EMBEDDINGS OF \mathbb{C}^*-SURFACES INTO WEIGHTED PROJECTIVE SPACES

HUBERT FLENNER, SHULIM KALIMAN, AND MIKHAIL ZAIDENBERG

Abstract. Let V be a normal affine surface which admits a \mathbb{C}^*- and a \mathbb{C}^+-action. Such surfaces were classified e.g., in [FlZa1, FlZa2], see also the references therein. In this note we show that in many cases V can be embedded as a principal Zariski open subset into a hypersurface of a weighted projective space. In particular, we recover a result of D. Daigle and P. Russell, see Theorem A in [DR].

1. Introduction

If $V = \text{Spec} \, A$ is a normal affine surface equipped with an effective \mathbb{C}^*-action, then its coordinate ring A carries a natural structure of a \mathbb{Z}-graded ring $A = \bigoplus_{i \in \mathbb{Z}} A_i$. As was shown in [FlZa1], such a \mathbb{C}^*-action on V has a hyperbolic fixed point if and only if $C = \text{Spec} \, A_0$ is a smooth affine curve and $A_0 \neq 0$. In this case the structure of the graded ring A can be elegantly described in terms of a pair (D_+, D_-) of \mathbb{Q}-divisors on C with $D_+ + D_- \leq 0$. More precisely, A is the graded subring $A = A_0[D_+, D_-] \subseteq K_0[u, u^{-1}]$, $K_0 := \text{Frac} \, A_0$,

where for $i \geq 0$

$$A_i = \{f \in K_0 \mid \text{div} f + iD_+ \geq 0\} u^i \quad \text{and} \quad A_{-i} = \{f \in K_0 \mid \text{div} f + iD_- \geq 0\} u^{-i}.$$

This presentation of A (or V) is called in [FlZa1] the DPD-presentation. Furthermore two pairs (D_+, D_-) and (D'_+, D'_-) define equivariantly isomorphic surfaces over C if and only if they are equivalent that is,

$$D_+ = D'_+ + \text{div} f \quad \text{and} \quad D_- = D'_- - \text{div} f \quad \text{for some } f \in K^*_0.$$

In this note we show that if such a surface V admits also a \mathbb{C}^+-action then it can be \mathbb{C}^*-equivariantly embedded (up to normalization) into a weighted projective space as a hypersurface minus a hyperplane; see Theorem 2.3 and Corollary 2.5 below. In particular we recover the following result of Daigle and Russell [DR].

Theorem 1.1. Let V be a normal Gizatullin surface1 with a finite divisor class group. Then V can be embedded into a weighted projective plane $\mathbb{P}(a, b, c)$ minus a hypersurface. More precisely:

(a) If $V = V_{d,e}$ is toric2 then V is equivariantly isomorphic to the open part3 $\mathbb{D}_+(z)$ of the weighted projective plane $\mathbb{P}(1, e, d)$ equipped with homogeneous coordinates $(x : y : z)$ and with the 2-torus action $(\lambda_1, \lambda_2)(x : y : z) = (\lambda_1 x : \lambda_2 y : z)$.

1991 Mathematics Subject Classification: 14R05, 14R20.

Key words: weighted projective space, \mathbb{C}^*-action, \mathbb{C}^+-action, affine surface.

1That is, V admits a completion by a linear chain of smooth rational curves; see Section 3 below.

2See [FlZa1] below.

3We use the standard notation $V_+(f) = \{f = 0\}$ and $\mathbb{D}_+(f) = \{f \neq 0\}$.

(b) If \(V \) is non-toric then \(V \cong \mathbb{D}_+(xy - zm) \subseteq \mathbb{P}(a, b, c) \) for some positive integers \(a, b, c \) satisfying \(a + b = cm \) and \(\gcd(a, b) = 1 \).

2. Embeddings of \(\mathbb{C}^* \)-surfaces into weighted projective spaces

According to Proposition 4.8 in [FlZa1] every normal affine \(\mathbb{C}^* \)-surface \(V \) is equivariantly isomorphic to the normalization of a weighted homogeneous surface \(V' \) in \(\mathbb{A}^4 \). In some cases (described in loc.cit.) \(V' \) can be chosen to be a hypersurface in \(\mathbb{A}^3 \). Cf. also [Du] for affine embeddings of some other classes of surfaces.

In Theorem 2.3 below we show that any normal \(\mathbb{C}^* \)-surface \(V \) with a \(\mathbb{C}_+ \)-action is the normalization of a principal Zariski open subset of some weighted projective hypersurface.

In the proofs we use the following observation from [Fl].

Proposition 2.1. Let \(R = \bigoplus_{i \geq 0} R_i \) be a graded \(R_0 \)-algebra of finite type containing the field of rational numbers \(\mathbb{Q} \). If \(z \in R_d, d > 0 \), is an element of positive degree then the group of \(d \)th roots of unity \(E_d \) acts on \(R \) and then also on \(R/(z - 1) \) via
\[
\zeta \cdot a = \zeta^i \cdot a \quad \text{for} \quad a \in R_i, \; \zeta \in E_d,
\]
with ring of invariants \((R/(z - 1))^{E_d} \cong (R[1/z])_0 \). Consequently
\[
(\text{Spec } R/(z - 1))/E_d \cong \mathbb{D}_+(z)
\]
is isomorphic to the complement of the hyperplane \(\{z = 0\} \) in \(\text{Proj}(R) \).

Let us fix the notations.

2.2. Let \(V = \text{Spec } A \) be a normal \(\mathbb{C}^* \)-surface with DPD-presentation
\[
A = \mathbb{C}[t][D_+, D_-] \subseteq \mathbb{C}(t)[u, u^{-1}].
\]
If \(V \) carries a \(\mathbb{C}_+ \)-action then according to [FlZa2], after interchanging \((D_+, D_-) \) and passing to an equivalent pair, if necessary, we may assume that
\[
D_+ = -\frac{e_+}{d} [0] \quad \text{with} \quad 0 < e_+ \leq d,
D_- = -\frac{e_-}{d} [0] - \frac{1}{k} D_0
\]
with an integral divisor \(D_0 \), where \(D_0(0) = 0 \). We choose a polynomial \(Q \in \mathbb{C}[t] \) with \(D_0 = \text{div}(Q) \); so \(Q(0) \neq 0 \).

Theorem 2.3. Let \(F \) be the polynomial
\[
F = x^k y - s^{k(e_+ + e_-)} Q(s^d/z) z^d Q \in \mathbb{C}[x, y, z, s],
\]
which is weighted homogeneous of degree
\[
k(e_+ + e_-) + d \deg Q \quad \text{with respect to the weights}
\]
\[
\deg x = e_+, \quad \deg y = ke_+ + d \deg Q, \quad \deg z = d, \quad \deg s = 1.
\]
Then the surface \(V \) as in 2.2 above is equivariantly isomorphic to the normalization of the principal Zariski open subset \(\mathbb{D}_+(z) \) of the hypersurface \(\mathbb{V}_+(F) \) in the weighted projective 3-space
\[
\mathbb{P} = \mathbb{P}(e_+, ke_+ + d \deg Q, d, 1).
\]
\footnote{We note that \(e_+ + e_- = d(-D_+(0) - D_-(0)) \geq 0 \).}
Example 4.10 in [FlZa] and by \(\zeta \cdot s = \zeta \cdot s \) if \(\zeta \in E_d \). Let \(A' \) be the normalization of \(A \) in \(L \). According to Proposition 4.12 in [FlZa]

\[A' = \mathbb{C}[s][D'_+, D'_-] \subseteq \mathbb{C}(s)[u, u^{-1}] \]

with \(D'_\pm = \pi_d(D_{\pm}) \), where \(\pi_d : \mathbb{A}^1 \rightarrow \mathbb{A}^1 \) is the covering \(s \mapsto s^d \). Thus

\[(D'_+, D'_-) = \left(-e_+[0], -e_-[0] - \frac{1}{k}\pi_d(D_0)\right) = \left(-e_+[0], -e_-[0] - \frac{1}{k}\text{div}(Q(s^d))\right). \]

The element \(x = s^{e_+}u \in A'_1 \) is a generator of \(A'_1 \) as a \(\mathbb{C}[s] \)-module. According to Example 4.10 in [FlZa] the graded algebra \(A' \) is isomorphic to the normalization of

\[B = \mathbb{C}[x, y, s]/(x^ky - s^{k(e_++e_-)}Q(s^d)). \]

The cyclic group \(E_d \) acts on \(A' \) via

\[\zeta \cdot x = \zeta^{e_+}x, \quad \zeta \cdot y = \zeta^{ke_-}y, \quad \zeta \cdot s = \zeta s \]

with invariant ring \(A \). Clearly this action stabilizes the subring \(B \). Assigning to \(x, y, z, s \) the degrees as in (4), \(F \) as in (3) is indeed weighted homogeneous. Since \(F(x, y, 1, s) = x^ky - s^{k(e_++e_-)}Q(s^d) \), the graded algebra

\[R = \mathbb{C}[x, y, z, s]/(F) \]

satisfies \(R/(z - 1) \cong B \). Applying Proposition 2.1, \(V = \text{Spec} \ A \) is isomorphic to the normalization of \(\mathbb{D}_+(z) \cap \mathbb{V}_+(F) \) in the weighted projective space \(\mathbb{P} \).

Remark 2.4. In general not all weights of the weighted projective space \(\mathbb{P} \) in (5) are positive. Indeed it can happen that \(ke_- + d\deg Q \leq 0 \). In this case we can choose \(\alpha \in \mathbb{N} \) with \(ke_- + d(\deg Q + \alpha) > 0 \) and consider instead of \(F \) the polynomial

\[\tilde{F} = x^ky - s^{k(e_++e_-)}Q(s^d/z)z^{\deg Q+\alpha} \in \mathbb{C}[x, y, z, s], \]

which is now weighted homogeneous of degree \(k(e_++e_-) + d\deg Q + \alpha \) with respect to the positive weights

\[\deg x = e_+, \quad \deg y = ke_- + d(\deg Q + \alpha), \quad \deg z = d, \quad \deg s = 1. \]

As before \(V = \text{Spec} \ A \) is isomorphic to the normalization of the principal open subset \(\mathbb{D}_+(z) \) of the hypersurface \(\mathbb{V}_+(F) \) in the weighted projective space

\[\mathbb{P} = \mathbb{P}(e_+, ke_- + d(\deg Q + \alpha), d, 1). \]

In certain cases it is unnecessary in Theorem 2.3 to pass to normalization.

Corollary 2.5. Assume that in (2) one of the following conditions is satisfied.

(i) \(k = 1 \);

(ii) \(e_+ + e_- = 0 \), and \(D_0 \) is a reduced divisor.

Then \(V = \text{Spec} \ A \) is equivariantly isomorphic to the principal open subset \(\mathbb{D}_+(z) \) of the weighted projective hypersurface \(\mathbb{V}_+(F) \) as in (3) in the weighted projective space \(\mathbb{P} \) from (2).
Proof. In case (i) the hypersurface in \mathbb{A}^3 with equation
\[F(x, y, 1, s) = xy - s^{e_+ + e_-}Q(s^d) = 0 \]
is normal. In other words, the quotient $R/(z - 1)$ of the graded ring $R = \mathbb{C}[x, y, z, s]/(F)$ is normal and so is its ring of invariants $(R/(z - 1))^{\mathbb{C}^*}$. Comparing with Theorem 2.3 the result follows.

Similarly, in case (ii)
\[F(x, y, 1, s) = x^ky - Q(s^d). \]
Since the divisor D_0 is supposed to be reduced and $D_0(0) = 0$, the polynomials $Q(t)$ and then also $Q(s^d)$ both have simple roots. Hence the hypersurface $F(x, y, 1, s) = 0$ in \mathbb{A}^3 is again normal, and the result follows as before. \qed

Remark 2.6. The surface V as in (2.2) is smooth if and only if the divisor D_0 is reduced and $-m_+m_-(D_+(0) + D_-(0)) = 1$, where $m_+ > 0$ is the denominator in the irreducible representation of $D_+(0)$, see Proposition 4.15 in [FKZ]. It can happen, however, that V is smooth but the surface $V_+(F) \cap \mathbb{D}_+(z) \subseteq \mathbb{P}$ has non-isolated singularities. For instance, if in (2.2) $D_0 = 0$ (and so $Q = 1$), then V is an affine toric surface. In fact, every affine toric surface different from $(\mathbb{A}^1)^2$ or $\mathbb{A}^1 \times \mathbb{A}^1$ appears in this way, see Lemma 4.2(b) in [FKZ].

In this case the integer $k > 0$ can be chosen arbitrarily. For any $k > 1$, the affine hypersurface $V_+(F) \cap \mathbb{D}_+(z) \subseteq \mathbb{P}$ with equation $x^ky - s^{k(e_+ + e_-)} = 0$ has non-isolated singularities and hence is non-normal. Its normalization $V = \text{Spec} A$ can be given as the Zariski open part $\mathbb{D}_+(z)$ of the hypersurface $V_+(xy - s^{e_+ + e_-})$ in $\mathbb{P}' = \mathbb{P}(e_+, e_-, d, 1)$ (which corresponds to the choice $k = 1$). Indeed, the element $y' = s^{e_+ + e_-}/x \in K$ with $y'^k = y$ is integral over A. However cf. Theorem 1.1(a).

Example 2.7. (Danilov-Gizatullin surfaces) We recall that a Danilov-Gizatullin surface $V(n)$ of index n is the complement to a section S in a Hirzebruch surface Σ_d, where $S^2 = n > d$. By a remarkable result of Danilov and Gizatullin up to an isomorphism such a surface only depends on n and neither on d nor on the choice of the section S, see e.g., [DaGi], [CNR], [GMMR] for a proof.

According to [FKZ] §5, up to conjugation $V(n)$ carries exactly $(n - 1)$ different \mathbb{C}^*-actions. They admit DPD-presentations
\[(D_+, D_-) = \left(-\frac{1}{d}[0], -\frac{1}{n-d}[1]\right), \quad \text{where} \quad d = 1, \ldots, n-1.\]

Applying Theorem 2.3 with $e_+ = 1$, $e_- = 0$, and $k = n - d$, the \mathbb{C}^*-surface $V(n)$ is the normalization of the principal open subset $\mathbb{D}_+(z)$ of the hypersurface $V_+(F_{n,d}) \subseteq \mathbb{P}(1, d, d, 1)$ of degree n, where
\[F_{n,d}(x, y, z, s) = x^{n-d}y - s^{n-d}(s^d - z). \]

Taking here $d = 1$ it follows that $V(n)$ is isomorphic to the normalization of the hypersurface $x^{n-1}y - (s - 1)s^{n-1} = 0$ in \mathbb{A}^3.

As our next example, let us consider yet another remarkable class of surfaces. These were studied from different viewpoints in [MM, Theorem 1.1], [FKZ3, Theorem 1.1(iii)], [GMMR, 3.8-3.9], [KK, Theorem 1.1, and Example 1], [Za, Theorem 1(b) and Lemma

\[5\text{See 3.1(a) below.}\]
Theorem 2.8. For a smooth affine surface \(V \), the following conditions are equivalent.

(i) \(V \) is not Gizatullin and admits an effective \(\mathbb{C}^* \)-action and an \(\mathbb{A}^1 \)-fibration \(V \to \mathbb{A}^1 \) with exactly one degenerate fiber, which is irreducible.\(^6\)

(ii) \(V \) is \(\mathbb{Q} \)-acyclic, \(\bar{k}(V) = -\infty \) and \(V \) carries a curve \(\Gamma \cong \mathbb{A}^1 \) with \(\bar{k}(V \setminus \Gamma) \geq 0 \).

(iii) \(V \) is \(\mathbb{Q} \)-acyclic and admits an effective \(\mathbb{C}^* \) - and \(\mathbb{C}_+ \)-actions. Furthermore, the \(\mathbb{C}^* \)-action possesses an orbit closure \(\Gamma \cong \mathbb{A}^1 \) with \(\bar{k}(V \setminus \Gamma) \geq 0 \).

(iv) The universal cover \(\tilde{V} \to V \) is isomorphic to a surface \(x^ky - (s^d - 1) = 0 \) in \(\mathbb{A}^3 \), with the Galois group \(\pi_1(V) \cong E_d \) acting via \(\zeta \cdot (x, y, s) = (\zeta x, \zeta^{-k}y, \zeta^e s) \), where \(k > 1 \) and \(\gcd(e, d) = 1 \).

(v) \(V \) is isomorphic to the \(\mathbb{C}^* \)-surface with DPD presentation \(\text{Spec} \mathbb{C}[t][D_+, D_-] \), where

\[
(D_+, D_-) = \left(-\frac{e}{d}[0], \frac{e}{d}[0] - \frac{1}{k}[1] \right) \quad \text{with} \quad 0 < e \leq d \quad \text{and} \quad k > 1.
\]

(vi) \(V \) is isomorphic to the Zariski open subset

\[
\mathbb{D}_+(x^ky - s^d) \subseteq \mathbb{P}(e, d - ke, 1), \quad \text{where} \quad 0 < e \leq d \quad \text{and} \quad k > 1.
\]

Proof. In view of the references cited above it remains to show that the surfaces in (v) and (vi) are isomorphic. By Corollary 2.5(ii) with \(e_+ = -e_- = e \), the surface \(V \) as in (v) is isomorphic to the principal open subset \(\mathbb{D}_+(z) \) in the weighted projective hypersurface

\[
V_+(x^ky - (s^d - z)) \subseteq \mathbb{P}(e, d - ke, d, 1).
\]

Eliminating \(z \) from the equation \(x^ky - (s^d - z) = 0 \) yields (vi). \(\square \)

These surfaces admit as well a constructive description in terms of a blowup process starting from a Hirzebruch surface, see \([\text{GMMR} \text{ 3.8}] \) and \([\text{KK} \text{ Example 1}] \).

An affine line \(\Gamma \cong \mathbb{A}^1 \) on \(V \) as in (ii) is distinguished because it cannot be a fiber of any \(\mathbb{A}^1 \)-fibration of \(V \). In fact there exists a family of such affine lines on \(V \), see \([\text{Za}] \).

Some of the surfaces as in Theorem 2.8 can be properly embedded in \(\mathbb{A}^3 \) as Bertin surfaces \(x^e y - x - s^d = 0 \), see \([\text{FlZa} \text{ Example 5.5}] \) or \([\text{Za} \text{ Example 1}] \).

3. Gizatullin surfaces with a finite divisor class group

A Gizatullin surface is a normal affine surface completed by a zigzag i.e., a linear chain of smooth rational curves. By a theorem of Gizatullin \([\text{Gi}] \) such surfaces are characterized by the property that they admit two \(\mathbb{C}_+ \)-actions with different general orbits.

In this section we give an alternative proof of the Daigle-Russell Theorem \([\text{11}] \) cited in the Introduction. It will be deduced from the following result proven in \([\text{FKZ2} \text{ Corollary 5.16}] \).

Proposition 3.1. Every normal Gizatullin surface with a finite divisor class group is isomorphic to one of the following surfaces.

\(^6\) Since \(V \) is not Gizatullin there is actually a unique \(\mathbb{A}^1 \)-fibration \(V \to \mathbb{A}^1 \). A surface \(V \) as in (i) is necessarily a \(\mathbb{Q} \)-homology plane (or \(\mathbb{Q} \)-acyclic) that is, all higher Betti numbers of \(V \) vanish.

\(^7\) As usual, \(k \) stands for the logarithmic Kodaira dimension.
(a) The toric surfaces $V_{d,e} = \mathbb{A}^2/E_d$, where the group $E_d \cong \mathbb{Z}_d$ of d-th roots of unity acts on \mathbb{A}^2 via
$$\zeta.(x,y) = (\zeta x, \zeta^e y) .$$

(b) The non-toric \mathbb{C}^*-surfaces $V = \text{Spec} \mathbb{C}[t][D_+, D_-]$, where
$$(D_+, D_-) = \left(-\frac{e}{m}[p], \frac{e}{m}[p] - c[q] \right) \quad \text{with} \quad c \geq 1, \quad p,q \in \mathbb{A}^1, \quad p \neq q ,$$
and with coprime integers e, m such that $1 \leq e < m$.

Conversely, any normal affine \mathbb{C}^*-surface V as in (a) or (b) is a Gizatullin surface with a finite divisor class group.

Let us now deduce Theorem 1.1.

Proof of Theorem 1.1. To prove (a), we note that according to 2.1 the cyclic group E_d acts on the ring $\mathbb{C}[x,y,z]/(z - 1) \cong \mathbb{C}[x,y]$ via $\zeta.x = \zeta x$, $\zeta.y = \zeta^e y$, and $\zeta.z = z$, where
$$\deg x = 1, \quad \deg y = e, \quad \text{and} \quad \deg z = d .$$
Hence $D_+(z) = \text{Spec} \mathbb{C}[x,y]^{E_d} = V_{d,e}$, as required in (a).

To show (b) we consider $V = \text{Spec} A$ as in 3.1(b), where
$$A = \mathbb{C}[t][D_+, D_-] \subseteq \mathbb{C}[t][u,u^{-1}] .$$
By definition (11) the homogeneous pieces $A_{\pm 1}$ of A are generated as $\mathbb{C}[t]$-modules by the elements
$$u_+ = tu \quad \text{and} \quad u_- = (t - 1)^e u^{-1} ,$$
and similarly $A_{\pm m}$ by
$$v_+ = t^e u^m \quad \text{and} \quad v_- = t^{-e}(t - 1)^m u^{-m} .$$
Thus
$$u_+^m = t^{m-e} v_+, \quad u_-^m = t^e v_-, \quad \text{and} \quad u_+ u_- = t(t - 1)^c .$$
The algebra A is the integral closure of the subalgebra generated by u_\pm, v_\pm and t.

Consider now the normalization A' of A in the field $L = \text{Frac}(A)[u'_+],\text{ where}$
$$(10) \quad u'_+ = \sqrt{v_+} \quad \text{with} \quad d = cm .$$
Clearly the elements $\sqrt{v_+} = t^{\frac{e-m}{m}} u_+$ and then also $t^{\frac{e-m}{m}}$ both belong to L. Since e and m are coprime we can choose $\alpha, \beta \in \mathbb{Z}$ with $\alpha(e - m) + \beta m = 1$. It follows that the element $\tau := t^\frac{1}{m} = t^{\alpha(e - m)} t^{\beta m}$ is as well in L whence being integral over A we have $\tau \in A'$.

The element u'_+ as in (10) also belongs to A' and as well $u'_- = \sqrt{v_-} \in A'$. Now $v_+ v_- = (t - 1)^m$, so taking dth roots we get for a suitable choice of the root u'_-,
$$(11) \quad u'_+ u'_- = \tau^m - 1 .$$
We note that u_\pm, v_\pm and t are contained in the subalgebra $B = \mathbb{C}[u'_+, u'_-, \tau] \subseteq A'$. The equation (11) defines a smooth surface in \mathbb{A}^3. Hence B is normal and so
$$A' = B \cong \mathbb{C}[u'_+, u'_-, \tau]/(u'_+ u'_- - (\tau^m - 1)) .$$
By Lemma 3.2 below, for a suitable $\gamma \in \mathbb{Z}$ the integers $a = e - \gamma m$ and d are coprime. We may assume as well that $1 \leq a < d$. We let E_d act on A' via $\zeta.u'_+ = \zeta^a u'_+$ and
Since \(\gcd(a,d) = 1 \), \(A \) is the invariant ring of this action. We claim that the action of \(E_d \) on \((u'_+, u'_-, \tau)\) is given by

\[
\zeta u'_+ = \zeta^a u'_+, \quad \zeta u'_- = \zeta^{-a} u'_- = \zeta^b u'_- \quad \text{and} \quad \zeta \tau = \zeta^c \tau,
\]

where \(b = d - a \). Indeed, the equality \(u'^c_+ = t^{\frac{c}{m}} u_+ = \tau^{e-m} u_+ \) implies that \(\zeta \tau^{e-m} = \zeta^ac^{-e-m} \). Since \(\tau = \tau^d(e-m) \tau^d \) the element \(\zeta \in E_d \) acts on \(\tau \) via \(\zeta \tau = \zeta^e \tau \). In view of the congruence \(\alpha a \equiv 1 \mod m \) the last expression equals \(\zeta^c \tau \). Now the last equality in (12) follows. In the equation \(u'_+ u'_- = \tau^m - 1 \) the term on the right is invariant under \(E_d \). Hence also the term on the left is. This provides the second equality in (12).

The algebra \(B = \mathbb{C}[u'_+, u'_-, \tau] \) is naturally graded via

\[\deg u'_+ = a, \quad \deg u'_- = b, \quad \text{and} \quad \deg \tau = c. \]

According to Proposition 2.1 Spec \(A = \text{Spec} A'^{E_d} \) is the complement of the hypersurface \(\mathbb{V}_+(f) \) of degree \(d = a + b \) in the weighted projective plane

\[\text{Proj}(B) = \mathbb{P}(a, b, c), \quad \text{where} \quad f = u'_+ u'_- - \tau^m, \]

proving (b). \(\square \)

To complete the proof we still have to show the following elementary lemma.

Lemma 3.2. Assume that \(c, m \in \mathbb{Z} \) are coprime. Then for every \(c \geq 2 \) there exists \(\gamma \in \mathbb{Z} \) such that \(\gamma m - e \) and \(c \) are coprime.

Proof. Write \(c = c' \gamma \) such that \(c' \) and \(m \) have no common factor and every prime factor of \(\gamma \) occurs in \(m \). Then for every \(\gamma \in \mathbb{Z} \) the integers \(\gamma m - e \) and \(\gamma \) have no common prime factor. Indeed, such a prime must divide \(m \) and then also \(e = \gamma m - (\gamma m - e) \). Hence it is enough to establish the existence of \(\gamma \in \mathbb{Z} \) such that \(\gamma m - e \) and \(c' \) are coprime. However, the latter is evident since the residue classes of \(\gamma m, \gamma \in \mathbb{Z} \), in \(\mathbb{Z}_{c'} \) cover this group. \(\square \)

Remark 3.3. 1. Two triples \((1, e, d)\) and \((1, e', d)\) as in Theorem 1.1(a) define the same affine toric surface if and only if \(ee' \equiv 1 \mod d \), see [FlZa, Remark 2.5].

2. As follows from Theorem 0.2 in [FKZ], the integers \(c, m \) in Theorem 1.1(b) are invariants of the isomorphism type of \(V \). Indeed, the fractional parts of both divisors \(D_+ \) as in (9) being nonzero and concentrated at the same point, there is a unique DPD presentation for \(V \) up to interchanging \(D_+ \) and \(D_- \), passing to an equivalent pair and applying an automorphism of the affine line \(A^1 = \text{Spec} \mathbb{C}[t] \).

Furthermore, from the proof of Theorem 1.1 one can easily derive that

\[a \equiv e \mod m \quad \text{and} \quad b = mc - a \equiv -e \mod m. \]

Therefore also the pair \((a, b)\) is uniquely determined by the isomorphism type of \(V \) up to a transposition and up to replacing \((a, b)\) by \((a', b') = (a - sm, b + sm)\), while keeping \(\gcd(a', b') = 1 \).

References

