
marc.lewerentz@ipp.mpg.de

Implementing DevOps practices at the control and data acquisition
system of an experimental fusion device

Marc Lewerentz, Torsten Bluhm, Robil Daher, Simon Dumke, Michael Grahl, Martin Grün, Andreas
Holtz, Jon Krom, Georg Kühner, Heike Laqua, Heike Riemann, Anett Spring, Andreas Werner and

the W7-X team

Max-Planck-Institut für Plasmaphysik, Teilinstitut Greifswald, Wendelsteinstraße 1, 17491 Greifswald, Germany

The stellarator Wendelstein 7-X (W7-X) is a fusion device designed for steady state operation. It is a complex
technical system. To cope with the complexity a modular, component-based control and data acquisition system has
been developed.
During operation phases of W7-X components steadily evolve. For instance, measurement devices for diagnostics
are improved, technical processes are optimized, experienced limits of the machine have to be taken into account or
simple “bug fixing” is done. This requires continuous further development of the components while operating them
at W7-X – a typical use case for DevOps practices.
DevOps is a software engineering practice. The term is a compound of development and operations. It aims at shorter
development cycles, while the quality of the changed system must stay at a high level. This is achieved by using a
highly automated tool chain.
DevOps at W7-X does not (only) mean deploying new software packages. It also comprises setting up new
configurations, changing rules and constraints, improving experiment planning views etc. of components, based on
new scientific and technical experiences. One crucial step of the DevOps tool chain at W7-X is the release and
reconcile process. It is a well-defined and automated process that commits a change in the components configuration
(Release) to the control and data acquisition system with minimal impact. During the process all existing experiment
programs are adapted to this change (Reconcile). For newly added configuration parameters default values are added.
Thus it is guaranteed that experiment programs are still executable at W7-X. The quality is ensured by preceding unit
and integration test, configuration consistency and version checks.

1. Introduction
Fusion devices like W7-X face the challenge that they

are very complex systems, which require a high
reliability, availability and quality1 of all participating
components2. On the other hand, one often finds the
requirement for high-end performance and quick
extensibility. Obviously, this is also required for the
control and data acquisition system. We must be able to
develop new features, fix bugs or improve performance
issues in a very short time. Furthermore, we have to
deploy new software packages, set up new configurations,
change rules and constraints, improve experiment
planning views etc. of components to benefit from new
scientific and technical experiences.

The CoDaC (Control, Data Acquisition and
Communication) software group at W7-X is not only
responsible for the development of frameworks and tools
for the experiment planning, execution and data
acquisition but also for the deployment, setup and
maintenance of all its services. A continuous development
is required, even during operation phases of the fusion
device – a typical use case for DevOps practices.

2. DevOps
DevOps is a software engineering practice [5]. The

term is a compound of development and operations. It
aims at shorter development and deployment cycles,

1 Defined here as suitable to satisfy the intended purpose.

while keeping the quality of the changed system at a high
level. This is achieved by using a highly automated tool
chain and well-defined processes.

There is a wide range of application for DevOps
practices at fusion experiments. This article is focused on
configuration changes of components.

Often, experimental fusion devices have very
individual, specific solutions for their components control
and data acquisition software. There is no or only a very
slim generic part implemented. In many cases, component
configurations and their parametrization are hard coded,
not configured. Thus, only an expert for this component
is able to change something on it, a typical bottleneck
situation. In this constellation, an automation of processes
to change the behavior of a component is almost
impossible.

In contrast, at W7-X we put great efforts to provide
generic solutions with interfaces for tight, but generic
integration of the components of an experiment. To be
able to react quickly to requested changes we rely on
automated tool chains and the high quality of our services.

3. Processes
One crucial step of the DevOps tool chain at W7-X is

the “Release and Reconcile process”. It commits a change
in the components configuration to the control and data
acquisition system with minimal impact in a well-defined

2 At ITER components are named Plant Systems.

and automated way. We call the deployment of such a
configuration change “Release”. After the Release, all
existing experiment programs are adapted to this change
(“Reconcile”). Thus, it is guaranteed that experiment
programs are still executable at W7-X. The quality is
ensured by preceding unit and integration test,
configuration consistency and version checks.

Except for component models and transformation
functions, there is no component or project specific
software. All of the developed software packages are
configured according to the needs of a component.
Besides using these processes at W7-X, they are also used
at the WEST experiment at CEA in Cadarache, France
[7].

3.1 Technical Background

The heart of the plasma control system is the W7-X
Segment Control [1, 2]. The behavior of W7-X is
characterized by thousands of technical parameters of the
participating components. These technical parameters are
also called “low-level Parameters” and get executed by a
component during an experiment run.
A configuration is a hierarchical structure to define all
options to control a component. The parameters are used
to select some of the options (implemented as sub-trees)
and set corresponding values. The intended sequential
change of those parameters during an experiment run is
kept in so-called segments. A segment contains one “task”
for each component. If a segment switch is communicated
to the components, a new set of tasks is executed. Each of
those tasks contain a set of component specific
parameters. A special feature at W7-X is that the
component continues with the execution of its task if the
task to switch to is identical to the currently running. A
so-called “Approve” process [3] guarantees that tasks
with the same set of parameters exist only once. A
corresponding life cycle state also called “approved”
therefore marks a task as ready for execution.

Segments are the elementary temporal parts to define
an experiment program from. A sequence of segments
gives a “Scenario” and a sequence of Scenarios gives an
experiment program. Planning such an experiment
program is a crucial and complex job. To reduce the
complexity an abstract, more physics-oriented high-level
layer has been introduced earlier [3]. The so-called high-
level (physics) parameters are used to encapsulate
technical details. In high-level segments, the high-level
behavior (also called high-level task) of the components
is described using high-level parameters for a certain
period of time. A high-level configuration describes all
options to control a component in a more abstract, physics
view. Via transformation functions, the high-level
segments can be transformed to low-level segments
containing a task for each component. These can be
executed by the participating components. The
transformation functions are implemented as Java code
and define a mapping from high-level to low level
parameters.
While high-level parameters describe how a component is
parametrized, component models [4] give a
comprehensive view of the component. They are

implemented as Java code too and are used to generate
several views, e.g. constraints checks, preview curves or
meta data for tags. Figure 1 gives an overview about the
artifacts for experiment planning and execution.

Transformation
functions

Component
models

Transformation

Translation

High level parameters
(on physics abstraction

level)

Low level parameters
(technical level)

Component model
attributes

Generator

View

Constraints check
Preview curves

Tags

High level
configuration

Low level
configuration

Figure 1 Experiment planning and execution artifacts

3.2. Release Process

At a fusion experiment, you usually have very
complex components comprising hundreds of parameters
to tweak your measurement or control algorithms.
Changes to the configuration of a component can be
complex. They often require intense testing before being
used productively at the experiment. Therefore, we
implemented for W7-X a preparation and a productive
environment, each with a dedicated database. The
productive database holds the actively used configuration
of all components and the corresponding experiment
programs. The preparation database contains
configurations presently under development, as well as
experiments programs for dry runs. Figure 2 shows the
release process from the preparation to the productive
environment.

ProductionPreparation

Preparation DB Productive DB

Transformation
functions

Component
models

High level
configuration

Low level
configuration

Transformation
functions

Component
models

High level
configuration

Low level
configuration

Snapshot Repository Release Repository

Figure 2 Release process from preparation and productive
environment

We differentiate between two types of releases:
releases of software artifacts and releases of configuration
objects. Software artifacts are our component models and
transformation functions. During the release process, they
are transferred to a release repository and get a release
version (e.g. 4.3.1). Our versioning database keeps
information about valid versions of our software artifacts
and configurations objects. A released version has to pass
several tests [8], among them unit tests [9] covering all
transformation functions and component models. It is
possible to test against Mockups or real configurations
from the productive and the preparation environment. All
tests are executed automatically by a continuous
integration server [10].
When all tests are passed successfully, we add the new
release to the list of valid component models and
transformation functions and mark outdated ones as
invalid. Only releases of the software artifacts with a valid
version number are granted access to the productive
environment.

Releasing configuration objects is the second type of
a release. A high-level and/or low-level configuration of
a component is selected in the preparation database and
then migrated to the productive system. Before
configuration objects are released, they are tested using
the corresponding software artifact releases in the
preparation environment. In the tests, we check for
instance whether low-level tasks are generated as
expected. During integration tests, the correct operation
of components is checked against the configuration
objects to be released. Only if those tests are successful
the release of the configuration objects is done.

3.3 Reconcile Process

After a release of configuration objects or software
artifacts, the parameters in the experiment programs have
to be adapted to match the changed configuration and
transformation functions. We call this process
“Reconcile”. It is a complex, hierarchical process that
starts on task level. Changing features of a component
usually means that the low-level as well as high-level
configuration has changed and the transformation
functions have to be adapted. Typically, the component
model has to be adjusted too, because for instance, new
tags must be generated or new constraints have to be
checked. Figure 3 shows the steps, executed in the
reconcile process.

Re
co

nc
ile

pr
og

ra
m

s
Re

co
nc

ile
sc

en
ar

io
s

Re
co

nc
ile

se
gm

en
ts

Re
co

nc
ile

ta
sk

s

Release to
productive
environment

Set tasks to state editable

Adapt tasks

Transform tasks

Approve tasks

Adapt segments

Transform segments

Approve segments

Adapt scenarios

Approve scenarios

Adapt programs

Remove obsolete objects

Consistent
productive
environment

sets all affected
segments editable

sets all affected
scenarios editable

Figure 3 Reconcile Process

The reconcile process starts with the high-level tasks
of the changed component. All tasks of this component
are set back to state editable. The life cycle state
“editable” means that those objects are changeable. The
other state “approved” means that the objects are
immutable and no duplicate set of parameters exists. In
the so-called “Adapt” step, it is analyzed whether the set
of parameters in a task fits the configuration of the
component. If there is no parameter for an option
(implemented as sub-tree) of the configuration, a default
parameter, which is defined in the configuration, is added.
If a parameter is found, which has no corresponding
definition in the configuration, the parameter is removed
from the task. In this way, all tasks of the component are
adapted. For each adapted task, all referencing segments
are determined and also set to life cycle state editing.

The low-level tasks are newly generated from the
high-level tasks using the transformation functions.
Afterwards the tasks are “approved”. The approve step
guarantees that we have no duplicate tasks in the database
and sets the life cycle state.
Now the segments get reconciled. If a component is added
to or removed from an experiment, all segments have to
be adapted. If a new component is added, a new default
task generated from the default values of the component’s
configuration is added to each segment. If a component is
removed, the task of that component is removed from all
segments. If a component is only changed, which is the
most frequent use case, the segments are adapted to the
changed tasks. The list of editable segments is checked
against a list of changed tasks. During the approve process
of the tasks, duplicates and no longer used ones might
have been sorted out. The remaining task has to be used
to replace the sorted out one in a segment. The adapted
segments now have to be transformed to low-level
segments. Subsequently, the approve process again sorts
out duplicates.
For scenarios, a sequence of segments, the process is
almost identical. Sorted out duplicate segments have to be
replaced by the remaining ones. The following approve
process guarantees that there are no duplicates on scenario
level. Experiment programs are reconciled by replacing
sorted out scenarios by the remaining ones.
After this is finished, a clean-up process consolidates the
database by removing sorted out object.

3.4 Overall deployment process

The release and reconcile processes are embedded in
an overall deployment process that guarantees an ordered
operation of an experiment. The schematic presentation of
this overall process is illustrated on Figure 4.
Usually the release of transformation functions and
component models is done some time before the
configuration release and the reconcile processes are
executed.

Release
Configuration

Reconcile

Release
fransformation functions /

component model

Edit VersionInfo of
component to be released

Change lifecycle state to
deactivate component

Change lifecycle state to
activate component

Figure 4 Overall deployment process

We have two mechanisms to assure an ordered
operation of an experiment: a versioning framework and
life cycle states of the components.

Immediately before the release process for a
configuration starts, it must be verified, that it is not
possible to run experiments at the same time. The life
cycle state of the concerned component and the
experiment (e.g. W7-X) is changed to prevent further

operation. All other components are allowed to continue
to operate autonomously and are not affected.
Furthermore, our applications for experiment planning
and control must be aware of the component configuration
change. Via the versioning framework, the loaded
component configurations used in the applications are
marked as invalid.
After the reconcile process life cycle states are set back to
allow operation again. Additionally the allowed versions
for productive use of the component models and
transformation functions are updated. The applications
are able to use the changed configurations and reconciled
experiment programs.
The productive database always keeps only the actual
configuration of W7-X and all its components. We do not
keep a history of old parameters and configurations in the
productive environment. This information is found in our
central archive [6].

Additionally, we execute nightly consistency checks on
our preparation and productive database. Thus, we
monitor the flawless work of our automated tool chain.

4. Conclusion
By implementing DevOps techniques in our way of

working, we are able to roll out changes to the control and
data acquisition system rapidly.

A separation between productive and preparation
environment allows the development of component
changes while operating the fusion device. The
preparation environment allows thorough testing of
component specific software and configurations before
the roll out to the productive environment. Thus, we can
guarantee a high quality for changed configurations of
components.

We minimize the time when executing experiments
using W7-X are not possible, because we use a highly
automated, well-defined process.

Acknowledgments
The authors like to thank the CEA CoDaC team for

many fruitful discussions.

This work has been carried out within the framework
of the EUROfusion Consortium and has received funding
from the Euratom research and training programme 2014-
2018 under grant agreement No 633053. The views and
opinions expressed herein do not necessarily reflect those
of the European Commission.

References
[1] H. Laqua et al., Control system of Wendelstein 7-X

experiment, Fusion Engineering and Design, 66–68 (2003)
669-673.

[2] H. Laqua et al., Resource checking and event handling
within the W7-X segment control framework, Fusion
Engineering and Design 87 (2012) 1958-1960.

[3] H. Riemann et al., From a physics discharge program to
device control – linking the scientific and technical world at
Wendelstein 7-X, Proceedings of the 25th Symposium on

Fusion Technology, June 2009, Fusion Engineering and
Design, 84 (1598-1601)

[4] M. Lewerentz et al., Experiment planning using high-level
component models at W7-X, Fusion Engineering and
Design 87 (2012) 1949-1953.

[5] Bass, Len; Weber, Ingo; Zhu, Liming. DevOps: A Software
Architect's Perspective. ISBN 978-0134049847

[6] Ch. Hennig, et al., ArchiveDB—Scientific and technical
data archive for Wendelstein 7-X, Fusion Engineering and
Design 112 (2016) 984-990.

[7] N. Ravenel et al., Status of the new WEST plasma control
system, Fusion Engineering and Design 112 (2016) 667-
672

[8] G. Kühner et al., Progress on standardization and
automation in software development on W7X, Fusion
Engineering and Design 87 (2012) 2232-2237

[9] JUnit, Unit testing framework, https://junit.org
[10] Jenkins, Jenkins continuous integration server,

https://jenkins.io/

