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SCHUBERT CALCULUS AND SINGULARITY THEORY

VASSILY GORBOUNOV AND VICTOR PETROV

ABSTRACT. Schubert calculus has been in the intersection of several fast de-
veloping areas of mathematics for a long time. Originally invented as the
description of the cohomology of homogeneous spaces it has to be redesigned
when applied to other generalized cohomology theories such as the equivari-
ant, the quantum cohomology, K-theory, and cobordism. All this cohomology
theories are different deformations of the ordinary cohomology. In this note
we show that there is in some sense the universal deformation of Schubert
calculus which produces the above mentioned by specialization of the appro-
priate parameters. We build on the work of Lerche Vafa and Warner. The
main conjecture these authors made was that the classical cohomology of a
hermitian symmetric homogeneous manifold is a Jacobi ring of an appropriate
potential. We extend this conjecture and provide a simple proof. Namely we
show that the cohomology of the hermitian symmetric space is a Jacobi ring of
a certain potential and the equivariant and the quantum cohomology and the
K-theory is a Jacobi ring of a particular deformation of this potential. This
suggests to study the most general deformations of the Frobenius algebra of
cohomology of these manifolds by considering the versal deformation of the
appropriate potential. The structure of the Jacobi ring of such potential is
a subject of well developed singularity theory. This gives a potentially new
way to look at the classical, the equivariant, the quantum and other flavors of
Schubert calculus.

1. INTRODUCTION

The connection between the cohomology of the homogeneous space G/H and
the quantum field theory called the coset model G/H was stated in the influential
paper by Lerche Vafa and Warner [29]. The key conjectural claim was that the ring
H*(G/H) is the Jacobi ring of some function, the so called potential. In [29] and
subsequent publications this conjecture was supported by a number of non-trivial
examples. Later Gepner in [I§] has calculated the potential for the cohomology
of any Grassmann manifold Gr(k,n) and discovered that the cohomology of the
Grassmann manifolds and the fusion rings of the unitary group are Jacobi ring
of the same potential. This work was followed by Witten in [36] where it was
pointed out that this connection extends naturally to the quantum cohomology of
the Grassmann manifold if one considers the deformed Gepner potential. Also in
[16] it was argued that a certain deformation of the potential provides the connection
with the affine Toda lattice type field theory. This gave a beautiful link between
the representation theory of the loop groups, the quantum Schubert calculus, the
integrable systems and the singularity theory.

We take on the task of extending the conjecture of Lerche, Vafa and Warner
about the cohomology of hermitian symmetric spaces as defined in [6] and providing
simple proof of it. We show that the classical cohomology of these homogeneous
spaces are Jacobi rings of an appropriate Taylor polynomial, the potential, which we
calculate explicitly, and the equivariant cohomology with respect to the torus action,
the small quantum cohomology and K-theory are the Jacobi rings of a particular
deformation of the potential. Our approach offers a possibly new way to look on
the classical as well as the equivariant and quantum formulas from the Schubert
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calculus like the Littlewood—Richardson rule from the point of view of singularity
theory [2] [32]. It is interesting to explore the connection between these two ways of
describing the same algebra. In the case of the Grassmann manifold such an attempt
is available in the literature [I0]. Further using the description of the equivariant
cohomology with respect to the torus action of these homogeneous spaces as a
Jacobi ring we give the description of the scheme Spec H}(G/P) in the spirit of the
work [22]. It turns out that the equivariant Euler classes of the tangent bundle at a
fixed point of the torus action are the values of the Hessian of our potential at the
fixed point. Next we give a description of the small quantum cohomology of these
spaces as a scheme and make explicit the Vafa—Intriligator formula by calculating
the denominators in it. Namely the Gromov—Witten invariants can be calculated
as a sum over the vertices of an appropriate polytope with the explicitly calculated
weights. The vertices are identified using Kostant’s description of cyclic elements.
As an interesting outcome of this result we give a fast algorithm for calculating
Littlewood—Richardson coefficients for the product of Schubert classes.

The connection between the representation theory and singularity theory was
the subject of the conjecture by Zuber solved in [23].

In the modern language of Mirror Symmetry such a presentation of cohomology
as a Jacobi ring is called the Landau—Ginzburg model of the homogeneous manifold.
This places the study of the deformations of the Frobenius algebra of cohomology
of these manifolds into the Saito theory of the Frobenius structure of singularity
[32]. We would like to point out that our potential is a Taylor polynomial and is
different from the potential obtained out of toric degeneration of the homogeneous
space, like in the approach developed in [14], [15], [19], [3]. The modern treatment
of these ideas is given for example in [3T] where such a potential is called the weak
Landau Ginzburg model. The connection of our potential to the weak Landau
Ginzburg model and to the quantum cohomology is now being investigated [21].

The result of [24] suggests the relation of the quantum cohomology of homo-
geneous spaces and the twisted K theory via the Verlinde algebra. It would be
interesting to investigate it. Also following the approach of [7] and [20] one may
be able to obtain the Chiral de Rham complex of the homogeneous spaces as the
“Jacobi ring” of the “chiralisation” of the potential. We plan to return to this point
in future work.

The authors visited the Max Planck Institute for Mathematics in Bonn while
working on this paper. Inspiring discussions with V. Golyshev F. Hirzebruch and
Yu. I. Manin are gratefully acknowledged.

2. SUMMARY OF GEPNER'S WORK

Let us remind the Gepner result on the cohomology of the Grassmannian.

The cohomology of the Grassmannian Gr(k,n) = U(n)/U(k) x U(n — k) have
the following presentation: let C' =14 c¢; + ...+ ¢cx + ... is the full class of the
tautological bundle and C=14¢ +...+ ¢ + .., the relation between them is
CC = 1. For our purposes we need the following description of H*(Gr(k,n), Z):

H*(Gr(ka TL),Z) = Z[Cla ceey Ck]/énkarl =...=0Cp = 0

The existence of the potential can be seen using the following easy observation:
consider the relations in the cohomology of the Grassmannian

c+c

ca+c1C1 + C2

€3+ c2C1 + C1C2 + C3

€4+ €3C1 + Cc2C2 +C1C3 + C4

C5 + €4C1 + C3C2 + C2C3 + €1C4 + C5
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Proposition 1. Consider ¢; as a function in ci, ¢z, . .. defined by the above equation
CC = 1. The following identity holds:

oe; . 8Ei+l

aCj o aCj_H

Proof. C'is a function in ¢y, ¢, . . .. Differentiating the identity CC' = 1 with respect
to ¢; produces ~
0 ~ C

C

801- B _5
In other words the function C satisfies the system of linear partial differential
equations:

0 = J =
26 = a6,¢

Taking the graded components of this identity proves the proposition. ([

This implies that the ideal defining the cohomology ring of the Grassmann man-
ifold is a Jacobi ideal. Figuring out the potential is easy now. The function C' has
the form % Therefore the generating function for the potentials is

V =log(C)
Taking now the graded component of the weight n + k — 1 and setting ¢; = 0 for

1 > k we obtain the Landau—Ginzburg potential for Gr(k,n). Here is the potential
for Gr(2,5)

6 3
c} 4 3 cs
V= % + cice — icfcg + 3

It is easy now to obtain the Gepner description of the generating function for
the potential:

t2 t3
2 (2 2
3. THE COHOMOLOGY OF THE ORTHOGONAL (GRASSMANN MANIFOLD AND THE
CATALAN NUMBERS

The cohomology of the orthogonal Grassmannian OGr(n,2n) = SO(2n)/ U(n)
can be presented as follows [5]. Consider a polynomial ring Z[xy,x2,. .., Z2n—2],
deg z; = 2¢, and factor out the set of elements

P, = $12 + 2 Z(_l)k$i+k$i—k + (—1)j$2i.
k=1

As usual we set z; to be zero if the number 7 is outside of the interval [1,2n — 2].
A few of the elements P; are listed below:

o 12 — 19

° x% —2x173 + 74

° z% — 2xox4 + 22175 — g

° zi — 2x375 + 20016 — 2x1T7 + T8

° zg — 2x4x6 + 20307 — 2x028 + 22129 — X10

The meaning of the variables z; is as follows: it is the Chern classes of the tautologi-
cal bundle divided by 2 [5]. Introduce two generating functions Xy = 14+xo+z4+. ..
and X_ = x1+x3+x5+. .. Considering the even s, as functions of the odd x2,,4+1’s
the above relations can be written as (X4 + X_)(Xy —X_ —1)= X_

Proposition 2. One has

OLantr)  Owap

a$2(m+k)+1 02m+1
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This implies the existence of the potential for the ideal generated by the P;’s.
Let us calculate it. Solving for X, one obtains

1 1
Xy =—=+44/>+X2
p=—p X

/\/1+u2dx:%(\/1+u2+1n( 1+ u?+u))

we obtain the generating function for the potentials

V= %(—X, + (J1+ X2 +In(y/1+ X2 + X))

The component of a given degree 2n—1 of V' gives the potential for the cohomology
of H*(OGr(n, 2n)).
Here is the Landau—Ginsburg potentials for OGr(4, 8), OGr(5, 10), and OGr(6, 12).

Since

2
2 4 7
Ve = z125 — 2723 + ooy

7
3,.2 6 Ls Do
Vo = —2z7z5 + 22723 + 3%~ 971
14
Vir = 22825 + 625235 — 22323 + 1122 + 2525 — Salws — datwaws + —apt

11
Remark 1. It is interesting to note that the above relations are related to the
Catalan numbers. Namely the expansion of the function

1 1
_ : 2
g(u) = 2+ 4+u_

is the generating function for the Catalan numbers

g(u) =Y (=1)"Cpru’
Indeed setting the odd z; for i > 1 in the defining relations equal to zero one obtains
Segner’s Recurrence Formula for the Catalan number.

Remark 2. Since B,, and C),, has the same Weyl group, and their torsion index is
2, one has

1 1
' (Sp(n)/ U(n), Z[5]) = H*(0Gr(n + 1,20 + 2,25 ),
so the result applies to the symmetric hermitian space Sp(n)/ U(n) as well.

4. THE QUADRICS

In this section we consider the case of even-dimensional quadrics Qop—2 =

SO(2n)/ SO(2) x SO(2n — 2). Note that for odd-dimensional quadrics we have
1 1
' (Quoo1, Z[5]) = T (Gr(1,20), 2 5 ),
the case already considered above.

It is well-known that H*(Q2,,—2,7Z) has a presentation
Z[h,1]/(h™ — 2hl, 1?)
when n is odd and
Z[Rh,1)/(h™ — 2hi, 1> — k")
when n is even, where h is the class of a hyperplane section and [ is the class of a

maximal totally isotropic subspace.
Consider first the case of odd n. The function

— _pn 2 L 2n—1
V(D) = =HU4 R 4 o
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satisfies the equations
vV = —(h"™ — 2hl);
OV =12+ th(h" —2h1),
so V is a potential.
Similarly, in the case of even n we set
-1

h2n—1_
2(2n — 1)

V(h,1) = —h™ + hi* +

Then
OV = —(h"™ —2hl);
WV =12 —h"" 1+ nT_lh”‘Q(h” — 2hl),
and V is a potential.
5. COHOMOLOGY OF Es/Spin(10) x SO(2), E7/Es x SO(2) AND Es/E7 x SO(2)
In [12] (see also [I1]) the following presentation was obtained:
H*(Es/ Spin(10) x SO(2),Z) = Z[y1,y4]/ (19, r12),
where
ro = 2y} + 3y1y3 — 6y7ys;
ri2 = yj — 6yiyi + i’
Setting
Viyss) = 2901 + 1y — 3y7y3 — <yl

13
we see that

6y4V = To;
0y, V =112 — 3yiro,

so V is a potential.
Similarly, a presentation for H*(E7/Eg x SO(2),Z) looks as follows:

Zly1,9Ys, Yo/ (110,714, T18),

where
1o = Y — 2y1Y9;
14 = 2ysy0 — Y1y + 6y ys — yi;
ris =y + 10y7y5 — 9yTy3 + 2u1°ys.
Setting
V(y1,95,¥0) = —v2yo + y1y5 + 3yivs — 3u7y3 + yi'ys — 1—29y%9
gives
Oy V = —T10;
Oys V = —114;

Oy, V =118 + 203ys710 + 21714,
so V is a potential.
Consider now H*(Egs/E7 x SO(2)). The existence of the potential for this ring
has been stated in [29] as a problem.
From [12] we have:



6 VASSILY GORBOUNOV AND VICTOR PETROV

H*(Es/E7 x SO(2)) = Z[y1, Y6, Y10, Y15]/ (715,720, 724, 730),
where

r15 = 215 — 16y710 — 10575 + 10y1ye — y1°

r20 = 3yto + 10y7y8 + 18y1yeyio — 24715 — 8y5ye + 41 y10 — U1 ve

ros = 5yg + 30yTygyio + 15y1yio — 20 y1s — 5yi’ye + yi o

730 = Yis — 8Yo + e — 20iY5y1s + 3Y1Ysyio — Sy Y10Y15 + 647 Y6y15 — Y1 yio—
12y — 21 yey10 — 3y1°y1s + 8y 10 + ¥i ve — Ui -

It is clear that the grading on our algebra and the degrees of the relations prevent
the existence of a potential whose gradient would give the above relations. But one
can check that the following is true

Proposition 3. The ring
Q[yla yﬁaleayl5]/(Tl5; 720, 7“24,7“30)

is a Jacobi ring with respect to the ‘'modified gradient’ (ylaiyl’ %, 65107 ayalr ) The

potential is
V =yis — y1sy1° + 10y159)y6 — 10y1595 5

— 16y15y3y10 + 843 0y10 — 80y *y6y10 + 80y Y Y10

30
Y1

4

Remark 3. One can check a similar statement for all extra-special homogeneous
spaces, that is corresponding to a parabolic subgroup whose unipotent radical has
a one-dimensional commutator subgroup.

+ 64y1 %3y + —5yitys + 30y1SyE — 50y1%ys + 25ySys +

6. QUANTUM COHOMOLOGY AND VAFA—INTRILIGATOR FORMULA

Let X = G/H be a hermitian symmetric space. The main result of [11] says
that the quantum cohomology of X are given by the following deformation of the
ordinary cohomology:

QH*(X, @) = @[q, Il, . ;In]/(Rh ey Rn—la Rn —|— q)
If R; = I;, one can drop I; and R; from both lists, and in this way all presentations
considered above are obtained. It follows that QH"(X) is also a Jacobi ring with
the potential V19 = V 4 ¢gh, V being the potential of H*(X).
Let’s look at the solution set of the system of equations

R =0
Rm—l =0
R, =—q.

This system describes cyclic elements in the Cartan subalgebra of the Lie algebra of
G, and by [28] the Weyl group W acts on the set of solutions simply transitively.
This means that the quantum deformation appears to be a particular case of the
equivariant deformation for some choice of (y1,...,Yyn).

Let us describe this choice explicitly for classical groups. In the case of G = U(n)

one can choose
1 n
Ri = - tz-
1 Z »
Jj=1
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and we can take
(yla"'7yn) = (n\/ - agn n\/ _q’“-,c’:}l—l n\/ _q)a

where (, is n-th root of 1. The Weyl group W (A4,,_1) = S, acts by permutations.

In the case of G = SO(2n + 1) or Sp(2n) we have
1< 2

=52 1
j=1

R;

and we can take the same (y1,...,yn) as in the case U(n). The Weyl group
W(B,) = W(C,) acts by permutations and changes of signs at any positions.
In the case of G = SO(2n) we have

2
= % 2 i i <m
Jj=1
n
R =[]t
i=1

and we can take y, = 0 and (y1, ..., yn—1) as in the case of U(n—1). The Weyl group
|W(D,,)| acts by permutations and changes of signs at even number of positions.
As above, we denote the image of @ under the map (I1,...,I,) by P; it consists
of |W¢/Wy| points.
Using [33] Theorem 4.5] we obtain the following formula for the Gromov—-Witten
invariants which is due to Vafa and Intriligator [34], [35] and [25]:

(g =" chaimx (Tx)*" () f(p),

peP
where f is a polynomial in I,...,I,. In particular, we recover a formula in [I0]
for the case of Grassmannians.

7. EQUIVARIANT COHOMOLOGY AND BOTT DENOMINATORS

Let X = G/H be any projective homogeneous variety. The rational cohomology
of X has the Borel presentation

H'(X,Q) =Q[L,...,In]/ (R, ..., Ry),

where I; are the fundamental invariants of Wy in the space of characters of a
maximal torus T' of W¢, and R; are the fundamental invariants of G on the same
space considered as functions in I;.

The T-equivariant cohomology of X considered as an algebra over H*(BT) =
Z[y1, - .., yn] are produced by the following deformation

H;(XvQ) = Q[ylv" 'aynvlla' "7In]/(R17R1(y15' --7yn);- o ;RnfRn(yly- 7yn))

Specialize (y1,...,yn) to any point “in general position” (more precisely, lying
in the interior of some Weyl chamber). Then the common zeroes of all relations
considered as functions in weights t1,...,t, of T form Wg-orbit of (y1,...,Yn)

that will be denoted by Q. Note that I; take constant values on Wix-orbits in @,
therefore the image P of Q under (Iy,...,I,) consists of Wg /W elements.
By [8, Ch. IV,§ 5n. 4] the Jacobian det(aR;) coincides with the product of

ot
positive roots of G (considered as linear functions in ¢;) up to a constant. Similarly,

det(gt[?) is the product of positive roots of H up to a constant. It follows that
J

det (%) = ¢ - chaim x (T'x),

J
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the top Chern class of the tangent bundle of X, up to a constant c.
The general theory of Artin rings as in [23] implies that the intersection form on
H7.(X) looks as follows:

. B /()
) <f>—0';m’

where f is a polynomial in I; and C' is some constant. Substituting f = chqim x (Tx)
we get the Euler characteristic of X on the left-hand side and C - |[W¢g/Wp| on the
right-hand side, so actually C = 1.

Remark 4. A similar formula was obtained by Akyildiz and Carell in [I], and
for extraordinary cohomology by Bressler and Evens in [9] Theorem 1.8]. There
is a more general formula for the Gysin map H*(G/H) — H*(G/K) involving
summation over Wx /Wy; details are to appear in a joint paper of the second
author and Baptiste Calmés.

For example, consider the case of Grassmannian X = Gr(k,n). If f is a polyno-
mial in ¢y, ..., cx considered as a symmetric function in ¢y, ..., ¢, we have

FWir, -5 yi)
(f) = > .
{i1,.rig FEAF{1,...,n} HiG{ilv»»wik}JG{l »»»»» ni\{i1,..., ik}(yi )

In particular, this expression is always a polynomial in y;, which is constant if
deg f = k(n —k) and 0 if deg f < k(n — k).
Remark 5. The following observation is due to Fedor Petrov. Applying the Com-
binatorial Nullstellensatz [26, Theorem 4] to g = & f - [licicj<i(ti — t;)? and
|A;| = {y1,...,yn}, we see that (f) is equal up to sign to the coefficient of ¢g at the
monomial 77" .. .77, if deg f < k(n — k).

Another example is the maximal orthogonal Grassmannian OGr(n,2n). If f is a
polynomial in x1,...,x, considered as a symmetric function in ¢4, ...,%,, we have

() = ) fE1yn, . enn)

ciiT] eimn Llicicien(Cayi + i)

Remark 6. The construction of the previous section allows to describe the equi-
variant cohomology of the hermitian homogeneous spaces as an affine scheme in the
spirit of work [22].

We consider the case of the Grassmann manifolds as an illustration. The compact
maximal torus T' = SO(2)" inside U(n) acts naturally on Gr(k,n). The equivariant
cohomology ring H7(Gr(k,n)) is an algebra over the cohomology of the classifying
space of T'. The latter is isomorphic to Z[y1,...,yn], degy; = 2, where y; are the
first Chern classes of the appropriate line bundles over T. The relations in the
cohomology ring come from the relation CC =[]/, (1 + y;). First few relations
look like this:

1+ —el(y)

ca+ 18+ —ea(y)

C3 —+ 0251 —+ 0152 —+ 53 — eg(y)

4+ €3C1 + CaCa + €183 + C4 — ey(y)

€5 4 €4€C1 + €3G + €2C3 + 1G4 + C5 — e5(y)

Here e;(y) is the j-th elementary symmetric functions in y;.
This allows to view ¢; as functions in ¢; and y;. Then

H;(Gr(k,n),Z) = Z[clv . '7Ck]/5n7k+1 =...=0Cp = 0
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Describing Spec Hy(Gr(k,n)) amounts to solving the equations ¢,_p41 = ... =

¢n, =01in cq,...,c, with respect to y1,...,y,. This can be done by a trick similar
to the one in the section above. Take any k-element subset of the set {y1,...,¥yn},
say {Yi,, .., Yi, }- Then the appropriate solution is given as follows:

C1 :el(yila-'-ayik)

C2 :€Q(yi1a"'ayik)

ek = ex(Yirs -1 Yiy)
8. ALGORITHM FOR COMPUTING LITTLEWOOD—-RICHARDSON COEFFICIENTS

Let X be as in the previous section. There is an important additive basis of
H*(X) consisting of the classes of Schubert varieties Z,, parametrized by w €
Wea/Wh. The coefficients of the multiplication table in this basis are known as
(g9eneralized) Littlewood—Richardson coefficients. Note that the coefficient of the
product [Z,] and [Z,] at [Z,,] equals

<[Zu] [Zv] [ZwVDv

where Z,,v is the dual Schubert variety to Z,,. So the formula (El) gives rise to a fast
computational tool once one knows how to express Z, in terms of multiplicative
generators I;. In the classical case of Grassmannians formulas are given in [17]; in
general we proceed using the divided difference operators invented by Demazure
3.

Namely, it is not hard to see that for any point x in general position and any
Wy-invariant function f in weights of degree k, the element in H*(X') represented

by f has a form
S Cuwunf(uz)[Zu),

l(w)=k ulw
where < stands for the Bruhat order and C, 4, are constants not depending on f.
The coefficients C,, . can be computed recursively based on the identities

Cl,l,z =1

_ Cw/,u,z - Cw’,sau,saz

Csaw’,u,m —

a(z) ’

where « is any simple root and s, is the reflection corresponding to a.
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