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OPEN STRING THEORY AND PLANAR ALGEBRAS

OZGUR CEYHAN AND MATILDE MARCOLLI

ABSTRACT. In this note we show that abstract planar algebras are al-
gebras over the topological operad of moduli spaces of stable maps with
Lagrangian boundary conditions, which in the case of the projective line
are described in terms of real rational functions. These moduli spaces
appear naturally in the formulation of open string theory on the projec-
tive line. We also show two geometric ways to obtain planar algebras
from real algebraic geometry, one based on string topology and one on
Gromov-Witten theory. In particular, through the well known relation
between planar algebras and subfactors, these results establish a connec-
tion between open string theory, real algebraic geometry, and subfactors
of von Neumann algebras.

1. INTRODUCTION

The purpose of this paper is to show that planar algebras arise as algebras
over an operad of moduli spaces of stable maps to P! with Lagrangian bound-
ary conditions, which can be described in terms of real algebraic curves. In
particular, the results presented in this paper can be interpreted as a con-
nection between open string theory on P! and Jones’ theory of subfactors
of von Neumann algebras, using as intermediate steps the relation between
open string theory on P! and certain moduli spaces RQ(IP’l,d) of maps to
P! with Lagrangian boundary conditions, combined with the main result we
prove here, which relates the latter to the theory of planar algebras devel-
oped in [6]. The connection to subfactors can then be seen by invoking the
result of [15] and its reformulation in terms of planar algebras of [5] and [9].

The main point involved in our description of planar algebras in terms of
real algebraic geometry is an identification of (weighted) planar tangles as
the combinatorial datum that encodes the components of the moduli spaces
Ry(P',d) of stable M-maps to P! with Lagrangian boundary conditions.
The terminology M-maps here refers to the fact that they are realized by
maximal real algebraic curves. We also describe the compositions of planar
tangles and the trace map in this geometric setting. More precisely, we prove
the following statement.

Theorem 1.1. Abstract planar algebras are topological operads of Rg(IP’l, d).

In particular, by restricting to the case with g = 0, we obtain the case of
the Temperley-Lieb algebras.


http://de.arxiv.org/abs/0907.5330v1

2 CEYHAN AND MARCOLLI

The first two sections of this paper respectively review the relation be-
tween open string theory on P! and the moduli spaces RQ(IP’l, d), as well as
the well known relation between subfactors and planar algebras. The main
original contribution of this paper is in §4] and §5l In §4] we connect the
two previous topics by proving Theorem [T and in §5l we then describe two
different methods, both based on real algebraic geometry, for constructing
planar algebras as representations of the planar operad, the first based on
algebraic loop spaces and string topology and the other based on a real
version of Gromov—Witten theory.

2. REAL ALGEBRAIC GEOMETRY AND OPEN STRING THEORY

2.1. Complex and real curves, and bordered Riemann surfaces. Re-
call that a bordered Riemann surface of type (g, h) is a Riemann surface with
boundary, with g handles and h boundary components, oriented according
to the orientation induced by the complex structure on the Riemann sur-
face. We also denote, as in [I], [7] the complex double of a bordered Riemann
surface ¥ by Y¢, with ¢ the antiholomorphic involution on Yc.

2.1.1. Mazimal real curves. A maximal real curve, denoted M-curve, is a
real algebraic curve (X¢, o) with the maximal number of connected compo-
nents of the real part Xr of 0. By Harnack’s bound this maximal number
is g + 1 for a curve of genus g.

The real part X of a real structure o divides X¢ into two 2-dimensional
discs, respectively denoted by 1 and ¥~ , minus a set of interior (open) discs
Dy, ..., Dy, having YR as their common boundary in Yc. The real structure
o interchanges %, and the complex orientations of £* induce two opposite
orientations on Y, called its complex orientations. The quotient ¥ := Y¢ /o
is isomorphic to ¥*. Here £ ~ ¥ is a bordered Riemann surface and the
real algebraic curve (3¢, o) is its complex double, cf. [16].

2.2. Open strings on P! and the moduli spaces of real maps. We
present here briefly the setting of open string theory on P} with a Lagrangian
submanifold P%. We especially focus on the role of the moduli space of stable
maps with Lagrangian boundary conditions.

2.3. M-maps and their moduli spaces. We define stable M-maps fol-
lowing a setting similar to that of [7].

Definition 2.1. An M-map (of degree d) is a pair (X7, f1) consisting of
the following data.
o A bordered Riemann surface X1 whose complex double (X¢, o) is an
M -curve of genus g, and with boundary components 9% = 0D, U
0Dy U---U0D,.
o A map f+ of degree d which is the restriction of a real stable mor-
phism f: X¢ — ]P’(IC, such that the singularities of f are all of degree
two.
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FIGURE 1. Planar tangle

o A set consisting of a critical point of f for each non-empty compo-
nent of Y.

An M-map is stable if it does not admit any infinitesimal automorphisms.

The moduli space Rg(IP’l, d) is the space of isomorphism classes of stable
M-maps. The geometric and topological properties of the space Rg(IF’l,d)
has been extensively studied in [IT]. The construction in [I] is in fact more
general; it considers an arbitrary symplectic manifold X and its Lagrangian
manifold L as the target of stable maps.

3. PLANAR ALGEBRAS AND SUBFACTORS

3.1. Planar algebras. We recall here briefly the basic definitions and facts
of the theory of planar algebras developed in [6]. We follow closely the short
survey given in [2].

3.1.1. Planar tangles. A planar k-tangle T' consists of the unit disc D C
C together with a finite collection of discs D1, Ds,..., Dy inside D. The
boundaries of D and of each interior disc D; are decorated by an even
number of marked points, 2k points on 9D and 2k; points on each 0D;. The
interior of D \ |J; D; also contains a collection of non-intersecting strings,
which are either closed strings or have as boundary the marked points on the
0D U 0D;. Each marked point lies on the boundary of one of these strings.
The complementary region D ~ ({strings}J; D;) admits a checkerboard
black and white coloring as well as a choice of a white region at each D,.

3.1.2. Planar operad. Two planar tangles 7" and S can be composed when-
ever the number of marked points on the boundary of S matches the number
of marked points on the boundary of one of the interior discs D; of T'. The
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FIGURE 2. Planar operad: compositions of tangles

composition 1" o; S is then given by gluing a rescaled copy of S in place
of the interior of the disc Dj, so as to match the shadings and the marked
white regions. This operation is well-defined, with the coloring and choice of
white region eliminating any possible rotational ambiguity. Also the result
only depends on the isotopy classes.

The planar operad P consists of all orientation-preserving diffeomorphism
classes of planar k-tangles that fix the boundary 0D. The structure of operad
is given by the compositions of tangles, defined as above. An example of
compositions is given in Figure 2l In the figures [Il and I the black/white
coloring and the marked white regions are not shown for simplicity.

3.1.3. Planar algebras. One then defines planar algebras ([6], [2]) as algebras
over the planar operad P, in the sense described in [12].

This means (see e.g. [2]) that a planar algebra P is a family of vector
spaces {Vi}r>o together with a morphism Z from the planar operad P to
the (colored) operad Hom of multilinear maps between vector spaces.

3.1.4. Partition function and trace. The morphism Z : P — Hom from the
planar operad to the operad of multilinear maps of vector spaces has the
following properties.

Given a tangle Ty, where 2¢ is the number of points on 9D, one obtains
a multilinear map

(3.1) Z(Ty) : @ia Ve, = Vi,
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FIGURE 3. The planar tangles Tg g p/w
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FIGURE 4. The planar tangles Tq ¢ £ 5/

satisfying the composition property
(3.2) Z(To; S)=2Z(T)o; Z(S).

Moreover, one has the following properties, which give Z an interpretation
as a “partition function” associated to a planar algebra.
e Normalization: let Tg g /., be the colored discs of Figure 3l Then

(3.3) Z(To0.6/w) = 1.

e Parameters: Consider the case of planar tangles as in Figure @] given
by a simple curve with no boundary inside D and the two possible choices
of coloring. Then the corresponding linear maps under Z are of the form

(3.4) Z(Topcp) =01, Z(Topcw) = 02,

for two parameters d;.

These two rules give a procedure to eliminate ovals from a planar tangle,
replacing them in the image under Z by a multiplicative factor of the form
07"0%, depending on the parameters ¢;. This is illustrated in one example
in Figure Bl where one encodes a configuration of ovals inside a planar tan-
gle via a rooted tree and computes the corresponding multiplicative factor
accordingly.

3.2. Subfactors and planar algebras. Our main focus in this paper is on
a geometric framework for planar algebras based on real algebraic geometry
and open string theory. However, we mention briefly the well known connec-
tion between planar algebras and the theory of subfactors of von Neumann
algebras ([2],[5], [6],[8], [9], [15]), since, in light of our interpretation of pla-
nar algebras it leads naturally to possible constructions of subfactors from
data of moduli spaces in real algebraic geometry.



6 CEYHAN AND MARCOLLI

209

0/

FIGURE 5. Ovals in planar tangles encoded by rooted trees

In [15], Popa showed that one can associate to a subfactor a standard
tnvariant, which is a planar algebra. Not all planar algebras arise as the
standard invariant of a subfactor, but one can characterize those that have
this property, as in §4 of [6].

A subfactor planar algebra is a planar algebra for which all the vector
spaces V are finite dimensional, with dim Vy/,, = 1, and with §; = 2 # 0,
which has an involution on each Vj induced by the reflection of tangles
with the property that the partition function Z is a sesquilinear form with
respect to this involution. The reconstruction theorem, in the form given
in [5], shows how to associate to a subfactor planar algebra with 6 > 1
a subfactor My C M; obtained from a tower of type II; factors M =
Gri(V) = ®,>, Vi, with a faithful tracial state try, so that the standard
invariant of the subfactor, constructed as in [I5] by considering the relative
commutants M{ N My, gives canonical identifications M| N My, ~ Vj, which
induce a morphism of involutive planar algebras.

4. PLANAR ALGEBRAS AND OPEN STRING THEORY

4.1. The moduli space R,(P!,d) and planar tangles. We first define
weighted planar tangles, which are planar tangles with additional decora-
tions, and we use them to distinguish the connected components of the

moduli space R, (P!, d).

Definition 4.1. Let T be a planar tangle as in 4311l Then, T is called
weighted if each interior string and each boundary segment is decorated with
a non-negative integer weight. A weighted tangle is of weight d if the sum
of weights for all strings and boundary segments is d.

The following statement is a slight generalization of a similar result in
[13] for genus zero covers of P!,

Proposition 4.2. There is a 1-1 correspondence between the set of con-
nected components of the moduli space Rg(]P’l,d) and the set of weighted
planar tangles.
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Proof. We associate a tangle to each stable M-map (X7, f7) € Ry(P*,d) by
simply pulling back the real line PL, = R U oo by the map f7,

(4.1) (B ) = To= ()7 (BR).

Let (Z¢, f) be the complex double of (X7, f). Let Crit(f) be the set of
critical values of f, and let Critg(f) and Critc(f) denote respectively the set
of real critical values and its complement. To determine weights, consider an
arbitrary point in z € PL\ Critg(f). For each string (or boundary segment),
we define the function w(x) as the number of preimages of = lying on this
string (or boundary segment). Then the weight of this string (or boundary
segment) is the minimum of w(x). Note that the weight of a closed string
in ¥ coincides with the multiplicity of fT restricted to this string.

We first check that this indeed gives a weighted planar tangle. Since X
is half of a maximal real curve of genus g, it is topologically a disc minus a
collection of g discs. The preimage (f)~1(P}) gives the strings inside X+
or segments in the boundary of ¥T.

We now check the condition that these tangles are expected to satisfy.
These strings intersect only in the boundary 0%+ of ¥ . We have the
following possibilities.

Strings inside X . If the strings had intersections in 37\ %%, then such an
intersection point z would be a critical point with real critical value. Hence,
the same is also true for the conjugate o(z) € X¢ in the complex double ¥¢
of ¥*. However, this contradicts the genericity condition of f : ¥ — ]P’(lc (see

Defn. 2.1]).

Strings and the boundary X . All critical points of f which have real critical
values must be real. If z is a critical point with a real critical value, then z
is a critical point with the same critical value. Therefore, z = Z, since f is
generic. For each such critical point, f _1(19’]%{) contains exactly four arcs in
3¢ incident to it. Two of these arcs are the arcs lying in 0D; C RX, while
the other two interchange under the involution o. In particular, the other
endpoints of these two arcs coincide.

Next, we need to show that the number of critical points at each boundary
component 0D; of ¥T is even, as required for the data to define a planar
tangle. Note that the set of all critical points of the real map f : ¥ —
IF’}C consists of an even number of points. The order of this set is in fact
2(d+ g — 1) due to the Riemann-Hurwitz formula. On the other hand, the
real maps (X¢, f) degenerate when their critical points collide, in particular
when a complex conjugate pair of critical points degenerates to a real point of
3. Under such a degeneration, it can only split into a pair of real ramification
points lying in the same real component 0D;. Since there exist stable maps
f:3c— ]P’(lC without any real ramification points, we show that the number
of critical points is even for each boundary component 0D; via a simple
induction on these types of degenerations.
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We need to show that, for the tangle we associated to elements of a
connected component of RQ(IF’I,d), the the isotopy class does not change.
It is clear that the isotopy class of these tangles will not change under
small perturbations and it can only change through intersections of strings.
As we have already observed above, any intersection of strings violates the
genericity condition. Namely, changes of isotopy class of tangles can happen
when one passes through the discriminant locus to another component of
Ry (P, d).

Finally, to show that we have a bijection, we then need to show that any
arbitary tangle of weight d can be obtained in this way. For a given such tan-
gle, an element of Rg(Pl, d) can be constructed by gluing a set of weighted
pairs of pants which is in fact X1 \ {strings}. The gluing prescription of
weighted pants is given in Thm 1 in [I3] based on [14]. O

In the following, we denote by C7 the connected component of RQ(IP’I, d)
corresponding to a given weighted tangle 7.

4.2. Sewing stable M-maps. Let (37, f{") and (X3, f;7) be a pair of
stable M-maps such that the restriction of ffr to the boundary component
OD;, C %1 agrees with the restriction of f;” onto dD;, C X7. Assume that
the boundary components 0D;, and 0D;, carry opposite orientations. Then
we can sew the M-maps (E:, f,j) along their boundaries 0D;, for k =1, 2.

Let Ry, (P, dy) x4 Ry, (P!, d2) denote the space of pairs described above.
This space is in fact a fiber product in the following way.

Recall that the space of algebraic loops is the space of morphisms f :
PL — PL. The moduli spaces Ry, (P!, dg),k = 1,2 admit evaluation maps
to L9(PL),

evi, + Rg, (P',di) — LY(Pg), (S, f;7) = fiflop,,
Then the space described above is the fibered product
Ry, (P!, dy) X atg(p1) Rz (P!, dy).
The sewing operation described above provides us with a morphism
(4.2) Ry, (P! dy) xij Ry, (P!, da) — Ry 1go—1(P',dy + do).

The induced map on the sets of connected components of these spaces
defines a corresponding map at the level of weighted tangles, which agrees
with the composition of tangles.

4.2.1. Sewing boundary segments. There is a similar sewing along the bound-
ary segments which fits better with the example that we discuss in §4.6
below.

Let (X7, f;) and (27, £) be a pair of stable M-maps such that the
restriction of ;' to the boundary segment I i COD; C ¥ agrees with the
restriction of f;r onto I;, C 9D;, C E; If 0D;, and 0D;, carry opposite
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orientations, then we can sew the M-maps (E:, f,j ) along their boundary
segments 0I;, for k = 1,2 and obtain a new M-map of degree dy + d».

The space of such pairs is also a fiber product. The appropriate subspaces
of the moduli spaces Ry, (P! dy), k = 1,2 admit evaluation maps to the space
of algebraic paths P%9(R), which is the space of morphisms f : R — R. Note
that this map is not defined for all components Cr of R, (P!, dy) since the
tangles T' in general need not have boundary segments (e.g. if there is no
critical point on a boundary component of ¥, then it can only map into the
algebraic loop space as above). Then, by using the appropriate subspaces
of Ry, (P!, dy), we obtain the space of such pairs as a fiber product similar
to the above construction (4£.2]).

4.3. The trace. Let (X7, f7) be in Cp C Ry(P!,d) and let S be the closed
string which is the common boundary of a pair of weighted pants P;, P» in
¥*. Let {0D1,...,0D;,S} and {0D;,1,...,0D;, S} be the sets of bound-
aries of P, and P, respectively. Let the w; be the weights of dD; and w;
be the weight of S.

We first note that the deformations of such a pair of weighted pants and
their maps to P! are given by the fiber product

Rl(]P)lawl + e +'LU[) Xg Rk—l(Plawl+1 + e +wk;)

which is determined by the evaluation map (P, f;) — f|s. As we have
already seen above, there is a morphism of this product into the moduli
space Rk,l(Pl, w1+ -+ +wy). This map in fact removes the string S in X
i.e., it provides the trace operator in geometric terms in the above setting.
This map is given by the gluing of a pair of weighted pants P, and P, as
in [13].

4.4. The involution. We can define an involution * by replacing the com-
plex structure J of ¥ by —J. This is equivalent to replacing X" with
the other half o(X1) of X¢. This operation reverses the orientations of the
strings and checkerboard shadings of the corresponding planar tangle.

4.5. Planar algebras and the moduli space of real maps R,(P!,d).
The collection of connected components of Rg(]P’l, d) provides a topological
operad Ppi. The following statement then follows directly from the discus-
sion of the previous subsections.

Theorem 4.3. The operad of (weighted) planar tangles is the topological
operad Ppi.

4.6. An example: Temperley-Lieb algebras. Consider the moduli space
Ro(P!,d) of M-maps of genus zero. Such M-maps have 2d — 2 critical
points. Then, the tangles that distinguish the components Cr of Ro(P!,d)
are the planar tangles on a disc with 2k points on their boundaries where
0 < 2k < 2d — 2. In other words, these tangles connect the first k£ points
starting at the marked critical point in X% to the second k points with-
out having any crossings. These are in fact the tangles that generate the
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FIGURE 7. The product of tangles S and T’

Temperley-Lieb algebras (modulo the trace). For instance, if we consider
the case with d = 4, we obtain the tangles that generate 1T'Lq,T Lo and T Ls;
see Figure [(] for the bases of T'Ls.

The product of two such tangles is obtained by sewing the boundary
segments between the kth and the 2kth point of the first tangle and the 1st
and the kth point of the second tangle. Figure [T illustrates an example of a
such a composition of tangles.

Remark 4.4. There is an equivalent description of Temperley-Lieb algebras
by using the moduli space of M-maps of genus one. In this case, one needs
to consider the tangles in a cylinder ¥, and the composition is given by
sewing the boundary components. However, the numbers of critical points
at each boundary of the cylinder need not be equal. Therefore, either one has
to consider a more general algebra (which contains Temperley-Lieb algebra
as a subalgebra) or one needs to restrict oneself to a subspace of R;1(P!,d)
that contains only those components Cr that correspond to the tangles of
the Temperley-Lieb algebra.

5. ALGEBRAS OVER PLANAR OPERAD

In this section, we discuss two possible geometric constructions of algebras
over the planar operad P. The first one follows closely the approach of Cohen
and Godin’s in contrucing string topology operations [4]. The second one is
in the spirit of Gromov-Witten theory [10], in the real algebraic geometry
setting (see for instance [3]).



OPEN STRING THEORY AND PLANAR ALGEBRAS 11

5.1. Planar algebras in string topology. As we have already observed
in §.2) the moduli space Ry(P!,d) admits evaluation maps

evi s Ry(PY,d) — LY9(PL), i=1,...,9+1.

By using these evaluations, we can pull back classes from H*(L%(PL)).
Note that, like the usual topological loop space LS!, the algebraic loop
space Lalg(IP’}z) has infinitely many connected components, each determined
by the degree of the loops. However, in contrast to the topological case,
the components of Lalg(IP’}z) are finite dimensional and are not contractible.
Therefore they carry nontrivial cohomology classes.

Let 1, ...,%g+1 € Hf (LY (PL)). Then, we define correlators

(5.1) (V155 Ygr1)T = eV (Y1) A Aev™ (Y1)

which take values in the cohomology with compact support H}(Cr) of the
component Cp C Ry(P!,d) corresponding to the tangle 7.

Let {e,} be a basis for H} (L9 (PL)) and let g® be the intersection form.
We use the above invariants of the loop space L% (PL) to give a represen-
tation of the operad P of planar tangles in the following way. The image of
T under the morphims Z : P — Hom is

(52) T—ZT) = {me 07— (7. YT 9% e
a,b

The composition of these higher products are evident from the definitions
of these products in (5.2]) and from the compositions of tangles described in

1.2

In this construction, the trace can be given by using the procedure de-
scribed in §43l Let T be a planar tangle and let S be closed in T'. In such
a case, we think of T as a composition of two tangles T} and T5 as in §4.31
Then, we obtain this composition as in equation ([B.2]). In particular, if the
closed string bounds a disc (rather than a more complicated weighted pant),
then it plays the role of trace, and it is given as in (3.4]).

5.2. Planar algebras via Gromov-Witten theory. An alternative way
to obtain representations of P is to use ideas from Gromov-Witten theory
of PL. Let T be a tangle having at least one marked point at each boundary
disc. In this case, the evalution map

ev: Cp — Conf(Pk,g+ 1) x RConf(P' k), where k=n—g+1,

maps (YT, fT) to its critical values in P!. The image of the evalution map
is the space of Z/27Z-equivariant distinct (unordered) point configurations in
P! which we denote by RConf (P!, k). Moreover, if we restrict ourselves to
the specified critical points at each boundary component, the evalution map
takes its values in the configuration space of ordered point configurations
Conf(Ph,g+1).
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Let a1,...,a, € H(RConf(P!,k)) and

My Y41 € H (Conf (P, g +1)).
We then define correlators by setting

(a1, a1, g =ev (ar A A A1 A AYggt)-

These take values in the cohomology with compact support H}(Cr) of the
component O C Ry(P,d) corresponding to the tangle T. Then, by using
the same idea as in (5.2]), we define the higher products corresponding to
the tangles T', which depend on the classes «;, by setting

THZ(T) = 71®"'®’Yg'_>Z<<a17"'7ak;717"'77976a>>T nab €p
a,b

Here 1% is the intersection matrix of H*(Conf (P, g+1)). The composition
of these higher products and the trace operators are evident and are given
as in the previous case described in §5.1]

Remark 5.1. The requirement on the existence of marked points may seem
artificial, but at present we do not have a convenient substitute for it. How-
ever, the above setting adapts well to the examples of Temperley—Lieb alge-
bras and Fuss—Catalan algebras (see [2]).

Remark 5.2. Both situations discussed above, based on string topology
or on Gromov-Witten theory, can be further enriched by using the tauto-
logical classes of the moduli space Rg(Pl, d). This might lead to additional
interesting examples.
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