorowicz’s Obervolfach talk [F] (page 4 and thereafter) for a clear overview of this
result.

Example 1.7. Let A be an associative bialgebra. We define a tetramodule over it as a k-vector
space M such that there is a bialgebra structure on A⊕ ǫM , where ǫ2 = 0 and the restriction
of the bialgebra structure to A is the initial one (see Section 2 for details). If we rephrase this
definition replacing “bialgebra” by “associative algebra”, we recover the concept of a bimodule
over an associative algebra; thus, this Example is a generalization of Example 1.4. We construct
a 2-fold monoidal structure on the abelian category Tetra(A) of tetramodules over A in Section
???.

Example 1.8. Examples 1.4 and 1.7 can be generalized as follows. Recall from Example 1.5
that the category of left modules over an associative bialgebra is a monoidal category, with the
monoidal structure equal to the tensor product over k on the level of the underlying vector
spaces. Define an n-fold monoidal bialgebra as an associative algebra with n coassociative
coproducts ∆1, . . . ,∆n : A → A⊗k A such that the corresponding n monoidal structures on the
category of left A-modules form an n-fold monoidal category. Thus, 0-monoidal bialgebra is just
an associative algebra, and 1-monoidal bialgebra is a bialgebra. One can define the category
of tetramodules over an n-monoidal bialgebra analogously to the previous Example. We claim
that this category is an (n + 1)-fold monoidal category; a proof is straightforward. We think
this definition of n-monoidal bialgebra is a conceptually right n-categorical generalization of the
concept of bialgebra, for higher n.

1.4 The operad of categories governing the n-fold monoidal categories

Fix n ≥ 1. For any d ≥ 0 denote by Mn(d) the full subcategory of the free n-fold monoidal
category generated by objects x1, . . . , xd consisting of objects which are monomials in xi, where
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each xi occurs exactly ones. For example, such monomials for d = 3 and n = 2 could be
(x3⊗1 x1)⊗2 x2, or (x2⊗2 x3)⊗1 x1. For fixed n and d the category Mn(d) has a finite number
of objects. The morphisms in Mn(d) are exactly those which can be obtained as compositions
of the associativities for a fixed ⊗i, and ηijkl, with exactly the same commutative diagrams as
in n-fold monoidal category.

When n is fixed and d is varied, the categories Mn(d) form an operad of categories. The
following lemma follows from the definitions.

Lemma 1.9. A category is n-fold monoidal if and only if there is an action of the operad
{Mn(d)}d≥0 of categories on it.

The following very deep theorem is proven in [BFSV]:

Theorem 1.10. The classifying space of the operad of categories {Mn(d)} is an operad of
topological space which is homotopically equivalent (as operad) to the n-dimensional little discs
operad.

2 The category of tetramodules and a 2-fold monoidal struc-
ture on it

2.1

Recall that an associative bialgebra is a vector space A over a field k equipped with two opera-
tions, the product ∗ : A⊗2 → A and the coproduct ∆: A → A⊗2, which obey the axioms 1.-4.
below:

1. Associativity: a ∗ (b ∗ c) = (a ∗ b) ∗ c;

2. Coassociativity: (∆⊗ id)∆(a) = (id⊗∆)∆(a);

3. Compatibility: ∆(a ∗ b) = ∆(a) ∗∆(b).

We use the classical notation
∆(a) = ∆1(a)⊗∆2(a)

which is just a simplified form of the equation

∆(a) =
∑

i

∆1
i (a)⊗∆2

i (a)

We always assume that our bialgebras have a unit and a counit. A unit is a map i : k → A and
the counit is a map ε : A → k. We always assume

4. i(k1 · k2) = i(k1) ∗ i(k2), ε(a ∗ b) = ε(a) · ε(b).
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We also denote the product ∗ by m.
A Hopf algebra is a bialgebra with antipode. An antipode is a k-linear map S : A → A which

obeys

5. m(1⊗ S)∆(a) = m(S ⊗ 1)∆(a) = i(ε(a))

As we already mentioned above, an “operadic” definition of a bimodule over an associative
algebra A reads: it is a k-vector space M such that A ⊕ ǫM is again an associative algebra,
where ǫ2 = 0, and the restriction of the algebra structure to A coincides with the initial one.
(The latter condition can be formulated equivalently that the associative algebra A ⊕ ǫM is
defined over A). A vector space M obeying this definition is the same that an A-bimodule. We
give an analogous definition in the case when A is an associative bialgebra.

Definition 2.1. Let A be an associative bialgebra. A Bernstein-Khovanova tetramodule [BKh],
[Kh] M over A is a vector space such that A⊕ ǫM is an associative bialgebra, when ǫ2 = 0 and
the restriction of the bialgebra structure to A is the initial one. The category of tetramodules
over a bialgebra A is denoted Tetra(A).

More precisely, one has maps mℓ : A ⊗M → M , mr : M ⊗ A → M (which make M an A-
bimodule), and maps ∆ℓ : M → A⊗M and ∆r : M → M⊗A (which make M an A-bicomodule),
with some compatibility between these 4 maps. The compatibility written down explicitly is
the following 4 equations:

∆ℓ(a ∗m) = (∆1(a) ∗∆1
ℓ(m)) ⊗ (∆2(a) ∗∆2

ℓ(m)) ⊂ A⊗k M (2.1)

∆ℓ(m ∗ a) = (∆1
ℓ (m) ∗∆1(a)) ⊗ (∆2

ℓ (m) ∗∆2(a)) ⊂ A⊗k M (2.2)

∆r(a ∗m) = (∆1(a) ∗∆1
r(m))⊗ (∆2(a) ∗∆2

r(m)) ⊂ M ⊗k A (2.3)

∆r(m ∗ a) = (∆1
r(m) ∗∆1(a))⊗ (∆2

r(m) ∗∆2(a)) ⊂ M ⊗k A (2.4)

Here we use the natural notation like ∆ℓ(m) = ∆1
ℓ(m)⊗∆2

ℓ(m) with ∆1
ℓ(m) ∈ A, ∆2

ℓ (m) ∈ M ,
etc. As well, we use the sign ∗ for the both product in A and the module products mℓ and mr.

The tetramodules over a bialgebra A form an abelian category. The main (non-trivial)
example of a tetramodule over A is A itself; it is called the tautological tetramodule.

When A is finite-dimensional over k, a tetramodule is the same that a left module over
some associative algebra H(A). This algebra H(A) is, as a vector space, the tensor product
H(A) = A⊗k A⊗kA

∗ ⊗kA
∗, and the product in it is defined to fulfill the equations (2.1)-(2.4)

above. (An analogous associative algebra constructed from a bialgebra A, whose underlying
vector space is A⊗kA

∗, and the product is defined to fulfill only the single relation (2.1) among
the 4 relations above, is known as the Heisenberg double of A.).

8



In particular, if A is finite-dimensional over k, the abelian category Tetra(A) has enough pro-
jective and enough injective objects. For general A, R.Taillefer proved [Tai2] that the category
Tetra(A) has enough injectives.

Denote by H
q

GS(A,A) the Gerstenhaber-Schack cohomology [GS] of a bialgebra A (we recall
the definition in Section 3.1 below). The Gerstenhaber-Schack cohomology H

q

GS(A,A) is known
to control the infinitesimal deformations of the bialgebra A.

The interplay between the category of tetramodules and the deformation theory of associa-
tive bialgebras is given in the following result:

Theorem 2.2 (Taillefer, [Tai1,2]). For any bialgebra A one has:

H
q

GS(A,A) = Ext
q

Tetra(A)(A,A) (2.5)

We recall the original Taillefer’s proof of Theorem 2.2 in Section 3 below.

Example 2.3. Consider the case when A = S(V ) is a free (co)commutative bialgebra, for V a
vector space over k. Suppose for simplicity that V is finite-dimensional. We prove in Section 4
that

Hk
GS(A,A) = ⊕i+j=kΛ

iV ⊗k Λ
jV ∗ (2.6)

The total graded space F = ⊕i,j≥0Λ
iV ⊗kΛ

jV ∗[−i− j] can be thought as the space of functions
on the space W = V [1] ⊕ V ∗[1]. The space W is a Poisson space, with the Poisson bracket
of degree -2 given by the contraction of V [1] with V ∗[1]. Altogether, F admits a product and
an even Poisson-Lie bracket of degree -2, which are compatible by the Leibniz rule. It can be
rephrased saying that F is a 3-algebra.

In fact, the Deligne conjecture for 2-fold monoidal categories (mentioned in Introduction),
and our Theorem 2.6 below, would imply together that the Gerstenhaber-Schack cohomology
of any Hopf algebra is naturally a 3-algebra structure. Presumably, it is not true for general
bialgebra which is not a Hopf algebra.

2.2 The structure of a 2-fold monoidal category on Tetra(A)

2.2.1 Two “external” tensor products

Before defining two “real” monoidal structures on the category of tetramodules, we start with
two preliminary monoidal products. Our preliminary products are related to the real ones, as
M ⊗k N is related to M ⊗A N , for an associative algebra A over k, and two its bimodules.

Let A be an associative bialgebra, and let M1,M2 be two tetramodules over it. We define
two their “external” tensor productsM1⊠1M2 andM1⊠2M2 (which are A-tetramodules again).
In the both cases the underlying vector space is M1 ⊗k M2.

The case of M1 ⊠1 M2:

1. mℓ(a⊗m1 ⊠m2) = (am1)⊠m2,
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2. mr(m1 ⊠m2 ⊗ a) = m1 ⊠ (m2a),

3. ∆ℓ(m1 ⊠m2) = (∆1
ℓ(m1) ∗∆

1
ℓ(m2))⊗ (∆2

ℓ(m1)⊠∆2
ℓ(m2)),

4. ∆r(m1 ⊠m2) = (∆1
r(m1)⊠∆1

r(m2))⊗ (∆2
r(m1) ∗∆

2
r(m2)).

The case of M1 ⊠2 M2:

1. mℓ(a⊗m1 ⊠m2) = (∆1(a)m1)⊠ (∆2(a)m2),

2. mr(m1 ⊠m2 ⊗ a) = (m1∆
1(a))⊠ (m2∆

2(a)),

3. ∆ℓ(m1 ⊠m2) = ∆1
ℓ(m1)⊗ (∆2

ℓ(m1)⊠m2),

4. ∆r(m1 ⊠m2) = (m1 ⊠∆1
r(m2))⊗∆2

r(m2).

The main lack of the two external products is that the tautological tetramodule A is not a
unit object for them.

In the both definitions we use only “the half” of the tetramodule structures on M1,M2. In
particular, in the first definition we do not use the right multiplication mr for M1 and the left
multiplication mℓ for M2. Similarly, in the second definition we do not use ∆r for M1 and ∆ℓ

for M2.
This provides us some extra possibilities to modify our two products, which we use below

to define the real “internal” tensor products M1 ⊗1 M2 and M1 ⊗2 M2. For the two internal
products, the tautological tetramodule A is a unit object.

2.2.2 Two “internal” tensor products

Definition 2.4. LetM1,M2 be two tetramodules over a bialgebra A. Their first tensor product
M1 ⊗1 M1 is defined as the quotient-tetramodule

M1 ⊗1 M2 = M1 ⊠1 M2/((m1a)⊠1 m2 −m1 ⊠1 (am2)) (2.7)

One easily checks that this definition is correct. Analogously, the second tensor product M1 ⊗2

M2 is defined as a sub-tetramodule

M1⊗2M2 =

{
∑

i

m1i ⊠2 m2i ⊂ M1 ⊠2 M2|
∑

i

∆r(m1i)⊗k m2i =
∑

i

m1i ⊗k ∆ℓ(m2i)

}
(2.8)

Again, one easily checks that this definition is correct.

Lemma 2.5. Let A be an associative bialgebra. Then the tautological tetramodule A is the unit
object for both monoidal structures.
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Proof. Let M be a tetramodule. One can check that the maps

mℓ : A⊗1 M → M

mr : M ⊗1 A → M
(2.9)

and
∆ℓ : M → A⊗2 M

∆r : M → M ⊗2 A
(2.10)

are morphisms of tetramodules. As A has a unit, the first two maps are bijective; as A has a
counit, the last two maps are bijective too.

2.2.3 The 2-fold monoidal structure

We construct the map ηM,N,P,Q : (M ⊗2 N) ⊗1 (P ⊗2 Q) → (M ⊗1 P ) ⊗2 (N ⊗1 Q) in several
steps.

The first step is to check that the map φ0 : (M ⊠2N)⊠1 (P ⊠2Q) → (M ⊠1 P )⊠2 (N ⊠1Q),
φ0(m⊗k n⊗k p⊗k q) = m⊗k p⊗k n⊗k q, is a map of tetramodules. We have:

a∗
(
(m⊠2n)⊠1 (p⊠2 q)

)
=

(
a∗(m⊠2 n)

)
⊠1 (p⊠2 q) = (∆1(a)∗m)⊗ (∆2(a)∗n)⊗p⊗q (2.11)

and

a∗
(
(m⊠1p)⊠2(n⊠1q)

)
=

(
∆1(a)∗(m⊠1p)

)
⊠2

(
∆2(a)∗(n⊠1q)

)
= (∆1(a)∗m)⊗p⊗(∆2(a)∗n)⊗q

(2.12)
We see that

φ0(r.h.s. of (2.11)) = (r.h.s. of (2.12)) (2.13)

That is, φ0 is a map of left modules; analogously it is a map of right modules.
Now prove that φ0 is a map of left comodules. We have:

∆ℓ

(
(m⊠2 n)⊠1 (p⊠2 q)

)
=

(
∆1

ℓ(m⊠2 n) ∗∆
1
ℓ(p⊠2 q)

)
⊗k

(
∆2

ℓ(m⊠2 n) ∗∆
2
ℓ (p⊠2 q)

)
=

(
∆1

ℓ(m) ∗∆1
ℓ(p)

)
⊗k

(
∆2

ℓ(m)⊗k n⊗k ∆
2
ℓ(p)⊗k q

)

(2.14)
and

∆ℓ

(
(m⊠1 p)⊠2 (n⊠1 q)

)
= ∆1

ℓ(m⊠1 p)⊗k

(
∆2

ℓ(m⊠1 p)⊠2 (n⊠1 q)
)
=

(
∆1

ℓ(m) ∗∆1
ℓ(p)

)
⊗k

(
∆2

ℓ(m)⊗k ∆
2
ℓ (p)⊗k n⊗k q

) (2.15)

We see that
∆ℓ ◦ φ0 = id⊗k (φ0 ◦∆ℓ) (2.16)

that is, φ0 is a map of left comodules. It is proven analogously that φ0 is a map of right
comodules.
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At the second step we consider the natural projections of tetramodules pM,P : M ⊠1 P →
M ⊗1 P and pN,Q : N ⊠1 Q → N ⊗1 Q. We consider the composition

φ1 = (pM,P ⊠2 pN,Q) ◦ φ0 : (M ⊠2 N)⊠1 (P ⊠2 Q) → (M ⊗1 P )⊠2 (N ⊗1 Q) (2.17)

We want to check that the map φ1 defines naturally a map

φ2 = φ1 : (M ⊠2 N)⊗1 (P ⊠2 Q) → (M ⊗1 P )⊠2 (N ⊗1 Q) (2.18)

that is, the elements of the form

(
(m⊠2 n) ∗ a

)
⊗k (p⊠2 q)− (m⊠2 n)⊗k

(
a ∗ (p⊠2 q)

)
(2.19)

are mapped to 0 by φ1.
Indeed,

(2.19) = (m ∗∆1a)⊗k (n ∗∆2a)⊗k (p⊗k q)− (m⊗k n)⊗k (∆
1a ∗ p)⊗k (∆

2a ∗ q) (2.20)

which, after the permutation φ0 of the second and the third factors, is mapped to 0 in (M ⊗1

P )⊠2 (N ⊗1 Q). Therefore, the map φ2 is well-defined.

At the third step we restrict the map φ2 to (M ⊗2N)⊗1 (P ⊗2Q) ⊂ (M ⊠2N)⊗1 (P ⊠2Q),
and we need to check that the image of this restricted map belongs to (M ⊗1 P )⊗2 (N ⊗1Q) ⊂
(M ⊗1 P )⊠2 (N ⊗1 Q).

Suppose m ⊗k n ∈ M ⊗2 N and p ⊗k q ∈ P ⊗2 Q (we assume the summation over several
such monomials, but for simplicity we skip this summation). Then

∆1
r(m)⊗k ∆

2
r(m)⊗k n = m⊗k ∆

1
ℓ(n)⊗k ∆

2
ℓ (n) (2.21)

with the middle factors in A, and analogously

∆1
r(p)⊗k ∆

2
r(p)⊗k q = p⊗k ∆

1
ℓ (q)⊗k ∆

2
ℓ(q) (2.22)

again, with the middle factors in A.
One needs to prove that (2.21) and (2.22) together imply that

(m⊠1 p)⊠2 (n⊠1 q) ∈ (M ⊗1 P )⊗2 (N ⊗1 Q) ⊂ (M ⊗1 P )⊠2 (N ⊗1 Q) (2.23)

that is,

∆1
r(m)⊗k ∆

2
r(p)⊗k (∆

2
r(m) ∗∆2

r(p))⊗k n⊗k q = m⊗k p⊗k (∆
1
ℓ (n) ∗∆

1
ℓ (q))⊗k ∆

2
ℓ(n)⊗k ∆

2
ℓ(q)

(2.24)
To get (2.24) from (2.22) and (2.23) we permute (2.22) such that the factors in A are the

most right, permute (2.22) such that the factors in A are the most left, then take the equation
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(l.h.s. of (2.22)) ⊗k (l.h.s. of (2.23)) = (r.h.s. of (2.22)) ⊗k (r.h.s. of (2.23)) (after they are
permuted). Then for the two middle factor (in A) we apply the product ∗ : A⊗k A → A, and
then permute again.

The map ηM,N,P,Q is constructed.

Theorem 2.6. The maps ηM,N,P,Q, constructed above, and the two tensor products ⊗1 and ⊗2,
define a 2-fold monoidal structure on the category Tetra(A) of tetramodules over a bialgebra A.
The tautological tetramodule A is a unit object of this 2-fold monoidal category.

Proof. First of all, the two tensor products ⊠1 and ⊠2 with η̃M,N,P,Q = φ0, clearly define a
2-fold monoidal structure (without a unit object) on the category Tetra(A). In particular, the
diagrams (1.8) and (1.9) are commutative for η̃M,N,P,Q (because φ0 is just the permutation
which switches the second and the third factors). Now the same diagrams for the actual struc-
ture ηM,N,P,Q are obtained from the above “external structure” diagrams just by passing to
subquotients. Therefore, they are commutative as well.

Remark 2.7. The “external” 2-fold monoidal structure does not obey properly the definition
of n-fold monoidal categories given in Section 1, as it does not have a unit object (one easily
sees that k is not a unit). Therefore, the Joyal-Street result from Example 1.6 is not applied
to it.

3 Tetramodules and the Gerstenhaber-Schack cohomology:
an overview of Taillefer’s results

In this Section we present some results of R.Taillefer [Tai1,2] on the category of tetramodules.
Our presentation follows the same ideas as the original proofs of Taillefer, but the details are
slightly different, and, we hope, more transparent. In particular, we prove Theorem 2.2 for any
bialgebra, whereas Taillefer assumes it to be a Hopf algebra.

As an application of the general theory, we present a computation of the Gerstenhaber-
Schack cohomology for A = S(V ), the free commutative cocommutative bialgebra generated by
a vector space V .

3.1 The Gerstenhaber-Schack complex

Let A be a (co)associative bialgebra. Note that the bar-differential in Bar⊠1(A) is given by
maps of tetramodules; analogously, the cobar-differential in Cobar⊠2(A) is given by maps of
tetramodules.

Let us recall, that originally the Gerstenhaber-Schack complex was defined in [GS] as

C
q

GS(A) = HomTetra(A)(Bar
⊠1
− (A),Cobar⊠2

+ (A)) (3.1)

13



Here Bar−(B) and Cobar+(C) are truncated complexes, which end (start) with B⊠1B
(C⊠2C) correspondingly.

For convenience of the reader let us write down here the Gerstenhaber-Schack differential
in C

q

GS(A) explicitly:
First of all, as a graded vector space,

C
q

GS(A) = ⊕m,n≥0Homk(A
⊗m, A⊗n)[−m− n] (3.2)

Now let Ψ: A⊗m → A⊗n ∈ Cm+n
GS (A). We are going to define the Gerstenhaber-Schack differen-

tial dGS(Ψ) ∈ Hom(A⊗(m+1), A⊗n)⊕Hom(A⊗m, A⊗(n+1)). Denote the projection of dGS to the
first summand by (dGS)1, and the projection to the second summand by (dGS)2. The formulas
for (dGS)1 and (dGS)2 are:

(dGS)1(Ψ)(a0 ⊗ · · · ⊗ am) =

∆n−1(a0) ∗Ψ(a1 ⊗ · · · ⊗ am) +
m−1∑

i=0

(−1)i+1Ψ(a0 ⊗ · · · ⊗ (ai ∗ ai+1)⊗ · · · ⊗ am)+

(−1)m−1Ψ(a0 ⊗ · · · ⊗ am−1) ∗∆
n−1(am)

(3.3)

and

(dGS)2(Ψ)(a1 ⊗ · · · ⊗ am) =

(∆(1)(a1) ∗∆
(1)(a2) ∗ · · · ∗∆

(1)(am))⊗Ψ(∆(2)(a1)⊗ · · · ⊗∆(2)(am))+
n∑

i=1

(−1)i∆iΨ(a1 ⊗ · · · ⊗ am)+

(−1)n+1Ψ(∆(1)(a1)⊗∆(1)(a2)⊗ · · · ⊗∆(1)(am))⊗ (∆(2)(a1) ∗∆
(2)(a2) ∗ · · · ∗∆

(2)(am))
(3.4)

The goal of this Section is to recall the original proof, with some minor improvements in
presentation, of the following result due to R.Taillefer [Tai1,2]:

Theorem 3.1 (Taillefer). For any bialgebra A one has:

Ext
q

Tetra(A)(A,A) = H
q
(
HomTetra(A)(Bar

⊠1
− (A),Cobar⊠2

+ (A))
)

3.2 Two forgetful functors and their adjoints

3.2.1

Let A be a (co)associative bialgebra. Besides the category Tetra(A), we can consider the
categories Bimod(A) of A-bimodules (when we consider A as an algebra) and Bicomod(A) of
A-bicomodules (when we consider A as a coalgebra). Clearly there are two exact forgetful
functors F1 : Tetra(A) → Bicomod(A) and F2 : Tetra(A) → Bimod(A). We have the following
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Lemma 3.2. Let A be a bialgebra which has unit and counit. Then the functor F1 admits a left
adjoint L and the functor F2 admits a right adjoint R. The functors L and R are exact.

Definition 3.3. Let A be a bialgebra, and let N be an A-bicomodule, and let M be an A-
bimodule. The tetramodule L(N) is called an induced tetramodule (from N), and the tetramod-
ule R(M) is called a coinduced tetramodule (from M). The induced and coinduced tetramodules
form full additive subcategories in the abelian category Tetra(A). We denote them TetraInd(A)
and TetraCoind(A), respectively.

Proof of Lemma: we set
L(N) = A⊠1 N ⊠1 A (3.5)

and
R(M) = A⊠2 M ⊠2 A (3.6)

(see Section 2.2.1 for the definitions of ⊠1 and ⊠2). Rigorously, to write down formulas like
this, M and N should be tetramodules. However, the definition of M1 ⊠1 M2 does not use the
right A-module structure in M1 and the left A-module structure in M2. Analogously, in the
definition of M1 ⊠2 M2 does not use the right comodule structure in M1 and the left comodule
structure in M2. Therefore, (3.5) and (3.6) make sense.

The adjunction properties of L and R are clear.
The exactness of L and R is clear from the constructions (3.5) and (3.6).

3.2.2

Lemma 3.4. Let A be an associative bialgebra. Then any tetramodule M ∈ Tetra(A) can
be imbedded into a coinduced tetramodule, and there is a surjection to M from an induced
tetramodule.

Proof. Let M be an A-tetramodule. Consider P (M) = A ⊠1 M ⊠1 A, it is induced from the
bicomodule F1(M). The map p : A⊠1M⊠1A → M , a⊠1m⊠1 b 7→ a ·m ·b is clearly a map (and
an epimorphism, because A contains a unit) of tetramodules. Analogously, the tetramodule
Q(M) = A⊠2 M ⊠2 A is coinduced from the bimodule F2(M), and we have a monomorphism
j : M → A⊠2 M ⊠2 A, m 7→ ∆ℓ ◦∆r(m).

Corollary 3.5 ([Tai2]). For any bialgebra A the category Tetra(A) has enough injectives.

Proof. The functor R is a right adjoint to an exact functor F2, and, therefore, maps injective
objects to injective (see [W], Prop. 2.3.10). Moreover, R is left exact ([W], Section 2.6).
Therefore, it is sufficient to imbed M as an A-bimodule into an injective A-bimodule I (it is
a classical construction, see e.g. [W], Section 2.3). Then we apply the functor R to this this
imbedding of A-bimodules. It gives an imbedding j : M → Q(M).

The main fact about the induced and the coinduced tetramodules is the following:
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Proposition 3.6. Let A be an associative bialgebra. Then the functor X 7→ HomTetra(A)(X,Q)
for fixed Q ∈ TetraCoind(A) is an exact functor from TetraInd(A)

opp to Vect. As well, the functor
Y 7→ HomTetra(A)(P, Y ) for fixed P ∈ TetraInd(A) is an exact functor from TetraCoind(A) to
Vect.

Proof. We prove the first statement. Let

0 → LN ′ → LN → LN ′′ → 0 (3.7)

be an exact sequence of tetramodules, N,N ′, N ′′ ∈ Bicomod(A). We need to prove that the
sequence

0 → HomTetra(A)(LN
′′, RM) → HomTetra(A)(LN,RM) → HomTetra(A)(LN

′, RM) → 0 (3.8)

is exact for any M ∈ Bimod(A).
By the adjunction, the exactness of (3.8) is equivalent to the exactness of the sequence

0 → HomBimod(A)(F2LN
′′,M) → HomBimod(A)(F2LN,M) → HomBimod(A)(F2LN

′,M) → 0
(3.9)

The latter sequence is indeed exact as for any N ∈ Bicomod(A) the A-bimodule F2LN is free
and, therefore, projective.

The second statement is proven analogously.

3.3 Some homological algebra

We recall here some construction of homological algebra, based on the Grothendieck’s inter-
pretation of the derived functors as “universal δ-functors” [Tohoku, 2.1-2.2]. This construction
provides a useful way of computation of Ext’s functors in abelian categories, using resolutions
from “semi-projective” and “semi-injective” objects.

3.3.1 A (P,Q)-pair

Definition 3.7. Let A be an abelian category, and let P, Q be two additive subcategories of
A. We say that P and Q form a (P,Q)-pair, if the following conditions are fulfilled:

1. the functor Hom(?, Q) is exact on Popp for any Q ∈ Q;

2. the functor Hom(P, ?) is exact on Q for any P ∈ P;

3. for any object M ∈ A, there is an epimorphism P → M for P ∈ P, and there is a
monomorphism M → Q for Q ∈ Q;
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4. a stronger version of 3: for any short exact sequence 0 → M1 → M2 → M3 → 0 in A the
epimorphisms Pi → Mi, pi : Pi ∈ P, can be chosen such that there is a map of complexes

0 // P1
//

pi

��

P2
//

p2

��

P3
//

p3

��

0

0 // M1
// M2

// M3
// 0

(3.10)

where the upper line is an exact sequence. As well, also the dual condition for Q for
monomorphisms qi : Mi → Qi, Qi ∈ Q is required.

Note that the third condition guarantees that each object M ∈ A has a Z≤0-graded resolu-
tion in P and a Z≥0-graded resolution in Q.

Example 3.8. If A has enough projectives and P is the additive subcategory of projective
objects, Q = A gives a (P,Q)-pair. Analogously, if A has enough injectives and Q is the
additive subcategory of injective objects, P = A gives a (P,Q)-pair.

Proposition 3.9. Let A be an associative bialgebra, and let A = Tetra(A). Then the pair
(TetraInd(A),TetraCoind(A)) is a (P,Q)-pair.

Proof. The first two properties were proven in Proposition 3.6, and the third property follows
from Lemma 3.4. Moreover, the construction in the Lemma gives immediately the fourth
assertion in Definition 3.7.

3.3.2 The Key-Lemma

The main fact about (P,Q)-pairs is the following lemma:

Key-lemma 3.10. Let A be an abelian category, having enough projective or injective objects.
Suppose we are given a (P,Q)-pair (P,Q) in A, and let M,N ∈ A be two objects. Suppose
P

q

→ M is a resolution of M of objects in P, and N → Q
q

is a resolution of N by objects in
Q. Then

Ext
q

A(M,N) = H
q

(HomA(P
q

, Q
q

)) (3.11)

Proof. The proof consists from several steps. We give the proof for the case when A has enough
injectives, the case of enough projectives is analogous.

The rough idea is: any derived functor in an abelian category (if it exists) enjoys the property
of being of universal δ-functor, and as such, is uniquely defined up to an isomorphism by its zero
degree component. We prove that the functor (M,N) 7→ H

q

(HomA(P
q

, Q
q

)) is a δ-functor, and
then prove that it is a universal δ-functor.
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Let A and B be two abelian categories, and let {Tn : A → B}, n ≥ 0 be a collection of
additive functors. One says that this collection is a cohomological δ-functor if for any exact
sequence

0 → M → N → L → 0 (3.12)

in A, one has a morphism δ : Tn(L) → Tn+1(M), n ≥ 0 in B, forming a long exact sequence:

· · · → Tn−1(L)
δ
−→ Tn(M) → Tn(N) → Tn(L)

δ
−→ Tn+1(M) → . . . (3.13)

n ≥ 1, depending functorially on the short exact sequence (3.12).
Consider a δ-functor {Tn}. We say that this δ-functor is universal if for any other δ-functor

{Sn} with the natural transformation f0 : T0 → S0 there is a unique morphism of δ-functors
{fn : Tn → Sn} extending f0. It follows immediately that the universal δ-functor with T0 = F ,
if it exists, is unique. This point of view, independent on existence of enough projective objects,
was emphasized by Grothendieck in [Tohoku] (see also [W], Chapter 2).

Now consider the functor HomA(M, ?) as a functor of the second argument. If A has enough
injectives, the functors Tn(M,N) = ExtnA(M,N) is a universal cohomological δ-functor (see [W],
Theorem 2.4.7).

Now the proof of Key-Lemma goes in several steps:

Step 1. Tk : (M,N) 7→ Hk(HomA(P
q

, Q
q

)) with P
q

∈ P, Q
q

∈ Q is well-defined, that is does not
depend on the choice of P

q

and Q
q

;

Step 2. it is a cohomological δ-functor with T0 = HomA(M,N);

Step 3. it is a universal cohomological δ-functor.

Clearly the Key-Lemma follows from these three claims.
Step 1: it easily follows from the conditions 1. and 2. in the definition of a (P,Q)-pair.
Step 2: it follows easily from condition 4. in the definition of a (P,Q)-pair.
Step 3: this is a bit more tricky. An additive functor F : A → B is called effaceable if for any

object N ∈ A there is a monomorphism j : M → I such that F (j) = 0. It is proven in [Tohoku]
that a cohomological δ-functor {Tn} for which all Tn for n ≥ 1 are effaceable, is universal. It
remains to prove that our functors Tn(N) = Hn(HomA(P

q

(M), Q
q

(N))), n ≥ 1, are effaceable.
We can choose a monomorphism j : N → I with I ∈ Q by condition 3. in Definition 3.7. Now
the effaceability follows as Tn(I) = 0, n ≥ 1, by 1. and 2. in Definition 3.7.

Thus, it is proven that the functors Hn(HomA(P
q

, Q
q

)) form a universal cohomological δ-
functor which has the same the same 0-component as ExtnA(M,N). Therefore, the two δ-functors
are isomorphic.

Theorem 3.1 is proven.
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3.4 Example: a computation of the Gerstenhaber-Schack cohomology
for A = S(V )

Here we compute, as an application of previous results, the Gerstenhaber-Schack cohomology
for the (co)free commutative and cocommutative bialgebra A = S(V ). For simplicity, we assume
V is a finite-dimensional, although the result (being slightly modified) remains true for general
V .

Proposition 3.11. Let A = S(V ) be (co)free commutative cocommutative bialgebra, V finite-
dimensional. Then the Gerstenhaber-Schack cohomology of A is

Hk
GS(A) =

⊕

i+j=k
i,j≥0

ΛiV ⊗ Λj(V ∗)

Proof. We compute Ext
q

Tetra(A)(A,A) for A = S(V ), as H
q

(Hom(P
q

, Q
q

)), where P
q

is a resolu-
tion of A by tetramodules which are free as bimodules, and Q

q

is a resolution of A by tetramod-
ules which are cofree as bicomodules. We are allowed to use such resolutions by Proposition 3.9
and Key-lemma 3.10.

We now use more “economic” resolutions P
q

and Q
q

, than the bar- and cobar-resolutions
from Theorem 3.1. Namely, we use suitable Koszul resolutions.

Recall these resolutions P
q

and Q
q

. We have:

P−k = S(V )⊠1 Λ
k(V )⊠1 S(V ),

∂k(f ⊗ (e0 ∧ · · · ∧ ek)⊗ g) =

k∑

i=0

(−1)i ((vi · f)⊗ (e0 ∧ · · · ∧ êi ∧ · · · ∧ ek)⊗ g − f ⊗ (e0 ∧ · · · ∧ êi ∧ · · · ∧ ek)⊗ (vi · g))

(3.14)

Qk = S(V )⊠2 Λ
k(V )⊠2 S(V ),

dk(f ⊗ (e0 ∧ · · · ∧ ek)⊗ g) =

∆1
r(f)⊗ (∆2

r(f) ∧ e0 ∧ · · · ∧ ek)⊗ g − f ⊗ (e0 ∧ · · · ∧ ek ∧∆1
ℓ(g)) ⊗∆2

ℓ(g)

(3.15)

where in the both equations the tetramodule structure on Λk(V ) is trivial for any k. In the
second equation ∆ℓ(f) denotes the projection of ∆(f) ∈ S(V )⊗ S(V ) to V ⊗ S(V ), and ∆r(f)
denotes the projection of ∆(f) to S(V )⊗ V .

One easily sees, that when HomTetra(S(V ))(P
q

, Q
q

) is computed, the differential in this com-
plex vanishes. This gives the result.
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