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Cohomology of classical algebraic groups from the

functorial viewpoint
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Abstract

We prove that extension groups in strict polynomial functor cate-
gories compute the rational cohomology of classical algebraic groups.
This result was previously known only for general linear groups. We
give several applications to the study of classical algebraic groups, such
as a cohomological stabilization property, the injectivity of external cup
products, and the existence of Hopf algebra structures on the (stable)
cohomology of a classical algebraic group with coefficients in a Hopf
algebra. Our result also opens the way to new explicit cohomology
computations. We give an example inspired by recent computations of
Djament and Vespa.
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1 Introduction

Over the past fifteen years, the relations between functor categories and the
cohomology of the algebraic general linear group GLn have been successfully
used to prove cohomological finite generation conjectures [10, 20], and they
have also proved very useful to perform explicit cohomology computations
[9, 3, 8]. The first purpose of this paper is to extend these relations to
other classical algebraic groups. More specifically, we prove that if G is
a symplectic group, an orthogonal group, a general linear group, or more
generally a finite product of these groups, then Ext-groups in a suitable
functor category compute the cohomology of G. The second purpose of
this paper is to illustrate some advantages of the functorial point of view.
In particular, we obtain new cohomological results for classical algebraic
groups, whose proofs do not seem to belong to the usual algebraic group
setting.

The cohomology we treat here is the cohomology of algebraic groups of
[12], which was introduced by Hochschild (it is often called ‘rational coho-
mology’ to emphasize that it arises from rational representations). The func-
tors which play a role in the algebraic group setting are the ‘strict polynomial
functors’ of Friedlander and Suslin [10], and their multivariable analogues.
Our results are the algebraic counterpart of recent results of Djament and
Vespa [7] about the finite groups On,n(Fq), Spn(Fq). However, the methods
required for algebraic groups are very different from those needed for finite
groups. The cohomological stabilization property illustrates this difference
vividly: in the algebraic group setting, it is an immediate consequence of
the link between extension groups in functor categories and cohomology
of algebraic groups, while in the finite group setting these two results are
independent.

What follows is a synopsis of the results of the paper.
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Relating functor categories to the cohomology of classical groups

In section 3, we establish the link between Ext-groups in strict polynomial
functor categories and rational cohomology of general linear, orthogonal and
symplectic groups. For example, we prove:

Theorem (3.17, the symplectic case). Let k be a commutative ring, and let
n be a positive integer. For any F ∈ P we have a ∗-graded map, natural in
F :

φSpn,F : Ext∗P(Γ⋆(Λ2), F ) → H∗
rat(Spn, Fn) .

The map φSpn,F is compatible with cup products:

φSpn,F⊗F ′(x ∪ y) = φSpn,F (x) ∪ φSpn,F ′(y) .

Moreover, φSpn,F is an isomorphism whenever 2n ≥ deg(F ).

Here ‘P’ refers to the category of strict polynomial functors of Friedlan-
der and Suslin. So if Vk is the category of finitely generated projectivek-modules, objects of P are functors F : Vk → Vk with an additional ‘poly-
nomial structure’ which ensures that the image F (V ) of a rational G-module
V is a rational representation of the algebraic group G. The rational Spn-
module Fn is obtained by evaluating F on the dual of the standard repre-
sentation k2n of Spn. The cup product on the left comes from the usual
coalgebra structure on the divided powers Γ⋆(Λ2).

Our method is based on classical invariant theory [6]. The proofs for
orthogonal, symplectic and general linear groups are analogous. For the
orthogonal and symplectic groups the results are new. In the general linear
case, we obtain a new treatment (and a generalization over a commutative
ring k) of previously known results: [10, Cor 3.13], [8, Thm 1.5] and [19,
Thm 1.3].

In section 4, we use Künneth formulas to extend these results when Gn
is a finite product of general linear, orthogonal and/or symplectic groups. In
that case, one has to consider the category PG of strict polynomial functors
F ‘adapted to Gn’, that is with a number of variables taking into account
the number of factors in the product Gn. Evaluation of F on specific repre-
sentations of the factors of Gn yield a rational Gn-module Fn and we have:

Theorem (4.5). Let k be a commutative ring, let n be a positive integer
and let Gn be a finite product of the algebraic groups (over k) GLn, Spn
and On,n. For any F ∈ PG we have a ∗-graded map, natural in F , which is
compatible with cup products:

φGn,F : Ext∗PG
(Γ⋆(FG), F ) → H∗

rat(Gn, Fn)

Assume that 2n is greater or equal to the degree of F . If one of the factors
of Gn equals On,n, assume furthermore that 2 is invertible in k. Then φGn,F

is an isomorphism.
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Some applications of the functorial viewpoint in algebraic group

cohomology

As a first application, we deduce from theorem 4.5 a cohomological stabi-
lization property.

Corollary (4.6). Let k be a commutative ring, let n be a positive integer
and let Gn be a finite product of copies of GLn, Spn or On,n. Let F ∈ PG be
a degree d functor adapted to Gn. Let n,m be two positive integers such that
2m ≥ 2n ≥ d. If the orthogonal group appears as one of the factors of Gn,
assume furthermore that 2 is invertible in k. Then we have an isomorphism

φn,m : H∗
rat(Gm, Fm)

≃
−→ H∗

rat(Gn, Fn) .

We shall denote by H∗
rat(G∞, F∞) the stable value of H∗

rat(Gn, Fn) (though
this stable value is obtained for relatively small values of n).

As a second application we obtain a striking injectivity property for cup
products. In general, if G is an algebraic group and if c ∈ H∗

rat(G,M)
and c′ ∈ H∗

rat(G,N) are nontrivial cohomology classes, their (external) cup
product c ∪ c′ ∈ H∗

rat(G,M ⊗ N) may very well be zero. For example, ifk is a field of odd characteristic and Ga is the additive group, then the
cohomology algebra H∗

rat(Ga, k) is [5] a free commutative graded algebra
with generators (xi)i≥0 of degree 2 and generators (λi)i≥0 of degree one.
Since the multiplication k ⊗ k → k is an isomorphism, it is not hard to
build pairs of non trivial classes (α, β) whose external cup product α ∪ β is
zero. This cancellation phenomenon does not occur in (stable) cohomology
of classical groups over a field.

Corollary (6.2). Let k be a field. Let Gn be a product of copies of the groups
GLn, Spn or On,n, and let F1, F2 be two functors of degree d1, d2 adapted to
Gn. If On,n is a factor in Gn, assume that k has odd characteristic. For all
n such that 2n ≥ d1 + d2, the cup product induces a injection:

H∗
rat(Gn, (F1)n) ⊗H∗

rat(Gn, (F2)n) →֒ H∗
rat(Gn, (F1)n ⊗ (F2)n) .

This results partially explains some non-vanishing phenomena, like [20,
Lemma 4.13]. It follows from a more general result, namely the existence of
external coproducts in the stable cohomology of classical groups.

Theorem (6.1). Let k be a field. Let Gn be a product of copies of the groups
GLn, Spn or On,n, and let F1, F2 be strict polynomial functors adapted to Gn.
If On,n is a factor in Gn, assume that k has odd characteristic. The stable
rational cohomology of Gn is equipped with a coproduct:

H∗
rat(G∞, (F1 ⊗ F2)∞) → H∗

rat(G∞, F1 ∞) ⊗H∗
rat(G∞, F2 ∞) .

Together with the usual cup product (cf. §2.4), they endow H∗
rat(G∞,−) with

the structure of a graded Hopf monoidal functor (cf. definition 5.2).
Moreover, the cup product is a section of the coproduct.
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The construction of the external coproduct uses the sum-diagonal adjunc-
tion, a feature which is specific to functor categories. Some hints that such
coproducts exist were given in [9], where the authors built Hopf algebra
structures on some specific extension groups in functor categories (when all
the functors in play are ‘Hopf exponential functors’). We build the external
coproducts in section 5, where we make a more general attempt to classify
the Hopf monoidal structures that may arise for extension groups in functor
categories.

As a consequence of theorem 6.1, we also obtain Hopf algebra structures
(without antipode) on rational cohomology of classical groups (compare [9,
lemma 1.11]):

Corollary (6.4). Let k be a field. Let Gn be a product of copies of the
groups GLn, Spn or On,n, and let A∗ be an n-graded strict polynomial func-
tor adapted to Gn, endowed with the structure of a Hopf algebra. If On,n is
a factor in Gn, assume that k has odd characteristic. The usual cup prod-
uct H∗

rat(G∞, A
∗
∞)⊗2 → H∗

rat(G∞, A
∗
∞) may be supplemented with a coprod-

uct H∗
rat(G∞, A

∗
∞) → H∗

rat(G∞, A
∗
∞)⊗2 which endow H∗

rat(G∞, A
∗
∞) with the

structure of a (1 + n)-graded Hopf algebra.

Such Hopf algebra structures offer a nice framework in which we can re-
formulate some previously known cohomological computations, such as the
existence of the universal classes of [20, Thm 4.1], cf. corollary 6.5.

Finally, Ext-computations in strict polynomial functor categories is a
classical subject. Many results and computational techniques are already
available. So by expressing rational cohomology of orthogonal and symplec-
tic groups as extension in P, we open the way to new cohomology compu-
tations. To illustrate this fact, we give one example, which may be proved
by the method of Djament and Vespa [7, §4.2] and the computations of [9]:

Theorem (6.6). Let k be a field of odd characteristic. Let r be a nonnegative
integer. Let S∗(I(r)) denote the symmetric algebra over the r-th Frobenius
twist (with Sd(I(r)) placed in degree 2d) and let Λ∗(I(r)) denote the exterior
powers of the r-th Frobenius twist (with Λd(I(r)) placed in degree d).

(i) The bigraded Hopf algebra H∗
rat(O∞,∞, S

⋆(I(r))∞) is a symmetric Hopf
algebra on generators em of bidegree (2m, 4) for 0 ≤ m < pr.

(ii) The bigraded Hopf algebra H∗
rat(Sp∞, S

⋆(I(r))∞) is trivial.

(iii) The bigraded Hopf algebra H∗
rat(O∞,∞,Λ

⋆(I(r))∞) is trivial.

(iv) The bigraded Hopf algebra H∗
rat(Sp∞,Λ

⋆(I(r))∞) is a divided power
Hopf algebra on generators em of bidegree (2m, 2) for 0 ≤ m < pr.
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2 Review of functor categories and group coho-

mology

2.1 Notations

If k is a commutative ring, we denote by Vk the category of finitely
generated projective k-modules. The symbol ‘∨’ means k-linear duality:
V ∨ := Homk(V, k).

Let V ∈ Vk. For all d ≥ 0, we denote by Γd(V ) the d-th divided power
of V , that is the invariants (V ⊗d)Sd where Sd acts by permuting the factors
of the tensor product (for d = 0, we let Γ0(V ) = k). We also denote by
Sd(V ), resp. Λd(V ) the d-th symmetric, resp. exterior, power of V . Let
A∗ = S∗,Λ∗ or Γ∗. Then A∗ satisfies an ‘exponential isomorphism’ natural in
V,W and associative in the obvious sense: A∗(V ⊕W ) ≃ A∗(V ) ⊗ A∗(W ).
Let δ2 be the diagonal V → V ⊕ V , x 7→ (x, x), and let Σ2 be the sum
V ⊕ V → V , (x, y) 7→ x + y. ‘The’ graded Hopf algebra structure on the
divided powers Γ∗(V ) (without further specification) means the following.
We consider Γd(V ) in degree 2d, the unit is k = Γ0(V ) →֒ Γ∗(V ), the counit
is Γ∗(V ) ։ Γ0(V ) = k, the multiplication and the comultiplication are:

Γ∗(V )⊗2 ≃ Γ∗(V ⊕ V )
Γ∗(Σ2)
−−−−→ Γ∗(V ) , Γ∗(V )

Γ∗(δ2)
−−−−→ Γ∗(V ⊕ V ) ≃ Γ∗(V )⊗2 .

2.2 Strict polynomial functors

Let k be a commutative ring and let A be a finite product of the categories
Vk and Vopk (the ‘op’ stands for the opposite category). We recall here the
basic definitions and properties of the category of strict polynomial functors
from A to Vk. The case A = Vk was introduced in [10] over a field and in [18]
over an arbitrary commutative ring, the case A = Vopk × Vk corresponds to
the category strict polynomial bifunctors, contravariant in the first variable
and covariant in the second one, used in [8]. The definitions and the proofs
generalize immediately when A is a more general product.

Basic definitions

A strict polynomial functor F from A to Vk is the following collection of data:
for each X ∈ A, an element F (X) ∈ Vk and for each X,Y in A a polynomial
FX,Y ∈ S∗(HomA(X,Y )∨) ⊗ Homk(F (X), F (Y )). These polynomials must
satisfy two conditions: (1) FX,X(IdX) = IdF (X), and (2) the polynomials
(f, g) 7→ FX,Y (f) ◦ FY,Z(g) and (f, g) 7→ FX,Z(f ◦ g) are equal. Natural
transformations between strict polynomial functors F,G are linear maps
φX : F (X) → G(X) such that the polynomials f 7→ GX,Y (f) ◦ φX and
f 7→ φY ◦ FX,Y (f) are equal. Examples of strict polynomial functors are
HomA(X,−), the divided powers Γd(HomA(X,−)) or the symmetric powers
Sd(HomA(X,−)). If G is an affine algebraic group acting rationally on a
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k-module V and if F : Vk → Vk is a strict polynomial functor, F (V ) is a
rational G-module (g ∈ G acts on F (V ) by v 7→ F (g)(v)). More generally:

Lemma 2.1. Assume A = (Vopk )×k × (Vk)×ℓ. Let (Gi)1≤i≤k+ℓ be algebraic
groups over k, let (Vi)1≤i≤k be right Gi-modules and (Vi)k+1≤i≤k+ℓ be left
Gi-modules. Evaluation on (V1, . . . , Vn) yields a functor from the category
of strict polynomial functors with source A to the category of rational

∏
Gi-

modules.

A strict polynomial functor F is homogeneous of degree d if all the
polynomials FX,Y are homogeneous of degree d. It is of finite degree if
the family of the degrees of the FX,Y is bounded. We denote by PA the
category of strict polynomial functors of finite degree with source A. Then
the category PA splits as the direct sum of its full subcategories Pd,A of
homogeneous functors of degree d:

PA =
⊕

d≥0 Pd,A .

There is an equivalence of categories P0,A ≃ Vk induced by F 7→ F (0, . . . , 0).

Remark 2.2. If A = (Vopk )×k× (Vk)×ℓ, we could refine the splitting by intro-
ducing multidegrees. Then the category Pd,A would split as the direct sum of
its full subcategories of homogeneous functors of multidegree (d1, . . . , dk+ℓ),
with

∑
di = d. For sake of simplicity, we don’t use multidegrees. Thus the

term ‘degree’ always refers to the total degree of the functors.

Another presentation of strict polynomial functors

We have defined strict polynomial functors as functors from A to Vk endowed
with an additional structure (polynomials). Equivalently, one can define
degree d homogeneous strict polynomial functors as k-linear functors from ak-linear category ΓdA to Vk (cf. [16] where T. Pirashvili credits Bousfield for
this presentation). In this presentation, the polynomial structure is encoded
in the source category ΓdA, and strict polynomial functors are genuine k-
linear functors, which may make some statements clearer.

We recall the definition of ΓdA. Let d ≥ 0, and let A be a finite prod-
uct of copies of Vk or its opposite category. The objects of ΓdA are the
same as the objects of A, and the sets of morphisms are the k-modules
HomΓdA(X,Y ) := Γd(HomA(X,Y )). The identity of X equals Id⊗d

X . Let’s
define the composition. If U, V ∈ Vk, the group Sd × Sd acts by permut-
ing the factors of the tensor product U⊗d ⊗ V ⊗d. The diagonal inclusion
Sd ≃ ∆Sd ⊂ Sd×Sd induces a morphism jd : Γd(U)⊗Γd(V ) → Γd(U⊗V ).
The composition in ΓdA is defined as the composite:

Γd(HomA(X,Y )) ⊗ Γd(HomA(Y,Z))
jd−→Γd(HomA(X,Y ) ⊗ HomA(Y,Z))

→ Γd(HomA(X,Z)) ,
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where the last map is induced by the composition in A.
The following key lemma (compare [10, Lemma 2.8 and proof of Prop.

2.9]) induces the existence of projective resolutions, and will also have an
important role in our computations.

Lemma 2.3 (key lemma). Let d ≥ 0. Let Y = (Yi) ∈ A be a tuple of freek-modules, such that each Yi has rank greater or equal to d. Then for all
X,Z ∈ A the composition in ΓdA induces an epimorphism:

Γd(HomA(X,Y )) ⊗ Γd(HomA(Y,Z)) ։ Γd(HomA(X,Z))

Proof. Using the exponential isomorphism for the divided power algebra,
one reduces to the case where A = Vk. By naturality, one reduces further-
more to the case where X,Y are free k-modules.

If I = (d1, . . . , dn) is a tuple of positive integers such that
∑
di = d, we

denote by SI the subgroup
∏

Sdi ⊂ Sd. If V is a free k-module with basis
(bi), and if bi1 , . . . , bin are distinct elements of the basis we let:

(bi1 , . . . , bin , I) :=
∑

σ∈Sd/SI

σ.(bi1 ⊗ · · · ⊗ bi1︸ ︷︷ ︸
d1 factors

⊗ · · · ⊗ bin ⊗ · · · ⊗ bin︸ ︷︷ ︸
dn factors

) .

Such elements form a basis of (V ⊗d)Sd . Now we may choose basis
(eY,X(j, i)), (eZ,Y (k, j)) and (eZ,X(k, i)) of Homk(X,Y ), Homk(Y,Z) and
Homk(X,Z) respectively, such that eZ,Y (k, j1) ◦ eY,X(j2, i) = eZ,X(k, i) if
j1 = j2, and 0 in the other cases.

To prove surjectivity, it suffices to show that for all tuple I = (d1, . . . , dn)
and all n-tuple of distinct elements (eZ,X(ks, is))1≤s≤n, the map induced by
the composition hits (eZ,X(k1, i1), . . . , eZ,X(kn, in), I) ∈ (Homk(X,Z)⊗d)Sd .
To do this, we use that rkY ≥ d ≥ n. Thus we may choose distinct indices
j1, . . . , jn and form the element:

(eY,X(j1, i1), . . . , eY,X(jn, in), I) ⊗ (eZ,Y (k1, j1), . . . , eZ,Y (kn, jn), I) .

The map induced by the composition in ΓdVk sends this element to
(eZ,X(k1, i1), . . . , eZ,X(kn, in), I) and we are done.

Homological algebra

Kernels, cokernels, products or sums of strict polynomial functors are com-
puted in the target category, so that categories of strict polynomial functor
inherit the structure of Vk. Thus, if k is a field, PA and Pd,A are abelian
categories. This is no longer the case over an arbitrary commutative ring.
Nonetheless, they are exact category in the sense of Quillen [17], with ad-
missible exact sequences being the sequences 0 → F ′ → F → F ′′ → 0 which
are exact after evaluation on every object X. The theory of extensions in
exact categories is very similar to the abelian one. One minor change is
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that Ext-groups are defined in terms of ‘admissible’ extensions (ie: Yoneda
composites of admissible short exact sequences), so that we must use ‘ad-
missible’ projective or injective resolutions to compute them (See also [2] for
a recent exposition).

The standard projectives are the functors: P dX := Γd(HomA(X,−)), for
all X ∈ A. They satisfy a Yoneda isomorphism, natural in X,F :

HomPd,A
(P dX , F ) ≃ F (X) , f 7→ fX(Id⊗d

X ) .

If F is homogeneous of degree d and if X = (X1, . . . ,Xn) ∈ A is a tuple of
free k-modules such that each Xi has a rank greater or equal to d, lemma 2.3
implies that the canonical map F (X) ⊗ P dX → F is an epimorphism. Since
every epimorphism is admissible (ie: they admit a kernel in Pd,A) this shows
that F has an admissible projective resolution by finite sums of standard
projectives.

If F ∈ Pd,A, then F∨ : V 7→ F (V )∨ is a degree d homogeneous strict
polynomial functor with source the opposite category Aop, and we have a
natural isomorphism: HomPA

(F,G∨) ≃ HomPAop (G,F∨). By this duality,
the functors IdX := Sd(HomA(X,−)) = (Γd(HomAop(X,−)))∨ are injective.
We call them ‘standard injectives’. They satisfy a Yoneda isomorphism,
natural in F,X:

HomPd,A
(F, IdX) ≃ F (X)∨ , f 7→ f∨X(Id⊗d

X ) ,

and each F ∈ Pd,A has an admissible injective resolution by direct sums of
standard injectives. In particular the injectives of Pd,A are direct summands
of finite sums of standard injectives and we have:

Lemma 2.4. Assume A = (Vopk )×k × (Vk)×ℓ. Let d ≥ 0. Then for all tuple
(i1, . . . , ik+ℓ) of positive integers, the functor

Idi1,...,ik+ℓ
: (V1, . . . , Vk+ℓ) 7→ Sd

(⊕k
s=1(V

∨
s )⊕is ⊕

⊕k+ℓ
t=k+1 V

⊕it
t

)

is an injective of Pd,A. Moreover the injectives of Pd,A are direct summands
of finite sums of such functors.

Examples

We finish the presentation by giving ingredients to build examples. First,
the tensor product yields a functor Pd,A × Pd′,A → Pd+d′,A. Let Pd be
the category of degree d homogeneous strict polynomial functors of with
source Vk. If F ∈ Pd and G ∈ Pd′,A, composition of polynomials endow
X 7→ F (G(X)) with the structure of a strict polynomial functor. In that
way we obtain a functor Pd × Pd′,A → Pdd′,A. We can get numerous new
examples by combining these two methods with the following basic examples.
The divided powers Γd, the symmetric powers Sd, the exterior powers Λd
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and the tensor products ⊗d are objects of Pd (and more generally, so are the
Schur functors Sλ associated with a partition λ of weight d). The natural
transformations ⊗d → ⊗d induced by permuting the factors are morphisms
in Pd, as well as the multiplication Ad−i⊗Ai → Ad and the comultiplication
Ad → Ad−i ⊗ Ai if A∗ = S∗,Γ∗,Λ∗. Finally, the exponential isomorphisms
A∗(V ⊕W ) ≃ A∗(V ) ⊗A∗(W ) are morphisms of PVk×Vk.
2.3 Functor cohomology and cup products

Let E∗ be an n-graded functor in PA. We call ‘functor cohomology’ the
extension groups

Ext∗PA
(E∗,−) =

⊕
j,i1,...,in

ExtjPA
(Ei1,...,in ,−) .

If F,G ∈ PA, we denote by F ⊗ G their tensor product X 7→ F (X) ⊗
G(X). This yields a biexact functor: PA × PA → PA. Moreover if F →֒
F0 → · · · → Fn ։ E and F ′ →֒ F ′

0 → · · · → F ′
m ։ E′ are two admissible

extensions, their ‘cross product’:

F ⊗ F ′ →֒ F0 ⊗ F ′
0 → · · · → (Fn ⊗ E′ ⊕ E ⊗ F ′

m) ։ E ⊗ E′

is once again an admissible extension (It is an exact sequence by the Künneth
theorem, to prove that it is admissible, one just needs to see that the kernels
of its differentials have projective values. To do this, use its exactness and
that for all X ∈ A, E(X) ⊗ E′(X) is a projective k-module). In this way,
we obtain an associative cross product in extension groups:

× : Ext∗PA
(E,F ) ⊗ Ext∗PA

(E′, F ′) → Ext∗PA
(E ⊗ E′, F ⊗ F ′) .

Assume now that E∗ has an n-graded coalgebra structure: we have an
n-graded coproduct ∆E : E∗ → E∗⊗E∗ and an augmentation ǫE : E∗ → k,
where k is considered as a functor of degree (0, . . . , 0). Then we may define
an external cup product

∪ : Ext∗PA
(E∗, F ) ⊗ Ext∗PA

(E∗, F ′) → Ext∗PA
(E∗, F ⊗ F ′)

c⊗ c′ 7→ ∆∗
E(c× c′)

,

and a unit k = Ext∗PA
(k, k)

ǫ∗
E−→ Ext∗PA

(E∗, k), which satisfy an associativ-
ity and a unit axiom. These axioms may be summarized by saying that
Ext∗PA

(E∗,−) is a (multigraded) monoidal functor [15, XI.2].

2.4 Cohomology of algebraic groups and cup products

Let k be a commutative ring and let G be a flat algebraic group over k (ie:
G is a group scheme represented by a k-flat finitely generated Hopf algebrak[G]). Then the category of rational G-modules is an abelian category with

10



enough injectives. The rational cohomology of G with coefficients in a G-
module M is defined as the extension groups H∗

rat(G,M) = Ext∗G-mod(k,M)
(k is the trivial G-module).

These extension groups may be computed [12, 4.14-4.16] as the homology
of the Hochschild complex C•(G,M) with M⊗k[G]⊗i in degree i. Interpret-
ing Ci(G,M) as the set of functions G×i →M , the external cup product

H∗
rat(G,M) ⊗H∗

rat(G,N) → H∗
rat(G,M ⊗N)

is defined at the chain level by sending u ∈ Cr(G,M) and v ∈ Cs(G,M) to

(u ∪ v)(g1, . . . , gr+s) := u(g1, . . . , gr) ⊗
g1...gr v(gr+1, . . . , gr+s) ,

where gm denotes the image of m ∈ M under the action of g ∈ G. If
M = N = R is an algebra with a rational G-action, then the composite

C•(G,R) ⊗ C•(G,R) → C•(G,R ⊗R)
C•(G,mR)
−−−−−−→ C•(G,R)

is the internal cup product of [20, Section 6.3], which makes H∗
rat(G,R) into

a graded algebra.

Another construction of cup products

Now we want to give another construction of external cup products, in terms
of cross products of extensions, as we did for functor cohomology. Over a
field k, this is an easy job: (i) the two constructions coincide in degree 0,
and (ii) a δ-functor argument [14, XII, proof of thm 10.4] shows that the two
constructions coincide in all degrees. Over an arbitrary ring, exactness of
tensor products fails, so the cross product of two extensions does not always
make sense. We have a weaker statement, proved by ad hoc methods.

Lemma 2.5. Let G be a flat algebraic group over a commutative ring k and
let M,M ′ be two k-flat G-modules. Assume that the classes c ∈ Hr(G,M)
and c′ ∈ Hs(G,M ′) are represented by extensions M →֒M0 → · · · →Mr →k and M ′ →֒M ′

0 → · · · →M ′
s → k whose objects are k-flat. Then the cross

product is an exact sequence:

M ⊗M ′ →֒M0 ⊗M ′
0 → · · · → (Mr ⊗ k⊕ k⊗M ′

s) ։ k⊗ k .
Its pullback by the diagonal ∆ : k ≃ k⊗ k, 1 7→ 1⊗ 1 represents the external
cup product c ∪ c′ ∈ Hr+s

rat (G,M ⊗M ′).

Proof. Step 1. Consider the algebra k[G] with G acting by left translation.
Then C• := C•(G, k[G]) is a differential graded algebra with an action of G
[20, Section 6.3]. By [12, Part I, Chap 4, sections 4.14 to 4.16], the complex
C• is homotopy equivalent to k concentrated in degree 0. Thus, for all G-
modules M,M ′, the multiplication of C• induces a G-equivariant morphism
of acyclic resolutions over IdM⊗M ′ : M ⊗ C• ⊗M ′ ⊗ C• →M ⊗M ′ ⊗ C• .

11



Now (M ⊗ C•)G = HomG(k,M ⊗ C•) equals the Hochschild complex
C•(G,M). As a result, we have a commutative diagram:

HomG(k,M ⊗ C•) ⊗ HomG(k,M ′ ⊗ C•)

f⊗g 7→f⊗g
��

C•(G,M) ⊗ C•(G,M ′)

∪
��

HomG(k⊗ k,M ⊗ C• ⊗M ′ ⊗ C•)

−◦∆
��

C•(G,M ⊗N)

HomG(k,M ⊗ C• ⊗M ′ ⊗ C•) // HomG(k,M ⊗M ′ ⊗ C•) .

We deduce that if c and c′ are cohomology classes represented by cycles
f ∈ HomG(k,M ⊗ C•) and f ′ ∈ HomG(k,M ′ ⊗ C•), the cup product c ∪ c′

is represented by (f ⊗ f ′) ◦ ∆ ∈ HomG(k,M ⊗ C• ⊗M ′ ⊗ C•).
Step 2. Each cycle f ∈ HomG(k,M ⊗ Ci) defines an extension E(f):

M →֒ M ⊗ C0 → · · · → M ⊗ Ci−2 → N i−1
։ k, where N i−1 is the subset

of all x ∈M ⊗ Ci−1 such that (IdM ⊗ ∂)(x) is a multiple of f(1).
We claim that E(f) is not only exact, but also homotopy equivalent to

the zero complex. Indeed, let C̃• denote the complex k →֒ C0 → C1 → · · ·
(that is, C̃i = Ci for i ≥ 0 and C−1 = k). Then C̃•, hence M ⊗ C̃•, is
homotopy equivalent to the zero complex. If sn : M ⊗ C̃n → M ⊗ C̃n−1,
n ≥ 0 is the homotopy between 0 and the identity map, then the formula:
sk

′
= sk for k < i and si

′
= si ◦ f defines a homotopy between zero and the

identity map for E(f).
Step 3. Now we turn to cross product of extensions. One easily shows

that if E : M →֒ · · · ։ k and E′ : M ′ →֒ · · · ։ k are two extensions,
and if one of the two is either k-flat or homotopy equivalent to the zero
complex, then their cross product E × E′ is an exact sequence. We derive
two consequences from this: (1) E(f)×E(f ′) is an extension, and ∆∗(E(f)×
E(f ′)) represents the cohomology class [(f ⊗ f ′) ◦ ∆] = [f ] ∪ [f ′] (cf. step 1
for this equality). (2) If E,E′ are k-flat extensions equivalent to E(f) and
E(f ′) then ∆∗(E ×E′) is equivalent to ∆∗(E(f) × E(f ′)). Putting (1) and
(2) together, we conclude the proof.

3 Rational cohomology of classical groups via

strict polynomial functor cohomology

In this section, k is a commutative ring. We show that the rational coho-
mology of the general linear groups GLn, the symplectic groups Spn and the
orthogonal groups On,n with coefficients in functorial representations may
be computed as functor cohomology. To be more specific, for G = GLn, the
rational cohomology is related to extensions in the category P(1, 1) of func-
tors with source V opk × Vk (ie: P(1, 1) is the category of strict polynomial
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bifunctors, contravariant in the first variable and covariant in the second one
[8]). For the orthogonal and symplectic case, the cohomology is related to
extensions in the category P of Friedlander and Suslin [10] (ie: the category
of functors with source Vk).

Let us outline the proof. Let Gn = Spn, On,n or GLn. Set A = Vk, or
V opk × Vk in the general linear case. To each F ∈ PA, we may associate a
rational representation Fn of Gn. In that way, we obtain a δ-functor: F 7→
H∗

rat(Gn, Fn) (that is, a nonnegatively graded functor, sending admissible
short exact sequences in PA to long exact sequences in k-mod, cf [11]).

On the other hand, we associate toGn a ‘characteristic functor’ FG ∈ PA.
To be more specific, for Spn, resp. On,n, resp. GLn, we take FG = Λ2, resp.
S2, resp. gl(−,−) = Homk(−,−) (the characteristic functors Λ2 and S2

appear in the context of finite groups in [7, Thm 3.21] and gl appears in
[8, Thm 1.5]). Taking the divided powers of FG, one obtains a δ-functor
F 7→ Ext∗PA

(Γ⋆(FG), F ), which is by definition universal (ie: it vanishes on
the injectives in positive ∗-degree).

Now we wish to compare these two ∗-graded δ-functors (We don’t take
the gradation of the divided power algebra into account) by the well-known
elementary lemma [11]:

Lemma 3.1. Let K∗,H∗ be universal δ-functors and let φ∗ : K∗ → H∗ be
a morphism of δ-functors. If φ0 is an isomorphism, then for all i ≥ 0, φi is
an isomorphism.

This is done in four steps.

Step 1: We build a morphism of δ-functors:

φGn,− : Ext∗PA
(Γ⋆(FG),−) → H∗

rat(Gn,−n) .

Moreover, we check that φGn,− is compatible with cup products. To
be more specific, the cup product on the right is the usual cup product
in rational cohomology (cf. §2.4), and the cup product on the left is
induced (cf. §2.3) by the coalgebra structure on Γ⋆(FG) (cf. §2.1).

Step 2: We prove that F 7→ H∗
rat(Gn, Fn) is universal. This step involves

good filtrations of Gn-modules.

Step 3: We prove that the degree zero map φ0Gn,F
is injective if 2n is greater

than the degree of F . This step relies on an explicit functor computa-
tion.

Step 4: We prove that the degree zero map φ0Gn,F
is an isomorphism if 2n

is greater than the degree of F . The surjectivity is proved via classical
invariant theory.

Let us now give the details.
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3.1 General linear groups

Let k be a commutative ring, and let P(1, 1) be the category of strict poly-
nomial functors with source Vopk × Vk. For any F ∈ P(1, 1), Fn denotes
the rational representation of GLn with underlying k-module F (kn, kn),
and with action of g ∈ GLn given by F (g−1, g). In particular, for
gl(−,−) := Homk(−,−), one recovers the adjoint representation gln of GLn.
Since Idkn ∈ gln is invariant under the action of GLn, for all d ≥ 0 we have
an equivariant map:

ιd : k → Γd(gln) , λ 7→ λId⊗dkn .

Step 1: construction of φGLn,F . Since F splits naturally as a di-
rect sum of homogeneous bifunctors, it suffices to do the construction for
a homogeneous bifunctor F . The bifunctors Γd(gl) are homogeneous of
degree 2d. As a consequence, if F is homogeneous of odd degree, then
Ext∗P(1,1)(Γ

⋆(gl), F ) = 0 and we define φGLn,F as the zero map. If F is ho-

mogeneous of even degree 2d, a class x ∈ ExtjP(1,1)(Γ
⋆(gl), F ) is represented

by an admissible extension

0 → F → F 0 → · · · → F j−1 → Γd(gl) → 0 .

We define φGLn,F (x) ∈ Hj
rat(GLn, Fn) = Ext∗GLn-mod(k, Fn) as the class of

the extension obtained by evaluation on (kn, kn) and pullback along ιd:

ιd ∗
(

0 → Fn → F 0
n → · · · → F j−1

n → Γd(gln) → 0
)
.

Lemma 3.2 (Completion of Step 1). For all n ≥ 0, the map φGLn,− :
Ext∗P(1,1)(Γ

⋆(gl),−) → H∗
rat(GLn,−n) is a map of δ-functors. Moreover it

is compatible with cup products: φGLn,F⊗F ′(x∪y) = φGLn,F (x)∪φGLn,F ′(y).

Proof. Straightforward, except for the compatibility with cup products,
which we now give in detail. Since a bifunctor splits naturally as a di-
rect sum of homogeneous bifunctors, it suffices to prove the compatibil-
ity for homogeneous F,F ′. Furthermore, one easily reduces to the case
where F and F ′ have even degrees 2d and 2d′. Let E and E′ be two ad-
missible exact sequences representing classes x ∈ ExtiP(1,1)(Γ

d(gl), F ) and

y ∈ Extj
P(1,1)

(Γd
′

(gl), F ′). Since E and E′ are admissible, their kernels are

bifunctors with projective values. As a result, evaluation on (kn, kn) and
pullback by ιd, ιd

′

yield k-projective extensions ιd ∗(En), ιd
′ ∗(E′

n). By lemma
2.5, the cohomology class φGLn,F (x)∪φGLn,F ′(y) is represented by the pull-
back of the cross product ιd ∗(En) × ιd

′ ∗(E′
n) by the diagonal k → k ⊗ k.

Now the diagonals of k and Γ∗(gl) induce a commutative diagramk ∆ //

ιd+d′

��

k⊗ k
ιd⊗ιd

′

��

Γd+d
′

(gln)
∆ // Γd(gln) ⊗ Γd

′

(gln) .
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Thus ιd+d
′∗((E ∪ E′)n) equals ιd ∗(En) ∪ ιd

′ ∗(E′
n) and we are done.

Step 2: F 7→ H∗
rat(GLn, Fn) is a universal δ-functor. Now we prove

that H>0
rat(GLn, Fn) vanishes when F is an injective functor of P(1, 1).

A Chevalley group scheme over Z is a connected split reductive algebraicZ-group. A Chevalley group scheme G over a commutative ring k is a group
scheme obtained by base change from a Chevalley group scheme GZ over Z:
G = (GZ)k. If we deal with Chevalley group schemes (such as GLn, SOn,n,
Spn, etc.), cohomological vanishing over arbitrary ground rings k can often
be reduced to the case where k is a field by the following standard lemma.

Lemma 3.3. Let GZ be a Chevalley group scheme over the integers, acting
rationally on a free Z-module M of finite type. Denote by Gk the group
obtained from GZ by base change. The following assertions are equivalent:

(i) The cohomology groups H i
rat(GZ,M) are trivial for i > 0.

(ii) For all field k, H i
rat(Gk,M ⊗ k) = 0 for i > 0.

(iii) For all commutative ring k, H i
rat(Gk,M ⊗ k) = 0 for i > 0.

Proof. (iii) ⇒ (i) is trivial. (i) ⇒ (iii) and (i) ⇒ (ii) follow from the
universal coefficient theorem [12, Part I, Chap 4, Prop 4.18]. So it remains
to prove (ii) ⇒ (i). By the universal coefficient theorem, (ii) implies that
for all field k, H i

rat(GZ,M) ⊗ k = 0. But GZ is a Chevalley group scheme,
so the cohomology groups H i

rat(GZ,M) are finitely generated by [12, Part
II, Lemma B.5]. So the equality H i

rat(GZ,M) ⊗ k = 0 for all field k implies
that H i

rat(GZ,M) = 0.

Lemma 3.4. Let k be a commutative ring. Let J be an injective in the
category P(1, 1) of bifunctors defined over k. Then H i

rat(GLn, Jn) = 0 if
i > 0. As a result, F 7→ H∗

rat(GLn, Fn) is a universal δ-functor.

Proof. By lemma 2.4, it suffices to prove the vanishing on the injectives of
the form Idk,ℓ : (V,W ) 7→ Sd((V ∨)⊕k ⊕ W⊕ℓ), for k, ℓ, d ≥ 0. The GLn-

module associated to Idk,ℓ by evaluation on (kn, kn) is a direct summand of

the polynomial algebra over the sum (kn)⊕k ⊕ (kn∨)⊕ℓ. Thus, it suffices
to prove that for all integer k, ℓ, and for all commutative ring k, we have
H i

rat(GLn, S
∗((kn∨)⊕k ⊕ (kn)⊕ℓ)) = 0 for i > 0.

By lemma 3.3, this statement reduces to the case where k is a field. In
this latter case, S∗((kn∨)⊕k⊕ (kn)⊕ℓ) has a good filtration [1, Section 4.9 p.
508]. In particular, the cohomology vanishes in positive degree.

Step 3: injectivity in degree 0.

15



Lemma 3.5. Let d ≥ 0, let n ≥ d and let X = kn. There is an epimorphism:

θ : P 2d
(X,X) ։ Γd(gl).

Moreover, if we evaluate the bifunctors on (X,X), then θ(X,X) sends

Id(X,X)
⊗2d ∈ P 2d

(X,X)(X,X) to IdX
⊗d ∈ Γd(Hom(X,X)).

Proof. The exponential isomorphism for the divided powers induce a epi-
morphism of P 2d

(X,X) onto Γd(Hom(−,X))⊗Γd(Hom(X,−)). Moreover, if we

evaluate on (X,X), this epimorphism sends Id⊗2d
(X,X) to Id⊗d

(X,X) ⊗ Id⊗d
(X,X). If

we postcompose this map by the map from Γd(Hom(−,X))⊗Γd(Hom(X,−))
to Γd(gl) induced by composition in ΓdVk, then the resulting map sends
Id⊗2d

(X,X) to IdX
⊗d, and is an epimorphism by lemma 2.3.

Lemma 3.6 (Completion of Step 3). Let F ∈ P(1, 1) be a bifunctor defined
over a commutative ring k. If 2n is greater than the total degree of F , then
φ0GLn,F

: HomP(1,1)(Γ
∗(gl), F ) → H0

rat(GLn, Fn) is injective.

Proof. Since F splits as a direct sum of homogeneous functors, we can re-
strict to the case of homogeneous functors. Moreover, if F is homogeneous
of odd degree, then HomP(1,1)(Γ

∗(gl), F ) = 0 and φ0GLn,F
is injective. Now

we assume that F is homogeneous of degree 2d. Let X = kn, with n ≥ d.
By lemma 3.5, we have a commutative diagram:

HomP(1,1)(P
2d
(X,X), F ) ≃ // F (X,X) .

HomP(1,1)(Γ
d(gl), F )

HomP(1,1)(θ,F )

OO

φ0GLn,F // H0
rat(GLn, Fn)

?�

OO

The horizontal arrow is the Yoneda isomorphism. Since θ is an epimorphism,
Hom(θ, F ) is injective. Thus, φ0GLn,F

is injective.

Step 4: isomorphism in degree 0. Recall from lemma 2.4 that
for all k, ℓ ≥ 0, Idk,ℓ denotes the d-th symmetric power of the bifunctor

(V,W ) 7→ (V ∨)⊕k ⊕W⊕ℓ. The evaluation of Idk,ℓ on the pair (kn, kn) equals
the GLn-module of homogeneous polynomials of degree d on the vector
space (kn)⊕k ⊕ (kn∨)⊕ℓ. For 1 ≤ i ≤ k and 1 ≤ j ≤ ℓ we denote by (i|j) the
contraction:

(i|j) : (kn)⊕k ⊕ (kn∨)⊕ℓ → k
(v1, . . . , vk, f1, . . . , fℓ) 7→ fj(vi)

.

The contractions are homogeneous polynomials of degree two (invariant un-
der the action of GLn), hence elements of (I2k,ℓ)n.

In fact, by [6, Theorem 3.1], these contractions generate the GLn-
invariant subalgebra of the algebra of polynomials over (kn)⊕k ⊕ (kn∨)⊕ℓ.
We use this fact to prove surjectivity of the φ0GLn,F

below.
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Lemma 3.7. For all n ≥ 1 and all k, ℓ ≥ 1, the contractions lie in the
image of φ0

GLn,I2k,ℓ
.

Proof. Let ρ : gl(V,W ) ≃ V ∨ ⊗W →֒ S2(V ∨ ⊕W ) be the map induced by
the exponential isomorphism for S2. Let (ei)1≤i≤n be a basis of kn and let
(e∨i )1≤i≤n be the dual basis. Then for V = W = kn, ρ sends Idkn =

∑
e∨i ⊗ei

to
∑

(e∨i , 0)(0, ei) (we denote the elements of kn∨ ⊕ kn as pairs). This latter
polynomial is nothing but the polynomial kn ⊕ kn∨ → k, (v, f) 7→ f(v).

Now denote by ιi,j the inclusion of V ∨ ⊕W in the i-th and j-th term of
(V ∨)⊕k ⊕W⊕ℓ. Then for all i, j, φ0

GLn,I2k,ℓ
sends S2(ιi,j) ◦ ρ to (i|j).

Lemma 3.8. For all k, ℓ, n ≥ 1 and all d ≥ 0, φ0GLn,−
induces an epimor-

phism:
HomP(1,1)(Γ

∗(gl), Idk,ℓ) ։ H0
rat(GLn, (I

d
k,ℓ)n) .

Proof. By lemma 3.2, φGLn,− is compatible with external cup products. In
particular, if A∗ is a graded bifunctor endowed with an algebra structure,
we obtain an algebra morphism:

φ0GLn,A∗ : HomP(1,1)(Γ(gl), A∗) → H0
rat(GLn, A

∗
n) .

We apply this to A∗ = I∗k,ℓ. By invariant theory [6, Theorem 3.1],

H0
rat(GLn, (I

∗
k,ℓ)n) is generated by the contractions (i|j). By lemma 3.7,

the contractions are in the image of φ0GLn,I∗k,ℓ
. This proves surjectivity.

Lemma 3.9 (Completion of Step 4). Let F ∈ P(1, 1) and let n be an integer
such that 2n ≥ degF . Then φ0GLn,F

is an isomorphism.

Proof. By lemma 2.4 and by left exactness of F 7→ Hom(Γ∗(gl), F ) and
F 7→ H0

rat(GLn, Fn), it suffices to prove the statement for the Idk,ℓ, k, ℓ ≥ 1,
d ≥ 0. For these bifunctors, the isomorphism follows from lemmas 3.6 and
3.8.

Theorem 3.10 (The GLn case). Let k be a commutative ring, and let n be
a positive integer. For all F ∈ P(1, 1) we have a ∗-graded map, natural in
F :

φGLn,F : Ext∗P(1,1)(Γ
⋆(gl), F ) → H∗

rat(GLn, Fn)

The map φGLn,F is compatible with cup products:

φGLn,F⊗F ′(x ∪ y) = φGLn,F (x) ∪ φGLn,F ′(y) .

Moreover, φGn,F is an isomorphism whenever 2n ≥ deg(F ).

Proof. The first part of the theorem is given by lemma 3.2. It remains to
prove the isomorphism. By homogeneity, it suffices to prove the isomorphism
for homogeneous functors of degree d ≤ 2n. To do this, we restrict φGLn,− to
the subcategory Pd(1, 1) of homogeneous functors of degree d and we apply
lemma 3.1.
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Remark 3.11. This theorem was already known over a positive characteristic
field k: a k-linear isomorphism is built in [8, Thm 1.5], and compatibility
with cup products is proved in [19, Thm 1.3]. However, our proof is new
and extends the result to arbitrary commutative rings.

3.2 Symplectic groups

Let k be a commutative ring, and let P be the category of strict polynomial
functors with source Vk. Let (ei)1≤i≤2n be a basis of k2n and let (ei)

∨
1≤i≤2n

be its dual basis. For all n > 0 we denote by Spn the symplectic group, that
is, the algebraic group of 2n × 2n matrices preserving the skew-symmetric
form: ωn :=

∑n
i=1 e

∨
i ∧e

∨
n+i. The standard representation of Spn is k2n with

left action given by matrix multiplication. For all functor F ∈ P, we denote
by Fn the rational Spn-module obtained by evaluating F on the dual (k2n)∨

of the standard representation. In particular for F = Λ2, Λ2
n is the k-module

of skew-symmetric forms of degree 2. Since ωn ∈ Λ2
n is invariant under the

action of Spn, we have for all d ≥ 0 an equivariant map:

ιd : k → Γd(Λ2
n) , λ 7→ λω⊗d

n .

Step 1: construction of φSpn,F . By homogeneity, it suffices to do the
construction for a homogeneous functor F of degree 2d. In that case, a class
x ∈ ExtjP(1,1)(Γ

∗(Λ2), F ) is represented by an admissible extension

0 → F → F 0 → · · · → F j−1 → Γd(Λ2) → 0 .

We define φSpn,F (x) ∈ Hj
rat(Spn, Fn) = Ext∗Spn-mod(k, Fn) as the class of

the extension obtained by first evaluating on (k2n)∨, and then taking the
pullback along ιd. The proof of the following lemma is analogous to the GLn
case.

Lemma 3.12 (Completion of Step 1). For all n ≥ 0, the map φSpn,− :
Ext⋆P(Γ∗(Λ2),−) → H⋆

rat(Spn,−n) is a map of δ-functors. Moreover it is
compatible with cup products: φSpn,F⊗F ′(x ∪ y) = φSpn,F (x) ∪ φSpn,F ′(y).

Lemma 3.13 (Step 2). Let k be a commutative ring. Let J be an injective
in the category P of functors defined over k. Then H i

rat(Spn, Jn) = 0 if
i > 0. As a result, F 7→ H∗

rat(Spn, Fn) is a universal δ-functor.

Proof. By lemma 2.4, it suffices to prove the vanishing on the injectives
Idk : V 7→ Sd(V ⊕k), for k, d ≥ 0. As in the case of GLn, it suffices to

show the vanishing of H i
rat(Spn, S

∗((k2n∨)⊕k)), i > 0, when k is a field.
Once again, this vanishing comes from the existence of a good filtration [1,
Section 4.9 p. 508-509].

Step 3: injectivity in degree 0. We need a variant of lemma 3.5.
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Lemma 3.14. Let d ≥ 0, let n ≥ d and let X,X ′ be two copies of kn with
respective basis (ei)1≤i≤n and (ei)n+1≤i≤2n. There is an epimorphism

θ̃ : P 2d
X⊕X′ ։ Γd(⊗2) .

Moreover, if we evaluate the functors on X ⊕X ′, then θ̃X⊕X′ sends Id⊗2d
X⊕X′

to (
∑n

i=1 ei ⊗ en+i)
⊗d.

Proof. The exponential formula for the divided powers induce an epimor-
phism from P 2d

X⊕X′ onto Γd(Homk(X,−))⊗Γd(Homk(X ′,−)). If we evaluate

the functors on X⊕X ′, this epimorphism sends Id⊗2d
X⊕X′ to in⊗d

X ⊗in⊗d
X′ , where

inX , inX′ are the inclusions of X,X ′ into X ⊕X ′. Now there is an isomor-
phismX → (X ′)∨ which sends ei to e∨i+n for all i, where (e∨i+n) is the dual ba-
sis. This induces an isomorphism from Γd(Homk(X,−))⊗Γd(Homk(X ′,−))
to Γd(Homk(−∨,X ′)) ⊗ Γd(Homk(X ′,−)), which sends (after evaluation on
X ⊕ X ′) in⊗d

X ⊗ in⊗d
X′ to (

∑
ei ⊗ ei+n)⊗d ⊗ (

∑
e∨i+n ⊗ ei+n)⊗d. If we post-

compose by the map from Γd(Homk(−∨,X ′))⊗Γd(Homk(X ′,−)) to Γd(⊗2)
induced by the composition in ΓdVk then by lemma 2.3 we obtain the re-
quired epimorphism.

Lemma 3.15 (Completion of Step 3). Let F ∈ P be a functor defined over
a commutative ring k. If 2n ≥ degF , then φ0GLn,F

is injective.

Proof. Using lemma 3.14, we obtain an epimorphism θ̃ : P 2d
(k2n)∨ ։ Γd(Λ2)

which sends Id⊗2d
(k2n)∨ to ω⊗d

n . Thus, φ0GLn,F
factorizes as the composite of

the injection HomP(θ̃, F ) and the Yoneda isomorphism HomP(P 2d
X⊕X′ , F ) ≃

F (X ⊕X ′). Hence φ0GLn,F
is injective.

Lemma 3.16 (Step 4). Let F ∈ P be a functor defined over a commutative
ring k. If 2n ≥ degF , then φ0Spn,F is an isomorphism.

Proof. By lemma 2.4, and left exactness of F 7→ HomP(Γ∗(Λ), F ) and
F 7→ H0

rat(Spn, Fn), it suffices to prove the isomorphism for the functors
of the form Idk : V 7→ Sd(V ⊕k), for k ≥ 1 and d ≤ 2n. Lemma 3.15
already gives injectivity. It remains to prove surjectivity. But φ0Spn,I∗k

:

Hom(Γ∗(Λ2), I∗k) → H0(Spn, (I
∗
k )n) is an algebra morphism, so we only have

to prove that the generators of H0(Spn, (I
∗
k)n) lie in the image of φ0I∗

k
. Now

(I∗k)n is the polynomial algebra over k copies of the standard representation
of Spn. Invariant theory gives [6, Thm 6.6] the generators of H0(Spn, (I

∗
k )n):

they are homogeneous polynomials of degree two (i|j) : (k2n)⊕k → k,
1 ≤ i < j ≤ k, sending (v1, . . . , vn) to ωn(vi, vj). In particular, if k = 1
H0(Spn, (I

∗
k )n) = k and the surjectivity of φ0

SpnI21
is clear. So the proof will

be completed if we show that the (i|j) lie in the image of φ0
SpnI2k

, for k ≥ 2.
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Let V, V ′ be two copies of V ∈ Vk. The exponential isomorphism for S2

yields a monomorphism V ⊗ V ′ →֒ S2(V ⊕ V ′). Now if we take V ′ = V ,
and if we precompose by the inclusion Λ2(V ) → V ⊗2, we get a natural
transformation ρ : Λ2(V ) → S2(V ⊕V ). If V = k2n∨, with basis (e∨i )1≤i≤2n,
then ρ sends e∨i ∧e

∨
j to (e∨i , 0)(0, e∨j )− (e∨j , 0)(0, e∨i ) (we denote the elements

of k2n∨⊕k2n∨ as pairs). Thus, ρ sends ωn to the sum
∑n

i=1(e∨i , 0)(0, e∨i+n)−∑n
i=1(e

∨
i+n, 0)(0, e∨i ), which is nothing but the polynomial k2n ⊕ k2n → k,

(x, y) 7→ ωn(x, y). For i < j, we denote by ιi,j the inclusion of V ⊕ V into
the i-th and the j-th term of the sum V ⊕k. Then φSpn send the natural
transformation S2(ιi,j) ◦ ρ to (i|j) and we are done.

Theorem 3.17 (The Spn case). Let k be a commutative ring, and let n be
a positive integer. For all F ∈ P we have a ∗-graded map, natural in F :

φSpn,F : Ext∗P(Γ⋆(Λ2), F ) → H∗
rat(Spn, Fn)

The map φSpn,F is compatible with cup products:

φSpn,F⊗F ′(x ∪ y) = φSpn,F (x) ∪ φSpn,F ′(y) .

Moreover, φSpn,F is an isomorphism whenever 2n ≥ deg(F ).

3.3 Orthogonal groups

Let k be a commutative ring, and let P be the category of strict polynomial
functors with source Vk. Let (ei)1≤i≤2n be a basis of k2n and let (ei)

∨
1≤i≤2n be

its dual basis. For all n > 0 we denote by On,n the algebraic group of 2n×2n
matrices preserving the quadratic form qn :=

∑n
i=1 e

∨
i e

∨
n+i. The standard

representation of On,n is k2n with left action given by matrix multiplication.
For all functor F ∈ P, we denote by Fn the rational On,n-module obtained by
evaluating F on the dual (k2n)∨ of the standard representation. In particular
for F = S2, S2

n is the k-module of polynomials of degree 2 over k2n. Since
qn ∈ S2

n is invariant under the action of On,n, we have for all d ≥ 0 an
equivariant map:

ιd : k → Γd(S2
n) λ 7→ λq⊗dn .

The case of the orthogonal group is analogous to the case of the symplec-
tic group, except for a restriction on the characteristic of the commutative
ring k which is needed in step 2 only.

Step 1: construction of φOn,n,F . We follow rigorously the symplectic
case. If F is homogeneous of degree 2d, a class x ∈ Extj(Γ∗(S2), F ) is
represented by an extension 0 → F → . . .Γd(S2) → 0. We define φOn,n,F (x)
as the class of the extension obtained by evaluation on (k2n)∨ and pullback
along ιd. We have:
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Lemma 3.18 (Completion of Step 1). For all n ≥ 0, the map φOn,n,− :
Ext∗P(Γ⋆(S2),−) → H∗

rat(On,n,−n) is a map of δ-functors. Moreover it is
compatible with cup products: φOn,n,F⊗F ′(x ∪ y) = φOn,n,F (x) ∪ φOn,n,F ′(y).

Step 2: F 7→ H∗
rat(On,n, Fn) is a universal δ-functor. We want to

prove that H∗
rat(On,n, Fn) vanishes in positive cohomological degree when F

is an injective of P. But the case of the orthogonal group is slightly different
from the general linear and symplectic cases. Define SOn,n as the kernel of
the Dickson invariant, or equivalently as the kernel of the determinant if 2 is
invertible in k (see [13, p. 348] or [4] for details). Then we have an extension
of group schemes:

SOn,n ⊳ On,n ։ Z/2Z .
And SOn,n is a Chevalley group scheme. Now [1, section 4.9 p.509] gives
vanishing results for SOn,n:

Lemma 3.19. Let k be a commutative ring and let J be an injective in the
category P. Then H i

rat(SOn,n, Jn) = 0 for i > 0.

Proof. By lemma 2.4, it suffices to prove the statement for the injectives
Idk : V 7→ Sd(V ⊕k), for k, d ≥ 0. By lemma 3.3, it suffices to prove the
vanishing over a field k. In that case, [1, section 4.9 p.509] yields a good
filtration on S∗((k2n∨)⊕k), whence the result.

But we want a vanishing result for the cohomology of On,n, not for
SOn,n. The Lyndon-Hochschild-Serre spectral sequence [12, Part I, Prop
6.6(3)] yields a graded isomorphism

H∗
rat(Z/2Z,H0

rat(SOn,n, Jn)) ≃ H∗
rat(On,n, Jn) .

Here comes our restriction on the characteristic. If 2 is invertible in k, thenZ/2Z is linearly reductive (Maschke’s theorem) hence has no cohomology,
so we get:

Lemma 3.20. Assume 2 is invertible in k. Then for all J injective in P,
and for all positive i, H i

rat(On,n, Jn) equals zero. So F 7→ H∗
rat(On,n, Fn) is

a universal δ-functor.

Remark 3.21. If 2 is not invertible in k, then the finite group Z/2Z may
have non trivial cohomology, so the above argument does not work. In fact,
not only the proof but also the statement of lemma 3.20 is false when 2
is not invertible in k. So our restriction on the characteristic is necessary.
Indeed, consider the constant functor k ∈ P. Then k is injective in P, and
H0

rat(SOn,n, k) = k, so H∗
rat(On,n, k) ≃ H∗

rat(Z/2Z, k). Take k a field of
characteristic 2. Then H i

rat(Z/2Z, k) ≃ k for all i, so F 7→ H∗
rat(On,n, Fn) is

not universal.
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Lemma 3.22 (Step 3). Let F ∈ P be a functor defined over a commutative
ring k. If 2n is greater than the total degree of F , then φ0On,n,F

is injective.

Proof. We use lemma 3.14 to produce a suitable epimorphism θ̃ : P 2d
(k2n)∨ ։

Γd(S2), so that φ0On,n,F
is the composite of a Yoneda isomorphism and the

injective map HomP(θ̃, F ).

Lemma 3.23 (Step 4). Let F ∈ P be a functor defined over a commutative
ring k. If 2n ≥ degF , then φ0On,n,F

is an isomorphism.

Proof. As in the symplectic case, it suffices to prove surjectivity for the func-
tors Idk (V ) = Sd(V ⊕k), d ≥ 0, k ≥ 1. Using compatibility with cup products,
the proof reduces furthermore to proving that φ0On,n,I∗k

hits the generators

of the invariant ring H0
rat(On,n, (I

∗
k )n) = H0

rat(On,n, S
∗((k2n∨)⊕k)), for all

k ≥ 1.
Let bn be the bilinear form associated to qn. By [6, Thm 5.6], a set of

generators is given by the homogeneous polynomials (i|j)1≤i<j≤k of degree 2,
which send (v1, . . . , vk) to bn(vi, vj), and by the (i|i)1≤i≤n of degree 2, which
send (v1, . . . , vk) to q(vi). For 1 ≤ i ≤ k, let ιi,i be the inclusion of V into
the i-th term of V ⊕k. Then φ0

On,n,I2k
sends S2(ιi,i) to (i|i). Assume now that

1 ≤ i < j ≤ k. Denote by ιi,j the inclusion of V ⊕V in the i-th and the j-th
terms of V ⊕k. Let also ρ be the composite S2(V ) → V ⊗ V → S2(V ⊕ V ),
where the second map is induced by the exponential isomorphism for S2.
If we take V = k2n∨, then ρ sends qn to the sum

∑n
i=1(e

∨
i , 0)(0, e∨i+n) +∑n

i=1(e
∨
i+n, 0)(0, e∨i ), which is nothing but the polynomial k2n ⊕ k2n → k,

(v,w) 7→ bn(v,w). Thus, φ0
On,n,I2k

sends the natural transformation S2(ιi,j)◦ρ

to (i|j). This concludes the proof.

Theorem 3.24 (The On,n case). Let k be a commutative ring, and let n be
a positive integer. For all F ∈ P we have a ∗-graded map, natural in F :

φOn,n,F : Ext∗P(Γ⋆(S2), F ) → H∗
rat(On,n, Fn) .

The map φOn,n,F is compatible with cup products:

φOn,n,F⊗F ′(x ∪ y) = φOn,n,F (x) ∪ φOn,n,F ′(y) .

Moreover, if 2n is greater or equal to the degree of F and if 2 is invertible
in k, then φOn,n,F is an isomorphism.

4 Products of classical groups and cohomological

stabilization

In this section, we use Künneth formulas to extend the link between functor
cohomology and rational cohomology to products of classical groups. We
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also prove the cohomological stabilization property for classical groups and
their products.

4.1 External tensor products and Künneth isomorphisms

Let k be a commutative ring and for i = 1, 2, let Ai be a finite product of
copies of Vk or its opposite category. If Fi ∈ PAi

, i = 1, 2, their external
tensor product F1⊠F2 is the functor sending (X,Y ) to F (X)⊗F (Y ). This
yields a biexact bifunctor

−⊠− : PA1 × PA2 → PA1×A2 .

Let us give some well-known [18, 9, 8] properties of external tensor products:

Lemma 4.1. For all Xi ∈ Ai, external tensor product of standard injec-
tives satisfy the formula I∗X1

⊠ I∗X2
≃ I∗(X1,X2)

, and we have a commutative
diagram:

HomPA1
(F1, I

∗
X1

) ⊗ HomPA2
(F2, I

∗
X2

) −⊠− //

≃

��

HomPA1×A2
(F1 ⊠ F2, I

∗
(X1,X2)

)

≃

��
F1(X1)∨ ⊗ F2(X2)∨ F1(X1)∨ ⊗ F2(X2)∨ ,

where the vertical arrows are Yoneda isomorphisms. Moreover, if k is a
field, then for all F1, F2, G1, G2, −⊠− induces an isomorphism:

Ext∗PA1
(F1, G1) ⊗ Ext∗PA2

(F2, G2) ≃ Ext∗PA1×A2
(F1 ⊠ F2, G1 ⊠G2) .

Representations of algebraic groups have a similar external product. For
i = 1, 2, let Gi be an algebraic group over k and let Mi be a Gi-module. Thek-module M1 ⊗M2 is naturally endowed with the structure of a G1 × G2-
module, which we denote by M1 ⊠M2. A computation on the Hochschild
complex gives:

Lemma 4.2. For i = 1, 2, let Gi be a flat algebraic group over k and let
Mi be a k-flat acyclic Gi-module. Assume furthermore that H0

rat(G1,M1)
is k-flat. Then M1 ⊠ M2 is an acyclic G1 × G2-module and we have an
isomorphism:

H0
rat(G1,M1) ⊗H0

rat(G2,M2) ≃ H0
rat(G1 ×G2,M1 ⊠M2) .

Moreover, if k is a field, then for all M1,M2, −⊠− induces an isomorphism:

H∗
rat(G1,M1) ⊗H∗

rat(G2,M2) ≃ H∗
rat(G1 ×G2,M1 ⊠M2) .
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4.2 Application to products of classical groups

Let k be a commutative ring. We want to extend the results of section 3 to
algebraic groups Gn over k which are finite products of classical groups.

To deal with products, we need some notations. Assume that Gn =∏N
i=1G

i
n, where Gin = GLn, Spn or On,n. To each factor Gin we associate a

category Ai, a ‘characteristic functor’ FGi ∈ PAi
of degree two, a represen-

tation V n
i ∈ Ai and an invariant eni ∈ FGi(V n

i ) like in section 3:

Gin GLn Spn On,n
Ai Vopk × Vk Vk Vk
FGi gl Λ2 S2

V n
i (kn, kn) k2n∨ k2n∨
eni Idkn ωn qn

For all d ≥ 0, let ⊞ :
∏N
i=1 PAi

→ P∏
Ai

be the functor induced by the direct
sum. We define:

A :=
∏
iAi , V n := (V n

i ) , FG := ⊞iFGi , en := (eni ) .

Terminology 4.3. Let Gn be a finite product of the GLn, Spn or On,n.
We shall often denote by PG the category of strict polynomial functors with
source A as above. We refer to these functors as the functors ‘adapted to
Gn’. Indeed for all n ≥ 1, since the V n

i have a structure of Gi-module,
evaluation on V n ∈ A yields a functor

PG → Gn-mod , F 7→ Fn := F (V n) .

Example 4.4. If Gn = GLn × Spn, then PG is the category of strict poly-
nomial functors with source Vopk ×Vk×Vk. For all n ≥ 1 and any functor F
adapted to Gn, the rational Gn-module Fn equals F (kn, kn, (k2n)∨) as a k-
module, and an element (g, s) ∈ Gn acts by the formula v 7→ F (g−1, g, s)(v).

Theorem 4.5. Let k be a commutative ring, let n be a positive integer and
let Gn be a finite product of the algebraic groups (over k) GLn, Spn and
On,n. For all F ∈ PG we have a ∗-graded map, natural in F :

φGn,F : Ext∗PG
(Γ⋆(FG), F ) → H∗

rat(Gn, Fn) .

The map φGn,− is compatible with cup products:

φGn,F⊗F ′(x ∪ y) = φGn,F (x) ∪ φGn,F ′(y) .

Assume that 2n is greater or equal to the degree of F . If one of the factors
of Gn equals On,n, assume furthermore that 2 is invertible in k. Then φGn,F

is an isomorphism.
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Proof. Once again we use a δ-functor argument. Step 1. We build φGn,F .
First for all d, Γd(FG) is homogeneous of degree 2d, so by homogeneity it
suffices to do the construction for a degree 2d homogeneous functor F . The
element en ∈ (FG)n = FG(Vn) is Gn-invariant, so we have a Gn-equivariant
map ιd : k → Γd((FG)n), λ 7→ λ(en)⊗d.

Now a class in x ∈ ExtiPA
(Γ⋆(FG), F ) is represented by an extension

F →֒ · · · ։ Γ2d(FG). We define φGn,F (x) as the class of the extension
obtained by evaluation on V n and pullback by ιd. Following the proof of
lemma 3.2, we check that φGn,F (x) is a map of δ-functors, compatible with
cup products.

Step 2. Using the exponential isomorphism for S∗ and lemma 2.4, we
see that the injectives of PA are (direct summands in) finite direct sums of
injectives of the form ⊠

N
i=1I

di , where Idi is either an injective of the form

Idik,ℓ or Idik , according to the fact that Ai = Vopk × Vk or Vk.
Using this and lemma 4.2, we obtain that F 7→ H∗

rat(Gn, Fn) is a uni-
versal δ-functor. By definition, F 7→ Ext∗PA

(Γ⋆(FG), F ) is also a universal
δ-functor.

Step 3. So to finish the proof, it suffices to prove that φ0Gn,F
is an

isomorphism if 2n ≥ d, where d is the degree of F . By left exactness of
F 7→ H0

rat(Gn, Fn) and F 7→ HomPA
(Γ⋆(FG), F ), it suffices to prove the

isomorphism for F = ⊠
N
i=1I

di , with
∑
di ≤ d. But in that case we have a

commutative diagram:

⊗
i HomPAi

(Γ⋆(FGi), Idi)
⊗φ0

Gi
n,Idi //

≃
��

⊗
iH

0
rat(G

i
n, (I

di)n) .

≃

��
HomPA

(⊠N
i=1Γ⋆(FGi),⊠N

i=1I
di)

≃

��

H0
rat(Gn, (⊠

N
i=1I

di)n)

HomPA
(Γ⋆(FG),⊠N

i=1I
di)

φ0
Gn,⊠N

i=1
Idi

33
f

f
f

f
f

f
f

f
f

f
f

f
f

f
f

f
f

f
f

f
f

f

Since for all i, Idi is a functor of degree di ≤ d ≤ 2n, we deduce that the
horizontal map of the diagram, hence φ0

Gn,⊠N
i=1I

di
, is an isomorphism. This

concludes the proof.

4.3 Cohomological stabilization

We keep the notations of paragraph 4.2. In particular, k is a commutative
ring and Gn =

∏
iG

i
n, where the Gin are copies of the algebraic groups

GLn, Spn or On,n over k, and V n denotes the tuple (V n
i ) where the V n

i are
Gin-modules (or pairs of Gin-modules in the general linear case).

Let n ≤ m be two positive integers. For all i we have a standard em-
bedding ιi : Gin →֒ Gim and a standard Gin-equivariant map πi : V m

i ։ V n
i .
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Let ι =
∏
ιi and π =

∏
πi. The pair (ι, π) induces a morphism in rational

cohomology:

φn,m := H∗
rat(Gm, F (V m))

ι∗
−→ H∗

rat(Gn, F (V m))
F (π)∗
−−−−→ H∗

rat(Gn, F (V n)) .

Now theorem 4.5 implies:

Corollary 4.6. Let k be a commutative ring, let n be a positive integer and
let Gn be a finite product of copies of GLn, Spn or On,n. Let F ∈ PG be a
degree d functor adapted to Gn. Let n,m be two positive integers such that
2m ≥ 2n ≥ d. If the orthogonal group appears as one of the factors of Gn,
assume furthermore that 2 is invertible in k. Then the morphism

φn,m : H∗
rat(Gm, Fm)

≃
−→ H∗

rat(Gn, Fn)

is an isomorphism.

Proof. We check that (FG)m
FG(π)
−−−−→ (FG)n sends em to en. Thus φGn,F =

φn,m ◦ φGm,F , and we apply theorem 4.5.

Remark 4.7. Corollary 4.6 is a good illustration of the differences between
our methods for classical algebraic groups and the methods of [9, 7] where
classical groups over finite fields are considered as finite groups. Indeed, in
our case the cohomological stabilization is a byproduct of the proof, whereas
in the finite group case it is needed as an input for the proof.

Notation 4.8. If Gn is a product of copies of GLn, Spn or On,n, and if F
is a strict polynomial functor adapted to Gn, we denote by H∗

rat(G∞, F∞)
the stable value of the H∗

rat(Gn, Fn).

5 Products and coproducts on functor cohomol-

ogy

In this section, k is a field (we need this condition because we use in many
places the Künneth isomorphism of lemma 4.1). We study product and
coproduct structures which arise on functor cohomology Ext∗PA

(E∗,−). Our
purpose is to generalize and clarify the tools of [9, Lemma 1.10 and 1.11].

Sections 5.1, 5.2 and 5.3 are introductory. We recall the definition of
‘Hopf algebra functor’, we introduce the notion of ‘Hopf monoidal functor’
(which is useful to describe structures on strict polynomial functors E∗,
as well as the structures on functor cohomology Ext∗(E∗,−)). Then we
recall a classical tool of functor categories [9, 8], namely, the sum-diagonal
adjunction. This tool is the key for the existence of coproducts and more
generally of Hopf monoidal structures on functor cohomology.

With these tools at our disposal, we make an attempt to classify the
Hopf monoidal structure which may arise on extension groups of the form
Ext∗(E∗,−). To be more specific, we give in section 5.4 bijections between:
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(1) Hopf algebra structures on E∗ (denoted by (mE , 1E ,∆E , ǫE)),

(2) Hopf monoidal structures on E∗ (denoted by (µ, η, λ, ǫ)),

(3) Hopf monoidal structures on Hom(E∗,−).

Taking injective resolutions, these structures yield Hopf monoidal structures
on Ext∗(E∗,−).

In fact, we don’t need the classification of Hopf monoidal structures on
Ext∗(E∗,−) for our applications. We only need theorem 5.16 which states
that a Hopf algebra structure on E∗ induces a Hopf monoidal structure on
Ext∗(E∗,−), and gives two equivalent descriptions of the external cup prod-
uct. But [9, Lemma 1.10 and 1.11] use a superflous hypothesis (the functors
need not be exponential), and also has a sign problem, so we thought it was
worth clarifying the situation.

Convention on gradings

If n ≥ 0 is an integer an n-graded object is a family of objects indexed
by n-tuples of nonnegative integers (Thus, a 0-graded object is a family
indexed by the empty tuple ‘( )’, in other words a 0-graded object is just
a non-graded object). We denote n-gradations by a single ‘∗’ sign. If ∗ =
(i1, . . . , in) and ⋆ = (j1, . . . , jn), then ∗+ ⋆ is the tuple (i1 + j1, . . . , in + jn),
∗⋆ = (i1j1, . . . , injn) and | ∗ | is the integer

∑
ik (in particular |( )| = 0).

We often drop the gradings and write X for a multigraded object instead
of X∗ when no confusion is possible.

5.1 Hopf algebra functors

In this section and in the remainder of the paper, we define Hopf algebras
as in [14], that is without requiring an antipode.

Thus if F ∗ is a n-graded functor from a category C to the category
of k-vector spaces, a ‘n-graded Hopf algebra structure on F ∗’ is a tuple
(mF , 1F ,∆F , ǫF ) of n-graded natural maps

F ∗(X)⊗2 mF−−→ F ∗(X) , k 1F−→ F ∗(X) , F ∗(X)
∆F−−→ F ∗(X)⊗2 , F ∗(X)

ǫF−→ k ,
such that for all X ∈ C, F ∗(X) is an n-graded Hopf algebra.

5.2 Hopf monoidal functors

Let k be a field, and let (C,�, e) be a symmetric monoidal category [15,
VII.7]. We consider the category k-vect of k-vector spaces as a symmetric
monoidal category, with monoidal product the usual tensor product over k.
We fix an n-graded functor F ∗ : C → k-vect. We regard k as an n-graded
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constant functor concentrated in degree (0, . . . , 0). A n-graded monoidal
structure on F ∗ is a pair (µ, η) of n-graded maps:

µ : F ∗(X) ⊗ F ⋆(Y ) → F ∗+⋆(X�Y ) , η : k → F ∗(e) ,

which satisfy an associativity and a unit condition [15, XI.2]. By reversing
the arrows, one obtains the notion of an n-graded comonoidal structure
(λ, ǫ) on F ∗. A monoid in C is an object equipped with a multiplication
M�M → M and a unit e → M satisfying an associativity and a unit
condition [15, VII.3]. By reversing the arrows one gets the definition of a
comonoid in C. The following lemma is straightforward from the axioms:

Lemma 5.1. Let F ∗ : C → k-vect be an n-graded monoidal functor and let
M be a monoid in C. The maps:

F ∗(M) ⊗ F ⋆(M)
µ
−→ F ∗+⋆(M�M) −→ F ∗+⋆(M) , k η

−→ F ∗(e) −→ F ∗(M) ,

make F ∗(M) into an n-graded algebra. In particular, F ∗(e) is an n-graded
algebra. Similarly, an n-graded comonoidal functor sends a comonoid to an
n-graded coalgebra, and F ∗(e) is an n-graded coalgebra.

Let τ be the isomorphism X ⊗ Y
≃
−→ Y ⊗X, and let τ∗ be its n-graded

version, which sends the tensor product x⊗ y of an element x of n-degree ∗
and an element y of n-degree ⋆ to (−1)|∗⋆|y ⊗ x.

Definition 5.2. A n-graded Hopf monoidal structure on F ∗ is a tuple
(µ, λ, η, ǫ) such that:

(0) (µ, η) is an n-graded monoidal structure on F ∗ and (λ, ǫ) is an n-graded
comonoidal structure on F ∗.

(1) η : k → F ∗(e) is a morphism of n-graded coalgebras.

(2) ǫ : F ∗(e) → k is a morphism of n-graded algebras.

(3) The following diagram commutes :

F (X�Y ) ⊗ F (Z�T )
λ⊗λ

//

µ

��

F (X) ⊗ F (Y ) ⊗ F (Z) ⊗ F (T )

F (X)�τ∗�F (T )
��

F (X�Y �Z�T )

F (X�τ�T )
��

F (X) ⊗ F (Z) ⊗ F (Y ) ⊗ F (T )

µ⊗µ

��
F (X�Z�Y�T )

λ // F (X�Z) ⊗ F (Y�T ) .

A Hopf monoid in C is an object M which is both a monoid and a
comonoid, and such that (1) the unit e → M is a map of comonoids, (2)
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the counit M → e is a map of monoids, and (3) the comultiplication M →
M�M is a map of monoids (M�M can be made into a monoid in the
obvious way because C is symmetric monoidal). For example, a Hopf monoid
in k-vect is nothing but a Hopf algebra. With this definition we immediately
obtain the Hopf analogue of lemma 5.1:

Lemma 5.3. Let F ∗ : C → k-vect be an n-graded Hopf monoidal functor
and let M be a Hopf monoid in C. The monoid and the comonoid structures
on F ∗(M) given by lemma 5.1 make F ∗(M) into an n-graded Hopf algebra.
In particular, F ∗(e) is an n-graded Hopf algebra.

We finish the presentation by giving examples.

Lemma 5.4. Let (C,�, e) be a symmetric monoidal category and let
(F ∗, µ, η) be an n-graded symmetric monoidal functor from C to k-vect,
such that F ∗ has finite dimensional values, and for all X,Y , µX,Y :
F ∗(X) ⊗ F ∗(Y ) → F ∗(X�Y ) is an isomorphism. We have:

(a) the unit η induces an isomorphism k ≃
−→ F (0,...,0)(e).

(b) Let ǫ denote the composite F ∗(e) ։ F (0,...,0)(e) ≃ k. Then (µ, η, µ−1, ǫ)
is an n-graded Hopf monoidal structure on F ∗ if and only if for all
Y,Z, the following diagram commutes:

F ∗(Y ) ⊗ F ∗(Z)

τ∗

��

µY,Z // F ∗(Y�Z)

F ∗(τ)
��

F ∗(Z) ⊗ F ∗(Y )
µZ,Y // F ∗(Z�Y ) .

Proof. (a) Because of the unit axiom for (F ∗, µ, η), we know that η
is injective. Since the λX,Y are isomorphisms, we have F (0,...,0)(e) ≃
F (0,...,0)(e�e) ≃ F (0,...,0)(e)⊗2. Using finite dimension of these vector spaces,
we deduce that F (0,...,0)(e) is one dimensional, whence the result.

(b) A trivial verification shows that (µ, η, µ−1, ǫ) satisfies axioms (0-2)
of definition 5.2 (without assuming that the diagram commutes). Now we
check that axiom (3) is satisfied if and only if the diagram commutes. To
prove the ‘only if’ part, evaluate axiom (3) on X = T = e. To prove the ‘if’
part, tensor the commutative diagram on the left by F ∗(X), on the right by
F ∗(Y ) and use the associativity of µ.

Example 5.5. Let (C,�, e) be the category (Vk,⊕, 0) of finite dimensional
vector spaces. For all V ∈ Vk we consider the divided powers Γ∗(V ) with
Γd(V ) in degree 2d. Then the exponential isomorphism (cf §2.1) Γ∗(V ) ⊗

Γ∗(W )
≃
−→ Γ∗(V ⊕W ) and the unit k = Γ0(0) = Γ∗(0) satisfy the hypothesis

of lemma 5.4. Thus, they induce a graded Hopf monoidal structure on
Γ∗. Similarly, S∗(V ) (with Sd(V ) placed in degree 2d) and Λ∗(V ) (with

29



Λd(V ) placed in degree d) have a Hopf monoidal structure defined by the
exponential isomorphism.

Remark 5.6. We warn the reader that for Γ∗(V ) with Γd(V ) in degree d,
the above structure is not a Hopf monoidal structure (axiom (3) fails). For
an analogous reason, Γ∗(V ) with Γd(V ) in degree d is not a graded Hopf
algebra. In particular, [9, Lemma 1.10] is false as stated, and our lemma
5.4(b) indicates the missing hypothesis. To be more specific, the only ‘Hopf
exponential functors’ which satisfy the conclusion of [9, Lemma 1.10] are
the ‘skew commutative’ ones.

In general, axiom (3) of definition 5.2 is a constraint for the gradings.
For example if F ∗ is a graded Hopf monoidal functor, by ‘forgeting’ the
grading, one does not obtain a non graded Hopf monoidal functor (except ifk has characteristic two or if F ∗ is concentrated in even degrees). The same
defect arises for multigraded Hopf algebras and lemma 5.3 explains the link.

5.3 The sum-diagonal adjunction

General statements about adjunction isomorphisms in functor categories are
given for example in [16]. We sketch here the arguments in our specific case
and give explicit formulas.

As usual, A is a finite product of copies of Vk and Vopk . In particular, A is
an additive category. The diagonal functor D : A → A×A, X 7→ (X,X) is
left adjoint to the sum functor

⊕
: A×A → A, (X,Y ) 7→ X⊕Y . To be more

specific, if δ2 is the diagonal V → V ⊕ V , v 7→ (v, v) and pri : V1 ⊕ V2 → Vi,
i = 1, 2, is the projection onto the i-th factor, we easily check that the unit,
resp. the counit, of this adjunction equals:

δ2 : IdA →
⊕

◦D , resp. (pr1,pr2) : D ◦
⊕

→ IdA×A .

Precomposition by D and
⊕

yields adjoint functors − ◦
⊕

: PA → PA×A

and − ◦D : PA×A → PA. Let’s be more explicit. We denote by F (
⊕

) and
G(D) the functors F and G precomposed by

⊕
and D. Then the adjunction

isomorphism is given by:

HomPA×A
(F (

⊕
), G)

≃
−→ HomPA

(F,G(D))
f 7→ f(D) ◦ F (δ2)

,

with inverse g 7→ G(pr1,pr2) ◦ g(
⊕

). For all X,Y ∈ A we have I∗(X,Y )(D) ≃
I∗X⊕Y . Hence − ◦D preserves the injectives. One easily computes:

Lemma 5.7. Let X,Y ∈ A. Denote by prX ,prY the projections of X ⊕ Y
onto X,Y . Then we have a commutative diagram:

HomPA×A
(K, I∗(X,Y ))

−◦D //

≃

��

HomPA
(K(D), I∗X⊕Y )

≃

��
K(X,Y )∨

K(prX ,prY )∨ // K(X ⊕ Y,X ⊕ Y )∨ ,
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in which the vertical arrows are Yoneda isomorphisms. As a consequence,
the adjunction fits into a commutative diagram, in which the vertical arrows
are Yoneda isomorphisms:

HomPA×A
(F (

⊕
), I∗(X,Y ))

α //

≃

��

HomPA
(F, I∗X⊕Y )

≃

��
F (X ⊕ Y )∨ F (X ⊕ Y )∨ .

Since −◦D preserves the injectives, we may take injective resolutions to
obtain:

Lemma 5.8. For all F ∈ PA and all G ∈ PA×A, there is an isomorphism,
natural in F,G:

α : Ext∗PA×A
(F (

⊕
), G)

≃
−→ Ext∗PA

(F,G(D)) .

Remark 5.9. The functors D and
⊕

are adjoint on both sides. Using
that D is right adjoint of

⊕
one can get another adjunction isomorphism:

β : Ext∗PA
(G(D), F ) ≃ Ext∗PA×A

(G,F (
⊕

)). We don’t use this latter isomor-
phism in this section.

5.4 Hopf monoidal structures on functor cohomology

In this paragraph, k is a field and we fix an n-graded functor E∗ ∈ PA. To
avoid cumbersome notations, we drop the ‘PA’ index on Hom or Ext-groups,
as well as the grading on E when no confusion is possible.

We first examine structures which may equip E∗. First, E∗ may
be endowed with a n-graded Hopf algebra structure on E∗’ is a tuple
(mE , 1E ,∆E , ǫE) of n-graded natural maps

E(V )⊗2 mE−−→ E(V ) , k 1E−−→ E(V ) , E(V )
∆E−−→ E(V )⊗2 , E(V )

ǫE−→ k ,
such that for all V ∈ A, E∗(V ) is an n-graded Hopf algebra.

On the other hand, the direct sum endows A with the structure of a
symmetric monoidal category. So we may also consider n-graded Hopf
monoidal structures on E∗, that is tuples (µ, η, λ, ǫ) with µ : E(V )⊗E(W ) →
E(V ⊕W ), etc. These two kinds of structure are equivalent:

Lemma 5.10. To any n-graded Hopf monoidal structure (µ, η, λ, ǫ) on E∗,
we associate an n-graded Hopf algebra structure on E∗ defined as follows:

mE : E(V )⊗2 µV,V
−−−→ E(V ⊕ V )

E(Σ2)
−−−−→ E(V ), 1E : k η

−→ E(0)
E(0)
−−−→ E(V ),

∆E : E(V )
E(δ2)
−−−→ E(V ⊕ V )

λV,V
−−−→ E(V )⊗2, ǫE : E(V )

E(0)
−−−→ E(0)

ǫ
−→ k.

This yields a bijection between the set of n-graded Hopf monoidal struc-
tures (µ, η, λ, ǫ) on E∗ and the set of n-graded Hopf algebra structures
(mE , 1E ,∆E , ǫE) on E∗.
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Proof. For all V ∈ A, the sum Σ2 : V ⊕ V → V and the diagonal δ2 :
V → V ⊕ V turn V into a Hopf monoidal object in (A,⊕, 0). Hence, by
lemma 5.3, (mE , 1E ,∆E , ǫE) is actually a Hopf algebra structure. To prove
the bijection, we give its inverse. If Vi ∈ A, i = 1, 2, we denote by ini the
inclusion of Vi into V1 ⊕V2 and by pri the projection of V1⊕V2 onto its i-th
factor. Now from a Hopf algebra structure (mE , 1E ,∆E , ǫE) we define:

⊗
E(Vi)

⊗E(ini)
−−−−−→ E(

⊕
Vi)

⊗2 mE−−→ E(
⊕
Vi) , k 1E−−→ E(V )

E(0)
−−−→ E(0) ,

E(
⊕
Vi)

∆E−−→ E(
⊕
Vi)

⊗2 ⊗E(pri)−−−−−→
⊗
E(Vi) , E(0)

E(0)
−−−→ E(V )

ǫE−→ k .
A straightforward verification shows that this actually gives an n-graded
Hopf monoidal structure on E∗, and that this yields the inverse of the map
of the lemma.

Lemma 5.11. To any n-graded Hopf monoidal structure (µ, η, λ, ǫ) on E∗,
we associate an n-graded Hopf monoidal structure on Hom(E,−) defined as
follows:

HomPA
(E,F )⊗HomPA

(E,G)
κ
−→
≃

HomPA×A
(E⊠2, F ⊠G)

λ∗
−→ HomPA×A

(E(
⊕

), F ⊠G)
α
−→ HomPA

(E,F ⊗G) ,k = Hom(k, k)
ǫ∗
−→ Hom(E(0), k) → Hom(E, k) ,

HomPA
(E,F ⊗G)

α−1

−−→
≃

HomPA×A
(E(

⊕
), F ⊠G)

µ∗
−→ HomPA×A

(E⊠2, F ⊠G)
κ−1

−−→
≃

HomPA
(E,F ) ⊗ HomPA

(E,G) ,

Hom(E, k) → Hom(E(0), k)
η∗
−→ Hom(k, k) = k .

This yields a bijection between the n-graded Hopf monoidal structures on E∗

and the n-graded Hopf monoidal structures on Hom(E∗,−).

Proof. By left exactness of the functor Hom(E,−) and its tensor products,
it suffices to check the axioms when F and G are injective. Since the injec-
tives of PA are direct summands of (sums of) standard injectives, we can
furthermore assume that F = I∗X and G = I∗Y , for X,Y ∈ A. But in that
case, by lemmas 4.1 and 5.7, we have a commutative diagram (in which the
vertical arrows are Yoneda isomorphisms):

Hom(E, I∗X) ⊗ Hom(E, I∗Y ) //

≃

��

Hom(E, I∗X⊕Y )

≃

��
E(X)∨ ⊗ E(Y )∨

λ∨ // E(X ⊕ Y )∨ ,
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and also a similar diagram involving µ∨. Using these two diagrams, we easily
check the Hopf monoidal axioms for Hom(E,−) from the axioms satisfied
by (µ, η, λ, ǫ).

Now it remains to show the bijection. Let us give the inverse. If we have
an n-graded Hopf monoidal structure on Hom(E∗,−), we may restrict to
the standard injectives I∗X , X ∈ A. By the Yoneda isomorphisms, we obtain
a Hopf monoidal structure on E∗. The diagrams mentioned above make it
clear that this yields the inverse.

We have proved:

Theorem 5.12. Let k be a field, and let E∗ ∈ PA be an n-graded functor.
There are bijections between:

(1) The set of n-graded Hopf algebra structures on E∗.

(2) The set of n-graded Hopf monoidal structures on E∗.

(3) The set of n-graded Hopf monoidal structures on HomPA
(E∗,−).

Explicit formulas for the bijection between (2) and (1), and between (2)
and (3) are given in lemmas 5.10 and 5.11. For further use, we also need an
explicit link between the product Hom(E,F )⊗Hom(E,G) → Hom(E,F⊗G)
and the n-graded Hopf algebra structure of E∗.

Lemma 5.13 (Key formula). Let (µ, η, λ, ǫ) be an n-graded Hopf monoidal
structure on E, and let (mE , 1E ,∆E , ǫE) be the associated Hopf algebra
structure (cf. lemma 5.10). For any functors Fi, i = 1, 2, the following
two composites are equal:

Hom(E,F1) ⊗ Hom(E,F2)
κ
−→
≃

Hom(E⊠2, F1 ⊠ F2)

λ∗
−→ Hom(E(

⊕
), F1 ⊠ F2)

α
−→ Hom(E,F1 ⊗ F2) (1)

Hom(E,F1) ⊗ Hom(E,F2)
⊗
−→ Hom(E⊗2,

⊗
i Fi)

∆∗
E−−→ Hom(E,

⊗
i Fi) (2)

Proof. We proceed in the same way as in the proof of lemma 5.11. By
left exactness of Hom(E,−) it suffices to prove the formula for standard
injectives F1 = I∗X and F2 = I∗Y . In that case, by lemmas 4.1 and 5.7,
the first map identifies, through Yoneda isomorphisms, with the map λ∨ :
E(X)∨⊗E(Y )∨ → E(X ⊕Y )∨. On the other hand, by lemmas 4.1 and 5.7,
the second map identifies with the composite:

E(X)∨ ⊗ E(Y )∨
E(prX)∨⊗E(prY )∨

−−−−−−−−−−−−→ E(X ⊕ Y )⊗2 ∆∨
E−−→ E(X ⊕ Y )∨ (∗)

Now by definition (lemma 5.10) ∆E = λX⊕Y,X⊕Y ◦E(δ2). By naturality of λ,
(E(prX) ⊗E(prY )) ◦ λX⊕Y,X⊕Y ◦E(δ2) equals λX,Y ◦E(prX ⊕ prY ) ◦E(δ2)
which in turn equals λX,Y . Thus (∗) equals λ∨, and this concludes the
proof.
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Now we turn to Hopf monoidal structures on Ext-groups. Let E∗ be an n-
graded functor in PA and suppose that Hom(E,−) has an n-graded monoidal
structure (µ, η, λ, ǫ). By taking injective resolutions, we obtain (1 + n)-
graded maps µ :

⊗
i Ext∗(E,Fi) → Ext∗(E,

⊗
i Fi), λ : Ext∗(E,

⊗
i Fi) →⊗

i Ext∗(E,Fi), and we also define η : k → Hom(E, k) = Ext∗(E, k) and
ǫ : Ext∗(E, k) = Hom(E, k) → k. One easily sees that this defines a (1 +n)-
graded Hopf monoidal structure on Ext∗(E∗,−) which coincides with the
Hopf monoidal structure of Hom(E∗,−) in degree (0, ∗). Moreover, the
resulting structure is a ‘δ-Hopf monoidal structure’ on Ext∗(E,−), that is,
if we fix one of the two functors Fi, then µ and λ become maps of δ-functors.
To sum up we have:

Lemma 5.14. Let k be a field, and let E∗ ∈ PA be an n-graded functor.
Derivation induces an injection:

{
n-graded Hopf monoidal
structures on Hom(E∗,−)

}
→֒

{
(1 + n)-graded δ-Hopf monoidal

structures on Ext∗(E∗,−)

}
.

Remark 5.15. The map of lemma 5.14 is not a bijection in general. Indeed,
the condition of being a δ-Hopf monoidal structure does not guaranty that
the structure is of derived type, i.e. obtained by applying a Hopf monoidal
structure on Hom(E,−) to injective resolutions. To be more specific, the
δ condition guaranties that the product µ is of derived type (cf. [14, XII,
Thm 10.4]) but in general it is not sufficient to guaranty that the coproduct
λ is of derived type (see also [14, Notes of XII.9]).

Now lemmas 5.14, 5.13 and theorem 5.12 yield:

Theorem 5.16. Let k be a field, and let E∗ ∈ PA be an n-graded functor,
endowed with a Hopf monoidal structure (µ, η, λ, ǫ). The functor cohomology

cup product associated (cf. §2.3) to the comultiplication ∆E : E(V )
E(δ2)
−−−→

E(V ⊕ V )
λ
−→ E(V )⊗2 equals the composite:

Ext∗(E,F ) ⊗ Ext∗(E,G)
κ
−→
≃

Ext∗(E⊠2, F ⊠G)
λ∗
−→Ext∗(E(

⊕
), F ⊠G)

α
−→
≃

Ext∗(E,F ⊗G) .

Together with the following unit, counit and coproduct, they make
Ext∗(E∗,−) into a (1 + n)-graded Hopf monoidal functor:k = Ext∗(k, k)

ǫ∗
−→ Ext∗(E, k) , Ext∗(E, k)

η∗
−→ Ext∗(k, k) = k ,

Ext∗(E,F ⊗G)
α−1

−−→
≃

Ext∗(E(
⊕

),F ⊠G)
µ∗
−→ Ext∗(E⊠2, F ⊠G)

κ−1

−−→
≃

Ext∗(E,F ) ⊗ Ext∗(E,G) .
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Corollary 5.17. Let k be a field, and for i = 1, 2, let A∗
i ∈ PA be a ni-graded

Hopf algebra functor. The maps:

Ext∗(A1, A2) ⊗ Ext∗(A1, A2) → Ext∗(A1, A2 ⊗A2) → Ext∗(A1, A2)k → Ext∗(A1, k) → Ext∗(A1, A2)

Ext∗(A1, A2) → Ext∗(A1, A2 ⊗A2) → Ext∗(A1, A2) ⊗ Ext∗(A1, A2)

Ext∗(A1, A2) → Ext∗(A1, k) → k
make Ext∗PA

(A∗
1, A

∗
2) into a (1 + n1 + n2)-graded Hopf algebra.

Proof. To get corollary 5.17 from theorem 5.16, we just apply a graded
version of lemma 5.3 (which holds for additive functors).

Remark 5.18. Corollary 5.17 is a generalization of [9, Lemma 1.11]. Indeed,
we don’t require our functors A∗

i to be exponential functors. In section 6,
we apply this corollary to Hopf algebra functors which are not exponential
functors.

Remark 5.19. In this section, the proofs rely on (1) Yoneda isomorphisms for
standard injectives, (2) adjunction between the sum and the diagonal func-
tors, (3) Künneth formulas. Properties (1) and (2) hold in the category FA

of ordinary functors with source an additive category A and target k-vect.
The Künneth formula also holds if one assumes furthermore some finiteness
conditions on the functors (either if F1, F2 have finite dimensional values
and G1, G2 have injective resolutions by finite sums of standard injectives,
or if F1, F2 have projective resolutions by finite sums of projectives). Up
to these slight finiteness conditions, the results of this section holds in the
category FA. This gives interesting applications for the stable cohomology
of the finite classical groups On,n(Fq) and Spn(Fq) with twisted coefficients
[7].

6 Applications

6.1 Stable products and coproducts for classical groups

Theorem 6.1. Let k be a field. Let Gn be a product of copies of the groups
GLn, Spn or On,n, and let F1, F2 be strict polynomial functors adapted to
Gn (cf. terminology 4.3). If On,n is a factor in Gn, assume that k has
odd characteristic. The stable rational cohomology of Gn is equipped with a
coproduct:

H∗
rat(G∞, (F1 ⊗ F2)∞) → H∗

rat(G∞, F1 ∞) ⊗H∗
rat(G∞, F2 ∞) .

Together with the usual cup product (cf. §2.4), they endow H∗
rat(G∞,−) with

the structure of a graded Hopf monoidal functor.
Moreover, the cup product is a section of the coproduct.
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Proof. We consider the usual graded Hopf algebra structure Γ∗(V ), with
Γd(V ) in degree 2d, cf. paragraph 2.1. Let FG ∈ PG be the characteristic
functor associated to Gn. If we set V = FG, the divided powers of FG are a
graded Hopf algebra, or equivalently a graded Hopf monoidal functor. To be
more specific, the product µ and the coproduct λ are given by the formulas:

µ : Γ∗(FG(V )) ⊗ Γ∗(FG(W )) → Γ∗(FG(V ⊕W ))⊗2

≃ Γ∗(FG(V ⊕W )⊕2) → Γ∗(FG(V ⊕W )) ,

λ : Γ∗(FG(V ⊕W )) → Γ∗(FG(V ⊕W )⊕2)

≃ Γ∗(FG(V ⊕W ))⊗2 → Γ∗(FG(V )) ⊗ Γ∗(FG(W )) .

In particular, one checks that λ ◦ µ = Id. Thus, by theorem 5.16,
Ext∗(Γ⋆(FG),−) is a bigraded Hopf monoidal functor, and λ◦µ = Id implies
that the external cup product is a section of the coproduct.

Since the divided powers of FG are concentrated in even degree, we may
forget the grading arising from the divided powers (cf. remark 5.6) and
Ext∗(Γ⋆(FG),−) is a ∗-graded Hopf monoidal functor. Then it suffices to
apply theorem 4.5 to conclude the proof.

Corollary 6.2. Let k be a field. Let Gn be a product of copies of the groups
GLn, Spn or On,n, and let F1, F2 be two functors of degree d1, d2 adapted to
Gn. If On,n is a factor in Gn, assume that k has odd characteristic. For all
n such that 2n ≥ d1 + d2, the cup product induces a injection:

H∗
rat(Gn, (F1)n) ⊗H∗

rat(Gn, (F2)n) →֒ H∗
rat(Gn, (F1)n ⊗ (F2)n) .

Remark 6.3. The injectivity in odd degree cohomological degree does not
contradict the usual commutativity formula x ∪ y = (−1)deg(x) deg(y)y ∪ x.
Indeed, this latter formula holds only for internal cup products. If τ denotes
the isomorphism (F1)n⊗ (F2)n ≃ (F2)n⊗ (F1)n, the commutativity relation
for external cup products is x ∪ y = (−1)deg(x) deg(y)H∗

rat(Gn, τ)(y ∪ x) .

Corollary 6.4. Let k be a field. Let Gn be a product of copies of the
groups GLn, Spn or On,n, and let A∗ be an n-graded strict polynomial func-
tor adapted to Gn, endowed with the structure of a Hopf algebra. If On,n is
a factor in Gn, assume that k has odd characteristic. The usual cup prod-
uct H∗

rat(G∞, A
∗
∞)⊗2 → H∗

rat(G∞, A
∗
∞) may be supplemented with a coprod-

uct H∗
rat(G∞, A

∗
∞) → H∗

rat(G∞, A
∗
∞)⊗2 which endow H∗

rat(G∞, A
∗
∞) with the

structure of a (1 + n)-graded Hopf algebra.

6.2 A new statement for the universal classes

As an application of theorem 6.1, we give a nicer formulation of the existence
of the universal cohomology classes [20, Thm 4.1]. Consider the divided pow-

ers Γ∗(H∗
rat(GL∞, gl

(1)
∞ )), with the usual Hopf algebra structure but regraded
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in the following way: the bidegree of an element in Γi(Hj
rat(GL∞, gl

(1)
∞ )) is

(2ij, 2i). We easily get:

Corollary 6.5. Let k be a field of positive characteristic p. The existence
of the universal cohomology classes is equivalent to the following statement.

There is a bigraded Hopf algebra morphism

ψ : Γ∗(H∗
rat(GL∞, gl

(1)
∞ )) → H∗

rat(GL∞,Γ
∗(gl(1)∞ )) ,

such that for all n ≥ p the following composite is a monomorphism:

Γ∗(H∗
rat(GL∞, gl

(1)
∞ ))

ψ
−→ H∗

rat(GL∞,Γ
∗(gl(1)∞ ))

φn,∞
−−−→ H∗

rat(GLn,Γ
∗(gl(1)n )) .

6.3 Cohomology computations for the orthogonal and sym-

plectic groups

In [7], Djament and Vespa showed how to obtain cohomological computa-
tions for the orthogonal and symplectic groups from the computations of [9].
Their method adapts easily to the strict polynomial functor setting. For all
r ≥ 0, we denote by I(r) ∈ P the r-th Frobenius twist [10, (v) p.224]. We
consider the Hopf algebra S∗(I(r)) (resp. Λ∗(I(r))) with Sd(I(r)) in degree
2d (resp. with Λd(I(r)) in degree d). We have:

Theorem 6.6. Let k be a field of odd characteristic. Let r be a nonnegative
integer.

(i) The bigraded Hopf algebra H∗
rat(O∞,∞, S

⋆(I(r))∞) is a symmetric Hopf
algebra on generators em of bidegree (2m, 4) for 0 ≤ m < pr.

(ii) The bigraded Hopf algebra H∗
rat(Sp∞, S

⋆(I(r))∞) is trivial.

(iii) The bigraded Hopf algebra H∗
rat(O∞,∞,Λ

⋆(I(r))∞) is trivial.

(iv) The bigraded Hopf algebra H∗
rat(Sp∞,Λ

⋆(I(r))∞) is a divided power
Hopf algebra on generators em of bidegree (2m, 2) for 0 ≤ m < pr.

We get a proof by following closely [7, Section 4]. For sake of complete-
ness, we give some details in the remainder of this paragraph. Let k be
a field of characteristic p > 2. As in section 3, we denote by P(1, 1) the
category of strict polynomial functors with source Vopk × Vk and by P the
category of strict polynomial functors with source Vk. We also denote by
P(2) the category strict polynomial functors with source Vk × Vk.

Let E∗ = S∗(I(r)) (with Sd(I(r)) in degree 2d) or E∗ = Λ∗(I(r)) (with
Λd(I(r)) in degree d), or more generally let E∗ be a ‘skew-commutative Hopf
exponential functor’ (cf. [9, p. 675 and Def. 1.9]. Equivalently, E∗ is a
graded functor in P satisfying all the hypotheses of lemma 5.4). We wish
to compute the bigraded Hopf algebra Ext∗P (Γ⋆(FG), E∗), with FG = S2
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or FG = Λ2 (it is a trigraded Hopf algebra by corollary 5.17, and we may
drop the gradation on Γ⋆(F ), since this gradation is concentrated in even
degrees, cf. remark 5.6). Indeed, by theorem 4.5, this bigraded Hopf algebra
is isomorphic to the bigraded Hopf algebra H∗

rat(G∞, E
∗
∞) with Gn = On,n

for FG = S2, and Gn = Spn for FG = Λ2.
To do the computation, it suffices to compute the bigraded Hopf algebra

Ext∗P(Γ⋆(⊗2), E∗), together with the involution θ of bigraded Hopf algebras,
induced by the permutation V ⊗ V ≃ V ⊗ V which exchanges the factors of
⊗2. Indeed, since k has characteristic p 6= 2, FG is a direct summand in ⊗2.
As a result, H∗

rat(G∞, E
∗
∞) equals the image of (1 + θ)/2 in the orthogonal

case and of (1 − θ)/2 in the symplectic case. So we now concentrate on
Ext∗P(Γ⋆(⊗2), E∗).

Let I ∈ P denote the identity functor of Vk. Using the sum diagonal
adjunction of remark 5.9, and the exponential isomorphism for E∗, we obtain
an isomorphism of multigraded vector spaces (on the right, we take the total
degree of E∗

⊠E∗):

Ext∗P (Γ⋆(⊗2), E∗) ≃ Ext∗P (2)(Γ
⋆(I ⊠ I), E∗

⊠ E∗) .

Now if B ∈ P(2) is a strict polynomial functor with 2 covariant variables,
one may precompose the first variable of B by the duality functor −∨ : Vk →
Vopk , V 7→ V ∨. One obtains a strict polynomial functor B(−∨,−) ∈ P(1, 1).
This yields an equivalence of categories between P(2) and P(1, 1). Let
(Ei)♯ denote the strict polynomial functor V 7→ Ei(V ∨)∨. Using [8, Thm
1.5 (1.11)] we obtain isomorphisms of bigraded vector spaces (recall that we
don’t take the gradation of Γ⋆(⊗2) into account):

Ext∗P (2)(Γ
⋆(I ⊠ I), E∗

⊠ E∗) ≃ Ext∗P (1,1)(Γ
⋆(gl), E∗(−∨) ⊠ E∗)

≃ Ext∗P(E∗ ♯, E∗) .

To sum up, we have an isomorphism of bigraded vector spaces (on the left
we don’t take the gradation of Γ∗(⊗2) into account, on the right we take the
total gradation associated to the gradations of E∗ ♯ and E∗):

Ext∗P (Γ⋆(⊗2), E∗) ≃ Ext∗P(E∗ ♯, E∗) (∗)

Both objects have a bigraded Hopf algebra structure by corollary 5.17. We
need the Hopf algebra structure of Γ⋆(⊗2) to define the bigraded Hopf alge-
bra structure on the left but not to define the one on the right. Nonetheless:

Lemma 6.7 ([7, Prop 4.10]). For all ‘skew commutative exponential functor’
E∗ ∈ P, the isomorphism (∗) is compatible with the bigraded Hopf algebra
structures.

For E∗ = S∗(I(r)) or E∗ = Λ∗(I(r)), the Hopf algebra Ext∗P(E∗ ♯, E∗) is
computed in [9, Thm 5.8]. So it remains to describe how the involution θ
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acts on these extension groups. For all F,G, we have an isomorphism (see for
example [9, lemma 1.12]) Ext∗P(F ♯, G) ≃ Ext∗P (G♯, F ). With F = G = E∗,
we obtain an involution:

θ̃ : Ext∗P(E∗ ♯, E∗)
≃
−→ Ext∗P(E∗ ♯, E∗) .

Lemma 6.8 ([7, Lemme 4.12]). For all ‘skew commutative Hopf exponential
functor’ E∗ ∈ P, we denote by θ̃∗ the involution of Ext∗P(E∗ ♯, E∗) whose re-

striction to Ext∗P(Ei ♯, Ej) equals (−1)ij θ̃. We have a commutative diagram:

Ext∗P (Γ⋆(⊗2), E∗)
≃

(∗)
//

θ
��

Ext∗P(E∗ ♯, E∗)

θ̃∗

��
Ext∗P (Γ⋆(⊗2), E∗)

≃

(∗)
// Ext∗P(E∗ ♯, E∗) .

We are now ready to use the computations of [9]. We first recall the
results we need. If V ∗ is a graded vector space concentrated in even degrees,
we consider the vector spaces S∗(V ∗) bigraded in the following way: the
bidegree of an element Si(V j) is (ij, 4i). With this grading, the usual Hopf
algebra structure on the symmetric powers makes S∗(V ∗) into a bigraded
Hopf algebra. We have (recall that an element in ExtkP(Γℓ(I(r)), Sm(I(r)))
has bidegree (k, 2ℓ + 2m)):

Lemma 6.9 ([9, Thm 4.5 and Thm 5.8]). For all n ≥ 0, the bigraded Hopf
algebra multiplication

Ext∗P(Γ1(I(r)), S1(I(r))))⊗n → Ext∗P(Γn(I(r)), Sn(I(r))))

is surjective. It induces an isomorphism of Hopf algebras:

S∗(Ext∗P(I(r), I(r))) ≃ Ext∗P(Γ∗(I(r)), S∗(I(r)))) .

Since the involution θ is compatible with the Hopf algebra struc-
ture, the first part of lemma 6.9 shows that knowing the involution θ̃ on
Ext∗P(I(r), I(r))is sufficient to determine θ. The involution θ̃ is already com-
puted by Djament and Vespa:

Lemma 6.10 ([7, Lemme 4.13]). The involution θ̃ equals the identity map.

Thus, by lemmas 6.8, 6.9 and 6.10, the map (1 + θ)/2 :
Ext∗P(Γ⋆(⊗2), S∗(I(r))) → Ext∗P(Γ⋆(⊗2), S∗(I(r))) equals the identity map,
so that we have:

Ext∗P(Γ⋆(S2), S∗(I(r))) ≃ Ext∗P(Γ⋆(⊗2), S∗(I(r))) ,

Ext∗P(Γ⋆(Λ2), S∗(I(r))) ≃ 0 .

Now we may apply lemmas 6.7 and 6.9 to conclude the proof of 6.6(i) and
(ii). The computation for the exterior powers Λ∗(I(r)) is similar.
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