Science China Chemistry

, Volume 62, Issue 9, pp 1099–1144 | Cite as

Polycyclic aromatic hydrocarbons in the graphene era

  • Xiao-Ye WangEmail author
  • Xuelin Yao
  • Klaus MüllenEmail author
Open Access
Invited Reviews


Polycyclic aromatic hydrocarbons (PAHs) have been the subject of interdisciplinary research in the fields of chemistry, physics, materials science, and biology. Notably, PAHs have drawn increasing attention since the discovery of graphene, which has been regarded as the “wonder” material in the 21st century. Different from semimetallic graphene, nanoscale graphenes, such as graphene nanoribbons and graphene quantum dots, exhibit finite band gaps owing to the quantum confinement, making them attractive semiconductors for next-generation electronic applications. Researches based on PAHs and graphenes have expanded rapidly over the past decade, thereby posing a challenge in conducting a comprehensive review. This study aims to interconnect the fields of PAHs and graphenes, which have mainly been discussed separately. In particular, by selecting representative examples, we explain how these two domains can stimulate each other. We hope that this integrated approach can offer new opportunities and further promote synergistic developments in these fields.


polycyclic aromatic hydrocarbon graphene graphene nanoribbon nanographene graphene quantum dot carbon materials 



The authors thank all of their distinguished collaborators and research associates who enabled the achievements partly described in this article. This article is a tribute to scientific interaction and its benefit. This work was supported by the European Union Projects GENIUS (ITN-264694), UPGRADE, MoQuaS, and Graphene Flagship (CNECT-ICT-604391), European Research Council (ERC)-Adv.-Grant 267160 (NANOGRAPH), the Office of Naval Research Basic Research Challenge (BRC) Program (molecular synthesis and characterization), the Max Planck Society, the German Chemical Industry Association, the Alexander von Humboldt Foundation. BASF SE and Samsung are gratefully acknowledged. X.Y. is thankful for a fellowship from the China Scholarship Council.

Funding note Open access funding provided by Max Planck Society.


  1. 1.
    Hirsch A. Nat Mater, 2010, 9: 868–871CrossRefPubMedGoogle Scholar
  2. 2.
    Georgakilas V, Perman JA, Tucek J, Zboril R. Chem Rev, 2015, 115: 4744–4822CrossRefPubMedGoogle Scholar
  3. 3.
    Geim AK, Novoselov KS. Nat Mater, 2007, 6: 183–191CrossRefGoogle Scholar
  4. 4.
    Geim AK. Science, 2009, 324: 1530–1534CrossRefGoogle Scholar
  5. 5.
    Novoselov KS, Fal’Ko VI, Colombo L, Gellert PR, Schwab MG, Kim K. Nature, 2012, 490: 192–200CrossRefPubMedGoogle Scholar
  6. 6.
    Wang XY, Narita A, Müllen K. Nat Rev Chem, 2017, 2: 0100CrossRefGoogle Scholar
  7. 7.
    Ferrari AC, Bonaccorso F, Fal’ko V, Novoselov KS, Roche S, Bøggild P, Borini S, Koppens FHL, Palermo V, Pugno N, Garrido JA, Sordan R, Bianco A, Ballerini L, Prato M, Lidorikis E, Kivioja J, Marinelli C, Ryhänen T, Morpurgo A, Coleman JN, Nicolosi V, Colombo L, Fert A, Garcia-Hernandez M, Bachtold A, Schneider GF, Guinea F, Dekker C, Barbone M, Sun Z, Galiotis C, Grigorenko AN, Konstantatos G, Kis A, Katsnelson M, Vandersypen L, Loiseau A, Morandi V, Neumaier D, Treossi E, Pellegrini V, Polini M, Tredicucci A, Williams GM, Hee Hong B, Ahn JH, Min Kim J, Zirath H, van Wees BJ, van der Zant H, Occhipinti L, Di Matteo A, Kinloch IA, Seyller T, Quesnel E, Feng X, Teo K, Rupesinghe N, Hakonen P, Neil SRT, Tannock Q, Löfwander T, Kinaret J. Nanoscale, 2015, 7: 4598–4810CrossRefPubMedGoogle Scholar
  8. 8.
    Avouris P, Dimitrakopoulos C. Mater Today, 2012, 15: 86–97CrossRefGoogle Scholar
  9. 9.
    Allen MJ, Tung VC, Kaner RB. Chem Rev, 2010, 110: 132–145CrossRefGoogle Scholar
  10. 10.
    Chen L, Hernandez Y, Feng X, Müllen K. Angew Chem Int Ed, 2012, 51: 7640–7654CrossRefGoogle Scholar
  11. 11.
    Peierls RE. Ann Inst Henri Poincare, 1935, 5: 177–222Google Scholar
  12. 12.
    Landau LD. Phys Z Sowjetunion, 1937, 11: 26–35Google Scholar
  13. 13.
    Mermin ND. Phys Rev, 1968, 176: 250–254CrossRefGoogle Scholar
  14. 14.
    Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA. Science, 2004, 306: 666–669CrossRefGoogle Scholar
  15. 15.
    Schwierz F. Nat Nanotech, 2010, 5: 487–496CrossRefGoogle Scholar
  16. 16.
    Narita A, Chen Z, Chen Q, Müllen K. Chem Sci, 2019, 10: 964–975CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Li X, Wang X, Zhang L, Lee S, Dai H. Science, 2008, 319: 1229–1232CrossRefGoogle Scholar
  18. 18.
    Wang X, Ouyang Y, Li X, Wang H, Guo J, Dai H. Phys Rev Lett, 2008, 100: 206803CrossRefPubMedGoogle Scholar
  19. 19.
    Jiao L, Wang X, Diankov G, Wang H, Dai H. Nat Nanotech, 2010, 5: 321–325CrossRefGoogle Scholar
  20. 20.
    Tour JM. Chem Mater, 2014, 26: 163–171CrossRefGoogle Scholar
  21. 21.
    Han MY, Ozyilmaz B, Zhang Y, Kim P. Phys Rev Lett, 2007, 98: 206805CrossRefGoogle Scholar
  22. 22.
    Son YW, Cohen ML, Louie SG. Phys Rev Lett, 2006, 97: 216803CrossRefGoogle Scholar
  23. 23.
    Han W, Kawakami RK, Gmitra M, Fabian J. Nat Nanotech, 2014, 9: 794–807CrossRefGoogle Scholar
  24. 24.
    Cao T, Zhao F, Louie SG. Phys Rev Lett, 2017, 119: 076401CrossRefPubMedGoogle Scholar
  25. 25.
    Shen J, Zhu Y, Yang X, Li C. Chem Commun, 2012, 48: 3686CrossRefGoogle Scholar
  26. 26.
    Zhang Z, Zhang J, Chen N, Qu L. Energy Environ Sci, 2012, 5: 8869CrossRefGoogle Scholar
  27. 27.
    Yan X, Li B, Li L. Acc Chem Res, 2013, 46: 2254–2262CrossRefPubMedGoogle Scholar
  28. 28.
    Müllen K, Wegner G. Electronic Materials: the Oligomer Approach. Weinheim: John Wiley & Sons, 2008Google Scholar
  29. 29.
    Watson MD, Fechtenkötter A, Müllen K. Chem Rev, 2001, 101: 1267–1300CrossRefPubMedGoogle Scholar
  30. 30.
    Wang C, Dong H, Hu W, Liu Y, Zhu D. Chem Rev, 2012, 112: 2208–2267CrossRefGoogle Scholar
  31. 31.
    Dou L, Liu Y, Hong Z, Li G, Yang Y. Chem Rev, 2015, 115: 12633–12665CrossRefPubMedGoogle Scholar
  32. 32.
    Murphy AR, Fréchet JMJ. Chem Rev, 2007, 107: 1066–1096CrossRefGoogle Scholar
  33. 33.
    Clar E, Schoental R. Polycyclic Hydrocarbons. Vol. 2. Berlin, Heidelberg: Springer, 1964CrossRefGoogle Scholar
  34. 34.
    Armit JW, Robinson R. J Chem Soc Trans, 1925, 127: 1604–1618CrossRefGoogle Scholar
  35. 35.
    Payamyar P, King BT, Öttinger HC, Schlüter AD. Chem Commun, 2016, 52: 18–34CrossRefGoogle Scholar
  36. 36.
    Zdetsis AD. J Phys Chem C, 2018, 122: 17526–17536CrossRefGoogle Scholar
  37. 37.
    Gutzler R, Perepichka DF. J Am Chem Soc, 2013, 135: 16585–16594CrossRefPubMedGoogle Scholar
  38. 38.
    Li X, Cai W, An J, Kim S, Nah J, Yang D, Piner R, Velamakanni A, Jung I, Tutuc E, Banerjee SK, Colombo L, Ruoff RS. Science, 2009, 324: 1312–1314CrossRefPubMedGoogle Scholar
  39. 39.
    Bae S, Kim H, Lee Y, Xu X, Park JS, Zheng Y, Balakrishnan J, Lei T, Ri Kim H, Song YI, Kim YJ, Kim KS, Özyilmaz B, Ahn JH, Hong BH, Iijima S. Nat Nanotech, 2010, 5: 574–578CrossRefGoogle Scholar
  40. 40.
    Lin YM, Dimitrakopoulos C, Jenkins KA, Farmer DB, Chiu HY, Grill A, Avouris P. Science, 2010, 327: 662CrossRefPubMedGoogle Scholar
  41. 41.
    Tzalenchuk A, Lara-Avila S, Kalaboukhov A, Paolillo S, Syväjärvi M, Yakimova R, Kazakova O, Janssen TJBM, Fal’ko V, Kubatkin S. Nat Nanotech, 2010, 5: 186–189CrossRefGoogle Scholar
  42. 42.
    Wan X, Chen K, Liu D, Chen J, Miao Q, Xu J. Chem Mater, 2012, 24: 3906–3915CrossRefGoogle Scholar
  43. 43.
    Tan YZ, Yang B, Parvez K, Narita A, Osella S, Beljonne D, Feng X, Müllen K. Nat Commun, 2013, 4: 2646CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Stein SE, Brown RL. Am Chem Soc, 1987, 109: 3721–3729CrossRefGoogle Scholar
  45. 45.
    Salem L. Am Chem Soc, 1968, 90: 543–552CrossRefGoogle Scholar
  46. 46.
    Dewar MJS. The Molecular Orbital Theory of Organic Chemistry. New York: McGraw-Hill, 1969Google Scholar
  47. 47.
    Würthner F, Saha-Möller CR, Fimmel B, Ogi S, Leowanawat P, Schmidt D. Chem Rev, 2016, 116: 962–1052CrossRefPubMedGoogle Scholar
  48. 48.
    Chen L, Li C, Müllen K. J Mater Chem C, 2014, 2: 1938–1956CrossRefGoogle Scholar
  49. 49.
    Fabian J, Nakazumi H, Matsuoka M. Chem Rev, 1992, 92: 1197–1226CrossRefGoogle Scholar
  50. 50.
    Allamandola LJ, Tielens AGGM, Barker JR. Astrophys J Suppl Ser, 1989, 71: 733–775CrossRefPubMedGoogle Scholar
  51. 51.
    Tielens AGGM. Annu Rev Astron Astrophys, 2008, 46: 289–337CrossRefGoogle Scholar
  52. 52.
    Anthony JE. Chem Rev, 2006, 106: 5028–5048CrossRefPubMedGoogle Scholar
  53. 53.
    Abdel-Shafy HI, Mansour MSM. Egyptian J Pet, 2016, 25: 107–123CrossRefGoogle Scholar
  54. 54.
    Gingras M. Chem Soc Rev, 2013, 42: 968–1006CrossRefPubMedGoogle Scholar
  55. 55.
    Gingras M, Félix G, Peresutti R. Chem Soc Rev, 2013, 42: 1007–1050CrossRefPubMedGoogle Scholar
  56. 56.
    Gingras M. Chem Soc Rev, 2013, 42: 1051–1095CrossRefPubMedGoogle Scholar
  57. 57.
    Shen Y, Chen CF. Chem Rev, 2012, 112: 1463–1535CrossRefPubMedGoogle Scholar
  58. 58.
    Song H, Reed MA, Lee T. Adv Mater, 2011, 23: 1583–1608CrossRefGoogle Scholar
  59. 59.
    Xiang D, Wang X, Jia C, Lee T, Guo X. Chem Rev, 2016, 116: 4318–4440CrossRefGoogle Scholar
  60. 60.
    Stabel A, Herwig P, Müllen K, Rabe JP. Angew Chem Int Ed, 1995, 34: 1609–1611CrossRefGoogle Scholar
  61. 61.
    Dong L, Wang S, Wang W, Chen C, Lin T, Adisoejoso J, Lin N. Transition metals trigger on-surface ullmann coupling reaction: intermediate, catalyst and template. In: Gourdon A, Ed. On-Surface Synthesis. Advances in Atom and Single Molecule Machines. Cham: Springer International Publishing, 2016. 23–42Google Scholar
  62. 62.
    Sun Q, Zhang R, Qiu J, Liu R, Xu W. Adv Mater, 2018, 30: 1705630CrossRefGoogle Scholar
  63. 63.
    Talirz L, Ruffieux P, Fasel R. Adv Mater, 2016, 28: 6222–6231CrossRefPubMedGoogle Scholar
  64. 64.
    Figueira-Duarte TM, Müllen K. Chem Rev, 2011, 111: 7260–7314CrossRefPubMedGoogle Scholar
  65. 65.
    Sun M, Müllen K, Yin M. Chem Soc Rev, 2016, 45: 1513–1528CrossRefPubMedGoogle Scholar
  66. 66.
    Segawa Y, Ito H, Itami K. Nat Rev Mater, 2016, 1: 15002CrossRefGoogle Scholar
  67. 67.
    Narita A, Wang XY, Feng X, Müllen K. Chem Soc Rev, 2015, 44: 6616–6643CrossRefGoogle Scholar
  68. 68.
    Majewski MA, Stępień M. Angew Chem Int Ed, 2019, 58: 86–116CrossRefGoogle Scholar
  69. 69.
    Ito H, Ozaki K, Itami K. Angew Chem Int Ed, 2017, 56: 11144–11164CrossRefGoogle Scholar
  70. 70.
    Ito H, Segawa Y, Murakami K, Itami K. J Am Chem Soc, 2019, 141: 3–10CrossRefPubMedGoogle Scholar
  71. 71.
    Stępień M, Gońka E, Żyla M, Sprutta N. Chem Rev, 2017, 117: 3479–3716CrossRefPubMedGoogle Scholar
  72. 72.
    Mas-Torrent M, Rovira C. Chem Rev, 2011, 111: 4833–4856CrossRefGoogle Scholar
  73. 73.
    Mei J, Diao Y, Appleton AL, Fang L, Bao Z. J Am Chem Soc, 2013, 135: 6724–6746CrossRefPubMedGoogle Scholar
  74. 74.
    Wu J, Pisula W, Müllen K. Chem Rev, 2007, 107: 718–747CrossRefPubMedGoogle Scholar
  75. 75.
    Lei T, Wang JY, Pei J. Chem Mater, 2014, 26: 594–603CrossRefGoogle Scholar
  76. 76.
    Sergeyev S, Pisula W, Geerts YH. Chem Soc Rev, 2007, 36: 1902CrossRefPubMedGoogle Scholar
  77. 77.
    Günes S, Neugebauer H, Sariciftci NS. Chem Rev, 2007, 107: 1324–1338CrossRefPubMedGoogle Scholar
  78. 78.
    Roy-Mayhew JD, Aksay IA. Chem Rev, 2014, 114: 6323–6348CrossRefPubMedGoogle Scholar
  79. 79.
    Feng X, Pisula W, Müllen K. Pure Appl Chem, 2009, 81: 2203–2224CrossRefGoogle Scholar
  80. 80.
    Rieger R, Müllen K. J Phys Org Chem, 2010, 23: 315–325Google Scholar
  81. 81.
    Sun Z, Ye Q, Chi C, Wu J. Chem Soc Rev, 2012, 41: 7857CrossRefPubMedGoogle Scholar
  82. 82.
    Grzybowski M, Skonieczny K, Butenschön H, Gryko DT. Angew Chem Int Ed, 2013, 52: 9900–9930CrossRefGoogle Scholar
  83. 83.
    Simpson CD, Brand JD, Berresheim AJ, Przybilla L, Räder HJ, Müllen K. Chem Eur J, 2002, 8: 1424–1429CrossRefPubMedGoogle Scholar
  84. 84.
    Kawasumi K, Zhang Q, Segawa Y, Scott LT, Itami K. Nat Chem, 2013, 5: 739–744CrossRefPubMedGoogle Scholar
  85. 85.
    Ormsby JL, Black TD, Hilton CL, Bharat CL, King BT. Tetrahedron, 2008, 64: 11370–11378CrossRefGoogle Scholar
  86. 86.
    Pradhan A, Dechambenoit P, Bock H, Durola F. J Org Chem, 2013, 78: 2266–2274CrossRefPubMedGoogle Scholar
  87. 87.
    Dou X, Yang X, Bodwell GJ, Wagner M, Enkelmann V, Müllen K. Org Lett, 2007, 9: 2485–2488CrossRefPubMedGoogle Scholar
  88. 88.
    Wentrup C. Angew Chem Int Ed, 2017, 56: 14808–14835CrossRefGoogle Scholar
  89. 89.
    Tsefrikas VM, Scott LT. Chem Rev, 2006, 106: 4868–4884CrossRefPubMedGoogle Scholar
  90. 90.
    Scott LT, Boorum MM, McMahon BJ, Hagen S, Mack J, Blank J, Wegner H, de Meijere A. Science, 2002, 295: 1500–1503CrossRefPubMedGoogle Scholar
  91. 91.
    Scott LT, Jackson EA, Zhang Q, Steinberg BD, Bancu M, Li B. J Am Chem Soc, 2012, 134: 107–110CrossRefPubMedGoogle Scholar
  92. 92.
    Mallory FB, Mallory CW. Org React, 2004, 30: 1Google Scholar
  93. 93.
    Laarhoven WH. Recl Trav Chim Pays-Bas, 1983, 102: 185–204CrossRefGoogle Scholar
  94. 94.
    Meier H. Angew Chem Int Ed Engl, 1992, 31: 1399–1420CrossRefGoogle Scholar
  95. 95.
    Xiao S, Myers M, Miao Q, Sanaur S, Pang K, Steigerwald ML, Nuckolls C. Angew Chem Int Ed, 2005, 44: 7390–7394CrossRefGoogle Scholar
  96. 96.
    Dössel L, Gherghel L, Feng X, Müllen K. Angew Chem Int Ed, 2011, 50: 2540–2543CrossRefGoogle Scholar
  97. 97.
    Daigle M, Picard-Lafond A, Soligo E, Morin JF. Angew Chem Int Ed, 2016, 55: 2042–2047CrossRefGoogle Scholar
  98. 98.
    Jackson EA, Steinberg BD, Bancu M, Wakamiya A, Scott LT. J Am Chem Soc, 2007, 129: 484–485CrossRefPubMedGoogle Scholar
  99. 99.
    Amsharov KY, Kabdulov MA, Jansen M. Angew Chem Int Ed, 2012, 51: 4594–4597CrossRefGoogle Scholar
  100. 100.
    Gross L, Mohn F, Moll N, Liljeroth P, Meyer G. Science, 2009, 325: 1110–1114CrossRefPubMedGoogle Scholar
  101. 101.
    Treier M, Pignedoli CA, Laino T, Rieger R, Müllen K, Passerone D, Fasel R. Nat Chem, 2010, 3: 61–67CrossRefPubMedGoogle Scholar
  102. 102.
    Fort EH, Donovan PM, Scott LT. J Am Chem Soc, 2009, 131: 16006–16007CrossRefPubMedGoogle Scholar
  103. 103.
    Clar E, Zander M. J Chem Soc, 1957, 4616Google Scholar
  104. 104.
    Fort EH, Scott LT. Angew Chem Int Ed, 2010, 49: 6626–6628CrossRefGoogle Scholar
  105. 105.
    Some S, Dutta B, Ray JK. Tetrahedron Lett, 2006, 47: 1221–1224CrossRefGoogle Scholar
  106. 106.
    Iuliano A, Piccioli P, Fabbri D. Org Lett, 2004, 6: 3711–3714CrossRefPubMedGoogle Scholar
  107. 107.
    Bonifacio MC, Robertson CR, Jung JY, King BT. J Org Chem, 2005, 70: 8522–8526CrossRefPubMedGoogle Scholar
  108. 108.
    Xia Y, Liu Z, Xiao Q, Qu P, Ge R, Zhang Y, Wang J. Angew Chem Int Ed, 2012, 51: 5714–5717CrossRefGoogle Scholar
  109. 109.
    Senese DA, Chalifoux AW. Molecules, 2018, 24Google Scholar
  110. 110.
    Yao T, Campo MA, Larock RC. Org Lett, 2004, 6: 2677–2680CrossRefPubMedGoogle Scholar
  111. 111.
    Goldfinger MB, Crawford KB, Swager TM. J Am Chem Soc, 1997, 119: 4578–4593CrossRefGoogle Scholar
  112. 112.
    Jin T, Zhao J, Asao N, Yamamoto Y. Chem Eur J, 2014, 20: 3554–3576CrossRefPubMedGoogle Scholar
  113. 113.
    Donovan PM, Scott LT. J Am Chem Soc, 2004, 126: 3108–3112CrossRefPubMedGoogle Scholar
  114. 114.
    Shen HC, Tang JM, Chang HK, Yang CW, Liu RS. J Org Chem, 2005, 70: 10113–10116CrossRefPubMedGoogle Scholar
  115. 115.
    Schuler B, Collazos S, Gross L, Meyer G, Pérez D, Guitián E, Peña D. Angew Chem Int Ed, 2014, 53: 9004–9006CrossRefGoogle Scholar
  116. 116.
    Rüdiger EC, Porz M, Schaffroth M, Rominger F, Bunz UHF. Chem Eur J, 2014, 20: 12725–12728CrossRefPubMedGoogle Scholar
  117. 117.
    Nagao I, Shimizu M, Hiyama T. Angew Chem Int Ed, 2009, 48: 7573–7576CrossRefGoogle Scholar
  118. 118.
    Yue W, Gao J, Li Y, Jiang W, Di Motta S, Negri F, Wang Z. J Am Chem Soc, 2011, 133: 18054–18057CrossRefPubMedGoogle Scholar
  119. 119.
    Dang H, Garcia-Garibay MA. J Am Chem Soc, 2001, 123: 355–356CrossRefPubMedGoogle Scholar
  120. 120.
    Dang H, Levitus M, Garcia-Garibay MA. J Am Chem Soc, 2002, 124: 136–143CrossRefPubMedGoogle Scholar
  121. 121.
    Lütke Eversloh C, Avlasevich Y, Li C, Müllen K. Chem Eur J, 2011, 17: 12756–12762CrossRefPubMedGoogle Scholar
  122. 122.
    Ozaki K, Kawasumi K, Shibata M, Ito H, Itami K. Nat Commun, 2015, 6: 6251CrossRefPubMedPubMedCentralGoogle Scholar
  123. 123.
    Kato K, Segawa Y, Itami K. Can J Chem, 2016, 95: 329–333CrossRefGoogle Scholar
  124. 124.
    Narita A, Feng X, Müllen K. Chem Record, 2015, 15: 295–309CrossRefGoogle Scholar
  125. 125.
    Hou ICY, Hu Y, Narita A, Müllen K. Polym J, 2018, 50: 3–20CrossRefGoogle Scholar
  126. 126.
    Yang X, Dou X, Rouhanipour A, Zhi L, Räder HJ, Müllen K. J Am Chem Soc, 2008, 130: 4216–4217CrossRefPubMedGoogle Scholar
  127. 127.
    Schwab MG, Narita A, Hernandez Y, Balandina T, Mali KS, De Feyter S, Feng X, Müllen K. J Am Chem Soc, 2012, 134: 18169–18172CrossRefPubMedGoogle Scholar
  128. 128.
    Wu J, Gherghel L, Watson MD, Li J, Wang Z, Simpson CD, Kolb U, Müllen K. Macromolecules, 2003, 36: 7082–7089CrossRefGoogle Scholar
  129. 129.
    Shifrina ZB, Averina MS, Rusanov AL, Wagner M, Müllen K. Macromolecules, 2000, 33: 3525–3529CrossRefGoogle Scholar
  130. 130.
    Narita A, Feng X, Hernandez Y, Jensen SA, Bonn M, Yang H, Verzhbitskiy IA, Casiraghi C, Hansen MR, Koch AHR, Fytas G, Ivasenko O, Li B, Mali KS, Balandina T, Mahesh S, De Feyter S, Müllen K. Nat Chem, 2013, 6: 126–132CrossRefPubMedGoogle Scholar
  131. 131.
    Konnerth R, Cervetti C, Narita A, Feng X, Müllen K, Hoyer A, Burghard M, Kern K, Dressel M, Bogani L. Nanoscale, 2015, 7: 12807–12811CrossRefPubMedGoogle Scholar
  132. 132.
    Soavi G, Dal Conte S, Manzoni C, Viola D, Narita A, Hu Y, Feng X, Hohenester U, Molinari E, Prezzi D, Müllen K, Cerullo G. Nat Commun, 2016, 7: 11010CrossRefPubMedPubMedCentralGoogle Scholar
  133. 133.
    Verzhbitskiy IA, Corato MD, Ruini A, Molinari E, Narita A, Hu Y, Schwab MG, Bruna M, Yoon D, Milana S, Feng X, Müllen K, Ferrari AC, Casiraghi C, Prezzi D. Nano Lett, 2016, 16: 3442–3447CrossRefPubMedPubMedCentralGoogle Scholar
  134. 134.
    Zhao S, Rondin L, Delport G, Voisin C, Beser U, Hu Y, Feng X, Müllen K, Narita A, Campidelli S, Lauret JS. Carbon, 2017, 119: 235–240CrossRefGoogle Scholar
  135. 135.
    El Gemayel M, Narita A, Dössel LF, Sundaram RS, Kiersnowski A, Pisula W, Hansen MR, Ferrari AC, Orgiu E, Feng X, Müllen K, Samori P. Nanoscale, 2014, 6: 6301–6314CrossRefPubMedGoogle Scholar
  136. 136.
    Abbas AN, Liu G, Narita A, Orosco M, Feng X, Müllen K, Zhou C. J Am Chem Soc, 2014, 136: 7555–7558CrossRefGoogle Scholar
  137. 137.
    Ivanov I, Hu Y, Osella S, Beser U, Wang HI, Beljonne D, Narita A, Müllen K, Turchinovich D, Bonn M. J Am Chem Soc, 2017, 139: 7982–7988CrossRefPubMedGoogle Scholar
  138. 138.
    Jensen SA, Ulbricht R, Narita A, Feng X, Müllen K, Hertel T, Turchinovich D, Bonn M. Nano Lett, 2013, 13: 5925–5930CrossRefPubMedGoogle Scholar
  139. 139.
    Huang Y, Mai Y, Beser U, Teyssandier J, Velpula G, van Gorp H, Straasø LA, Hansen MR, Rizzo D, Casiraghi C, Yang R, Zhang G, Wu D, Zhang F, Yan D, De Feyter S, Müllen K, Feng X. J Am Chem Soc, 2016, 138: 10136–10139CrossRefGoogle Scholar
  140. 140.
    Yang W, Lucotti A, Tommasini M, Chalifoux WA. J Am Chem Soc, 2016, 138: 9137–9144CrossRefGoogle Scholar
  141. 141.
    Schwab MG, Narita A, Osella S, Hu Y, Maghsoumi A, Mavrinsky A, Pisula W, Castiglioni C, Tommasini M, Beljonne D, Feng X, Müllen K. Chem Asian J, 2015, 10: 2134–2138CrossRefPubMedGoogle Scholar
  142. 142.
    Li G, Yoon KY, Zhong X, Wang J, Zhang R, Guest JR, Wen J, Zhu XY, Dong G. Nat Commun, 2018, 9: 1687CrossRefPubMedPubMedCentralGoogle Scholar
  143. 143.
    Li G, Yoon KY, Zhong X, Zhu X, Dong G. Chem Eur J, 2016, 22: 9116–9120CrossRefPubMedGoogle Scholar
  144. 144.
    Cai J, Ruffieux P, Jaafar R, Bieri M, Braun T, Blankenburg S, Muoth M, Seitsonen AP, Saleh M, Feng X, Müllen K, Fasel R. Nature, 2010, 466: 470–473CrossRefGoogle Scholar
  145. 145.
    Zhang H, Lin H, Sun K, Chen L, Zagranyarski Y, Aghdassi N, Duhm S, Li Q, Zhong D, Li Y, Müllen K, Fuchs H, Chi L. J Am Chem Soc, 2015, 137: 4022–4025CrossRefPubMedGoogle Scholar
  146. 146.
    Sun K, Ji P, Zhang H, Niu K, Li L, Chen A, Li Q, Müllen K, Chi L. Faraday Discuss, 2017, 204: 297–305CrossRefPubMedGoogle Scholar
  147. 147.
    Sun Q, Zhang C, Li Z, Kong H, Tan Q, Hu A, Xu W. J Am Chem Soc, 2013, 135: 8448–8451CrossRefPubMedGoogle Scholar
  148. 148.
    Chen Z, Zhang W, Palma CA, Lodi Rizzini A, Liu B, Abbas A, Richter N, Martini L, Wang XY, Cavani N, Lu H, Mishra N, Coletti C, Berger R, Klappenberger F, Kläui M, Candini A, Affronte M, Zhou C, de Renzi V, del Pennino U, Barth JV, Räder HJ, Narita A, Feng X, Müllen K. J Am Chem Soc, 2016, 138: 15488–15496CrossRefGoogle Scholar
  149. 149.
    Sakaguchi H, Kawagoe Y, Hirano Y, Iruka T, Yano M, Nakae T. Adv Mater, 2014, 26: 4134–4138CrossRefPubMedGoogle Scholar
  150. 150.
    Yang S, Lohe MR, Müllen K, Feng X. Adv Mater, 2016, 28: 6213–6221CrossRefGoogle Scholar
  151. 151.
    Lavin-Lopez MP, Valverde JL, Sanchez-Silva L, Romero A. Ind Eng Chem Res, 2016, 55: 845–855CrossRefGoogle Scholar
  152. 152.
    Gao H, Hu G. RSC Adv, 2016, 6: 10132–10143CrossRefGoogle Scholar
  153. 153.
    Yi M, Shen Z. J Mater Chem A, 2015, 3: 11700–11715CrossRefGoogle Scholar
  154. 154.
    Yazdi G, Iakimov T, Yakimova R. Crystals, 2016, 6: 53CrossRefGoogle Scholar
  155. 155.
    Wang H, Yu G. Adv Mater, 2016, 28: 4956–4975CrossRefPubMedGoogle Scholar
  156. 156.
    Li X, Colombo L, Ruoff RS. Adv Mater, 2016, 28: 6247–6252CrossRefPubMedGoogle Scholar
  157. 157.
    Chen X, Wu B, Liu Y. Chem Soc Rev, 2016, 45: 2057–2074CrossRefGoogle Scholar
  158. 158.
    Jiang L, Niu T, Lu X, Dong H, Chen W, Liu Y, Hu W, Zhu D. J Am Chem Soc, 2013, 135: 9050–9054CrossRefPubMedGoogle Scholar
  159. 159.
    Liang T, Kong Y, Chen H, Xu M. Chin J Chem, 2016, 34: 32–40CrossRefGoogle Scholar
  160. 160.
    Magda GZ, Jin X, Hagymási I, Vancsó P, Osváth Z, Nemes-Incze P, Hwang C, Biró LP, Tapasztó L. Nature, 2014, 514: 608–611CrossRefPubMedGoogle Scholar
  161. 161.
    Talirz L, Söde H, Dumslaff T, Wang S, Sanchez-Valencia JR, Liu J, Shinde P, Pignedoli CA, Liang L, Meunier V, Plumb NC, Shi M, Feng X, Narita A, Müllen K, Fasel R, Ruffieux P. ACS Nano, 2017, 11: 1380–1388CrossRefPubMedGoogle Scholar
  162. 162.
    Jordan RS, Li YL, Lin CW, McCurdy RD, Lin JB, Brosmer JL, Marsh KL, Khan SI, Houk KN, Kaner RB, Rubin Y. J Am Chem Soc, 2017, 139: 15878–15890CrossRefGoogle Scholar
  163. 163.
    Jänsch D, Ivanov I, Zagranyarski Y, Duznovic I, Baumgarten M, Turchinovich D, Li C, Bonn M, Müllen K. Chem Eur J, 2017, 23: 4870–4875CrossRefPubMedGoogle Scholar
  164. 164.
    Chen Z, Wang HI, Bilbao N, Teyssandier J, Prechtl T, Cavani N, Tries A, Biagi R, de Renzi V, Feng X, Kläui M, de Feyter S, Bonn M, Narita A, Müllen K. J Am Chem Soc, 2017, 139: 9483–9486CrossRefPubMedPubMedCentralGoogle Scholar
  165. 165.
    Jordan RS, Wang Y, McCurdy RD, Yeung MT, Marsh KL, Khan SI, Kaner RB, Rubin Y. Chem, 2016, 1: 78–90CrossRefGoogle Scholar
  166. 166.
    Kimouche A, Ervasti MM, Drost R, Halonen S, Harju A, Joensuu PM, Sainio J, Liljeroth P. Nat Commun, 2015, 6: 10177CrossRefPubMedPubMedCentralGoogle Scholar
  167. 167.
    Basagni A, Sedona F, Pignedoli CA, Cattelan M, Nicolas L, Casarin M, Sambi M. J Am Chem Soc, 2015, 137: 1802–1808CrossRefGoogle Scholar
  168. 168.
    Chen YC, de Oteyza DG, Pedramrazi Z, Chen C, Fischer FR, Crommie MF. ACS Nano, 2013, 7: 6123–6128CrossRefPubMedGoogle Scholar
  169. 169.
    Xu X, Zhang Z, Qiu L, Zhuang J, Zhang L, Wang H, Liao C, Song H, Qiao R, Gao P, Hu Z, Liao L, Liao Z, Yu D, Wang E, Ding F, Peng H, Liu K. Nat Nanotech, 2016, 11: 930–935CrossRefGoogle Scholar
  170. 170.
    Huang H, Wei D, Sun J, Wong SL, Feng YP, Neto AHC, Wee ATS. Sci Rep, 2012, 2: 983CrossRefPubMedPubMedCentralGoogle Scholar
  171. 171.
    Yang L, Park CH, Son YW, Cohen ML, Louie SG. Phys Rev Lett, 2007, 99: 186801CrossRefPubMedGoogle Scholar
  172. 172.
    Son YW, Cohen ML, Louie SG. Nature, 2006, 444: 347–349CrossRefPubMedGoogle Scholar
  173. 173.
    Ruffieux P, Wang S, Yang B, Sánchez-Sánchez C, Liu J, Dienel T, Talirz L, Shinde P, Pignedoli CA, Passerone D, Dumslaff T, Feng X, Müllen K, Fasel R. Nature, 2016, 531: 489–492CrossRefGoogle Scholar
  174. 174.
    Jia X, Campos-Delgado J, Terrones M, Meunier V, Dresselhaus MS. Nanoscale, 2011, 3: 86–95CrossRefPubMedGoogle Scholar
  175. 175.
    Girit CO, Meyer JC, Erni R, Rossell MD, Kisielowski C, Yang L, Park CH, Crommie MF, Cohen ML, Louie SG, Zettl A. Science, 2009, 323: 1705–1708CrossRefPubMedGoogle Scholar
  176. 176.
    Dumslaff T, Yang B, Maghsoumi A, Velpula G, Mali KS, Castiglioni C, de Feyter S, Tommasini M, Narita A, Feng X, Müllen K. J Am Chem Soc, 2016, 138: 4726–4729CrossRefPubMedGoogle Scholar
  177. 177.
    Gröning O, Wang S, Yao X, Pignedoli CA, Borin Barin G, Daniels C, Cupo A, Meunier V, Feng X, Narita A, Müllen K, Ruffieux P, Fasel R. Nature, 2018, 560: 209–213CrossRefPubMedGoogle Scholar
  178. 178.
    Rizzo DJ, Veber G, Cao T, Bronner C, Chen T, Zhao F, Rodriguez H, Louie SG, Crommie MF, Fischer FR. Nature, 2018, 560: 204–208CrossRefPubMedGoogle Scholar
  179. 179.
    Anthony JE. Angew Chem Int Ed, 2008, 47: 452–483CrossRefGoogle Scholar
  180. 180.
    Anthony JE, Brooks JS, Eaton DL, Parkin SR. J Am Chem Soc, 2001, 123: 9482–9483CrossRefPubMedGoogle Scholar
  181. 181.
    Dorel R, Echavarren AM. Eur J Org Chem, 2017, 2017(1): 14–24CrossRefGoogle Scholar
  182. 182.
    Herwig PT, Müllen K. Adv Mater, 1999, 11: 480–483CrossRefGoogle Scholar
  183. 183.
    Mondal R, Shah BK, Neckers DC. J Am Chem Soc, 2006, 128: 9612–9613CrossRefPubMedGoogle Scholar
  184. 184.
    Mondal R, Tonshoff C, Khon D, Neckers DC, Bettinger HF. J Am Chem Soc, 2009, 131: 14281–14289CrossRefPubMedGoogle Scholar
  185. 185.
    Tönshoff C, Bettinger HF. Angew Chem Int Ed, 2010, 49: 4125–4128CrossRefGoogle Scholar
  186. 186.
    Krüger J, Garcia F, Eisenhut F, Skidin D, Alonso JM, Guitián E, Pérez D, Cuniberti G, Moresco F, Peña D. Angew Chem Int Ed, 2017, 56: 11945–11948CrossRefGoogle Scholar
  187. 187.
    Zuzak R, Dorel R, Kolmer M, Szymonski M, Godlewski S, Echavarren AM. Angew Chem Int Ed, 2018, 57: 10500–10505CrossRefGoogle Scholar
  188. 188.
    Scholl R, Mansfeld J. Ber Dtsch Chem Ges, 1910, 43: 1734–1746CrossRefGoogle Scholar
  189. 189.
    Scholl R, Seer C, Weitzenböck R. Ber Dtsch Chem Ges, 1910, 43: 2202–2209CrossRefGoogle Scholar
  190. 190.
    Clar E. Chem Ber, 1948, 81: 52–63CrossRefGoogle Scholar
  191. 191.
    Clar E. Chem Ber, 1949, 82: 46–60CrossRefGoogle Scholar
  192. 192.
    Ajayakumar MR, Fu Y, Ma J, Hennersdorf F, Komber H, Weigand JJ, Alfonsov A, Popov AA, Berger R, Liu J, Müllen K, Feng X. J Am Chem Soc, 2018, 140: 6240–6244CrossRefPubMedGoogle Scholar
  193. 193.
    Ni Y, Gopalakrishna TY, Phan H, Herng TS, Wu S, Han Y, Ding J, Wu J. Angew Chem Int Ed, 2018, 57: 9697–9701CrossRefGoogle Scholar
  194. 194.
    Rogers C, Chen C, Pedramrazi Z, Omrani AA, Tsai HZ, Jung HS, Lin S, Crommie MF, Fischer FR. Angew Chem Int Ed, 2015, 54: 15143–15146CrossRefGoogle Scholar
  195. 195.
    Zeng W, Qi Q, Wu J. Eur J Org Chem, 2017, 2018: 7CrossRefGoogle Scholar
  196. 196.
    Zeng W, Phan H, Herng TS, Gopalakrishna TY, Aratani N, Zeng Z, Yamada H, Ding J, Wu J. Chem, 2017, 2: 81–92CrossRefGoogle Scholar
  197. 197.
    Konishi A, Hirao Y, Matsumoto K, Kurata H, Kishi R, Shigeta Y, Nakano M, Tokunaga K, Kamada K, Kubo T. J Am Chem Soc, 2013, 135: 1430–1437CrossRefPubMedGoogle Scholar
  198. 198.
    Konishi A, Hirao Y, Nakano M, Shimizu A, Botek E, Champagne B, Shiomi D, Sato K, Takui T, Matsumoto K, Kurata H, Kubo T. J Am Chem Soc, 2010, 132: 11021–11023CrossRefPubMedGoogle Scholar
  199. 199.
    Wang S, Talirz L, Pignedoli CA, Feng X, Müllen K, Fasel R, Ruffieux P. Nat Commun, 2016, 7: 11507CrossRefPubMedPubMedCentralGoogle Scholar
  200. 200.
    Talirz L, Söde H, Cai J, Ruffieux P, Blankenburg S, Jafaar R, Berger R, Feng X, Müllen K, Passerone D, Fasel R, Pignedoli CA. J Am Chem Soc, 2013, 135: 2060–2063CrossRefPubMedGoogle Scholar
  201. 201.
    Paternò GM, Chen Q, Wang XY, Liu J, Motti SG, Petrozza A, Feng X, Lanzani G, Müllen K, Narita A, Scotognella F. Angew Chem Int Ed, 2017, 56: 6753–6757CrossRefGoogle Scholar
  202. 202.
    Bellunato A, Arjmandi Tash H, Cesa Y, Schneider GF. Chem-Phys Chem, 2016, 17: 785–801CrossRefPubMedGoogle Scholar
  203. 203.
    Suenaga K, Koshino M. Nature, 2010, 468: 1088–1090CrossRefPubMedGoogle Scholar
  204. 204.
    Zhang X, Xin J, Ding F. Nanoscale, 2013, 5: 2556–2569CrossRefPubMedGoogle Scholar
  205. 205.
    Clar E, Stephen JF. Tetrahedron, 1965, 21: 467–470CrossRefGoogle Scholar
  206. 206.
    Ball M, Zhong Y, Wu Y, Schenck C, Ng F, Steigerwald M, Xiao S, Nuckolls C. Acc Chem Res, 2015, 48: 267–276CrossRefPubMedGoogle Scholar
  207. 207.
    Liu J, Li BW, Tan YZ, Giannakopoulos A, Sanchez-Sanchez C, Beljonne D, Ruffieux P, Fasel R, Feng X, Müllen K. J Am Chem Soc, 2015, 137: 6097–6103CrossRefPubMedPubMedCentralGoogle Scholar
  208. 208.
    Pradhan A, Dechambenoit P, Bock H, Durola F. Angew Chem Int Ed, 2011, 50: 12582–12585CrossRefGoogle Scholar
  209. 209.
    Luo J, Xu X, Mao R, Miao Q. J Am Chem Soc, 2012, 134: 13796–13803CrossRefPubMedGoogle Scholar
  210. 210.
    Li C, Yang Y, Miao Q. Chem Asian J, 2018, 13: 884–894CrossRefPubMedGoogle Scholar
  211. 211.
    Lin WB, Li M, Fang L, Chen CF. Chin Chem Lett, 2018, 29: 40–46CrossRefGoogle Scholar
  212. 212.
    Berezhnaia V, Roy M, Vanthuyne N, Villa M, Naubron JV, Rodriguez J, Coquerel Y, Gingras M. J Am Chem Soc, 2017, 139: 18508–18511CrossRefPubMedGoogle Scholar
  213. 213.
    Hosokawa T, Takahashi Y, Matsushima T, Watanabe S, Kikkawa S, Azumaya I, Tsurusaki A, Kamikawa K. J Am Chem Soc, 2017, 139: 18512–18521CrossRefPubMedGoogle Scholar
  214. 214.
    Fujikawa T, Segawa Y, Itami K. J Am Chem Soc, 2015, 137: 7763–7768CrossRefPubMedGoogle Scholar
  215. 215.
    Zhu Y, Xia Z, Cai Z, Yuan Z, Jiang N, Li T, Wang Y, Guo X, Li Z, Ma S, Zhong D, Li Y, Wang J. J Am Chem Soc, 2018, 140: 4222–4226CrossRefPubMedGoogle Scholar
  216. 216.
    Wang Y, Yin Z, Zhu Y, Gu J, Li Y, Wang J. Angew Chem Int Ed, 2019, 58: 587–591CrossRefGoogle Scholar
  217. 217.
    Schuster NJ, Paley DW, Jockusch S, Ng F, Steigerwald ML, Nuckolls C. Angew Chem Int Ed, 2016, 55: 13519–13523CrossRefGoogle Scholar
  218. 218.
    Evans PJ, Ouyang J, Favereau L, Crassous J, Fernández I, Perles J, Martin N. Angew Chem Int Ed, 2018, 57: 6774–6779CrossRefGoogle Scholar
  219. 219.
    Nakakuki Y, Hirose T, Sotome H, Miyasaka H, Matsuda K. J Am Chem Soc, 2018, 140: 4317–4326CrossRefPubMedGoogle Scholar
  220. 220.
    Daigle M, Miao D, Lucotti A, Tommasini M, Morin JF. Angew Chem Int Ed, 2017, 56: 6213–6217CrossRefGoogle Scholar
  221. 221.
    Georgakilas V, Otyepka M, Bourlinos AB, Chandra V, Kim N, Kemp KC, Hobza P, Zboril R, Kim KS. Chem Rev, 2012, 112: 6156–6214CrossRefGoogle Scholar
  222. 222.
    Englert JM, Dotzer C, Yang G, Schmid M, Papp C, Gottfried JM, Steinrück HP, Spiecker E, Hauke F, Hirsch A. Nat Chem, 2011, 3: 279–286CrossRefPubMedGoogle Scholar
  223. 223.
    Chua CK, Pumera M. Chem Soc Rev, 2013, 42: 3222CrossRefPubMedGoogle Scholar
  224. 224.
    Eigler S, Hirsch A. Angew Chem Int Ed, 2014, 53: 7720–7738CrossRefGoogle Scholar
  225. 225.
    Chen D, Feng H, Li J. Chem Rev, 2012, 112: 6027–6053CrossRefGoogle Scholar
  226. 226.
    Fogel Y, Kastler M, Wang Z, Andrienko D, Bodwell GJ, Müllen K. J Am Chem Soc, 2007, 129: 11743–11749CrossRefPubMedGoogle Scholar
  227. 227.
    Zhou C, Chen S, Lou J, Wang J, Yang Q, Liu C, Huang D, Zhu T. Nanoscale Res Lett, 2014, 9: 26CrossRefPubMedPubMedCentralGoogle Scholar
  228. 228.
    Pumera M, Wong CHA. Chem Soc Rev, 2013, 42: 5987CrossRefPubMedGoogle Scholar
  229. 229.
    Feng W, Long P, Feng Y, Li Y. Adv Sci, 2016, 3: 1500413CrossRefGoogle Scholar
  230. 230.
    Karlický F, Kumara Ramanatha Datta K, Otyepka M, Zboril R. ACS Nano, 2013, 7: 6434–6464CrossRefPubMedGoogle Scholar
  231. 231.
    Elias DC, Nair RR, Mohiuddin TMG, Morozov SV, Blake P, Halsall MP, Ferrari AC, Boukhvalov DW, Katsnelson MI, Geim AK, Novoselov KS. Science, 2009, 323: 610–613CrossRefPubMedGoogle Scholar
  232. 232.
    Savchenko A. Science, 2009, 323: 589–590CrossRefPubMedGoogle Scholar
  233. 233.
    Yang Z, Sun Y, Alemany LB, Narayanan TN, Billups WE. J Am Chem Soc, 2012, 134: 18689–18694CrossRefPubMedGoogle Scholar
  234. 234.
    Watson MD, Debije MG, Warman JM, Müllen K. J Am Chem Soc, 2004, 126: 766–771CrossRefPubMedGoogle Scholar
  235. 235.
    Li B, Zhou L, Wu D, Peng H, Yan K, Zhou Y, Liu Z. ACS Nano, 2011, 5: 5957–5961CrossRefPubMedGoogle Scholar
  236. 236.
    Wu J, Xie L, Li Y, Wang H, Ouyang Y, Guo J, Dai H. J Am Chem Soc, 2011, 133: 19668–19671CrossRefPubMedGoogle Scholar
  237. 237.
    Liu YM, Hou H, Zhou YZ, Zhao XJ, Tang C, Tan YZ, Müllen K. Nat Commun, 2018, 9: 1901CrossRefPubMedPubMedCentralGoogle Scholar
  238. 238.
    Tan YZ, Osella S, Liu Y, Yang B, Beljonne D, Feng X, Müllen K. Angew Chem Int Ed, 2015, 54: 2927–2931CrossRefGoogle Scholar
  239. 239.
    Cao J, Liu YM, Jing X, Yin J, Li J, Xu B, Tan YZ, Zheng N. J Am Chem Soc, 2015, 137: 10914–10917CrossRefGoogle Scholar
  240. 240.
    Wu ZS, Tan YZ, Zheng S, Wang S, Parvez K, Qin J, Shi X, Sun C, Bao X, Feng X, Müllen K. J Am Chem Soc, 2017, 139: 4506–4512CrossRefPubMedGoogle Scholar
  241. 241.
    Dong R, Pfeffermann M, Skidin D, Wang F, Fu Y, Narita A, Tommasini M, Moresco F, Cuniberti G, Berger R, Müllen K, Feng X. J Am Chem Soc, 2017, 139: 2168–2171CrossRefGoogle Scholar
  242. 242.
    Keerthi A, Radha B, Rizzo D, Lu H, Diez Cabanes V, Hou ICY, Beljonne D, Cornil J, Casiraghi C, Baumgarten M, Müllen K, Narita A. J Am Chem Soc, 2017, 139: 16454–16457CrossRefPubMedPubMedCentralGoogle Scholar
  243. 243.
    Dössel LF, Kamm V, Howard IA, Laquai F, Pisula W, Feng X, Li C, Takase M, Kudernac T, de Feyter S, Müllen K. J Am Chem Soc, 2012, 134: 5876–5886CrossRefPubMedGoogle Scholar
  244. 244.
    Slota M, Keerthi A, Myers WK, Tretyakov E, Baumgarten M, Ardavan A, Sadeghi H, Lambert CJ, Narita A, Müllen K, Bogani L. Nature, 2018, 557: 691–695CrossRefPubMedGoogle Scholar
  245. 245.
    Pesin D, MacDonald AH. Nat Mater, 2012, 11: 409–416CrossRefPubMedGoogle Scholar
  246. 246.
    Rogers C, Perkins WS, Veber G, Williams TE, Cloke RR, Fischer FR. J Am Chem Soc, 2017, 139: 4052–4061CrossRefPubMedGoogle Scholar
  247. 247.
    Joshi D, Hauser M, Veber G, Berl A, Xu K, Fischer FR. J Am Chem Soc, 2018, 140: 9574–9580CrossRefPubMedGoogle Scholar
  248. 248.
    González-Herrero H, Gómez-Rodríguez JM, Mallet P, Moaied M, Palacios JJ, Salgado C, Ugeda MM, Veuillen JY, Yndurain F, Brihuega I. Science, 2016, 352: 437–441CrossRefPubMedGoogle Scholar
  249. 249.
    Araujo PT, Terrones M, Dresselhaus MS. Mater Today, 2012, 15: 98–109CrossRefGoogle Scholar
  250. 250.
    Banhart F, Kotakoski J, Krasheninnikov AV. ACS Nano, 2011, 5: 26–41CrossRefPubMedGoogle Scholar
  251. 251.
    Liu L, Qing M, Wang Y, Chen S. J Mater Sci Tech, 2015, 31: 599–606CrossRefGoogle Scholar
  252. 252.
    Jing N, Xue Q, Ling C, Shan M, Zhang T, Zhou X, Jiao Z. RSC Adv, 2012, 2: 9124CrossRefGoogle Scholar
  253. 253.
    Mortazavi B, Ahzi S. Carbon, 2013, 63: 460–470CrossRefGoogle Scholar
  254. 254.
    Hashimoto A, Suenaga K, Gloter A, Urita K, Iijima S. Nature, 2004, 430: 870–873CrossRefPubMedGoogle Scholar
  255. 255.
    Stone AJ, Wales DJ. Chem Phys Lett, 1986, 128: 501–503CrossRefGoogle Scholar
  256. 256.
    Thrower PA. Chem Phys Carbon, 1969, 5: 217–319Google Scholar
  257. 257.
    Huang PY, Ruiz-Vargas CS, van der Zande AM, Whitney WS, Levendorf MP, Kevek JW, Garg S, Alden JS, Hustedt CJ, Zhu Y, Park J, McEuen PL, Muller DA. Nature, 2011, 469: 389–392CrossRefPubMedGoogle Scholar
  258. 258.
    Yazyev OV, Louie SG. Phys Rev B, 2010, 81: 195420CrossRefGoogle Scholar
  259. 259.
    Lahiri J, Lin Y, Bozkurt P, Oleynik II, Batzill M. Nat Nanotech, 2010, 5: 326–329CrossRefGoogle Scholar
  260. 260.
    Yazyev OV, Louie SG. Nat Mater, 2010, 9: 806–809CrossRefPubMedGoogle Scholar
  261. 261.
    Singh R, Kroll P. J Phys: Condens Matter, 2009, 21: 196002Google Scholar
  262. 262.
    Ma Y, Lehtinen PO, Foster AS, Nieminen RM. New J Phys, 2004, 6: 68CrossRefGoogle Scholar
  263. 263.
    Valencia AM, Caldas MJ. Phys Rev B, 2017, 96: 125431CrossRefGoogle Scholar
  264. 264.
    Kotakoski J, Meyer JC, Kurasch S, Santos-Cottin D, Kaiser U, Krasheninnikov AV. Phys Rev B, 2011, 83: 245420CrossRefGoogle Scholar
  265. 265.
    Meyer JC, Kisielowski C, Erni R, Rossell MD, Crommie MF, Zettl A. Nano Lett, 2008, 8: 3582–3586CrossRefPubMedGoogle Scholar
  266. 266.
    Robertson AW, Allen CS, Wu YA, He K, Olivier J, Neethling J, Kirkland AI, Warner JH. Nat Commun, 2012, 3: 1144CrossRefPubMedGoogle Scholar
  267. 267.
    Tang M, Colombo L, Zhu J, Diaz de La Rubia T. Phys Rev B, 1997, 55: 14279–14289CrossRefGoogle Scholar
  268. 268.
    Lusk MT, Carr LD. Phys Rev Lett, 2008, 100: 175503CrossRefPubMedGoogle Scholar
  269. 269.
    Lusk MT, Wu DT, Carr LD. Phys Rev B, 2010, 81: 155444CrossRefGoogle Scholar
  270. 270.
    Anderson AG, Daugs ED, Kao LG, Wang JF. J Org Chem, 1986, 51: 2961–2965CrossRefGoogle Scholar
  271. 271.
    Vogel E, Markowitz G, Schmalstieg L, Itô S, Breuckmann R, Roth WR. Angew Chem Int Ed, 1984, 23: 719–720CrossRefGoogle Scholar
  272. 272.
    Becker BC, Huber W, Schnieders C, Müllen K. Chem Ber, 1983, 14: noGoogle Scholar
  273. 273.
    Nestoros E, Stuparu MC. Chem Commun, 2018, 54: 6503–6519CrossRefGoogle Scholar
  274. 274.
    Zhu J, Huang Y, Mei W, Zhao C, Zhang C, Zhang J, Amiinu IS, Mu S. Angew Chem Int Ed, 2019, 58: 3859–3864CrossRefGoogle Scholar
  275. 275.
    Liu J, Osella S, Ma J, Berger R, Beljonne D, Schollmeyer D, Feng X, Müllen K. J Am Chem Soc, 2016, 138: 8364–8367CrossRefPubMedGoogle Scholar
  276. 276.
    Mishra S, Lohr TG, Pignedoli CA, Liu J, Berger R, Urgel JI, Müllen K, Feng X, Ruffieux P, Fasel R. ACS Nano, 2018, 12: 11917–11927CrossRefPubMedGoogle Scholar
  277. 277.
    Yamamoto K, Harada T, Nakazaki M, Naka T, Kai Y, Harada S, Kasai N. J Am Chem Soc, 1983, 105: 7171–7172CrossRefGoogle Scholar
  278. 278.
    Yamamoto K, Saitho Y, Iwaki D, Ooka T. Angew Chem Int Ed Engl, 1991, 30: 1173–1174CrossRefGoogle Scholar
  279. 279.
    Cheung KY, Xu X, Miao Q. J Am Chem Soc, 2015, 137: 3910–3914CrossRefPubMedGoogle Scholar
  280. 280.
    Pun SH, Chan CK, Luo J, Liu Z, Miao Q. Angew Chem Int Ed, 2017, 57: 1581–1586CrossRefGoogle Scholar
  281. 281.
    Fernández-García JM, Evans PJ, Medina Rivero S, Fernández I, García-Fresnadillo D, Perles J, Casado J, Martin N. J Am Chem Soc, 2018, 140: 17188–17196CrossRefPubMedGoogle Scholar
  282. 282.
    Feng C-N, Kuo M-Y, Wu Y-T. Angew Chem Int Ed, 2013, 52: 7791–7794CrossRefGoogle Scholar
  283. 283.
    Sakamoto Y, Suzuki T. J Am Chem Soc, 2013, 135: 14074–14077CrossRefPubMedGoogle Scholar
  284. 284.
    Miller RW, Duncan AK, Schneebeli ST, Gray DL, Whalley AC. Chem Eur J, 2014, 20: 3705–3711CrossRefPubMedGoogle Scholar
  285. 285.
    Cheung KY, Chan CK, Liu Z, Miao Q. Angew Chem Int Ed, 2017, 56: 9003–9007CrossRefGoogle Scholar
  286. 286.
    Tang C, Wang HF, Chen X, Li BQ, Hou TZ, Zhang B, Zhang Q, Titirici MM, Wei F. Adv Mater, 2016, 28: 6845–6851CrossRefPubMedGoogle Scholar
  287. 287.
    Yan X, Jia Y, Yao X. Chem Soc Rev, 2018, 47: 7628–7658CrossRefPubMedGoogle Scholar
  288. 288.
    Liu M, Liu M, She L, Zha Z, Pan J, Li S, Li T, He Y, Cai Z, Wang J, Zheng Y, Qiu X, Zhong D. Nat Commun, 2017, 8: 14924CrossRefPubMedPubMedCentralGoogle Scholar
  289. 289.
    Lin Y, Liao Y, Chen Z, Connell JW. Mater Res Lett, 2017, 5: 209–234CrossRefGoogle Scholar
  290. 290.
    Yang J, Ma M, Li L, Zhang Y, Huang W, Dong X. Nanoscale, 2014, 6: 13301–13313CrossRefPubMedGoogle Scholar
  291. 291.
    Bai J, Zhong X, Jiang S, Huang Y, Duan X. Nat Nanotech, 2010, 5: 190–194CrossRefGoogle Scholar
  292. 292.
    Liang X, Jung YS, Wu S, Ismach A, Olynick DL, Cabrini S, Bokor J. Nano Lett, 2010, 10: 2454–2460CrossRefPubMedGoogle Scholar
  293. 293.
    Beser U, Kastler M, Maghsoumi A, Wagner M, Castiglioni C, Tommasini M, Narita A, Feng X, Müllen K. J Am Chem Soc, 2016, 138: 4322–4325CrossRefPubMedGoogle Scholar
  294. 294.
    Bieri M, Treier M, Cai J, Aït-Mansour K, Ruffieux P, Gröning O, Gröning P, Kastler M, Rieger R, Feng X, Müllen K, Fasel R. Chem Commun, 2009, 58: 6919CrossRefGoogle Scholar
  295. 295.
    Moreno C, Vilas-Varela M, Kretz B, Garcia-Lekue A, Costache MV, Paradinas M, Panighel M, Ceballos G, Valenzuela SO, Peña D, Mugarza A. Science, 2018, 360: 199–203CrossRefPubMedGoogle Scholar
  296. 296.
    Merino-Díez N, Garcia-Lekue A, Carbonell-Sanromà E, Li J, Corso M, Colazzo L, Sedona F, Sánchez-Portal D, Pascual JI, de Oteyza DG. ACS Nano, 2017, 11: 11661–11668CrossRefPubMedPubMedCentralGoogle Scholar
  297. 297.
    Kawai S, Saito S, Osumi S, Yamaguchi S, Foster AS, Spijker P, Meyer E. Nat Commun, 2015, 6: 8098CrossRefPubMedPubMedCentralGoogle Scholar
  298. 298.
    Wang X, Sun G, Routh P, Kim DH, Huang W, Chen P. Chem Soc Rev, 2014, 43: 7067–7098CrossRefPubMedGoogle Scholar
  299. 299.
    Wang H, Maiyalagan T, Wang X. ACS Catal, 2012, 2: 781–794CrossRefGoogle Scholar
  300. 300.
    Xu H, Ma L, Jin Z. J Energy Chem, 2018, 27: 146–160CrossRefGoogle Scholar
  301. 301.
    Liang HW, Zhuang X, Brüller S, Feng X, Müllen K. Nat Commun, 2014, 5: 4973CrossRefGoogle Scholar
  302. 302.
    Zhang J, Chen G, Müllen K, Feng X. Adv Mater, 2018, 30: 1800528CrossRefGoogle Scholar
  303. 303.
    Hu C, Dai L. Adv Mater, 2019, 31: 1804672CrossRefGoogle Scholar
  304. 304.
    Yang L, Shui J, Du L, Shao Y, Liu J, Dai L, Hu Z. Adv Mater, 2019, 31: 1804799CrossRefGoogle Scholar
  305. 305.
    Draper SM, Gregg DJ, Madathil R. J Am Chem Soc, 2002, 124: 3486–3487CrossRefPubMedGoogle Scholar
  306. 306.
    Draper SM, Gregg DJ, Schofield ER, Browne WR, Duati M, Vos JG, Passaniti P. J Am Chem Soc, 2004, 126: 8694–8701CrossRefPubMedGoogle Scholar
  307. 307.
    Wijesinghe LP, Lankage BS, Maille GMÓ, Perera SD, Nolan D, Wang L, Draper SM. Chem Commun, 2014, 50: 10637–10640CrossRefGoogle Scholar
  308. 308.
    Bronner C, Stremlau S, Gille M, Brauße F, Haase A, Hecht S, Tegeder P. Angew Chem Int Ed, 2013, 52: 4422–4425CrossRefGoogle Scholar
  309. 309.
    Zhang Y, Zhang Y, Li G, Lu J, Lin X, Du S, Berger R, Feng X, Müllen K, Gao HJ. Appl Phys Lett, 2014, 105: 023101CrossRefGoogle Scholar
  310. 310.
    Cai J, Pignedoli CA, Talirz L, Ruffieux P, Söde H, Liang L, Meunier V, Berger R, Li R, Feng X, Müllen K, Fasel R. Nat Nanotech, 2014, 9: 896–900CrossRefGoogle Scholar
  311. 311.
    Li Q, Zhang S, Dai L, Li L. J Am Chem Soc, 2012, 134: 18932–18935CrossRefPubMedGoogle Scholar
  312. 312.
    Noffke BW, Li Q, Raghavachari K, Li LS. J Am Chem Soc, 2016, 138: 13923–13929CrossRefPubMedGoogle Scholar
  313. 313.
    Wang XY, Richter M, He Y, Björk J, Riss A, Rajesh R, Garnica M, Hennersdorf F, Weigand JJ, Narita A, Berger R, Feng X, Auwärter W, Barth JV, Palma CA, Müllen K. Nat Commun, 2017, 8: 1948CrossRefPubMedPubMedCentralGoogle Scholar
  314. 314.
    Berger R, Giannakopoulos A, Ravat P, Wagner M, Beljonne D, Feng X, Müllen K. Angew Chem Int Ed, 2014, 53: 10520–10524CrossRefGoogle Scholar
  315. 315.
    Berger R, Wagner M, Feng X, Müllen K. Chem Sci, 2015, 6: 436–441CrossRefPubMedGoogle Scholar
  316. 316.
    Zhang L, Xia Z. J Phys Chem C, 2011, 115: 11170–11176CrossRefGoogle Scholar
  317. 317.
    Guo D, Shibuya R, Akiba C, Saji S, Kondo T, Nakamura J. Science, 2016, 351: 361–365CrossRefGoogle Scholar
  318. 318.
    Singh SK, Takeyasu K, Nakamura J. Adv Mater, 2019, 31: 1804297CrossRefGoogle Scholar
  319. 319.
    Wang T, Chen ZX, Chen YG, Yang LJ, Yang XD, Ye JY, Xia HP, Zhou ZY, Sun SG. ACS Energy Lett, 2018, 3: 986–991CrossRefGoogle Scholar
  320. 320.
    Takase M, Enkelmann V, Sebastiani D, Baumgarten M, Müllen K. Angew Chem Int Ed, 2007, 46: 5524–5527CrossRefGoogle Scholar
  321. 321.
    Lazerges M, Jouini M, Hapiot P, Guiriec P, Lacaze PC. J Phys Chem A, 2003, 107: 5042–5048CrossRefGoogle Scholar
  322. 322.
    Takase M, Narita T, Fujita W, Asano MS, Nishinaga T, Benten H, Yoza K, Müllen K. J Am Chem Soc, 2013, 135: 8031–8040CrossRefGoogle Scholar
  323. 323.
    Oki K, Takase M, Mori S, Shiotari A, Sugimoto Y, Ohara K, Okujima T, Uno H. J Am Chem Soc, 2018, 140: 10430–10434CrossRefPubMedGoogle Scholar
  324. 324.
    Żyla-Karwowska M, Zhylitskaya H, Cybińska J, Lis T, Chmielewski PJ, Stepieh M. Angew Chem Int Ed, 2016, 55: 14658–14662CrossRefGoogle Scholar
  325. 325.
    Gońka E, Chmielewski PJ, Lis T, Stępień M. J Am Chem Soc, 2014, 136: 16399–16410CrossRefPubMedGoogle Scholar
  326. 326.
    Żyla M, Gońka E, Chmielewski PJ, Cybińska J, Stępień M. Chem Sci, 2016, 7: 286–294CrossRefPubMedGoogle Scholar
  327. 327.
    Yokoi H, Hiraoka Y, Hiroto S, Sakamaki D, Seki S, Shinokubo H. Nat Commun, 2015, 6: 8215CrossRefPubMedPubMedCentralGoogle Scholar
  328. 328.
    Ito S, Tokimaru Y, Nozaki K. Angew Chem Int Ed, 2015, 54: 7256–7260CrossRefGoogle Scholar
  329. 329.
    Tokimaru Y, Ito S, Nozaki K. Angew Chem Int Ed, 2018, 57: 9818–9822CrossRefGoogle Scholar
  330. 330.
    Mishra S, Krzeszewski M, Pignedoli CA, Ruffieux P, Fasel R, Gryko DT. Nat Commun, 2018, 9: 1714CrossRefPubMedPubMedCentralGoogle Scholar
  331. 331.
    Ito Y, Christodoulou C, Nardi MV, Koch N, Kläui M, Sachdev H, Müllen K. J Am Chem Soc, 2015, 137: 7678–7685CrossRefPubMedGoogle Scholar
  332. 332.
    Błoński P, Tuček J, Sofer Z, Mazánek V, Petr M, Pumera M, Otyepka M, Zbořil R. J Am Chem Soc, 2017, 139: 3171–3180CrossRefPubMedPubMedCentralGoogle Scholar
  333. 333.
    Agnoli S, Favaro M. J Mater Chem A, 2016, 4: 5002–5025CrossRefGoogle Scholar
  334. 334.
    Tang YB, Yin LC, Yang Y, Bo XH, Cao YL, Wang HE, Zhang WJ, Bello I, Lee ST, Cheng HM, Lee CS. ACS Nano, 2012, 6: 1970–1978CrossRefPubMedGoogle Scholar
  335. 335.
    Wu ZS, Ren W, Xu L, Li F, Cheng HM. ACS Nano, 2011, 5: 5463–5471CrossRefPubMedGoogle Scholar
  336. 336.
    Han J, Zhang LL, Lee S, Oh J, Lee KS, Potts JR, Ji J, Zhao X, Ruoff RS, Park S. ACS Nano, 2013, 7: 19–26CrossRefPubMedGoogle Scholar
  337. 337.
    Lv R, Chen G, Li Q, McCreary A, Botello-Méndez A, Morozov SV, Liang L, Declerck X, Perea-López N, Cullen DA, Feng S, Elias AL, Cruz-Silva R, Fujisawa K, Endo M, Kang F, Charlier JC, Meunier V, Pan M, Harutyunyan AR, Novoselov KS, Terrones M. Proc Natl Acad Sci USA, 2015, 112: 14527–14532CrossRefPubMedGoogle Scholar
  338. 338.
    Yu X, Han P, Wei Z, Huang L, Gu Z, Peng S, Ma J, Zheng G. Joule, 2018, 2: 1610–1622CrossRefGoogle Scholar
  339. 339.
    Jiao Y, Zheng Y, Jaroniec M, Qiao SZ. J Am Chem Soc, 2014, 136: 4394–4403CrossRefPubMedPubMedCentralGoogle Scholar
  340. 340.
    Dou C, Saito S, Matsuo K, Hisaki I, Yamaguchi S. Angew Chem Int Ed, 2012, 51: 12206–12210CrossRefGoogle Scholar
  341. 341.
    Osumi S, Saito S, Dou C, Matsuo K, Kume K, Yoshikawa H, Awaga K, Yamaguchi S. Chem Sci, 2016, 7: 219–227CrossRefPubMedGoogle Scholar
  342. 342.
    Cloke RR, Marangoni T, Nguyen GD, Joshi T, Rizzo DJ, Bronner C, Cao T, Louie SG, Crommie MF, Fischer FR. J Am Chem Soc, 2015, 137: 8872–8875CrossRefPubMedGoogle Scholar
  343. 343.
    Wang S, Zhang L, Xia Z, Roy A, Chang DW, Baek JB, Dai L. Angew Chem Int Ed, 2012, 51: 4209–4212CrossRefGoogle Scholar
  344. 344.
    Ci L, Song L, Jin C, Jariwala D, Wu D, Li Y, Srivastava A, Wang ZF, Storr K, Balicas L, Liu F, Ajayan PM. Nat Mater, 2010, 9: 430–435CrossRefPubMedGoogle Scholar
  345. 345.
    Wang XY, Wang JY, Pei J. Chem Eur J, 2014, 21: 3528–3539CrossRefPubMedGoogle Scholar
  346. 346.
    Wang XY, Zhuang FD, Wang RB, Wang XC, Cao XY, Wang JY, Pei J. J Am Chem Soc, 2014, 136: 3764–3767CrossRefPubMedGoogle Scholar
  347. 347.
    Zhong Z, Wang XY, Zhuang FD, Ai N, Wang J, Wang JY, Pei J, Peng J, Cao Y. J Mater Chem A, 2016, 4: 15420–15425CrossRefGoogle Scholar
  348. 348.
    Matsui K, Oda S, Yoshiura K, Nakajima K, Yasuda N, Hatakeyama T. J Am Chem Soc, 2018, 140: 1195–1198CrossRefPubMedGoogle Scholar
  349. 349.
    Nakatsuka S, Yasuda N, Hatakeyama T. J Am Chem Soc, 2018, 140: 13562–13565CrossRefPubMedGoogle Scholar
  350. 350.
    Kawai S, Nakatsuka S, Hatakeyama T, Pawlak R, Meier T, Tracey J, Meyer E, Foster AS. Sci Adv, 2018, 4: eaar7181CrossRefPubMedPubMedCentralGoogle Scholar
  351. 351.
    Müller M, Behnle S, Maichle-Mössmer C, Bettinger HF. Chem Commun, 2014, 50: 7821–7823CrossRefGoogle Scholar
  352. 352.
    Krieg M, Reicherter F, Haiss P, Ströbele M, Eichele K, Treanor MJ, Schaub R, Bettinger HF. Angew Chem Int Ed, 2015, 54: 8284–8286CrossRefGoogle Scholar
  353. 353.
    Dosso J, Tasseroul J, Fasano F, Marinelli D, Biot N, Fermi A, Bonifazi D. Angew Chem Int Ed, 2017, 56: 4483–4487CrossRefGoogle Scholar

Copyright information

© The Author(s) 2019

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  1. 1.Max Planck Institute for Polymer ResearchMainzGermany
  2. 2.State Key Laboratory of Elemento-Organic Chemistry, College of ChemistryNankai UniversityTianjinChina

Personalised recommendations