The Influence of Lexical Selection Disruptions on Articulation

Matthew Goldrick
Northwestern University

Rhonda McClain
The Pennsylvania State University

Emily Cibelli
Northwestern University

Yossi Adi
Bar Ilan University

Erin Gustafson
Northwestern University

Cornelia Moers
Max Planck Institute for Psycholinguistics

Joseph Keshet
Bar Ilan University

Abstract

Interactive models of language production predict that it should be possible to observe long-distance interactions; effects that arise at one level of processing influence multiple subsequent stages of representation and processing. We examine the hypothesis that disruptions arising in nonform-based levels of planningspecifically, lexical selection-should modulate articulatory processing. A novel automatic phonetic analysis method was used to examine productions in a paradigm yielding both general disruptions to formulation processes and, more specifically, overt errors during lexical selection. This analysis method allowed us to examine articulatory disruptions at multiple levels of analysis, from whole words to individual segments. Baseline performance by young adults was contrasted with young speakers' performance under time pressure (which previous work has argued increases interaction between planning and articulation) and performance by older adults (who may have difficulties inhibiting nontarget representations, leading to heightened interactive effects). The results revealed the presence of interactive effects. Our new analysis techniques revealed these effects were strongest in initial portions of responses, suggesting that speech is initiated as soon as the first segment has been planned. Interactive effects did not increase under response pressure, suggesting interaction between planning and articulation is relatively fixed. Unexpectedly, lexical selection disruptions appeared to yield some degree of facilitation in articulatory processing (possibly reflecting semantic facilitation of target retrieval) and older adults showed weaker, not stronger interactive effects (possibly reflecting weakened connections between lexical and form-level representations).

Keywords: speech production, interaction, articulation, automatic acoustic analysis

To produce a single word, a speaker must map an intended message to a lexical representation and select detailed representations regarding the word's sound structure (e.g., Garrett, 1975;

This article was published Online First July 19, 2018.
Matthew Goldrick, Department of Linguistics, Northwestern University; Rhonda McClain, Department of Spanish, Italian, and Portuguese, The Pennsylvania State University; Emily Cibelli, Department of Linguistics, Northwestern University; Yossi Adi, Department of Computer Science, Bar Ilan University; Erin Gustafson, Department of Linguistics, Northwestern University; Cornelia Moers, Max Planck Institute for Psycholinguistics; Joseph Keshet, Department of Computer Science, Bar Ilan University.

This work was supported by National Institute of Health (NIH NICHD) Grant 1R21HD077140 to Matthew Goldrick and by a scholarship for Cornelia Moers from the Max Planck International Research Network on Aging (MaxNetAging). Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the NIH or MaxNetAging.

Correspondence concerning this article should be addressed to Matthew Goldrick, Department of Linguistics, Northwestern University, 2016 Sheridan Road, Evanston, IL 60208. E-mail: matt-goldrick@ northwestern.edu

Schriefers, Meyer, \& Levelt, 1990; van Turennout, Hagoort, \& Brown, 1997; see Levelt, Roelofs, \& Meyer, 1999, for an overview). This is typically assumed to rely on several distinct processing stages collectively referred to as formulation. Speech production begins with the selection of a concept to verbalize the message, and then the speaker activates the concept's relevant semantic features. During lexical selection, these meaning-based representations are used to select an appropriate lexical representation. Phonological encoding associates this lexical representation with a form-based planning representation. Phonetic encoding or articulatory processing then implements this plan as a set of movements of the articulators.

Most contemporary perspectives on speech planning agree that speaking involves interaction among stages of formulation. At each stage of processing, multiple representations are coactivated, and subsequently influence the following stage of processing. For example, many studies have shown that the process of lexical selection results in the coactivation of multiple semantically related words (e.g., Peterson \& Savoy, 1998). These semantic cohort members influence subsequent phonological encoding. Other work
has shown that disruptions originating in phonological planning extend to phonetic processing, altering the phonetic properties of speech (e.g., Goldrick \& Blumstein, 2006; McMillan, Corley, \& Lickley, 2009; Pouplier, 2007). However, evidence for long-distance interac-tions-effects of disruptions to conceptual processes and lexical selection that influence articulatory processing-have been inconsistent. The current work provides new evidence on such interactive effects, examining the influence of semantic competitors on articulation during picture naming.

Evidence for Interactions Between Adjacent Levels of Formulation

Abundant evidence supports the idea that lexical selection processes interact with phonological planning. Specifically, semantically related competitors activated during lexical selection activate their corresponding phonological representations (for reviews, see Goldrick, 2006; Melinger, Branigan, \& Pickering, 2014). For example, in the picture-word interference paradigm (Schriefers et al., 1990), picture naming is disrupted by the presentation of an auditory or visual distractor word. Distractors that are phonological relatives of a semantic competitor show evidence of priming, suggesting their phonological representations have been activated during target processing (e.g., during processing of target couch, the semantic competitor sofa primes soda; Cutting \& Ferreira, 1999; Peterson \& Savoy, 1998; Taylor \& Burke, 2002). Further support for the semantically driven activation of phonological representations comes from studies of speech errors showing that mixed errors (sharing both semantic and phonological structure with the target) occur at a higher rate than predicted by the rate of pure semantic or phonological errors (Dell \& Reich, 1981; Rapp \& Goldrick, 2000).

Interactive effects are also found between phonological planning and articulatory processing. Speech errors reflect a blend of articulatory/acoustic properties of the target and error outcomes (e.g., when producing target big as "pig," the production of /p/ reflects a blend of the intended $/ \mathrm{b} /$ and error outcome $/ \mathrm{p} /$; Frisch \& Wright, 2002; Goldrick, Baker, Murphy, \& Baese-Berk, 2011; Goldrick \& Blumstein, 2006; Goldrick, Keshet, Gustafson, Heller, \& Needle, 2016; Goldstein, Pouplier, Chen, Saltzman, \& Byrd, 2007; McMillan \& Corley, 2010; McMillan et al., 2009; Pouplier, 2007, 2008). Such effects can be attributed, in part, to the partial activation of the target representation during phonological planning (see Goldrick et al., 2016, for review and discussion). Similar effects are found when phonological competitors are primed not within production processes but by comprehension processes. Yuen, Davis, Brysbaert, and Rastle (2010) examined articulatory processing during reading aloud of a target while participants listened to a matching (i.e., identical) syllable or a phonologically related (rhyming) competitor. Articulatory processing of the target sound was distorted when a competitor was presented, such that articulation reflected a blend of the target and the initial sound of the spoken competitor.

A key study with respect to the work reported here is Drake and Corley (2015), who examined picture naming when phonologically related competitors were primed by sentence preambles. Participants heard sentences like "Jimmy used a washer to fix the drip from the old leaky . . ." (priming a mismatching word, tap) and "On his head he wore the school . . ." (priming the target word,
cap). In both cases, participants then named a picture of a cap. Articulations in these two conditions were compared to a baseline: picture naming with no sentence preamble. Productions following unrelated primes showed greater difference from baseline than those following target primes, suggesting that the primed competitor disrupted articulatory processing of the target.

Evidence for Long-Distance Interactions: The Influence of Disruptions to Lexical Selection on Phonetic Processing

Given the evidence that lexical selection interacts with phonological processing, which in turn interacts with articulatory processing, one would expect long-distance interactions between lexical selection and articulation. In this work, we focus on how disruptions to lexical selection influence phonetic processing. We review evidence from paradigms using conditions that slow reaction times (RTs) and/or increase errors relative to baselines, deferring discussion of facilitatory effects until the following section.

Kello, Plaut, and MacWhinney (2000) adapted the Stroop task to examine how lexical selection disruptions modulate phonetic processing. In the typical color-word version of the Stroop task, written words specifying color concepts are presented. The word is printed in color font and only the color of the font is to be named aloud. In some conditions, the color is congruent with the conceptual representation of the written word (e.g., say green to the word "GREEN" presented in a green colored font) or neutral (e.g., say green to XXXX presented in a green colored font). The Stroop interference effect refers to the fact that relative to the two conditions above responses are initiated more slowly when the color of the font is incongruent with the meaning of the written word (e.g., say green to the word "RED" presented in a green colored font). Kello et al. used this paradigm to examine long distance interactions from lexical selection to articulation. Stroop interference lengthened RTs as well as spoken word durations-but only when speakers were pressured to respond quickly. To account for their findings, Kello et al. proposed a dynamic interaction hypothesis. This claims that interactive effects extending from lexical selection to phonetic processing will be strongest under processing circumstances that allow insufficient time for speakers to resolve disruptions during lexical selection. Time pressure increases temporal overlap between processes, increasing interaction.

However, other work has found no evidence supporting such effects. Damian (2003) failed to replicate Kello and colleagues’ (2000) Stroop task results; even under time pressure, there was no increase in duration of words subject to Stroop interference. Furthermore, he failed to show articulatory effects in two additional tasks. Using the picture-word interference task, participants named pictures aloud in the presence of semantically related auditory distractors (Schriefers et al., 1990). Although the presence of distractors increased RTs, Damian found no effect of distractors on spoken durations, even when speakers were pressured to respond quickly. Above and beyond the empirical uncertainty regarding effects in durations, there is debate over whether these two paradigms actually tap lexical selection processes (Roelofs, 2014) or arise in processes external to lexical selection (e.g., Dhooge, Baene, \& Hartsuiker, 2013; Finkbeiner \& Caramazza, 2006a, 2006b). That is, it is unclear whether these findings speak to the question of interaction between lexical selection and articulation or
rather to articulatory interactions with other aspects of formulation and more general cognitive processing.

The semantic blocking paradigm (Belke, Meyer, \& Damian, 2005; see also Damian, Vigliocco, \& Levelt, 2001) induces inhibitory effects that are more widely assumed to arise within lexical selection (Oppenheim, Dell, \& Schwartz, 2010). (Note the paradigm can also give rise to facilitatory effects; Belke, 2017.) Pictures are presented in homogeneous blocks (including only pictures from the same semantic category) or heterogeneous blocks (including pictures from a mixture of categories). The so-called blocking effect reflects increased response latencies in homogeneous blocks relative to heterogeneous blocks. Damian (2003) found a very robust blocking effect observed in measures of response latency, but no significant effects in response duration, even under time pressure. However, using a much larger sample of participants ($n=96$ compared to 24 in each condition of Damian's 2003 study), Fink, Oppenheim, and Goldrick (2018) found effects of semantic blocking on word durations (with longer durations in homogeneous vs. heterogeneous blocks). Interestingly, this effect was detected only when individual differences in susceptibility to the blocking effect were taken into account: individuals that showed large blocking effects in their RTs exhibited semantic effects in their word durations; those participants with small blocking effects in RTs showed no duration effects. Fink et al. (2018) also found evidence in favor of long-distance interactions between lexical selection and articulation using another paradigm, continuous picture naming, which also induces semantic interference effects during lexical selection (Howard, Nickels, Coltheart, \& Cole-Virtue, 2006). In this paradigm, participants name pictures from intermixed sets of semantic categories. Within each category, response latencies increase with each successive member of the category. Consistent with long-distance interactions, Fink et al. found that increases were also found in word durations.

Mixed results have also been found in the manual articulatory domain in studies of typing. Logan and Zbrodoff (1998) found that Stroop interference effects impacted typing latencies, but not durations. Parallel to Kello et al. (2000) and Damian (2003); Damian and Freeman (2008) examined Stroop effects under response pressure; similar to Damian (2003), Damian and Freeman found no effects on typewritten response durations either with or without time pressure. However, in a regression-based analysis using a large sample of participants $(n=86)$ and a diverse array of pictures $(n=260)$, Scaltritti, Arfé, Torrance, and Peressotti (2016) found that variables influencing lexical selection (word frequency and name agreement) influence both response latencies and typing durations in written picture naming.

Note that all of the studies reviewed above (in both spoken and manual modalities) have focused on duration of the entire response. However, this might obscure interactive effects if they are present only in certain portions of the word. For example, suppose response initiation occurs as soon as the first element (e.g., initial segment, letter) is planned, but planning continues while it is being articulated (i.e., response planning for different components of a word occurs in parallel). During articulation of the initial element, continued planning of subsequent elements in the word might allow such element to overcome the effects of any delays or disruptions. Effects may therefore be limited to initial portions of articulation and dissipate at later positions (Kawamoto, Kello, Higareda, \& Vu, 1999). There is some evidence from typing
studies consistent with this possibility. Scaltritti, Pinet, Longcamp, and Alario (2017) found that while semantic priming did not significantly influence the whole-word duration of typewritten responses, there was an influence on duration of the initial inter-keystroke-intervals. However, this effect was not reliable in some of the subset analyses they performed, and the study of Stroop effects by Damian and Freeman (2008) found no effects in initial position or whole word durations. Furthermore, using electroencephalographic measures, Scaltritti et al. failed to find evidence that semantic priming interacted with motor response preparation.

Another important limitation of the work reviewed above is that focuses on young, monolingual participants, whose formulation abilities are likely operating at peak efficiency. In particular, young adults may possess strong selection processes, which serve to enhance the activation of a single lexical representation relative to its coactivated competitors (via boosting target activation and/or inhibiting nontarget activation). The reduced strength of competitors relative to targets will significantly reduce the strength of interactive effects (see Dell \& O'Seaghdha, 1992 and Rapp \& Goldrick, 2000, for discussion and simulation data). Consistent with this claim, Jescheniak, Hahne, Hoffmann, and Wagner (2006) found that children (~ 7 years of age) were more susceptible to interactive effects than young adults $(\sim 24$ years old). Interactive processing accounts predict that cascading activation from the semantic representation of a target (e.g., cat) will activation category coordinates ($d o g$) which will in turn activate phonologically related words (doll). Critically, the strength of such effects will depend on the relative activation of target versus nontarget representations. Jescheniak et al. found that children showed significant effects, whereas young adults did not; this is consistent with the claim that children have weaker selection processes than young adults. The focus of the literature on long-distance interactions on young adults may therefore have reduced our ability to detect effects.

Facilitation of Formulation and Its Impact on Phonetic Processing

Although the above discussion has focused on disruptions, other work has focused on how phonetic processing may be facilitated by ease of formulation. A large number of studies have shown that words that are more predictable with respect to the linguistic and/or discourse context ${ }^{1}$ in which they appear are retrieved more quickly and accurately (suggesting facilitated processing) and produced with reduced phonetic forms (e.g., shorter acoustic duration, de-accented variants, centralization of vowels, etc.; see Arnold, 2016, for a recent review). Some accounts have claimed that such effects are due, in part, to long-distance interactive mechanisms; context-driven facilitation of the retrieval of representations at the lexical or conceptual level modulates the activation of word form and phonetic representations, producing reduction (e.g., Balota, Boland, \& Shields, 1989). However, other accounts have empha-

[^0]sized more local interactions, presenting evidence that facilitation of phonological retrieval, over and above facilitation to lexical or conceptual processing, is the key mechanism within the production system that results in phonetic reduction. Jacobs, Yiu, Watson, and Dell (2015) examined reductions in the time to initiate production of a target word as well the word duration when the target was repeated. They contrasted conditions where the first utterance of a word was fully articulated versus read silently. Critically, although target word initiation was facilitated to the same degree in both conditions, reduction in target duration only occurred when the word was read aloud. Jacobs et al. concluded that repetition of any kind was sufficient to facilitate lexical and conceptual processing (reducing the time required to initiate production). In contrast, facilitation of phonetic processing (i.e., reduction) requires facilitation specifically of word form processing.

These findings suggest that independent of the presence or absence of effects of disruption, there are widespread situations where phonetic processing is facilitated by the context in which a word is produced. However, in situations where processing at multiple levels of representation are enhanced, it is unclear whether phonetic effects arise due to long-distance or more local interactive mechanisms.

The Current Study

In the current study, we used a sentence completion paradigm (Ferreira \& Griffin, 2003) to examine long-distance interactive effects. Ferreira and Griffin used visually presented sentence preambles to prime competitors during picture naming. Participants in their study read sentences like "The woman went to the convent to become a . . ." (priming nun) and then attempted to name a picture of a priest. These primes disrupted processing, resulting in the overt production of semantic errors. Semantically related primed words were produced significantly more often than control trials where the sentence primes a semantically unrelated word (e.g., "He lit the candle with just one . . ." priming match; here, participants had less difficulty naming priest). Interestingly, errors were also produced at a rate greater than control trials when the sentence primes a homophone of a semantic competitor ("I thought that there would be some cookies left, but there were . . ." priming none), but there was no increase in errors when the sentence primed a purely phonologically related word (present; Ferreira \& Griffin, 2003; Li \& Slevc, 2017; Severens, Ratinckx, Ferreira, \& Hartsuiker, 2008). The fact that homophones also induced substitutions suggests that the processing disruption that leads to semantic errors in this task arose specifically at a postsemantic, lexical level of processing (where homophones share representations) but prior to phonological processes manipulating sublexical units of form (accounting for the absence of phonological errors). Thus, in contrast to paradigms such as Stroop and picture-word interference, there is clear evidence that this paradigm can induce disruption specifically within lexical selection processes.

As discussed above, using a similar sentence prime paradigm, Drake and Corley (2015) found articulatory interference during picture naming after priming by a sentence stem predicting a semantically unrelated word (n.b. interference was relative to an unprimed baseline). This finding suggests that sentence primes serve to activate representations inconsistent with the target at
semantic, lexical, and form-based levels; the activation of these competing representations produces articulatory disruptions. Note that while matching primes could also have facilitated processing, Drake and Corley (2015) found no difference between the articulation of matching primes and an unprimed baseline. This suggests that in this type of paradigm, interference effects dominate processing.

Here, we examine the impact of semantically related primes. Although such primes activate semantic representations that overlap with the target, the pattern of errors reviewed above suggest that they produce enhanced conflict (relative to unrelated primes) specifically at the lexical level. Comparing articulation of targets following semantically related versus unrelated primes will therefore provide an index of long-distance interactive effects: how enhanced disruption of lexical selection impacts articulatory processing.

Our design also took into account three other factors that may have contributed to the mixed results observed in previous work. In Experiment 1, we examined healthy, young adult monolinguals’ patterns of response time and articulation in this paradigm. In this (and subsequent) experiments, we extended previous work by examining articulatory properties of the whole word as well as properties specific to the initial segments of the word (where, as noted above, interactive effects might be strongest). In Experiment 2, we examined whether interactive effects were modulated by pressure to respond (which, as noted above, has been suggested to increase temporal overlap and interaction between processes).

Finally, in Experiment 3, we examined these effects in healthy, monolingual older adults (parallel to Experiment 1, under no explicit time pressure). As noted above, there is evidence that across the life span there are changes in the strength of lexical selection, such that young adults show weaker interactive effects than children (Jescheniak et al., 2006). There is some evidence that formulation processes undergo declines as a consequence of normal aging, as indexed by a higher rate of tip-of-the-tongue (TOTs) retrieval failures (see Gollan \& Brown, 2006, for a review) and higher rates of speech errors (Gollan \& Goldrick, 2018; but see Ramscar, Hendrix, Shaoul, Milin, \& Baayen, 2014). One account of effects such as these is the inhibitory deficit hypothesis, which claims that aging leads to difficulty in suppressing inappropriate responses (e.g., Zacks \& Hasher, 1994). If these domain-general inhibitory mechanisms are used during lexical selection, their age-related decline would allow for greater activation of nontarget lexical representations in older versus younger adults. Cascade from these representations would be predicted to strengthen interactive effects in the older adults. However, it should be noted that there are other accounts of aging deficits that predict decreased interactive effects. Specifically, the transmission deficit hypothesis (e.g., Burke, MacKay, Worthley, \& Wade, 1991) proposes that language production difficulties in older adults arise due to reduced flow of activation between lexical and phonological representations. This account therefore predicts that there should be less activation of nontarget representations at the phonological level, and therefore less disruption of articulatory processing.

This design did not eliminate all potential issues. To facilitate group comparisons, we recruited the same number of participants across groups. We based the sample size for all groups $(N=18)$ on that used in previous studies with this paradigm (Severens et al.,
2008). This sample size was achievable given practical limitations on our recruitment of older adults. It's possible this does not provide sufficient power for detecting long-distance interactive effects; replicating our findings with larger groups is an important area for future work.

To summarize, our study includes three experiments examining how disruptions to lexical selection modulate articulatory processing. Experiment 1 examines effects in younger adults, examining effects on whole word durations as well as specific properties of initial segments. Experiment 2 aimed to increase interactive effects by increasing response pressure. Experiment 3 aimed to increase effects by testing older adults; difficulties these individuals may have in inhibiting nontarget representations would increase interactive effects.

Acoustic Analysis Methods

Key to our study is the measurement of phonetic properties of productions. Using a combination of algorithms (all available at https://github.com/MLSpeech), we limited manual processing in the analysis pipeline. First, participants' speech was recorded on one channel of a stereo recording and the second channel simply recorded when pictures were presented for naming. These clicks were used to automatically segment the original audio stream into separate files containing the signal from each individual trial. After segmentation of each trial's data, several algorithms were combined to extract the phonetic variables of interest. We first used two algorithms to estimate several key time points in the signal:

- Word onset and offset. We developed a novel algorithm (DeepWDM, short for deep word duration measurement, described below) that, given a signal consisting of speech preceded and followed by silence (minimally noisy nonspeech signals), would automatically determine the onset and offset of the word.
- Vowel onset and offset. Given speech consisting of a vowel with one or more flanking consonants on each side, the AutoVowelDuration algorithm (Adi et al., 2016) outputs the onset and offset of the vowel. In monosyllabic words, this can operate without any additional processing. In disyllabic words, the AutoAligner forced aligner (Keshet, Shalev-Shwartz, Singer, \& Chazan, 2007; McAllester, Hazan, \& Keshet, 2010) was used to determine the location of the initial syllable (always the location of the stressed syllable in this dataset), and then AutoVowelDuration was used to determine the precise location of the vowel onset and offset.

Once these time points had been determined, several duration measures could be extracted: RT (the duration between trial onset and word onset); word duration (time between word onset and offset); duration of initial consonant or consonants (time between word onset and vowel onset, for consonant-initial words only); and vowel duration (time between vowel onset and offset). Examination of whole word, initial consonant, and vowel durations allows us to examine both overall effects of articulatory disruption as well as effects that may specifically target the initial segments of the word. Finally, the DeepFormants algorithm (Dissen \& Keshet, 2016) was used to estimate first (F1) and second (F2) formant values within the window identified by AutoVowelDuration. Measuring these spectral qualities gives us another index (beyond
duration) of vowel articulation. Disruption of processing was indexed by vowel dispersion (calculated as the euclidean distance from the overall F1/F2 midpoint of the vowel space, withinsubject; Löfqvist, Sahlén, \& Ibertsson, 2010). Based on previous work, we predict that disruptions to formulation will lead to greater vowel dispersion (i.e., lower distance from the overall midpoint; see Munson, 2007, for discussion).

In the remainder of this section, we describe in detail the structure of the novel DeepWDM algorithm; detailed characterization of the other speech processing algorithms can be found in the publications cited above.

Problem Setting

The input to our algorithm is an acoustic signal containing one dominant speech portion (i.e., the uttered word) which can be surrounded by noisy nonspeech signals. (Such nonspeech noise is a persistent challenge to voice key systems that simply rely on signal intensity to determine speech onset.) The output is the onset and offset times of the speech portion. The acoustic signal can be of an arbitrary length, and its beginning does not need to be synchronized with speech onset.

Let $\boldsymbol{x}=\left(x_{1}, \ldots, x_{\mathrm{T}}\right)$ denote the input acoustic signal, represented as a sequence of feature vectors, where each $x_{T} \in \mathbb{R}^{D}$ $(1 \leq t \leq T)$ is a D-dimensional vector. The length of the speech portion, T, is not a fixed value because the acoustic signals and target words can have different durations.

Each acoustic signal is associated with a timing pair, denoted by $\boldsymbol{t}=\left(\boldsymbol{t}_{\mathrm{b}}, \boldsymbol{t}_{\mathrm{e}}\right)$ where $\boldsymbol{t}_{\mathrm{b}}$ and $\boldsymbol{t}_{\mathrm{e}}$ are the onset and offset of the speech portion respectively (see Figure 1). Our goal is to predict the onset and offset times of the speech portion as accurately as possible.

Model

One approach to determining the duration of a phonetic property is to predict at each time frame whether the property is present or absent; the predicted duration is then the smoothed, continuous set of frames where the property is likely to be present (Adi, Keshet, Dmitrieva, \& Goldrick, 2016; Adi, Keshet, \& Goldrick, 2015). In this work, we follow this method with generating predictions using a Recurrent Neural Network (RNN).

Learning model. To predict the voice activity's onset and offset (i.e., speech onset and offset) we trained a RNN (Elman, 1991) as a speech detection system. The input to the network is a sequence of T tuples, where each tuple is composed of the feature vector x_{t} and a corresponding label y_{t}, from the set of $\{1,-1\}$, for $1 \leq t \leq T$ as follows:

$$
y_{t}=\left\{\begin{array}{cc}
-1 & 1 \leq t \leq t_{b} \\
1 & t_{b} \leq t \leq t_{e} \\
-1 & t_{e} \leq t \leq T
\end{array}\right.
$$

We label every frame that is placed inside the boundaries of the speech portion of the acoustic signal as positive and every frame that is outside of those boundaries as negative.

Our RNN model is composed of two stacked layers of bidirectional long-short term memory (LSTM) units (Hochreiter \& Schmidhuber, 1997), which have shown remarkable results in modeling speech sequences (Graves \& Jaitly, 2014; Graves, Mohamed, \& Hinton, 2013). The inputs to the network were 39

Figure 1. Example acoustic signal with annotations marking onset t_{b} and offset t_{e} of speech. Note prior to speech onset there is a high intensity nonspeech signal (lip smack) that the DeepWDM algorithm can learn to ignore. See the online article for the color version of this figure.
mel-frequency cepstrum coefficients (MFCCs), including delta and delta-delta, extracted every 10 ms . To avoid overfitting, a dropout layer (Hinton, Srivastava, Krizhevsky, Sutskever, \& Salakhutdinov, 2012) is used after each recurrent layer, with rate of 0.5 .

Training. The training data consisted of 2,369 hand-annotated productions of single words (drawn from Fink, 2016). Participants named a set of 90 pictures ("carrot," "violin," etc.) in sequence. Ten percent of the data was used as a validation set for tuning model parameters (including hyper-parameters). We optimized the negative log-likelihood loss function using Adagrad (Duchi, Hazan, \& Singer, 2011) with a learning rate of 0.01 . Training was stopped after 5 epochs with no loss improvement on the validation set.

Inference. The RNN outputs a probability for each class (speech vs. nonspeech) every frame, which can be used to characterize a probability distribution over all possible sequences. To extract the onset and offset times from the RNN outputs we perform three steps. First, we predict the class with the largest probability in every frame. Second, we remove noisy predictions by smoothing the predictions using a window of 10 frames. Finally, because we know that in every sequence there is one major voice activity which we are interested in, we output the timing pair with the longest duration.

Validation. To assess performance of the DeepWDM algorithm, novel data (not used in model training) from Fink (2016) was used to compare manual and algorithmic measurements of
word duration on 6641 tokens. The correlation between manual and algorithmic measures was 0.72 ; the mean absolute deviation was $56 \mathrm{~ms}(S D=73 \mathrm{~ms})$. This level of performance is well within that of the vowel duration algorithm, which our previous work has shown faithfully reproduces results from behavioral data (Adi, Keshet, Cibelli, \& Goldrick, 2017).

Overview of the Experiments

As discussed above, in this paradigm each trial consists of a visually presented prime sentences followed by picture; participants are asked to orally produce the picture name. Table 1 summarizes our design, which limits nontarget primes to semantically related and semantically/phonologically unrelated items. The key findings are summarized in Table 2.

Experiment 1: Young Adults Naming

Methods

This experiment along with the following two were approved by the Northwestern University Institutional Review Board.

Participants. We recruited 18 participants at Northwestern University using the Linguistics Department subject pool. Participants received course credit. They reported learning no language other than English before age 5 and no history of color blindness

Table 1
Example Illustrating the Design of the Study

Prime condition	Cloze sentence	Primed response	Picture target
Match	The fairy tale princess lived in a majestic	"Castle"	\cdots
Semantically related (mismatch)	Every halloween, they turned their home into a haunted . . .	"House"	
Unrelated (mismatch)	The joint connecting the thigh and shin is the . . .	"Knee"	

[^1]Table 2
Key Predictions and Results Across the Three Experiments

Key prediction	Results
Interaction of formulation and articulation	Confirmed
Interactive theories of speech production predict that disruptions to formulation processes (lexical selection and/or phonological encoding) disrupt articulation via cascading activation.	Articulation is disrupted following mismatching vs. matching primes.
Long-distance interaction	Not confirmed
Interactive theories that allow for long-distance interactions predict that disruptions to lexical selection will disrupt phonological encoding and, in turn, articulation processes.	Semantically related primes, which yield overt speech errors during lexical selection, show no more disruption than unrelated primes, which lead to fewer errors.
Dynamic interaction	Not confirmed
Theories incorporating dynamic interaction predict that insufficient time for selection process will increase the overlap between formulation and articulation processes; this greater overlap will increase interactive effects relative to conditions which allow for greater processing time.	Articulatory effects do not interact with trial-level reaction time, nor do they increase with response pressure.
Inhibitory deficit	Not confirmed
The inhibitory deficit hypothesis for cognitive aging predicts that older adults will be less able to inhibit non-target representations; in the context of interactive theories of production, older adults are predicted to show stronger interactive effects than younger adults.	Articulatory effects in older adults are of comparable magnitude to younger adults.
Initial segment speech initiation	Confirmed
If speech is initiated prior to completion of planning for remainder of the word, interactive theories predict that interactive effects will be stronger in the initial vs. later part of the word (where additional planning time mitigates the effects of disruptions).	Proportional effects of disruption are numerically larger on duration of initial consonants vs. duration of following vowels.

or language impairment. Age ranged from 18 to 24 years ($M=$ $19.6, S D=1.5$).

Materials. Details of norming procedures for picture and sentence stimuli can be found in Appendix A. One hundred eighty colored photographs were selected from a larger pool of photographs retrieved from the BOSS database (Brodeur, DionneDostie, Montreuil, \& Lepage, 2010; Brodeur, Guérard, \& Bouras, 2014) and Google images. Each picture had a name agreement of at least 75%. The selected pictures had an average word frequency of 32.2 words per million (from the SUBTLEX-US corpus, Brysbaert \& New, 2009, extracted from the CLEARPOND database; Marian, Bartolotti, Chabal, \& Shook, 2012). All pictures were 300×300 pixels. In addition, 180 unique sentence fragments were created for the experiment. For each picture, we constructed a cloze probability sentence. Sentences were normed with both younger adults and older adults (see Appendix B for details); only sentences with at least 45% cloze agreement were selected. For younger adults, the average cloze probability for all sentences was 90.7% ($S D=11.9 \%$). Sentences ranged in length from 5 to 15 words ($M=8.7, S D=2.0$). Sentences and target picture names can be found in Appendix B. A small percentage of sentence contexts (1.7%) had an indefinite article that mismatched with the onset of the picture completion. Visual inspection of response times for these trials indicated that they were not different from trials where no mismatch was present and excluding these trials from analysis did not appear to qualitatively impact the results.

Design and procedure. Participants were presented high probability cloze sentences, one word at a time. Each sentence was
followed by a picture that was to be named aloud. As shown in Table 1, pictures were paired with one of three sentences: match (where the sentence primed the picture name), or one of two mismatching sentences-competitor (where the sentence primed a semantically related word) and unrelated (where the sentence primed a phonologically and semantically unrelated word).

Each participant named 60 pictures three times, for a total of 180 trials. Across the blocks of picture naming, each appearance of a given picture was paired with a different prime sentence (reflecting the three conditions). Note that sentences were not repeated across blocks so as to minimize experiment-specific expectancy effects. Within a given block, the number of trials was evenly divided between the three conditions. The order of conditions for each picture was counterbalanced across lists.

Participants were tested individually in a sound-proof room. They first provided informed consent and completed a background questionnaire. Speech during the experiment was recorded using a head-mounted microphone. After the experimental task was completed, participants completed a measure of receptive vocabulary (the Shipley-2 Institute of Living Vocabulary Subscale; Shipley, Gruber, Martin, \& Klein, 2009) and a separate measure of productive vocabulary (the Multilingual Naming Test; Gollan, Weissberger, Runnqvist, Montoya, \& Cera, 2012). These helped us control for any effects of differences in vocabulary knowledge on lexical processing (e.g., Mainz, Shao, Brysbaert, \& Meyer, 2017).

Sentence prime with picture naming task. Each trial began with a fixation cross $(+)$ presented in the center of the screen for 500 ms . The fixation was followed by the first word of the
sentence fragment. Subsequently, the remaining words of the sentence were presented one at a time at the center of the screen in standard rapid serial visual presentation fashion. Each word remained on the screen for 275 ms . After the final word of the sentence fragment was presented, a picture appeared and remained on the screen for 600 ms . Participants were instructed to read the words within the sentence silently for comprehension and to name the picture aloud before it disappeared. If the participant did not respond within 600 ms , their response could be registered for an additional 300 ms , during which a blank screen was displayed. An interstimulus interval of 1500 ms occurred between trials.

Multilingual Naming Test. Immediately following the picture naming in context task, participants completed the Multilingual Naming Test to measure individual differences in native language vocabulary knowledge. Participants were shown a set of 68 black and white line drawing images and instructed to name each image aloud as quickly as possible. Participants were given two different kinds of prompts if they gave an incorrect response. A semantic cue was provided, in the form of a brief definition of the object. If participants did not retrieve the correct word after receiving the semantic cue, they were also provided a phonological cue, the first letter of the response. If participants still could not respond with the correct name, the response was marked as incorrect and they were instructed to move on. Pictures were presented in an order of ascending difficulty. Score on the test is number of pictures correct.

Shipley-2 Institute of Living Vocabulary Subscale. The Shipley-2 Test comprises 40 stimulus words, presented in generally ascending order of difficulty. Participants selected the word that was the closest synonym to the stimulus word from among four presented options. Score on this test is a standardized score (with 100 indicating average performance on demographically matched sample).

Data on these vocabulary measures is shown in Table 3. Two sample heteroscedastic t tests (using the Welch-Satterthwaite correction) were used to compare scores from Experiments 2 and 3 to the Experiment 1 baseline. No differences were found in Multilingual Naming Test scores ($t \mathrm{~s}<1.5, p \mathrm{~s}>.15$). Young adults in Experiment 2 had higher Shipley-2 scores than participants in Experiment 1, $t(31.013=3.291, p<.005$, and older adults in Experiment 3 showed a similar trend relative to the Experiment 1 baseline, $t(29.370)=1.786, p<.09$. We therefore included Shipley-2 scores as a covariate in our analyses.

Results

Errors. Responses were categorized as correct or one of four types of errors: (a) name agreement errors (production of names that differed from those designated by the experimenter); (b) verbal disfluencies (stuttering, utterance repairs, and production of nonverbal sounds); (c) omissions; and (d) completion errors (where the sentence prime completion was produced instead of the picture name). We assessed interrater reliability on error classification by taking data from a random selection of four of the 54 participants across the three experiments. Two raters agreed on response classification for $98.5 \%(n=720)$.

Participants were quite accurate, with a mean of 8.6% of trials ($S E=0.9 \%$) eliciting errors. Given the fairly high rate of agreement errors (mean 5.7% of trials, $S E=0.7 \%$) we excluded from
analysis pictures that elicited 60% or more name agreement errors across Experiments 1 and 2 (beaver, canoe, cheetah, dropper, jeep, leg, peeler, raccoon, sheep). With these items removed, the average cloze probability of the target sentences (as assessed by younger adults) increased from 90.7% to 91.1%.

After removal of items with low name agreement, 17 completion errors remained in the data set (0.5% of trials); of these, 15 were in the semantic competitor condition and two in the unrelated condition. This was not sufficient to fit a regression model; however, this pattern indicates that participants were more likely to make a completion error when a semantic competitor was primed, as compared to an unrelated prime.

Acoustic properties: Data analysis methods. All items excluded in accuracy analyses were also excluded from the articulation models. Six additional items were also excluded (cookie, mop, leg, olive, tire, and foot) because participants frequently named a competitor for these items. Once these data were excluded, outlier removal on each dependent variable was conducted, by removing trials with measurements 3 standard deviations above and below each participant's mean. We first removed response time and word durations outliers from the entire data set, and fit models to these dependent variables using this set of data ($98.2-98.5 \%$ of data retained within each experiment). At this point, the data set contained 7,462 tokens (2,168 in Experiment 1, 2,045 in Experiment 2, and 2,136 in Experiment 3). Then, in conducting more exploratory analyses of subword components, we separately removed outliers for these three dependent variables: first consonant duration (98.5-98.9\% of remaining data retained), initial consonant duration (99.1-99.6\% retained), and vowel distance ($99.1-99.4 \%$ retained). ${ }^{2}$ For the initial consonant duration model, tokens which were word-initial were also removed; after this, 85.1% of the data was retained (6,349 data points across all three experiments).

Models were fit in R using the lme4 package (Bates, Mächler, Bolker, \& Walker, 2014). Fixed effects of each models are described in the sections for each dependent variable that follow. Selection of random effects followed Bates, Kliegl, Vasishth, and Baayen (2015); models were initially fit with the maximal random effects structure (Barr, Levy, Scheepers, \& Tily, 2013), and PCA was used to identify components of the structure that did not contribute variance to the model fit. After model selection, each model was refit excluding data points with extreme residuals (>2.5 SD, following Baayen, 2008). Likelihood ratio tests were used to assess the significance of fixed effects, as they are less anticonservative than t-as- Z tests (Barr et al., 2013).

Results: Acoustic Properties

Below, we discuss key predictions of the theoretical accounts discussed above (repeated below; see Table 2). The full results of the linear mixed effects regressions can be found in Appendix C.

[^2]Table 3
Vocabulary Measures for Each Experiment

Measure	Experiment 1		Experiment 2		Experiment 3	
	Young adults		Young adults		Older adults	
	No time pressure		Time pressure		No time pressure	
	M	SE	M	SE	M	SE
MINT (productive vocabulary)	64.556	. 623	62.222	. 712	64.500	. 526
Shipley-2 (receptive vocabulary)	113.444	1.190	118.278*	. 863	117.333	1.811

Note. \quad MINT $=$ Multilingual Naming Test.

* Score significantly different from experiment 1 baseline.

In assessing these effects, we included a series of control variables in our regression model:

- Block, along with interactions of block with match status and semantic relatedness: controls for any effects due to the repetition of picture targets across blocks (e.g., repetition reduction; Baker \& Bradlow, 2009).
- Shipley-2 score: controls for effects of overall differences in vocabulary on lexical processing (as noted above).
- Trial-level response time; overall response speed of participant: if articulation is ballistic, such that all effects of formulation are fixed at the moment of response initiation, planning measures (i.e., RT) should be positively correlated with acoustic measures (e.g., word duration), and there should be no remaining independent effects of formulation variables on the acoustic measures (see Buz \& Jaeger, 2016; Fink et al., 2018, for discussion; see Strijkers \& Costa, 2016, for additional discussion). We control for this in two ways: response time for each individual trial and a measure of the overall response speed of an individual. The latter is estimated by the best linear unbiased predictors (BLUPS; Baayen, 2008) of by-participant intercepts in a mixed effects model of RTs (detailed in Appendix C).
With these factors under statistical control, we examine the key predictions tested in our study. Table 4 provides descriptive statistics for our principal dependent measure, word duration, in each condition.

Interaction of formulation and articulation. As predicted, mismatch trials had longer word durations than match trials $(\beta=$ 18.783), $\chi^{2}(1)=30.09, p<.001$, suggesting that formulation disruptions lead to articulatory disruptions.

Long-distance interaction. There was no significant difference between word durations following unrelated versus semantically related primes $(\beta=-4.268), \chi^{2}(1)=2.33, p=.127$,

Table 4
Mean Word Durations With Standard Errors Across Participants for Each Condition, Experiment 1

Condition	Mean word duration	$S E$
Match	370.838	(3.479)
Semantically related	376.807	(3.762)
Unrelated	380.109	(3.801)

suggesting that disruptions to lexical selection do not yield enhanced articulatory disruptions.

Dynamic interaction. The match versus mismatching primes effect did not significantly interact with RT $(\beta=-19.718)$, $\chi^{2}(1)=1.56, p=.212$, suggesting that overlap between formulation and articulation did not increase when responses were more speeded. There was a significant positive interaction of semantic relatedness and RT $(\beta=50.667), \chi^{2}(1)=9.84, p=$.002. This was driven by a greater relationship between RT and word duration for semantically related ($r=.104$) versus unrelated primes $(r=.0597)$. Critically, unrelated trials were particularly longer than semantically related trials at fast RTs (below the median RT, difference in word durations $=3.3 \mathrm{~ms}$) as compared to slow RTs (above the median RT, mean difference $=2.1 \mathrm{~ms}$; note that in the model RT was entered as a continuous factor). This suggests that across the range of RTs semantically related primes always have less of an effect on articulation than unrelated primes-contra the predictions of long-distance interaction.

Initial segment speech initiation. A series of regression models (including the control variables above) examined whether these condition effects could be found in the duration of initial consonants and following vowel, as well as in spectral properties of the vowel. Full model specifications and condition means for each measure can be found in Appendices C and D, respectively.

The effect of match status was significant for initial consonants $(\beta=10.852), \chi^{2}(1)=16.90, p<.001$, but not for vowel durations, $\chi^{2}(1)<1, p>$.80. Semantic relatedness did not significantly affect either duration measure, $\chi^{2} s(1)<2, p s>0.15$. Figure 2 provides a visualization of the relative effect sizes on the three duration measures. This suggests that, as predicted by an account where speech is initiated prior to completing planning, the effects of formulation disruptions on articulation are largest for initial consonants.

There was mixed evidence as to whether these duration effects increased in faster responses. For initial consonants, there was a significant negative interaction of match status and RT $(\beta=-31.232), \chi^{2}(1)=9.87, p=.002$, such that disruptions caused by mismatch effects increased at shorter RTs (as predicted by dynamic interaction accounts). For vowel durations, there was no significant interaction of match status and RT, $\chi^{2} \mathrm{~s}(1)<1, p \mathrm{~s}>0.40$. However, there was a significant interaction of response time and semantic relatedness (as is

Figure 2. Condition means of each dependent variable for the no-match conditions (sem $=$ semantically related competitor, unrel $=$ unrelated) as a proportion of match condition. An average value within each condition was generated for each participant. The boxplots show the mean (central line) and standard error across participants (width of box). Wings show range. A value of 1 indicates that the match condition and no-match condition had the same average measurement; values above 1 indicate that the no-match condition had a longer or larger measurement than the match condition. See the online article for the color version of this figure.
found in the whole word analysis; $\beta=20.607, \chi^{2}(1)=6.99$, $p=.008$).

Finally, with respect to spectral properties of the vowel, there was no significant effect of match status or semantic relatedness, $\chi^{2} s(1)<1, p s>0.10$.

Discussion

Experiment 1 provided evidence consistent with interactions between formulation and articulation, but no evidence for longdistance interaction effects. As predicted by accounts where speech is initiated as soon as the initial segment is planned, these formulation-articulation interactions appeared strongest for initial segments.

There was no evidence that these interactive effects were dynamic. This may be due to our reliance on natural, planned variation in response time. In Experiment 2, we followed the design of previous work argued to support dynamic interaction (e.g., Kello et al., 2000) and tested young adults naming pictures with explicit time pressure. This stronger manipulation should increase the chances that the degree of overlap between planning and articulation will increase.

Experiment 2: Younger Adults Naming Under Explicit Time Pressure

Methods

Participants. We recruited 18 younger adult participants (nine male, nine female) at Northwestern University using the Linguistics Department subject pool and ads recruiting participants on campus for monetary payment. Participants received either course credit or were paid $\$ 10 / \mathrm{hr}$. They reported learning no language other than English before age 5. Age ranged from 18 to 22 years ($M=19.72, S D=0.89$).

Materials. The sentence completion materials were identical to Experiment 1.

Design and procedure. The design and procedure was nearly identical to Experiment 1, with the following exceptions. Following Severens et al. (2008, Experiment 3), a deadline was imposed for initiating the naming response. Pictures appeared for 600 ms . Participants were instructed to name the picture before it disappeared. After the picture disappeared, a blank screen appeared and responses could still be registered for an additional 900 ms . When a software voice-key (with amplitude threshold adjusted for each participant) detected a response or when the 900 ms period ended, there was a blank screen for $1,500 \mathrm{~ms}$. If participants did not initiate their response within 600 ms (as measured by the software voice key), a written message appeared on the right portion of the screen at the end of the trial to indicate that the response was too slow.

Results

Errors. Analysis indicated that participants were much less accurate in Experiment 2, with 20.8% of trials eliciting errors (compared to 8.6% in Experiment 1). Most of the errors were categorized as name agreement errors, with an error rate of 12.1%. However, participants made many more completion errors with time pressure. 4.6% of responses were completion errors. We identified 2.9% of the responses as verbal disfluencies and only 1.2% as omissions. After removing low name agreement pictures, 97.8% of the dataset was retained (2,636 trials).

We analyzed the rate of completion errors (relative to correct trials) for semantic versus unrelated primes. The average rate of completion errors for competitor trials was 9.716% ($S E=2.025 \%$) versus $4.039 \% ~(S E=1.303 \%)$ for unrelated trials. We fit a logistic mixed effects regression model to this data, with semantic relatedness and block as predictors (random effects included correlated by-subject slopes for semantic relatedness, block, and their inter-
actions; random intercept for items). There was a significant main effect of semantic relatedness $(\beta=5.770), \chi^{2}(1)=9.25, p=.002$, indicating that there were more completion errors from semantic versus unrelated primes. There was a marginal main effect of block ($\beta=-1.308$), $\chi^{2}(1)=3.83, p=.051$, indicating that errors decreased over the course of the experiment. The interaction of block and semantic relatedness was also significant ($\beta=-1.143$), $\chi^{2}(1)=6.25, p=.0124$. The rate of errors following unrelated primes was relatively constant across blocks (Block 1: 4.18\%; Block 2: 3.79%; Block 3: 3.61%), whereas the rate of errors on semantically related primes decreased over repeated presentations (Block 1: 14.4%; Block 2: 7.84%; Block 3: 7.26%). Because the error rate is relatively low, we confirmed this pattern by running a logistic regression of rare events model (Choirat et al., 2018; King \& Zeng, 2001). This approach confirmed the critical significant effect of semantic relatedness ($\beta=0.937, z=4.404, p<.001$) and the marginal effect of block ($\beta=-0.242, z=-1.950, p=$.064); the interaction did not reach significance ($\beta=-0.330$, $z=-1.262, p=.207$).

Results: Acoustic Properties

Analysis methods followed Experiment 1. We first note that our experimental manipulation not only increased error rates relative to Experiment 1, but also successfully produced decreased RTs relative to Experiment 1 (see Appendix D). Table 5 provides descriptive statistics for our principal dependent measure, word duration, in each condition. (Comparison with Table 4 will reveal that word durations are overall shorter in Experiment 2 vs. 1.)

Interaction of formulation and articulation. Mismatch trials had longer word durations than match trials $(\beta=12.717)$, $\chi^{2}(1)=10.12, p=.002$, suggesting that the conflicting representations activated by mismatched primes disrupted target articulation.

Long-distance interaction. There was a nonsignificant (marginal) decrease in word durations following semantically related versus unrelated primes $(\beta=-5.298), \chi^{2}(1)=3.66, p=.056$. As can be seen in Table 5, semantically related primes had essentially the same duration as match trials. Note this occurred in spite of an increase in the production of completion errors under speeded responding. This pattern is opposite that predicted by long-distance interaction; the disruption that leads to overt speech errors should lead to distortions in articulation.

Dynamic interaction. There was a nonsignificant (marginal) positive interaction of match versus mismatching primes with RT ($\beta=27.527$), $\chi^{2}(1)=3.45, p=.063$; if anything, effects of mismatching primes increase with longer RTs. In contrast, dynamic interaction accounts predict that interactions should increase with shorter RTs (where there is greater overlap in processing).

Table 5
Mean Word Durations With Standard Errors Across Participants for Each Condition, Experiment 2

Condition	Mean word duration	$S E$
Match	324.491	(3.295)
Semantically related	323.857	(3.663)
Unrelated	331.083	(3.532)

There was no significant interaction of semantic relatedness and RT ($\beta=12.328$), $\chi^{2}(1)=0.76, p=.382$.

Experiment 2 also allows a stronger test of the dynamic interaction hypothesis; a cross-experiment comparison between Experiment 1 (without explicit time pressure, yielding longer RTs) and the current experiment (with explicit time pressure, yielding overall shorter RTs). We examined this via a separate regression over data from both experiments. This was structured similarly to the overall model of word durations, with the addition of fixed effects for experiment and interactions of experiment and all other effects (full results can be found in Appendix C). Critically, the interaction of experiment with the effect of matching primes was not significant, nor was the interaction with semantic relatedness of the prime, $\chi^{2} s(1)<0.10, p s>0.80 .{ }^{3}$ This suggests that the main influence of explicit time pressure was to simply speed responses, not increase interactive effects.

Initial segment speech initiation. The effect of match status was significant for initial consonants $(\beta=8.621), \chi^{2}(1)=15.36$, $p<.001$, but not significant (marginal) for vowel durations ($\beta=$ $3.395), \chi^{2}(1)=3.85, p=.05$. Figure 3 provides a visualization of the relative effect sizes on the three duration measures. Similar to Experiment 1, this suggests that the relative strength of condition effects is largest on initial consonants (although note that the range of effect sizes exhibits considerable overlap across measures).

This conclusion is tempered by a significant effect of match status on spectral properties of vowels $(\beta=12.291), \chi^{2}(1)=6.01$, $p=.014$; mismatch trials had greater vowel distances than match trials, consistent with disruption to vowel articulation. Thus, although duration effects are larger on initial consonants versus vowels, effects of formulation disruption persist into the vowel. There was no evidence that any of these by-position effects interacted with RT (see Appendix C for full results).

With respect to long-distance interactions in the context of initial segment speech initiation, the effect of semantic relatedness was significant for initial consonants (such that semantic competitors resulted in less interference than unrelated primes; $\left.\beta=-3.759, \chi^{2}(1)=6.44, p=.011\right)$ but not vowel durations ($\left.\beta=-0.284, \chi^{2}(1)=0.04, p=.841\right)$. Again, the direction of this effect is opposite that predicted by long-distance interactions. With respect to vowel distance, there was no significant effect of semantic relatedness ($\left.\beta=1.172, \chi^{2}(1)=0.07, p=.790\right)$. In addition, there was no evidence that any of these by-position effects interacted with production speed (see Appendix C for full results).

Finally, to examine whether dynamic interaction effects would appear when comparing experiments with versus without explicit time pressure, models compared each of these measures of vowel and consonant articulation across Experiment 1 versus Experiment 2. There were no significant interactions of interactive effects with RT and experiment (see footnote 3 and Appendix C for full results).

[^3]

Figure 3. Condition means of each dependent variable for the no-match conditions (sem $=$ semantically related competitor, unrel $=$ unrelated) as a proportion of match condition. An average value within each condition was generated for each participant. The boxplots show the mean (central line) and standard error across participants (width of box). Wings show range. A value of 1 indicates that the match condition and no-match condition had the same average measurement; values above 1 indicate that the no-match condition had a longer or larger measurement than the match condition. See the online article for the color version of this figure.

Discussion

Parallel to previous work (Severens et al., 2008), imposing a deadline for responding produced greater error rates. The phonetic effects were largely parallel to Experiment 1 . We saw clear evidence for interactions between formulation and articulation. Speech appeared to be initiated by planning of the initial segment, as disruption was particularly strong for initial consonants (but also extending into vowels). However, there was no clear evidence of long-distance interactions; furthermore, in spite of the inclusion of explicit time pressure, there was no evidence for dynamic interaction effects (parallel to Damian, 2003, but in contrast to the effects observed by Kello et al., 2000).

The finding that increased disruptions to lexical selection (due to time pressure) did not yield enhanced articulatory effects may reflect the overall stability of lexical selection in younger adults. We examine this in Experiment 3 by testing older adults. If, following the inhibitory deficit hypothesis, the older adults are less effective at suppressing nontarget representations, interactive effects are predicted to be stronger than in younger adults.

Experiment 3: Older Adults Naming

Methods

Participants. We recruited 18 older adult participants (3 male, 15 female) from communities in Chicago and Evanston, IL. Participants were paid $\$ 10 / \mathrm{hr}$. They reported learning no language other than English before age 5 and no history of color blindness or language/cognitive impairment. Age ranged from 60 to 77 years ($M=68.38, S D=5.88$).

Materials and design. The sentence completion materials used here were identical to Experiment 1. We separately normed cloze probability in older adults; the average probability was 86.7\% (SD 17.9\%)

Procedure. The procedure was identical to Experiment 1.

Results

Errors. Analysis indicated that 14.9% of trials elicited errors. As in Experiments 1 and 2, most of the errors were categorized as name agreement errors (error rate $=11.4 \%$). There were few completion errors (error rate $=0.5 \%$). We identified 2.0% of the responses as verbal disfluencies and only 1.0% as omissions. We excluded 17 pictures from analysis that elicited a large number of agreement errors within this group of participants (beaver, cheetah, couch, dollar, dolphin, fly, headphones, ipod, jeans, juice, laptop, nachos, speaker, vase, lime, peeler, mop, olive, ring, wheel). This allowed for retention of 90.3% of the dataset (2614 trials). Excluding these items, the average cloze probability of the target sentences for older adults remained relatively stable, from 86.7% to 86.8%.

After removal of items with low name agreement, 14 completion errors remained in the data set (0.5% of trials); of these, all were in the semantic competitor condition. As such, it was not possible to fit a model to the error data in Experiment 3. The pattern matches those in Experiment 1 and indicates that participants were more likely to make a completion error when a semantic competitor was primed.

Results: Acoustic Properties

Analysis methods followed Experiment 1. Four additional items were removed from articulation models because of high rates where participants named the competitor (mop, olive, ring, wheel). Table 6 provides descriptive statistics for our principal dependent measure, word duration, in each condition. (Comparison with Table 4 will reveal that word durations are overall

Table 6
Mean Word Durations With Standard Errors Across Participants for Each Condition, Experiment 3

Condition	Mean word duration	$S E$
Match	393.569	(3.815)
Semantically related	397.651	(4.105)
Unrelated	421.518	(4.501)

longer in Experiment 3 vs. 1, consistent with slower speech in older adults.)

Interaction of formulation and articulation; long-distance interaction. In contrast to the experiments with young adults, collapsing across semantically unrelated and semantically related, mismatch trials did not have longer word durations than match trials $\left(\beta=5.105, \chi^{2}(1)=1.31, p=.253\right) .{ }^{4}$ However, there was a significant decrease in word durations following semantically related versus unrelated primes $\left(\beta=-11.304, \chi^{2}(1)=8.86, p=\right.$.003). As can be seen in Table 6, semantically related primes had essentially the same duration as match trials (with unrelated trials showing longer durations). So, although the result with unrelated primes is consistent with interactions between formulation and articulation, the pattern with semantically related primes is opposite that predicted by long-distance interaction; the disruption that leads to overt speech errors should lead to distortions in articulation (certainly relative to the match condition).

Dynamic interaction. Neither match status ($\beta=-20.459$), $\chi^{2}(1)=1.75, p=.186$, nor semantic relatedness interacted with RT $(\beta=7.360), \chi^{2}(1)=0.19, p=.667$, failing to provide support for the predictions of accounts with dynamic interaction between cognitive processes.

Inhibitory deficit. The inhibitory deficit hypothesis predicts that older adults (with less ability to suppress competitors) should show larger interactive effects than young adults. We assessed this prediction using a regression model; this was structured similarly to the overall model of word durations, with the addition of fixed effects for experiment (Experiment 3 vs. Experiment 1) and interactions of experiment and all other effects (full results can be found in Appendix C). The interaction of experiment with the effect of matching primes was not significant. ${ }^{5}(\beta=-2.320$, $\left.\chi^{2}(1)=0.14, p=.704\right)$. However, the effect of semantic relatedness did interact with experiment ($\beta=-10.309, \chi^{2}(1)=4.41$, $p=.038$); underscoring the unexpected finding above, there was a larger (more negative) effect was found with older adults. This fails to support an increased effect of lexical selection disruptions on processing.

Initial segment speech initiation. In contrast to the previous two experiments, there was no clear effect on initial consonants, nor any effect on vowels. The effect of match status was nonsignificant for initial consonants $(\beta=3.381), \chi^{2}(1)=2.72, p=.099$, and nonsignificant for vowel durations $(\beta=2.743), \chi^{2}(1)=1.90$, $p=.168$. Similarly, the effect of semantic relatedness was not significant for initial consonants ($\beta=-2.486$), $\chi^{2}(1)=2.39, p=$.122, as well as vowel durations ($\beta=-0.729$), $\chi^{2}(1)=0.22, p=$.636. Figure 4 provides a visualization of the relative effect sizes on the three duration measures. Spectral properties of the vowel also failed to show significant effects—match status: $\beta=1.295$,
$\chi^{2}(1)=0.04, p=.843$; semantic relatedness: $\beta=-2.664$, $\chi^{2}(1)=0.36, p=.547$. There were no significant modulation of these effects by RT (see Appendix C for full models.).

There was also little evidence of dynamic long-distance interactions in the context of initial speech initiation effects. Experiment 3 RTs did not interact with semantic relatedness for initial consonants $(\beta=-5.706), \chi^{2}(1)=0.67, p=.413$; vowel durations $(\beta=-0.173), \chi^{2}(1)=0, p=.975$; or vowel spectral properties $(\beta=-19.634), \chi^{2}(1)=1.09, p=.297$.

Finally, the cross-experiment models examining consonant and vowel articulation measures failed to find support for inhibitory deficits (see Appendix C for full results). There was, however, a significant effect of age; vowel distances were overall larger for older speakers $(\beta=35.565), \chi^{2}(1)=4.650, p=.031$.

Discussion

Although older adults produced more errors (14.1% vs. 8.6% in Experiment 1) and had overall longer word durations (consistent with slowed speech associated with aging), they did not show heightened sensitivity to differences across experimental conditions. Their rate of completion errors was numerically lower than that of younger speakers, and the majority of the effects on articulatory measures were weaker (e.g., lack of significant condition effects on initial consonants). We discuss the implications of this finding in the following section.

General Discussion

Previous research has yielded mixed results on the extent and scope of interactions between formulation and articulatory processes. This study aimed to provide novel evidence on these issues using a paradigm that disrupted formulation. Participants named a picture following a sentence priming a matching or nonmatching picture label (Ferreira \& Griffin, 2003). A novel automatic phonetic analysis tool allowed us to examine word durations; in concert with other analysis tools, we used this to automatically measure more fine-grained aspects of word articulation associated with specific segments. Consistent with a number of previous studies, when priming a nontarget word disrupts formulation, articulation is disrupted as well. This effect appears to be stronger in the initial position of the words, suggesting that speech is initiated as soon as these segments are planned; subsequent segments benefit from additional planning, suppressing the temporary effects of disruption. Some of the mixed evidence in the literature may therefore reflect the use of coarse-grained measures of articulatory processing. However, two other possible confounds in previous work did not appear to influence the current results. Disruptions to formulation did not exert a stronger influence with explicit time pressure or faster RTs, suggesting overlap between formulation and articulation is relatively fixed. Older participants showed, if anything, weaker interactive effects than younger

[^4]

Figure 4. Condition means of each dependent variable for the no-match conditions (sem $=$ semantically related competitor, unrel $=$ unrelated) as a proportion of match condition. An average value within each condition was generated for each participant. The boxplots show the mean (central line) and standard error across participants (width of box). Wings show range. A value of 1 indicates that the match condition and no-match condition had the same average measurement; values above 1 indicate that the no-match condition had a longer or larger measurement than the match condition. See the online article for the color version of this figure.
adults, suggesting that aging does not decrease the ability to suppress nontarget representations during speech planning.

A central goal of this work was to provide a clearer picture of long-distance interactive effects: specifically, the impact of disruptions to lexical selection (as opposed to other aspects of formulation) on articulatory processing. The priming paradigm successfully disrupted lexical selection; semantically related primes yielded overt, whole-word picture naming errors at a higher rate than unrelated primes. However, this enhanced disruption of lexical selection was associated with weaker disruptions to articulation than the unrelated condition.

Challenges Raised by Results From Semantic Primes

As discussed in the introduction, a large body of work has demonstrated that there are many situations where articulatory processing is facilitated when formulation processes are facilitated. Several theoretical proposals in the language production literature assume that conceptual processes preceding lexical selection are facilitated by semantic relationships (for reviews and discussion see Abdel Rahman \& Melinger, 2009; Scaltritti, Peressotti, \& Navarrete, 2017); under some contexts, this can facilitate subsequent processing. In the context of a task using a sentence prime, previous studies have measured the difficulty of reading a word following a high-cloze probability sentence; in such tasks, there is less disruption when the unexpected word is semantically related to the cloze completion than when it is semantically unrelated to the target (Federmeier \& Kutas, 1999). Furthermore, results from a wide array of studies have suggested that older adults show larger semantic priming effects (e.g., Laver \& Burke, 1993); here, older adults show larger facilitatory effects of semantic primes than younger adults. These results make it plausible that semantic primes could facilitate target retrieval, and as a consequence, articulatory processing. The challenge for such an account is to explain the error data. Whatever facilitation the semantic primes
provide the target during formulation, it is clearly insufficient to suppress the occurrence of semantic errors. If articulatory effects arise as a result of cascading activation, why does the heightened activation of semantic competitors fail to disrupt articulatory processing?

One possibility (suggested by an anonymous reviewer) is that these effects represent a kind of speed/accuracy tradeoff; participants capitalize on the facilitatory effects of semantic primes to speed formulation and articulation at the cost of allowing more errors to be produced. Consistent with this, there is a trend toward facilitatory effects of semantic primes in RTs (see Appendixes C and D for analyses and statistical models). However, a key prediction of this account is not confirmed by our data. Experiment 2 differs from Experiment 1 in that speed is explicitly emphasized. This results in a clear increase in errors and a decrease in RTs (illustrating a speed/accuracy tradeoff). However, it is not accompanied by a significant increase in semantic effects on articulatory processing. Although the effect of semantic primes is significant in Experiment 2 but not in Experiment 1, regression models explicitly comparing the two experiments show no interaction of semantic primes with experiment. This possibility deserves further investigation; it is possible that our study did not have sufficient power to detect such interactions.

Another alternative is to allow for multiple processes or information sources to directly influence articulatory processing. Rather than articulation being modulated solely by the relative activation of target and competitor representations (i.e., the output of formulation processes), it may be that target activation has a privileged effect on articulation, irrespective of the activation of competitors. For example, Baker and Bradlow (2009) presented analyses showing that the facilitatory effects of contextual predictability cannot be reduced to the prosodic structure of an utterance (with predictable items occurring in less prominent positions). They therefore propose that predictability exerts a direct influence on articulation.

Such a direct influence could serve to reduce articulatory disruptions for semantically related primes.

A natural question is then whether predictability provides a sufficient account of the data, obviating the need to appeal to interaction to account for the data reported here. Other results in the literature on interactive effects suggest a pure predictability account is insufficient (see Arnold, 2016, for a review). As reviewed in the introduction, Jacobs et al. (2015) shows that facilitation of articulation requires the prior facilitation of word form processing. Findings such as these suggest that predictability and interactive effects codetermine articulatory prominence.

Initiation of Speech by Initial Segment

The enhanced effects on initial positions are consistent with previous findings from reading aloud (Kawamoto et al., 1999) and typing (Scaltritti et al., 2017; but see Damian \& Freeman, 2008). Such results are predicted if planning continues following articulation onset. While the initial portions of the word are being articulated, planning may continue for later portions. This extra time may allow the production system to resolve planning conflicts before having to articulate, reducing effects at later portions of the word. Future research should be focused on examining more fine-grained measures of speech articulation to capture such transient effects.

Dynamic Interaction

The failure to find effects of naturally occurring variation in response speed is consistent with the absence of such effects in Fink et al.'s (2018) study of semantic interference effects. The current study provides converging evidence from the absence of effects from explicit response pressure, consistent with Damian (2003) and Damian and Freeman (2008). This suggests that the coordination of formulation processes and articulation processes is not as flexible as suggested by Kello et al. (2000). Future work, perhaps including high-powered replications of Kello et al. (2000), might allow us to determine if the original results were spurious. The automated phonetic analysis developed here could facilitate such work.

Lack of Inhibitory Deficits in Aging

Although older adults produced longer word durations (suggesting a reduction in articulatory rate), and somewhat lower accuracy overall, aging did not enhance the effect of lexical selection disruptions on articulation. In fact, older adults showed enhanced facilitatory effects of semantic primes. This is consistent with previous work suggesting that various predictions of the inhibitory deficit hypothesis are not confirmed by empirical studies of cognitive aging (see Burke \& College, 1997, for a review). The transmission deficit hypothesis (Burke et al., 1991; MacKay, 1987) might provide a framework for understanding such effects. According to this theory, connections between representational units are weakened with increasing age. Specifically, weak connections between phonological and lexical levels prevent form-level representations from becoming adequately activated, yielding difficulty in retrieval (MacKay, 1987; Taylor \& Burke, 2002). Furthermore, because of the degraded links from semantics to phonology, the
amount of activation that cascades to subsequent phonetic/articulatory processes should be significantly reduced. This would reduce the influence of weakly activated competitor representations, decreasing interactive effects.

The Relationship Between Formulation and Articulation

More generally, this set of findings suggests that interactions between formulation and articulation do not simply cause articulation to mirror all aspects of formulation processing. Although disruptions to formulation can yield articulatory disruptions, the extent and nature of these disruptions is not a straightforward consequence of the outcome of formulation processes. Articulatory effects may be sensitive to multiple aspects of processing (e.g., lexical selection difficulties as well as positive effects of contextual predictability). A more nuanced model of planningarticulation interactions may better account for this complex relationship and yield predictions about contexts that facilitate versus inhibit observing long-distance interactive effects.

References

Abdel Rahman, R., \& Melinger, A. (2009). Semantic context effects in language production: A swinging lexical network proposal and a review. Language and Cognitive Processes, 24, 713-734. http://dx.doi.org/10 .1080/01690960802597250
Adi, Y., Keshet, J., Cibelli, E., \& Goldrick, M. (2017). Sequence segmentation using joint RNN and structured prediction models. In Proceedings of the 42nd IEEE international conference on acoustics, speech, and signal processing (ICASSP) (pp. 2422-2426). New Orleans, LA: Institute of Electrical and Electronics Engineers. http://dx.doi.org/10.1109/ ICASSP. 2017.7952591
Adi, Y., Keshet, J., Cibelli, E., Gustafson, E., Clopper, C., \& Goldrick, M. (2016). Automatic measurement of vowel duration via structured prediction. The Journal of the Acoustical Society of America, 140, 45174527. http://dx.doi.org/10.1121/1.4972527

Adi, Y., Keshet, J., Dmitrieva, O., \& Goldrick, M. (2016). Automatic measurement of voice onset time and prevoicing using recurrent neural networks. Proceedings of Interspeech, 2016, 3152-3155. http://dx.doi .org/10.21437/Interspeech.2016-893
Adi, Y., Keshet, J., \& Goldrick, M. (2015). Vowel duration measurement using deep neural networks. In Proceedings of the IEEE International Workshop on Machine Learning for Signal Processing. Boston, MA: IEEE. http://dx.doi.org/10.1109/MLSP.2015.7324331
Arnold, J. E. (2016). Explicit and emergent mechanisms of information status. Topics in Cognitive Science, 8, 737-760. http://dx.doi.org/10 .1111/tops. 12220
Baayen, R. H. (2008). Analyzing linguistic data: A practical introduction to statistics using R. Cambridge, UK: Cambridge University Press. http://dx.doi.org/10.1017/CBO9780511801686
Baker, R. E., \& Bradlow, A. R. (2009). Variability in word duration as a function of probability, speech style, and prosody. Language and Speech, 52, 391-413. http://dx.doi.org/10.1177/0023830909336575
Balota, D. A., Boland, J. E., \& Shields, L. W. (1989). Priming in pronunciation: Beyond pattern recognition and onset latency. Journal of Memory and Language, 28, 14-36. http://dx.doi.org/10.1016/0749-596X(89) 90026-0
Barr, D. J., Levy, R., Scheepers, C., \& Tily, H. J. (2013). Random effects structure for confirmatory hypothesis testing: Keep it maximal. Journal of Memory and Language, 68, 255-278. http://dx.doi.org/10.1016/j.jml .2012.11.001

Bates, D., Kliegl, R., Vasishth, S., \& Baayen, H. (2015). Parsimonious mixed models. arXiv preprint:1506.04967.
Bates, D., Mächler, M., Bolker, B., \& Walker, S. (2014). Fitting linear mixed-effects models using lme4. arXiv preprint arXiv:1406.5823.
Belke, E. (2017). The role of task-specific response strategies in blockedcyclic naming. Frontiers in Psychology, 7, 1955. http://dx.doi.org/10 .3389/fpsyg.2016.01955
Belke, E., Meyer, A. S., \& Damian, M. F. (2005). Refractory effects in picture naming as assessed in a semantic blocking paradigm. The Quarterly Journal of Experimental Psychology A: Human Experimental Psychology, 58, 667-692. http://dx.doi.org/10.1080/02724980443000142
Bell, A., Brenier, J. M., Gregory, M., Girand, C., \& Jurafsky, D. (2009). Predictability effects on durations of content and function words in conversational English. Journal of Memory and Language, 60, 92-111. http://dx.doi.org/10.1016/j.jml.2008.06.003
Biegler, K. A., Crowther, J. E., \& Martin, R. C. (2008). Consequences of an inhibition deficit for word production and comprehension: Evidence from the semantic blocking paradigm. Cognitive Neuropsychology, 25, 493-527. http://dx.doi.org/10.1080/02643290701862316
Brodeur, M. B., Dionne-Dostie, E., Montreuil, T., \& Lepage, M. (2010). The Bank of Standardized Stimuli (BOSS), a new set of 480 normative photos of objects to be used as visual stimuli in cognitive research. PLoS ONE, 5, e10773. http://dx.doi.org/10.1371/journal.pone. 0010773
Brodeur, M. B., Guérard, K., \& Bouras, M. (2014). Bank of Standardized Stimuli (BOSS) phase II: 930 new normative photos. PLoS ONE, 9, e106953. http://dx.doi.org/10.1371/journal.pone. 0106953
Brysbaert, M., \& New, B. (2009). Moving beyond Kučera and Francis: A critical evaluation of current word frequency norms and the introduction of a new and improved word frequency measure for American English. Behavior Research Methods, Instruments \& Computers, 41, 977-990. http://dx.doi.org/10.3758/BRM.41.4.977
Burke, D. M., \& College, P. (1997). Language, aging, and inhibitory deficits: Evaluation of a theory. The Journals of Gerontology: Series B: Psychological Sciences and Social Sciences, 52, 254-264. http://dx.doi .org/10.1093/geronb/52B.6.P254
Burke, D. M., MacKay, D. G., Worthley, J. S., \& Wade, E. (1991). On the tip of the tongue: What causes word finding failures in young and older adults? Journal of Memory and Language, 30, 542-579. http://dx.doi .org/10.1016/0749-596X(91)90026-G
Buz, E., \& Jaeger, T. F. (2016). The (in)dependence of articulation and lexical planning during isolated word production. Language, Cognition and Neuroscience, 31, 404-424. http://dx.doi.org/10.1080/23273798 .2015.1105984
Choirat, C., Gandrud, C., Honaker, J., Imai, K., King, G., \& Lau, O. (2018). relogit: Rare events logistic regression for dichotomous dependent variables. In C. Choirat, C. Gandrud, J. Honaker, K. Imai, G. King, and O. Lau (Eds.), Zelig: Everyone's statistical software. Retrieved from http://zeligproject.org/
Cutting, J. C., \& Ferreira, V. S. (1999). Semantic and phonological information flow in the production lexicon. Journal of Experimental Psychology: Learning, Memory, and Cognition, 25, 318-344. http://dx.doi .org/10.1037/0278-7393.25.2.318
Damian, M. F. (2003). Articulatory duration in single-word speech production. Journal of Experimental Psychology: Learning, Memory, and Cognition, 29, 416-431. http://dx.doi.org/10.1037/0278-7393.29.3.416
Damian, M. F., \& Freeman, N. H. (2008). Flexible and inflexible response components: A Stroop study with typewritten output. Acta Psychologica, 128, 91-101. http://dx.doi.org/10.1016/j.actpsy.2007.10.002
Damian, M. F., Vigliocco, G., \& Levelt, W. J. (2001). Effects of semantic context in the naming of pictures and words. Cognition, 81, B77-B86. http://dx.doi.org/10.1016/S0010-0277(01)00135-4
Dell, G. S., \& O’Seaghdha, P. G. (1992). Stages of lexical access in language production. Cognition, 42, 287-314. http://dx.doi.org/10.1016/ 0010-0277(92)90046-K

Dell, G. S., \& Reich, P. A. (1981). Stages in sentence production: An analysis of speech error data. Journal of Verbal Learning \& Verbal Behavior, 20, 611-629. http://dx.doi.org/10.1016/S0022-5371(81) 90202-4
Dhooge, E., Baene, W. D., \& Hartsuiker, R. J. (2013). A late locus of the distractor frequency effect in picture-word interference: Evidence from event-related potentials. Brain and Language, 124, 232-237. http://dx .doi.org/10.1016/j.bandl.2012.12.005
Dissen, Y., \& Keshet, J. (2016). Formant estimation and tracking using deep learning. Paper presented at the 17th Annual Conference of the International Speech Communication Association, San Francisco, CA.
Drake, E., \& Corley, M. (2015). Effects in production of word preactivation during listening: Are listener-generated predictions specified at a speech-sound level? Memory \& Cognition, 43, 111-120. http://dx .doi.org/10.3758/s13421-014-0451-9
Duchi, J., Hazan, E., \& Singer, Y. (2011). Adaptive subgradient methods for online learning and stochastic optimization. Journal of Machine Learning Research, 12, 2121-2159.
Elman, J. L. (1991). Distributed representations, simple recurrent networks, and grammatical structure. Machine Learning, 7, 195-225. http:// dx.doi.org/10.1007/BF00114844

Federmeier, K. D., \& Kutas, M. (1999). A rose by any other name: Long-term memory structure and sentence processing. Journal of Memory and Language, 41, 469-495. http://dx.doi.org/10.1006/jmla. 1999 .2660
Ferreira, V. S., \& Griffin, Z. M. (2003). Phonological influences on lexical (mis)selection. Psychological Science, 14, 86-90. http://dx.doi.org/10 .1111/1467-9280.01424
Fink, A. (2016). The role of domain-general executive functions, articulation, and conceptualization in spoken word production (Doctoral dissertation). Northwestern University.
Fink, A., Oppenheim, G. M., \& Goldrick, M. (2018). Interactions between lexical access and articulation. Language, Cognition and Neuroscience, 33, 12-24. http://dx.doi.org/10.1080/23273798.2017.1348529
Finkbeiner, M., \& Caramazza, A. (2006a). Now you see it, now you don't: On turning semantic interference into facilitation in a Stroop-like task. Cortex: A Journal Devoted to the Study of the Nervous System and Behavior, 42, 790-796. http://dx.doi.org/10.1016/S0010-9452(08) 70419-2
Finkbeiner, M., \& Caramazza, A. (2006b). Lexical selection is not a competitive process: A reply to La Heij et al. Cortex: A Journal Devoted to the Study of the Nervous System and Behavior, 42, 1032-1036, 2006. http://dx.doi.org/10.1016/S0010-9452(08)70210-7
Frisch, S. A., \& Wright, R. (2002). The phonetics of phonological speech errors: An acoustic analysis of slips of the tongue. Journal of Phonetics, 30, 139-162. http://dx.doi.org/10.1006/jpho.2002.0176
Gahl, S. (2008). "Thyme" and "time" are not homophones. The effect of lemma frequency on word durations in spontaneous speech. Language, 84, 474-496. http://dx.doi.org/10.1353/lan.0.0035
Gahl, S., \& Strand, J. F. (2016). Many neighborhoods: Phonological and perceptual neighborhood density in lexical production and perception. Journal of Memory and Language, 89, 162-178. http://dx.doi.org/10 .1016/j.jml.2015.12.006
Garrett, M. F. (1975). The analysis of sentence production. Psychology of Learning and Motivation, 9, 133-177. http://dx.doi.org/10.1016/S0079-7421(08)60270-4
Goldrick, M. (2006). Limited interaction in speech production: Chronometric, speech error, and neuropsychological evidence. Language and Cognitive Processes, 21, 817-855. http://dx.doi.org/10.1080/ 01690960600824112
Goldrick, M., Baker, H. R., Murphy, A., \& Baese-Berk, M. (2011). Interaction and representational integration: Evidence from speech errors. Cognition, 121, 58-72. http://dx.doi.org/10.1016/j.cognition. 2011 . 05.006

Goldrick, M., \& Blumstein, S. E. (2006). Cascading activation from phonological planning to articulatory processes: Evidence from tongue twisters. Language and Cognitive Processes, 21, 649-683. http://dx.doi .org/10.1080/01690960500181332
Goldrick, M., Keshet, J., Gustafson, E., Heller, J., \& Needle, J. (2016). Automatic analysis of slips of the tongue: Insights into the cognitive architecture of speech production. Cognition, 149, 31-39. http://dx.doi .org/10.1016/j.cognition.2016.01.002
Goldstein, L., Pouplier, M., Chen, L., Saltzman, E., \& Byrd, D. (2007). Dynamic action units slip in speech production errors. Cognition, 103, 386-412. http://dx.doi.org/10.1016/j.cognition.2006.05.010
Gollan, T. H., \& Brown, A. S. (2006). From tip-of-the-tongue (TOT) data to theoretical implications in two steps: When more TOTs means better retrieval. Journal of Experimental Psychology: General, 135, 462-483. http://dx.doi.org/10.1037/0096-3445.135.3.462
Gollan, T. H., \& Goldrick, M. (2018). Aging deficits in speech production revealed through reading aloud. Manuscript submitted for publication.
Gollan, T. H., Weissberger, G. H., Runnqvist, E., Montoya, R. I., \& Cera, C. M. (2012). Self-ratings of spoken language dominance: A multilingual naming test (MINT) and preliminary norms for young and aging Spanish-English bilinguals. Bilingualism: Language and Cognition, 15, 594-615. http://dx.doi.org/10.1017/S1366728911000332
Graves, A., \& Jaitly, N. (2014). Towards end-to-end speech recognition with recurrent neural networks. In Proceedings of the 31st International Conference on Machine Learning (Vol. 14, pp. 1764-1772). Beijing, China: International Conference on Machine Learning.
Graves, A., Mohamed, A. R., \& Hinton, G. (2013). Speech recognition with deep recurrent neural networks. In Acoustics, speech and signal processing (ICASSP), 2013 IEEE international conference on (pp. 6645-6649). Vancouver, British Columbia, Canada: IEEE. http://dx.doi .org/10.1109/ICASSP.2013.6638947
Hinton, G. E., Srivastava, N., Krizhevsky, A., Sutskever, I., \& Salakhutdinov, R. R. (2012). Improving neural networks by preventing coadaptation of feature detectors. arXiv preprint arXiv:1207.0580.
Hochreiter, S., \& Schmidhuber, J. (1997). Long short-term memory. Neural Computation, 9, 1735-1780. http://dx.doi.org/10.1162/neco.1997.9 .8.1735
Howard, D., Nickels, L., Coltheart, M., \& Cole-Virtue, J. (2006). Cumulative semantic inhibition in picture naming: Experimental and computational studies. Cognition, 100, 464-482. http://dx.doi.org/10.1016/j .cognition.2005.02.006
Jacobs, C. L., Yiu, L. K., Watson, D. G., \& Dell, G. S. (2015). Why are repeated words produced with reduced durations? Evidence from inner speech and homophone production. Journal of Memory and Language, 84, 37-48. http://dx.doi.org/10.1016/j.jml.2015.05.004
Jescheniak, J. D., Hahne, A., Hoffmann, S., \& Wagner, V. (2006). Phonological activation of category coordinates during speech planning is observable in children but not in adults: Evidence for cascaded processing. Journal of Experimental Psychology: Learning, Memory, and Cognition, 32, 373-386. http://dx.doi.org/10.1037/0278-7393.32.3.373
Kawamoto, A. H., Kello, C. T., Higareda, I., \& Vu, J. V. (1999). Parallel processing and initial phoneme criterion in naming words: Evidence from frequency effects on onset and rime duration. Journal of Experimental Psychology: Learning, Memory, and Cognition, 25, 362-381.
Kello, C. T., Plaut, D. C., \& MacWhinney, B. (2000). The task dependence of staged versus cascaded processing: An empirical and computational study of Stroop interference in speech production. Journal of Experimental Psychology: General, 129, 340-360. http://dx.doi.org/10.1037/ 0096-3445.129.3.340
Keshet, J., Shalev-Shwartz, S., Singer, Y., \& Chazan, D. (2007). A large margin algorithm for speech-to-phoneme and music-to-score alignment. IEEE Transactions on Audio, Speech, and Language Processing, 15, 2373-2382. http://dx.doi.org/10.1109/TASL.2007.903928

King, G., \& Zeng, L. (2001). Logistic regression in rare events data. Political Analysis, 9, 137-163. http://dx.doi.org/10.1093/oxfordjournals .pan.a004868
Laver, G. D., \& Burke, D. M. (1993). Why do semantic priming effects increase in old age? A meta-analysis. Psychology and Aging, 8, 34-43. http://dx.doi.org/10.1037/0882-7974.8.1.34
Levelt, W. J., Roelofs, A., \& Meyer, A. S. (1999). A theory of lexical access in speech production. Behavioral and Brain Sciences, 22, 1-38. http://dx.doi.org/10.1017/S0140525X99001776
Li, L., \& Slevc, L. R. (2017). Of papers and pens: Polysemes and homophones in lexical (mis)Selection. Cognitive Science, 41(Suppl 6), 15321548. http://dx.doi.org/10.1111/cogs. 12402

Löfqvist, A., Sahlén, B., \& Ibertsson, T. (2010). Vowel spaces in Swedish adolescents with cochlear implants. The Journal of the Acoustical Society of America, 128, 3064-3069.
Logan, G. D., \& Zbrodoff, N. J. (1998). Stroop-type interference: Congruity effects in color naming with typewritten responses. Journal of Experimental Psychology: Human Perception and Performance, 24, 978992. http://dx.doi.org/10.1037/0096-1523.24.3.978

MacKay, D. G. (1987). The organization of perception and action: A theory for language and other cognitive skills. Berlin, Germany: Springer.
Mainz, N., Shao, Z., Brysbaert, M., \& Meyer, A. S. (2017). Vocabulary knowledge predicts lexical processing: Evidence from a group of participants with diverse educational backgrounds. Frontiers in Psychology, 8, 1164. http://dx.doi.org/10.3389/fpsyg.2017.01164
Marian, V., Bartolotti, J., Chabal, S., \& Shook, A. (2012). CLEARPOND: Cross-linguistic easy-access resource for phonological and orthographic neighborhood densities. PLoS ONE, 7, e43230. http://dx.doi.org/10 .1371/journal.pone. 0043230
McAllester, D., Hazan, T., \& Keshet, J. (2010). Direct loss minimization for structured prediction. In J. D. Lafferty, C. K. I. Williams, J. ShaweTaylor, R. S. Zemel, \& A. Culotta (Eds.), Advances in neural information processing systems (Vol. 23, pp. 1594-1602). Vancouver, British Columbia, Canada: NIPS.
McMillan, C. T., \& Corley, M. (2010). Cascading influences on the production of speech: Evidence from articulation. Cognition, 117, 243260. http://dx.doi.org/10.1016/j.cognition.2010.08.019

McMillan, C. T., Corley, M., \& Lickley, R. J. (2009). Articulatory evidence for feedback and competition in speech production. Language and Cognitive Processes, 24, 44-66. http://dx.doi.org/10.1080/016909608 01998236
Melinger, A., Branigan, H. P., \& Pickering, M. J. (2014). Parallel processing in language production. Language, Cognition and Neuroscience, 29, 663-683. http://dx.doi.org/10.1080/23273798.2014.906635
Munson, B. (2007). Lexical access, lexical representation, and vowel production. In J. Cole \& J. I. Hualde (Eds.), Papers in laboratory phonology 9 (pp. 201-228). Berlin, Germany: Mouton de Gruyter.
Oppenheim, G. M., Dell, G. S., \& Schwartz, M. F. (2010). The dark side of incremental learning: A model of cumulative semantic interference during lexical access in speech production. Cognition, 114, 227-252. http://dx.doi.org/10.1016/j.cognition.2009.09.007
Peterson, R. R., \& Savoy, P. (1998). Lexical selection and phonological encoding during language production: Evidence for cascaded processing. Journal of Experimental Psychology: Learning, Memory, and Cognition, 24, 539-557. http://dx.doi.org/10.1037/0278-7393.24.3.539
Pouplier, M. (2007). Tongue kinematics during utterances elicited with the SLIP technique. Language and Speech, 50, 311-341. http://dx.doi.org/ 10.1177/00238309070500030201

Pouplier, M. (2008). The role of a coda consonant as error trigger in repetition tasks. Journal of Phonetics, 36, 114-140. http://dx.doi.org/10 .1016/j.woen.2007.01.002
Ramscar, M., Hendrix, P., Shaoul, C., Milin, P., \& Baayen, H. (2014). The myth of cognitive decline: Non-linear dynamics of lifelong learning.

Topics in Cognitive Science, 6, 5-42. http://dx.doi.org/10.1111/tops .12078
Rapp, B., \& Goldrick, M. (2000). Discreteness and interactivity in spoken word production. Psychological Review, 107, 460-499. http://dx.doi .org/10.1037/0033-295X.107.3.460
Roelofs, A. (2014). Integrating psycholinguistic and motor control approaches to speech production: Where do they meet? Language, Cognition and Neuroscience, 29, 35-37. http://dx.doi.org/10.1080/01690965 .2013.852687
Scaltritti, M., Arfé, B., Torrance, M., \& Peressotti, F. (2016). Typing pictures: Linguistic processing cascades into finger movements. Cognition, 156, 16-29. http://dx.doi.org/10.1016/j.cognition.2016.07.006
Scaltritti, M., Peressotti, F., \& Navarrete, E. (2017). A joint investigation of semantic facilitation and semantic interference in continuous naming. Journal of Experimental Psychology: Learning, Memory, and Cognition, 43, 818-823. http://dx.doi.org/10.1037/xlm0000354
Scaltritti, M., Pinet, S., Longcamp, M., \& Alario, F. X. (2017). On the functional relationship between language and motor processing in typewriting: An EEG study. Language, Cognition and Neuroscience, 32, 1086-1101. http://dx.doi.org/10.1080/23273798.2017.1283427
Schriefers, H., Meyer, A. S., \& Levelt, W. J. (1990). Exploring the time course of lexical access in language production: Picture-word interference studies. Journal of Memory and Language, 29, 86-102. http://dx .doi.org/10.1016/0749-596X(90)90011-N
Severens, E., Ratinckx, E., Ferreira, V. S., \& Hartsuiker, R. J. (2008). Are phonological influences on lexical (mis)selection the result of a monitoring bias? The Quarterly Journal of Experimental Psychology, 61, 1687-1709. http://dx.doi.org/10.1080/17470210701647422

Seyfarth, S. (2014). Word informativity influences acoustic duration: Effects of contextual predictability on lexical representation. Cognition, 133, 140-155. http://dx.doi.org/10.1016/j.cognition.2014.06.013
Shipley, W. C., Gruber, C. P., Martin, T. A., \& Klein, A. M. (2009). Shipley-2 manual. Los Angeles, CA: Western Psychological Services.
Strijkers, K., \& Costa, A. (2016). On words and brains: Linking psycholinguistics with neural dynamics in speech production. Language, Cognition and Neuroscience, 31, 524-535. http://dx.doi.org/10.1080/ 23273798.2016.1158845

Taylor, J. K., \& Burke, D. M. (2002). Asymmetric aging effects on semantic and phonological processes: Naming in the picture-word interference task. Psychology and Aging, 17, 662-676. http://dx.doi.org/ 10.1037/0882-7974.17.4.662
van Turennout, M., Hagoort, P., \& Brown, C. M. (1997). Electrophysiological evidence on the time course of semantic and phonological processes in speech production. Journal of Experimental Psychology: Learning, Memory, and Cognition, 23, 787-806. http://dx.doi.org/10 .1037/0278-7393.23.4.787
Yuen, I., Davis, M. H., Brysbaert, M., \& Rastle, K. (2010). Activation of articulatory information in speech perception. Proceedings of the National Academy of Sciences of the United States of America, 107, 592-597. http://dx.doi.org/10.1073/pnas. 0904774107
Zacks, R. T., \& Hasher, L. (1994). Directed ignoring: Inhibitory regulation of working memory. In D. Dagenbach \& T. H. Carr (Eds.), Inhibitory processes in attention, memory, and language (pp. 241-264). San Diego, CA: Academic Press.

Appendix A

Stimulus Norming Procedures

Separate groups of participants were recruited to norm the picture and sentence materials. To ensure high name agreement among the selected pictures, a large pool of images were first normed for name agreement using Mechanical Turk (mTurk). mTurk workers $(n=20)$ were native English speakers between the ages of 19 and 60 . During norming, participants were shown a picture one at a time and asked to provide a single word that best described the picture. Another group of mTurk workers normed sentences for cloze probability. mTurk workers ($n=$ 19) were native English speakers between the age of 19 and 60. During sentence norming, participants were shown pictures and
asked to provide a single word that was the best completion for the sentence. Sentence norming data were used in a similar manner to the data trimming procedure described by Li and Slevc (2017). Cloze norms were inspected prior to the analysis of data from the main task to identify items which over 45% of participants responded with an incorrect response. In the current study, we attempted to exclude incorrect responses in which the participant provided the competitor as a completion to the sentence. These responses would introduce a confound. Our inspection revealed that no items met these criteria and no sentences were removed.

Appendix B

Items

Table B1 presents items used in the experiment. Items consist of a picture and a sentence context. There are 180 unique pictures across the items; each picture is part of a semantically related pair (e.g., anchor and rope). These items were split into six lists of 180 items, with a subset of 60 unique pictures in each list. Pictures were evenly distributed across these lists, and sentence contexts were not repeated within a list.

Within a list, each picture was repeated three times, once in each condition. Match and semantic competitor sentence contexts for each picture were designed to prime that specific picture or its
semantic pair, respectively. Unrelated contexts within a list were selected from match sentences for pictures not presented in that list. Across lists, a picture could be paired with one of two unrelated sentence contexts; in the table below, only one of the two appears.

Each participant saw one list of 180 items split across three blocks, with each picture occurring once per block. The order of conditions across blocks was counterbalanced. The assignment of lists was distributed such that picture/sentence pairings were evenly split across participants.

Table B1
List of Items

Picture	Condition	Sentence	Completion	Cloze (younger)	Cloze (older)
anchor	match	The sailor stopped the ship and dropped the	anchor	. 842	. 667
anchor	semantic	They tied the ship to the dock with an	rope	. 842	. 667
anchor	unrelated	Her favorite dish is macaroni and	cheese	. 842	. 667
ant	match	The colony worked together to build a hill for the queen	ant	. 789	. 917
ant	semantic	Honey is produced by an insect called a	bee	. 789	. 917
ant	unrelated	Her favorite dish is macaroni and	cheese	. 789	. 917
apple	match	Snow White was poisoned when she bit into an	apple	1.000	1.000
apple	semantic	Her favorite dish is macaroni and	cheese	1.000	1.000
apple	unrelated	At the ballpark, the boys enjoyed a bag of salty	peanuts	1.000	1.000
axe	match	He chopped down the tall pine with an . .	axe	1.000	. 583
axe	semantic	He put the bookshelf together not with a screwdriver, but with a	hammer	1.000	. 583
axe	unrelated	The colony worked together to build a hill for the queen	ant	1.000	. 583
baby	match	The parents bought a stroller for their newborn	baby	. 947	. 833
baby	semantic	The newborn sleeps peacefully in her	crib	. 947	. 833
baby	unrelated	He kicked the ball with his left	foot	. 947	. 833
backpack	match	The student took her books home in her	backpack	. 632	. 750
backpack	semantic	After home room, she dropped some books off in her	locker	. 632	. 750
backpack	unrelated	The salesman was as sly as a	fox	. 632	. 750
bagel	match	Angela likes cream cheese on a	bagel	. 947	. 917
bagel	semantic	John spread butter and grape jelly on his morning	toast	. 947	. 917
bagel	unrelated	Sandy watered her garden using a rubber	hose	. 947	. 917
balloon	match	The clown blew up a big green	balloon	1.000	1.000
balloon	semantic	It was windy enough to fly a	kite	1.000	1.000
balloon	unrelated	The man happily sat down in the comfortable	chair	1.000	1.000
basket	match	He collected Easter eggs in his	basket	1.000	1.000
basket	semantic	The shipment arrived in a large cardboard	box	1.000	1.000
basket	unrelated	When I eat in Maine, I always order a big red	lobster	1.000	1.000
bat	match	The blind, flying rodent that lives in caves is the	bat	. 895	. 833
bat	semantic	Matt grabbed the swatter to kill the	fly	. 895	. 833
bat	unrelated	The stagecoach wasn't moving because of the broken wagon	wheel	. 895	. 833
beach	match	Mary went to Hawaii to tan on a sandy . . .	beach	1.000	1.000
beach	semantic	She likes to swim laps at the .	pool	1.000	1.000
beach	unrelated	At the petting zoo Suzie's snack was stolen by a pesky billy	goat	1.000	1.000
beans	match	Mexican food comes with a side of rice and	beans	. 895	1.000
beans	semantic	Caesar salad is made with romaine	lettuce	. 895	1.000
beans	unrelated	The message was broadcast to the students over a loud	speaker	. 895	1.000
bear	match	The campers were frightened by a large grizzly	bear	. 947	. 750
bear	semantic	The nocturnal animal that looks like a masked robber is a	raccoon	. 947	. 750

Table B1 (continued)

Picture	Condition	Sentence	Completion	Cloze (younger)	Cloze (older)
bear	unrelated	The man brushed his hair using a fine-toothed	comb	. 947	. 750
beaver	match	The rodent famous for building dams in rivers is called a	beaver	1.000	. 917
beaver	semantic	He laid a trap with cheese to catch the	mouse	1.000	. 917
beaver	unrelated	Others won't hear your music when you listen to it wearing	headphones	1.000	. 917
bed	match	Bob sleeps in a king-sized	bed	1.000	. 580
bed	semantic	He lies his head down to sleep on his	pillow	1.000	. 580
bed	unrelated	To garnish the margarita, the bartender sliced a wedge from a sour green	lime	1.000	. 580
bee	match	Honey is produced by an insect called a	bee	1.000	. 250
bee	semantic	The colony worked together to build a hill for the queen	ant	1.000	. 250
bee	unrelated	A Vespa is a type of motorized	scooter	1.000	. 250
bench	match	The homeless man slept on a park	bench	1.000	. 250
bench	semantic	The family sat in their living room on a big comfy	couch	1.000	. 250
bench	unrelated	His mouth puckered when he ate the sour yellow	lemon	1.000	. 250
boat	match	He grabbed the oars and got in the row	boat	. 842	. 417
boat	semantic	They paddled down the river in a wooden	canoe	. 842	. 417
boat	unrelated	She needed new laces for just one	shoe	. 842	. 417
bomb	match	The explosion came from a homemade pipe	bomb	. 895	. 947
bomb	semantic	The soldiers were protected by the armored fighting vehicle called a	tank	. 895	. 947
bomb	unrelated	Alice ended up in Wonderland when she followed the . .	rabbit	. 895	. 947
boot	match	Her foot was cold even though she wore a sock and a winter	boot	. 684	. 833
boot	semantic	Each year his grandmother knit him an ugly Christmas	sweater	. 684	. 833
boot	unrelated	For his birthday, his mom baked him a chocolate	cake	. 684	. 833
box	match	The shipment arrived in a large cardboard	box	1.000	1.000
box	semantic	He collected Easter eggs in his	basket	1.000	1.000
box	unrelated	She felt hot in the office and plugged in the	fan	1.000	1.000
bra	match	Under their shirts, most women wear a supportive	bra	1.000	. 500
bra	semantic	Between his jacket and shirt, the usher had buttoned his	vest	1.000	. 500
bra	unrelated	The chef chopped the vegetables with a	knife	1.000	. 500
broccoli	match	You can eat the green stalk and flowering head of	broccoli	. 526	1.000
broccoli	semantic	Bugs Bunny chewed on a	carrot	. 526	1.000
broccoli	unrelated	Because it was out of fluid, there was no flame but only sparks from the	lighter	. 526	1.000
broom	match	The boy swept up his mess with the	broom	. 947	. 833
broom	semantic	Mary cleaned the floor using a bucket and	mop	. 947	. 833
broom	unrelated	The activists scolded the poacher for clubbing a baby	seal	. 947	. 833
cactus	match	In the desert, he pricked his finger on the spine of a	cactus	1.000	1.000
cactus	semantic	The bird built a nest high up in an elm	tree	1.000	1.000
cactus	unrelated	The joint connecting the thigh and shin is the	knee	1.000	1.000
cake	match	For his birthday, his mom baked him a chocolate	cake	1.000	. 917
cake	semantic	My favorite treat is a chocolate chip	cookie	1.000	. 917
cake	unrelated	She needed new laces for just one	shoe	1.000	. 917
candle	match	When the power went out, they lit a	candle	. 842	1.000
candle	semantic	She placed the flowers in a glass	vase	. 842	1.000
candle	unrelated	The shipment arrived in a large cardboard	box	. 842	1.000
candy	match	On Halloween kids trick-or-treat to collect	candy	. 947	. 750
candy	semantic	At the ballpark, the boys enjoyed a bag of salty	peanuts	. 947	. 750
candy	unrelated	The sailor stopped the ship and dropped the	anchor	. 947	. 750
canoe	match	They paddled down the river in a wooden	canoe	. 737	1.000
canoe	semantic	He grabbed the oars and got in the row	boat	. 737	1.000
canoe	unrelated	The footwear typically worn in the summer is a	sandal	. 737	1.000
carrot	match	Bugs Bunny chewed on a	carrot	1.000	. 500
carrot	semantic	You can eat the green stalk and flowering head of	broccoli	1.000	. 500
carrot	unrelated	The shipment arrived in a large cardboard	box	1.000	. 500
castle	match	The fairy tale princess lived in a majestic	castle	1.000	. 917
castle	semantic	Every Halloween, they turned their home into a haunted	house	1.000	. 917
castle	unrelated	Chocolate glazed with sprinkles is his favorite kind of	donut	1.000	. 917
cat	match	Susan hates dogs, but loves Garfield, her fat tabby	cat	1.000	1.000
cat	semantic	The animal bacon and ham come from is the	pig	1.000	1.000
cat	unrelated	He chopped down the tall pine with an . .	axe	1.000	1.000
chair	match	The man happily sat down in the comfortable . . .	chair	. 895	. 833

Table B1 (continued)

Picture	Condition	Sentence	Completion	Cloze (younger)	Cloze (older)
chair	semantic	I like to sit at the bar on a tall wooden	stool	. 895	. 833
chair	unrelated	The clown blew up a big green	balloon	. 895	. 833
cheese	match	Her favorite dish is macaroni and	cheese	1.000	. 917
cheese	semantic	Snow White was poisoned when she bit into an	apple	1.000	. 917
cheese	unrelated	During their bike tour Mike had to fix a flat	tire	1.000	. 917
cheetah	match	The wild cat that runs the fastest is the	cheetah	. 895	1.000
cheetah	semantic	The king of the jungle is the	lion	. 895	1.000
cheetah	unrelated	Levi makes high quality denim blue	jeans	. 895	1.000
chips	match	At the party, we had some salsa and tortilla	chips	. 947	1.000
chips	semantic	Before the movie started everyone bought some buttery	popcorn	. 947	1.000
chips	unrelated	Nick sneezed and blew his .	nose	. 947	1.000
clock	match	He keeps track of time by looking to the wall at the	clock	. 947	. 833
clock	semantic	The ornate shade covered the bulb of the	lamp	. 947	. 833
clock	unrelated	The smallest bank note is one	dollar	. 947	. 833
comb	match	The man brushed his hair using a fine-toothed	comb	. 947	. 417
comb	semantic	Proper dental hygiene includes cleaning each day with a bristled	toothbrush	. 947	. 417
comb	unrelated	The campers were frightened by a large grizzly . . .	bear	. 947	. 417
compass	match	The navigation device that points north is a . .	compass	. 947	. 917
compass	semantic	The lead broke so she sharpened the	pencil	. 947	. 917
compass	unrelated	She placed the flowers in a glass	vase	. 947	. 917
cookie	match	My favorite treat is a chocolate chip	cookie	. 947	. 917
cookie	semantic	For his birthday, his mom baked him a chocolate	cake	. 947	. 917
cookie	unrelated	They paddled down the river in a wooden	canoe	. 947	. 917
corn	match	The vegetable that comes on a cob is	corn	. 947	. 917
corn	semantic	The vegetables that come in pods are	peas	. 947	. 917
corn	unrelated	The bike was protected from theft by an expensive	lock	. 947	. 917
couch	match	The family sat in their living room on a big comfy	couch	. 579	1.000
couch	semantic	The homeless man slept on a park	bench	. 579	1.000
couch	unrelated	To garnish the margarita, the bartender sliced a wedge from a sour green	lime	. 579	1.000
cow	match	Every day the farmer goes to milk his only	cow	1.000	. 917
cow	semantic	The farmer woke up to the cock-a-doodle-doo of the	rooster	1.000	. 917
cow	unrelated	For his interview Mr. Jones needed a new .	suit	1.000	. 917
crib	match	The newborn sleeps peacefully in her	crib	. 895	. 833
crib	semantic	The parents bought a stroller for their newborn	baby	. 895	. 833
crib	unrelated	He wished the actor luck by saying break a . .	leg	. 895	. 833
desk	match	During work Danny sits all day long at his	desk	. 842	. 947
desk	semantic	For dinner, the family gathers at the dining room	table	. 842	. 947
desk	unrelated	She likes to swim laps at the . .	pool	. 842	. 947
dollar	match	The smallest bank note is one	dollar	. 895	1.000
dollar	semantic	A one cent coin is called a	penny	. 895	1.000
dollar	unrelated	He keeps track of time by looking to the wall at the . . .	clock	. 895	1.000
dolphin	match	The fisherman came upon a pod with a baby bottlenose	dolphin	. 684	. 750
dolphin	semantic	The activists scolded the poacher for clubbing a baby.	seal	. 684	. 750
dolphin	unrelated	Mary cleaned the floor using a bucket and . . .	mop	. 684	. 750
donut	match	Chocolate glazed with sprinkles is his favorite kind of	donut	. 684	. 917
donut	semantic	At brunch, Maggie either eats pancakes or a Belgian .	waffle	. 684	. 917
donut	unrelated	She likes to swim laps at the . . .	pool	. 684	. 917
dropper	match	He applied the medicine to his eye using a	dropper	. 632	. 833
dropper	semantic	Andy removed a splinter with some	tweezers	. 632	. 833
dropper	unrelated	The Canadian flag features a maple	leaf	. 632	. 833
eagle	match	The national bird of the United States is the	eagle	. 947	. 917
eagle	semantic	Every ugly duckling eventually becomes a beautiful . . .	swan	. 947	. 917
eagle	unrelated	He melted cheese over tortilla chips to make	nachos	. 947	. 917
elbow	match	The joint connecting the forearm to the bicep is the	elbow	. 947	. 833
elbow	semantic	The joint connecting the thigh and shin is the	knee	. 947	. 833
elbow	unrelated	He collected Easter eggs in his .	basket	. 947	. 833
fan	match	She felt hot in the office and plugged in the	fan	. 947	1.000
fan	semantic	To let some cool air in the apartment they opened a	window	. 947	1.000
fan	unrelated	He chopped down the tall pine with an . .	axe	. 947	1.000
feather	match	The sense of relief made him feel as light as a . . .	feather	1.000	1.000

Table B1 (continued)

Picture	Condition	Sentence	Completion	$\begin{gathered} \text { Cloze } \\ \text { (younger) } \end{gathered}$	Cloze (older)
feather	semantic	She went to the salon to color her	hair	1.000	1.000
feather	unrelated	The boy took a pole to the lake to catch a	fish	1.000	1.000
fish	match	The boy took a pole to the lake to catch a	fish	1.000	. 917
fish	semantic	When I eat in Maine, I always order a big red	lobster	1.000	. 917
fish	unrelated	To fix his torn paper he needs some	tape	1.000	. 917
floss	match	After brushing his teeth, . . also uses dental	floss	. 947	. 833
floss	semantic	Every morning the man shaves using a	razor	. 947	. 833
floss	unrelated	The animal with a long neck and long legs is a	giraffe	. 947	. 833
fly	match	Matt grabbed the swatter to kill the	fly	1.000	1.000
fly	semantic	The blinding rodent that lives in caves is the	bat	1.000	1.000
fly	unrelated	On Halloween kids trick-or-treat to collect	candy	1.000	1.000
foot	match	He kicked the ball with his left	foot	. 947	1.000
foot	semantic	He wished the actor luck by saying break a	leg	. 947	1.000
foot	unrelated	He found a pot of gold at the end of the	rainbow	. 947	1.000
fox	match	The salesman was as sly as a	fox	1.000	. 583
fox	semantic	Alice ended up in Wonderland when she followed the	rabbit	1.000	. 583
fox	unrelated	The student took her books home in her	backpack	1.000	. 583
giraffe	match	The animal with a long neck and long legs is a	giraffe	1.000	1.000
giraffe	semantic	The horse-like animal with black and white stripes is the	zebra	1.000	1.000
giraffe	unrelated	The newborn sleeps peacefully in her	crib	1.000	1.000
glasses	match	She is as blind as a bat without her	glasses	. 947	1.000
glasses	semantic	Swimmers protect their eyes by wearing	goggles	. 947	1.000
glasses	unrelated	You can eat the green stalk and flowering head of	broccoli	. 947	1.000
globe	match	The spherical object showing the entire world is a	globe	. 947	1.000
globe	semantic	The directions did not match any roads on the	map	. 947	1.000
globe	unrelated	In the desert, he pricked his finger on the spine of a	cactus	. 947	1.000
glue	match	Emily fixed the broken mug with some	glue	. 947	. 750
glue	semantic	She cut the paper using	scissors	. 947	. 750
glue	unrelated	Peter serves the soup out of the pot with a	ladle	. 947	. 750
goat	match	at the petting zoo Suzie's snack was stolen by a pesky billy	goat	. 895	. 917
goat	semantic	The farmer shaved the wool off of the	sheep	. 895	. 917
goat	unrelated	Mary went to Hawaii to tan on a sandy	beach	. 895	. 917
goggles	match	Swimmers protect their eyes by wearing.	goggles	1.000	1.000
goggles	semantic	She is as blind as a bat without her.	glasses	1.000	1.000
goggles	unrelated	Bugs Bunny chewed on.	carrot	1.000	1.000
goose	match	The children loved to play Duck-Duck	goose	. 947	. 833
goose	semantic	The bird that looks like it's wearing a tuxedo is a	penguin	. 947	. 833
goose	unrelated	after brushing his teeth, Mike also uses dental	floss	. 947	. 833
hair	match	She went to the salon to color her	hair	1.000	. 833
hair	semantic	The sense of relief made him feel as light as a	feather	1.000	. 833
hair	unrelated	Sam measured the length of the paper using a	ruler	1.000	. 833
hammer	match	He put the bookshelf together not with a screwdriver, but with a	hammer	. 684	. 917
hammer	semantic	He chopped down the tall pine with an	axe	. 684	. 917
hammer	unrelated	Honey is produced by an insect called a	bee	. 684	. 917
hat	match	To protect his head from sunburn, the bald man wore a wide-brimmed	hat	1.000	1.000
hat	semantic	$\mathrm{A}+\mathrm{B} 224 \mathrm{fter}$ doing laundry Derek noticed he was missing just one	sock	1.000	1.000
hat	unrelated	Andy removed a splinter with some	tweezers	1.000	1.000
headphones	match	Others won't hear your music when you listen to it wearing	headphones	. 947	. 750
headphones	semantic	The message was broadcast to the students over a loud . . .	speaker	. 947	. 750
headphones	unrelated	The rodent famous for building dams in rivers is called a	beaver	. 947	. 750
hose	match	Sandy watered her garden using a rubber	hose	. 895	1.000
hose	semantic	The gardener collects the leaves in a pile using a	rake	. 895	1.000
hose	unrelated	Angela likes cream cheese on a	bagel	. 895	1.000
house	match	Every Halloween, they turned their home into a haunted	house	1.000	. 917
house	semantic	The fairy tale princess lived in a majestic	castle	1.000	. 917
house	unrelated	She wrote the list on a piece of	paper	1.000	. 917
ipod	match	Apple's mp3 player is called an . . .	ipod	. 895	. 833
ipod	semantic	Before the CD existed, music was listened to off of a black vinyl . . .	record	. 895	. 833
ipod	unrelated	The old girlfriends chatted over a bottle of red	wine	. 895	. 833
jeans	match	Levi makes high quality denim blue . .	jeans	1.000	. 917

Table B1 (continued)

Picture	Condition	Sentence	Completion	Cloze (younger)	Cloze (older)
jeans	semantic	He wore a suit with a Windsor knot in his	tie	1.000	. 917
jeans	unrelated	The wild cat that runs the fastest is the	cheetah	1.000	. 917
jeep	match	Many people like the Grand Cherokee, but the Wrangler is my favorite kind of	jeep	. 684	. 894
jeep	semantic	We couldn't get a truck, but we managed to pack everything in a moving . . .	van	. 684	. 894
jeep	unrelated	Before the movie started everyone bought some buttery	popcorn	. 684	. 894
juice	match	With breakfast Julie always drinks some orange . . .	juice	1.000	1.000
juice	semantic	The old girlfriends chatted over a bottle of red	wine	1.000	1.000
juice	unrelated	During work Danny sits all day long at his . .	desk	1.000	1.000
key	match	To start a car, you need the	key	. 947	. 833
key	semantic	The bike was protected from theft by an expensive	lock	. 947	. 833
key	unrelated	In the desert, he pricked his finger on the spine of a	cactus	. 947	. 833
kite	match	It was windy enough to fly a . .	kite	1.000	. 917
kite	semantic	The clown blew up a big green	balloon	1.000	. 917
kite	unrelated	The animal with antlers that is much larger than a deer is a	moose	1.000	. 917
knee	match	The joint connecting the thigh and shin is the . .	knee	. 789	. 917
knee	semantic	The joint connecting the forearm to the bicep is the	elbow	. 789	. 917
knee	unrelated	The fairy tale princess lived in a majestic	castle	. 789	. 917
knife	match	The chef chopped the vegetables with a	knife	1.000	. 833
knife	semantic	She heated the stew in a large metal . .	pot	1.000	. 833
knife	unrelated	Under their shirts, most women wear a supportive	bra	1.000	. 833
ladle	match	Peter serves the soup out of the pot with a	ladle	. 789	. 583
ladle	semantic	Cooks remove skins from vegetables using a	peeler	. 789	. 583
ladle	unrelated	He garnished the martini with a green . . .	olive	. 789	. 583
lamp	match	The ornate shade covered the bulb of the	lamp	. 737	1.000
lamp	semantic	He keeps track of time by looking to the wall at the	clock	. 737	1.000
lamp	unrelated	A portable computer is called a	laptop	. 737	1.000
laptop	match	A portable computer is called a	laptop	1.000	. 750
laptop	semantic	He hooked up his computer and discovered the ink had run dry in the . .	printer	1.000	. 750
laptop	unrelated	The ornate shade covered the bulb of the . .	lamp	1.000	. 750
leaf	match	The Canadian flag features a maple	leaf	1.000	1.000
leaf	semantic	This frozen turkey is as hard as a .	rock	1.000	1.000
leaf	unrelated	He applied the medicine to his eye using a	dropper	1.000	1.000
leg	match	He wished the actor luck by saying break a	leg	1.000	1.000
leg	semantic	He kicked the ball with his left . . .	foot	1.000	1.000
leg	unrelated	The blind, flying rodent that lives in caves is the	bat	1.000	1.000
lemon	match	His mouth puckered when he ate the sour yellow	lemon	. 737	. 830
lemon	semantic	To garnish the margarita, the bartender sliced a wedge from a sour green .	lime	. 737	. 830
lemon	unrelated	The homeless man slept on a park	bench	. 737	. 830
lettuce	match	Caesar salad is made with romaine	lettuce	1.000	. 917
lettuce	semantic	Mexican food comes with a side of rice and	beans	1.000	. 917
lettuce	unrelated	The clown blew up a big green . . .	balloon	1.000	. 917
lighter	match	Because it was out of fluid, there was no flame but only sparks from the	lighter	. 526	. 940
lighter	semantic	She opened the fireplace and lit the kindling with a wooden . . .	match	. 526	. 940
lighter	unrelated	You can eat the green stalk and flowering head of . . .	broccoli	. 526	. 940
lightning	match	Kids are often frightened by thunder and	lightning	. 947	. 917
lightning	semantic	He found a pot of gold at the end of the	rainbow	. 947	. 917
lightning	unrelated	The newborn sleeps peacefully in her . . .	crib	. 947	. 917
lime	match	To garnish the margarita, the bartender sliced a wedge from a sour green	lime	. 947	. 833
lime	semantic	His mouth puckered when he ate the sour yellow .	lemon	. 947	. 833
lime	unrelated	Bob sleeps in a king-sized . . .	bed	. 947	. 833
lion	match	The king of the jungle is the . .	lion	. 737	. 417
lion	semantic	The wild cat that runs the fastest is the	cheetah	. 737	. 417
lion	unrelated	He dried his wet hands with a	towel	. 737	. 417
lips	match	In the winter, she uses lots of chapstick on her	lips	1.000	1.000
lips	semantic	Nick sneezed and blew his . . .	nose	1.000	1.000
lips	unrelated	Many people like the Grand Cherokee, but the Wrangler is my favorite kind of .	jeep	1.000	1.000
lobster	match	When I eat in Maine, I always order a big red . . .	lobster	. 789	1.000
lobster	semantic	The boy took a pole to the lake to catch a . . .	fish	. 789	1.000
lobster	unrelated	In the Olympic games, she won a gold . . .	medal	. 789	1.000
lock	match	The bike was protected from theft by an expensive . .	lock	. 737	. 833

Table B1 (continued)

Picture	Condition	Sentence	Completion	Cloze (younger)	Cloze (older)
lock	semantic	To start a car, you need the	key	. 737	. 833
lock	unrelated	The vegetable that comes on a cob is	corn	. 737	. 833
locker	match	After home room, she dropped some books off in her	locker	. 947	. 667
locker	semantic	The student took her books home in her	backpack	. 947	. 667
locker	unrelated	The explosion came from a homemade pipe	bomb	. 947	. 667
map	match	The directions did not match any roads on the	map	. 947	. 833
map	semantic	The spherical object showing the entire world is a	globe	. 947	. 833
map	unrelated	Every Halloween, they turned their home into a haunted	house	. 947	. 833
match	match	She opened the fireplace and lit the kindling with a wooden	match	. 947	. 667
match	semantic	Because it was out of fluid, there was no flame but only sparks from the	lighter	. 947	. 667
match	unrelated	Bugs Bunny chewed on a . .	carrot	. 947	. 667
medal	match	In the Olympic games, she won a gold	medal	1.000	. 667
medal	semantic	The team that won the tournament took home a	trophy	1.000	. 667
medal	unrelated	After brushing his teeth, Mike also uses dental	floss	1.000	. 667
moon	match	Neil Armstrong was the first man to walk on the	moon	1.000	1.000
moon	semantic	The hopeful girl wished upon a	star	1.000	1.000
moon	unrelated	Every ugly duckling eventually becomes a beautiful	swan	1.000	1.000
moose	match	The animal with antlers that is much larger than a deer is a	moose	. 579	1.000
moose	semantic	In the desert, he got bitten by a rattle . .	snake	. 579	1.000
moose	unrelated	Raymond needed a belt to hold up his	pants	. 579	1.000
mop	match	Mary cleaned the floor using a bucket and	mop	. 947	. 917
mop	semantic	The boy swept up his mess with the . . .	broom	. 947	. 917
mop	unrelated	Neil Armstrong was the first man to walk on the	moon	. 947	. 917
mouse	match	He laid a trap with cheese to catch the	mouse	. 947	1.000
mouse	semantic	The rodent famous for building dams in rivers is called a	beaver	. 947	1.000
mouse	unrelated	Mexican food comes with a side of rice and	beans	. 947	1.000
nachos	match	He melted cheese over tortilla chips to make	nachos	1.000	1.000
nachos	semantic	She snacks on a peanut butter and jelly . . .	sandwich	1.000	1.000
nachos	unrelated	The national bird of the United States is the	eagle	1.000	1.000
nose	match	Nick sneezed and blew his .	nose	1.000	1.000
nose	semantic	In the winter, she uses lots of chapstick on her	lips	1.000	1.000
nose	unrelated	The animal bacon and ham come from is the .	pig	1.000	1.000
notebook	match	A binder of ruled pages used by students is a	notebook	. 842	1.000
notebook	semantic	She wrote the list on a piece of . . .	paper	. 842	1.000
notebook	unrelated	Chocolate glazed with sprinkles is his favorite kind of	donut	. 842	1.000
olive	match	He garnished the martini with a green	olive	1.000	1.000
olive	semantic	The burger came with a side of chips and a dill	pickle	1.000	1.000
olive	unrelated	At the party, we had some salsa and tortilla . . .	chips	1.000	1.000
owl	match	The bird that says "hoo" is the . .	owl	. 947	1.000
owl	semantic	The bird whose tail feathers make a colorful fan is a	peacock	. 947	1.000
owl	unrelated	My favorite treat is a chocolate chip	cookie	. 947	1.000
pants	match	Raymond needed a belt to hold up his	pants	1.000	. 750
pants	semantic	For his interview Mr. Jones needed a new	suit	1.000	. 750
pants	unrelated	Susan hates dogs, but loves Garfield, her fat tabby	cat	1.000	. 750
paper	match	She wrote the list on a piece of . . .	paper	1.000	1.000
paper	semantic	A binder of ruled pages used by students is a . . .	notebook	1.000	1.000
paper	unrelated	Every Halloween, they turned their home into a haunted	house	1.000	1.000
pasta	match	Spaghetti and penne are types of . .	pasta	1.000	. 917
pasta	semantic	Nothing helps a cold like a bowl of chicken noodle	soup	1.000	. 917
pasta	unrelated	The boy swept up his mess with the . .	broom	1.000	. 917
peacock	match	The bird whose tail feathers make a colorful fan is a	peacock	1.000	1.000
peacock	semantic	The bird that says "hoo" is the	owl	1.000	1.000
peacock	unrelated	He laid a trap with cheese to catch the	mouse	1.000	1.000
peanuts	match	At the ballpark, the boys enjoyed a bag of salty	peanuts	. 737	1.000
peanuts	semantic	On Halloween kids trick-or-treat to collect . . .	candy	. 737	1.000
peanuts	unrelated	The animal with a long neck and long legs is a . . .	giraffe	. 737	1.000
peas	match	The vegetables that come in pods are . . .	peas	. 842	1.000
peas	semantic	The vegetable that comes on a cob is	corn	. 842	1.000
peas	unrelated	To start a car, you need the . .	key	. 842	1.000
peeler	match	Cooks remove skins from vegetables using a . .	peeler	. 789	. 667

Table B1 (continued)

Picture	Condition	Sentence	Completion	Cloze (younger)	Cloze (older)
peeler	semantic	Peter serves the soup out of the pot with a	ladle	. 789	. 667
peeler	unrelated	Matt grabbed the swatter to kill the	fly	. 789	. 667
pen	match	The ink ran out in my ballpoint	pen	1.000	1.000
pen	semantic	John joined the pieces of paper together by pushing down hard on the	stapler	1.000	1.000
pen	unrelated	The dog ran in circles chasing his own	tail	1.000	1.000
pencil	match	The lead broke so she sharpened the	pencil	. 947	. 833
pencil	semantic	The navigation device that points north is a	compass	. 947	. 833
pencil	unrelated	With breakfast Julie always drinks some orange	juice	. 947	. 833
penguin	match	The bird that looks like it's wearing a tuxedo is a	penguin	. 842	. 947
penguin	semantic	The children loved to play Duck-Duck	goose	. 842	. 947
penguin	unrelated	He kicked the ball with his left	foot	. 842	. 947
penny	match	A one cent coin is called a	penny	1.000	1.000
penny	semantic	The smallest bank note is one	dollar	1.000	1.000
penny	unrelated	The ornate shade covered the bulb of the	lamp	1.000	1.000
pickle	match	The burger came with a side of chips and a dill	pickle	. 947	. 833
pickle	semantic	He garnished the martini with a green	olive	. 947	. 833
pickle	unrelated	Before the movie started everyone bought some buttery	popcorn	. 947	. 833
pig	match	The animal bacon and ham come from is the	pig	1.000	1.000
pig	semantic	Susan hates dogs, but loves Garfield, her fat tabby	cat	1.000	1.000
pig	unrelated	Honey is produced by an insect called a	bee	1.000	1.000
pillow	match	He lies his head down to sleep on his	pillow	. 579	1.000
pillow	semantic	Bob sleeps in a king-sized	bed	. 579	1.000
pillow	unrelated	His mouth puckered when he ate the sour yellow	lemon	. 579	1.000
pizza	match	Chicago is famous for deep dish	pizza	1.000	. 667
pizza	semantic	At the Mexican restaurant, he ordered one hard and one soft	taco	1.000	. 667
pizza	unrelated	The joint connecting the thigh and shin is the	knee	1.000	. 667
plate	match	She put her salad on a large	plate	. 737	1.000
plate	semantic	He ate his cereal in a bowl with a	spoon	. 737	1.000
plate	unrelated	The nocturnal animal that looks like a masked robber is a	raccoon	. 737	1.000
pool	match	She likes to swim laps at the	pool	. 947	1.000
pool	semantic	Mary went to Hawaii to tan on a sandy	beach	. 947	1.000
pool	unrelated	The farmer shaved the wool off of the	sheep	. 947	1.000
popcorn	match	Before the movie started everyone bought some buttery	popcorn	1.000	1.000
popcorn	semantic	At the party, we had some salsa and tortilla	chips	1.000	1.000
popcorn	unrelated	Many people like the Grand Cherokee, but the Wrangler is my favorite kind of .	jeep	1.000	1.000
pot	match	She heated the stew in a large metal . . .	pot	. 947	1.000
pot	semantic	The chef chopped the vegetables with a	knife	. 947	1.000
pot	unrelated	The lead broke so she sharpened the	pencil	. 947	1.000
printer	match	He hooked up his computer and discovered the ink had run dry in the . .	printer	. 842	1.000
printer	semantic	A portable computer is called a	laptop	. 842	1.000
printer	unrelated	He keeps track of time by looking to the wall at the	clock	. 842	1.000
rabbit	match	Alice ended up in Wonderland when she followed the	rabbit	. 842	1.000
rabbit	semantic	The salesman was as sly as a	fox	. 842	1.000
rabbit	unrelated	The explosion came from a homemade pipe	bomb	. 842	1.000
raccoon	match	The nocturnal animal that looks like a masked robber is a	raccoon	. 842	1.000
raccoon	semantic	The campers were frightened by a large grizzly	bear	. 842	1.000
raccoon	unrelated	She put her salad on a large	plate	. 842	1.000
rainbow	match	He found a pot of gold at the end of the	rainbow	. 947	. 667
rainbow	semantic	Kids are often frightened by thunder and	lightning	. 947	. 667
rainbow	unrelated	The parents bought a stroller for their newborn	baby	. 947	. 667
rake	match	The gardener collects the leaves in a pile using a	rake	. 947	1.000
rake	semantic	Sandy watered her garden using a rubber	hose	. 947	1.000
rake	unrelated	The directions did not match any roads on the	map	. 947	1.000
razor	match	Every morning the man shaves using a . .	razor	. 947	1.000
razor	semantic	After brushing his teeth, Mike also uses dental	floss	. 947	1.000
razor	unrelated	The bird that looks like it's wearing a tuxedo is a . . .	penguin	. 947	1.000
record	match	Before the CD existed, music was listened to off of a black vinyl . . .	record	. 789	. 667
record	semantic	Apple's mp3 player is called an . .	ipod	. 789	. 667
record	unrelated	During work Danny sits all day long at his . . .	desk	. 789	. 667

Table B1 (continued)

Picture	Condition	Sentence	Completion	Cloze (younger)	Cloze (older)
ring	match	The man gave his fiancé an engagement	ring	1.000	. 750
ring	semantic	A Rolex is an expensive type of . . .	watch	1.000	. 750
ring	unrelated	The bike was protected from theft by an expensive	lock	1.000	. 750
rock	match	This frozen turkey is as hard as a	rock	. 947	1.000
rock	semantic	The Canadian flag features a maple	leaf	. 947	1.000
rock	unrelated	To protect his head from sunburn, the bald man wore a wide-brimmed	hat	. 947	1.000
rooster	match	The farmer woke up to the cock-a-doodle-doo of the	rooster	. 947	1.000
rooster	semantic	Every day the farmer goes to milk his only	cow	. 947	1.000
rooster	unrelated	Her foot was cold even though she wore a sock and a winter	boot	. 947	1.000
rope	match	They tied the ship to the dock with a . . .	rope	. 895	1.000
rope	semantic	The sailor stopped the ship and dropped the	anchor	. 895	1.000
rope	unrelated	Snow White was poisoned when she bit into an	apple	. 895	1.000
ruler	match	Sam measured the length of the paper using a	ruler	. 947	. 750
ruler	semantic	To fix his torn paper he needs some .	tape	. 947	. 750
ruler	unrelated	Peter serves the soup out of the pot with a	ladle	. 947	. 750
sandal	match	The footwear typically worn in the summer is a	sandal	. 789	. 917
sandal	semantic	She needed new laces for just one . .	shoe	. 789	. 917
sandal	unrelated	They paddled down the river in a wooden	canoe	. 789	. 917
sandwich	match	She snacks on a peanut butter and jelly	sandwich	. 947	. 417
sandwich	semantic	He melted cheese over tortilla chips to make	nachos	. 947	. 417
sandwich	unrelated	Swimmers protect their eyes by wearing	goggles	. 947	. 417
scissors	match	She cut the paper using	scissors	1.000	1.000
scissors	semantic	Emily fixed the broken mug with some	glue	1.000	1.000
scissors	unrelated	It was windy enough to fly a	kite	1.000	1.000
scooter	match	A Vespa is a type of motorized	scooter	. 526	. 417
scooter	semantic	The boy went to the half pipe and practiced tricks on his	skateboard	. 526	. 417
scooter	unrelated	John joined the pieces of paper together by pushing down hard on the .	stapler	. 526	. 417
seal	match	The activists scolded the poacher for clubbing a baby	seal	. 842	. 583
seal	semantic	The fisherman came upon a pod with a baby bottlenose	dolphin	. 842	. 583
seal	unrelated	The boy swept up his mess with the . .	broom	. 842	. 583
sheep	match	The farmer shaved the wool off of the	sheep	. 947	1.000
sheep	semantic	At the petting zoo Suzie's snack was stolen by a pesky billy	goat	. 947	1.000
sheep	unrelated	The bird whose tail feathers make a colorful fan is a	peacock	. 947	1.000
shoe	match	She needed new laces for just one	shoe	. 895	. 833
shoe	semantic	The footwear typically worn in the summer is a	sandal	. 895	. 833
shoe	unrelated	For his birthday, his mom baked him a chocolate	cake	. 895	. 833
skateboard	match	The boy went to the half pipe and practiced tricks on his	skateboard	. 947	. 250
skateboard	semantic	A Vespa is a type of motorized	scooter	. 947	. 250
skateboard	unrelated	The ink ran out in my ballpoint	pen	. 947	. 250
snake	match	In the desert, he got bitten by a rattle	snake	1.000	. 750
snake	semantic	The animal with antlers that is much larger than a deer is a	moose	1.000	. 750
snake	unrelated	The man happily sat down in the comfortable	chair	1.000	. 750
soap	match	In the shower, he washed with a bar of	soap	1.000	1.000
soap	semantic	He dried his wet hands with a	towel	1.000	1.000
soap	unrelated	Levi makes high quality denim blue .	jeans	1.000	1.000
sock	match	After doing laundry Derek noticed he was missing just one	sock	. 947	1.000
sock	semantic	To protect his head from sunburn, the bald man wore a wide-brimmed	hat	. 947	1.000
sock	unrelated	Susan hates dogs, but loves Garfield, her fat tabby .	cat	. 947	1.000
soup	match	Nothing helps a cold like a bowl of chicken noodle . .	soup	1.000	1.000
soup	semantic	Spaghetti and penne are types of	pasta	1.000	1.000
soup	unrelated	Mary cleaned the floor using a bucket and	mop	1.000	1.000
speaker	match	The message was broadcast to the students over a loud	speaker	. 947	. 250
speaker	semantic	Others won't hear your music when you listen to it wearing	headphones	. 947	. 250
speaker	unrelated	Mexican food comes with a side of rice and	beans	. 947	. 250
spoon	match	He ate his cereal in a bowl with a	spoon	1.000	. 833
spoon	semantic	She put her salad on a large . . .	plate	1.000	. 833
spoon	unrelated	The campers were frightened by a large grizzly . .	bear	1.000	. 833

Table B1 (continued)

Picture	Condition	Sentence	Completion	Cloze (younger)	Cloze (older)
stapler	match	John joined the pieces of paper together by pushing down hard on the	stapler	. 684	1.000
stapler	semantic	The ink ran out in my ballpoint	pen	. 684	1.000
stapler	unrelated	A Vespa is a type of motorized	scooter	. 684	1.000
star	match	The hopeful girl wished upon a	star	1.000	1.000
star	semantic	Neil Armstrong was the first man to walk on the	moon	1.000	1.000
star	unrelated	The national bird of the United States is the	eagle	1.000	1.000
stool	match	I like to sit at the bar on a tall wooden	stool	. 842	. 917
stool	semantic	The man happily sat down in the comfortable	chair	. 842	. 917
stool	unrelated	It was windy enough to fly a	kite	. 842	. 917
suit	match	For his interview Mr. Jones needed a new	suit	. 632	. 750
suit	semantic	Raymond needed a belt to hold up his	pants	. 632	. 750
suit	unrelated	The wild cat that runs the fastest is the	cheetah	. 632	. 750
swan	match	Every ugly duckling eventually becomes a beautiful	swan	. 895	. 917
swan	semantic	The national bird of the United States is the	eagle	. 895	. 917
swan	unrelated	Neil Armstrong was the first man to walk on the	moon	. 895	. 917
sweater	match	Each year his grandmother knit him an ugly Christmas	sweater	. 947	. 917
sweater	semantic	Her foot was cold even though she wore a sock and a winter	boot	. 947	. 917
sweater	unrelated	The rodent famous for building dams in rivers is called a	beaver	. 947	. 917
table	match	For dinner, the family gathers at the dining room	table	. 947	. 750
table	semantic	During work Danny sits all day long at his	desk	. 947	. 750
table	unrelated	Bob sleeps in a king-sized . .	bed	. 947	. 750
taco	match	At the Mexican restaurant, he ordered one hard and one soft	taco	. 895	1.000
taco	semantic	Chicago is famous for deep dish	pizza	. 895	1.000
taco	unrelated	The joint connecting the forearm to the bicep is the	elbow	. 895	1.000
tail	match	The dog ran in circles chasing his own	tail	. 947	1.000
tail	semantic	The bird could not fly because of an injured	wing	. 947	1.000
tail	unrelated	The boy went to the half pipe and practiced tricks on his	skateboard	. 947	1.000
tank	match	The soldiers were protected by the armored fighting vehicle called a	tank	. 947	. 917
tank	semantic	The explosion came from a homemade pipe	bomb	. 947	. 917
tank	unrelated	The student took her books home in her . . .	backpack	. 947	. 917
tape	match	To fix his torn paper he needs some	tape	1.000	1.000
tape	semantic	Sam measured the length of the paper using a	ruler	1.000	1.000
tape	unrelated	The boy took a pole to the lake to catch a	fish	1.000	1.000
tie	match	He wore a suit with a Windsor knot in his	tie	. 842	. 917
tie	semantic	Levi makes high quality denim blue	jeans	. 842	. 917
tie	unrelated	The king of the jungle is the	lion	. 842	. 917
tire	match	During their bike tour Mike had to fix a flat	tire	1.000	. 917
tire	semantic	The stagecoach wasn't moving because of the broken wagon	wheel	1.000	. 917
tire	unrelated	Matt grabbed the swatter to kill the	fly	1.000	. 917
toast	match	John spread butter and grape jelly on his morning	toast	. 842	. 917
toast	semantic	Angela likes cream cheese on a . .	bagel	. 842	. 917
toast	unrelated	The directions did not match any roads on the	map	. 842	. 917
toothbrush	match	Proper dental hygiene includes cleaning each day with a bristled	toothbrush	. 526	1.000
toothbrush	semantic	The man brushed his hair using a fine-toothed	comb	. 526	1.000
toothbrush	unrelated	She put her salad on a large	plate	. 526	1.000
towel	match	He dried his wet hands with a	towel	1.000	1.000
towel	semantic	In the shower, he washed with a bar of	soap	1.000	1.000
towel	unrelated	The king of the jungle is the	lion	1.000	1.000
tree	match	The bird built a nest high up in an elm	tree	1.000	. 917
tree	semantic	In the desert, he pricked his finger on the spine of a	cactus	1.000	. 917
tree	unrelated	The joint connecting the forearm to the bicep is the	elbow	1.000	. 917
trophy	match	The team that won the tournament took home a	trophy	. 947	. 917
trophy	semantic	In the Olympic games, she won a gold . . .	medal	. 947	. 917
trophy	unrelated	The homeless man slept on a park	bench	. 947	. 917
tweezers	match	Andy removed a splinter with some . . .	tweezers	. 842	. 500
tweezers	semantic	He applied the medicine to his eye using a	dropper	. 842	. 500
tweezers	unrelated	To protect his head from sunburn, the bald man wore a wide-brimmed	hat	. 842	. 500
van	match	We couldn't get a truck, but we managed to pack everything in a moving . . .	van	. 895	. 420
van	semantic	Many people like the Grand Cherokee, but the Wrangler is my favorite kind of .	jeep	. 895	. 420

Table B1 (continued)

			Cloze Picture		
Condition				\quad	Cloze
:---:					
(younger)					

Appendix C

Full Model Coefficient Tables and Random Effect Structure

In Tables C1-C11, significance, as assessed with chi-square tests of nested models with and without predictor, is reported in the last column. Significant effects $(p<.05)$ are bolded; marginal effects ($p<.10$) are italicized. When chi-square models with the fixed effect held out did not converge (DNC), preventing nested model comparison, the absolute value of the t-statistic was used as a proxy. A (*) is used to indicate significance as assessed with a t -statistic >2, (•) indicates a marginal effect for a t -statistic >1.5, and $n s$ indicates a nonsignificant effect for a t-statistic <1.5. For logistic regressions, the z -statistic was used similarly.

Random Effect Structure

Experiment 2: Correlated subject and item slopes for semantic relatedness, and block.

Random effect Structure

Experiment 1: Correlated subject slopes for block, match status, block:match, block:semantic; correlated item slopes for Shipley score, match status, block, semantic relatedness, and block:semantic.
Experiment 2: Decorrelated subject slopes for block, match status, block:match; decorrelated item slopes for Shipley score, semantic relatedness, block, match status, and block:match.
Experiment 3: Correlated subject slopes for block, match status, semantic relatedness, block:match; correlated item slopes for Shipley score, block, match status, semantic relatedness, block:match, and block:semantic.

Random Effect Structure

Model comparing Experiment 1 and Experiment 2: Decorrelated subject slopes for block, match status, block:match, decorrelated item slopes for Shipley score, match status, experiment, block, semantic relatedness, experiment:match, block:match, block: semantic, and experiment:block:match/

Table C1
Summary of Single-Experiment Error Models

	Estimate (β)	$S E$	t-value	χ^{2}	$p\left(\chi^{2}\right)$
Experiment 2: Young adults, time pressure					
Block	-1.308	.757	-1.728	3.83	.051
Semantic relatedness	$\mathbf{5 . 7 7 1}$	$\mathbf{1 . 7 8 2}$	$\mathbf{3 . 2 3 8}$	$\mathbf{9 . 2 5}$	$\mathbf{. 0 0 2}$
Block:semantic	$-\mathbf{1 . 1 4 3}$	$\mathbf{. 8 2 0}$	$\mathbf{- 1 . 3 9 4}$	$\mathbf{6 . 2 5}$	$\mathbf{. 0 1 2}$

Note. There was insufficient variance in the distribution of completion errors in Experiments 1 and 3; as a result, a model is reported for Experiment 2 only. Bolded predictors are significant at $p<.05$; italicized predictors are marginal at $.05<p<.10$.

Table C2
Summary of Single-Experiment Response Time Models

Experiment	Estimate (β)	$S E$	t-value	χ^{2}	$p\left(\chi^{2}\right)$
Experiment $1:$ Young adults, no time pressure					
Block	$\mathbf{- . 0 6 0}$	$\mathbf{. 0 0 7}$	$\mathbf{- 8 . 7 4}$	$\mathbf{3 0 . 3 9}$	$\mathbf{< . 0 0 1}$
Match status	$\mathbf{. 2 4 7}$	$\mathbf{. 0 2 0}$	$\mathbf{1 2 . 4 4}$	$\mathbf{4 3 . 9 5}$	$\mathbf{< . 0 0 1}$
Semantic relatedness	-.014	.008	-1.70	$D N C$	(\cdot)
Shipley score	-.004	.007	-.53	.20	.655
Block:match	-.011	.014	-.77	.58	.445
Block:semantic	$\mathbf{- . 0 1 9}$	$\mathbf{. 0 1 2}$	$\mathbf{- 1 . 6 8}$	$\mathbf{6 . 2 2}$	$\mathbf{. 0 1 2}$

	Experiment 2: Young adults, time pressure				
	$\mathbf{- . 0 6 2}$	$\mathbf{. 0 0 7}$	$\mathbf{- 9 . 3 7}$	$\mathbf{3 3 . 0 2}$	$\mathbf{< . 0 0 1}$
Block	$\mathbf{. 3 0 7}$	$\mathbf{. 0 2 4}$	$\mathbf{1 2 . 8 3}$	$\mathbf{4 3 . 1 7}$	$<.001$
Match status	.001	.008	.07	.00	.944
Semantic relatedness	-.003	.003	-1.10	1.17	.279
Shipley score	$\mathbf{0 3 1}$	$\mathbf{. 0 1 4}$	$\mathbf{2 . 1 8}$	$\mathbf{4 . 2 5}$	$\mathbf{. 0 3 9}$
Block:match	-.017	.009	-1.91	3.63	.057
Block: semantic					

Experiment 3: Older adults, no time pressure

Block	$\mathbf{- . 0 5 4}$	$\mathbf{. 0 0 8}$	$\mathbf{- 6 . 7 8}$	DNC	$(*)$
Match status	$\mathbf{. 2 3 2}$	$\mathbf{. 0 1 9}$	$\mathbf{1 2 . 3 7}$	DNC	$(*)$
Semantic relatedness	.003	.011	.29	DNC	
Shipley score	.002	.007	.34	DNC	
Block:match	-.006	.015	-.37	DNC	
Block:semantic	.010	.012	.82	DNC	

Note. \quad DNC $=$ did not converge. Bolded predictors are significant at $p<$.05 ; italicized predictors are marginal at $.05<p<.10$.

Model comparing Experiment 1 and Experiment 3: Decorrelated subject slopes for block, match status, semantic relatedness, block:match; decorrelated item slopes for Shipley score, experiment, block, match status, semantic relatedness, experiment: match, block:semantic, experiment:block:match, and experiment: block:unrelated.

Random Effect Structure

Experiment 1: Correlated subject slopes for block, response time, RT:semantic; correlated item slopes for Shipley score, response time, BLUPs from RT model, and block:semantic.
Experiment 2: Decorrelated subject slopes for block, match, response time, block:semantic; decorrelated item slopes for Shipley score, match status, BLUPs from RT model, block:match, and block:semantic.
Experiment 3: Decorrelated subject slopes for block, response time, block:match, block:semantic, response time:semantic; decorrelated item slopes for Shipley score, response time, BLUPs, block:match, block:semantic, RT:match, and RT:semantic.

Table C3
Summary of Cross-Experiment Comparison Models, Response Time

Experiment	Estimate (β)	$S E$	t-value	χ^{2}	$p\left(\chi^{2}\right)$
Experiment 1 vs. Experiment 2					
Experiment	-. 083	. 034	-2.40	5.45	. 020
Block	-. 061	. 005	-12.70	65.34	<.001
Match status	. 279	. 017	16.60	86.42	<.001
Semantic relatedness	-. 006	. 007	-. 90	. 84	. 359
Shipley score	-. 003	. 003	-1.00	1.03	. 310
Experiment:block	-. 001	. 008	$-.20$. 03	. 861
Experiment:match	. 065	. 029	2.20	4.70	. 030
Experiment:semantic	. 013	. 010	1.30	1.73	. 189
Block:match	. 011	. 010	1.10	1.18	. 278
Block:semantic	-. 019	. 007	-2.90	7.97	. 005
Experiment:block:match	. 039	. 019	2.00	3.92	. 048
Experiment:block:semantic	. 005	. 012	. 40	. 19	. 662
Experiment 1 vs. Experiment 3					
Experiment	. 222	. 058	3.83	12.34	<. 001
Block	-. 057	. 005	-10.57	51.89	<. 001
Match status	. 234	. 014	16.24	85.62	<.001
Semantic relatedness	-. 007	. 007	-. 99	. 98	. 323
Shipley score	. 000	. 006	-. 07	. 01	. 942
Experiment:block	. 005	. 010	. 44	. 19	. 661
Experiment:match	-. 030	. 024	-1.21	1.45	. 229
Experiment:semantic	. 016	. 011	1.46	2.03	. 154
Block:match	-. 013	. 009	-1.44	2.02	. 156
Block:semantic	. 000	. 006	-. 04	. 00	. 967
Experiment:block:match	-. 001	. 019	-. 08	. 01	. 936
Experiment:block:semantic	. 031	. 014	2.16	4.53	. 033

Note. Bolded predictors are significant at $p<.05$.

Random Effect Structure

Model comparing Experiment 1 and Experiment 2: Decorrelated subject slopes for block, response time, block:semantic; decorrelated item slopes for experiment, block, response time, BLUPs from RT model, block:match, block:semantic, RT:semantic, and RT:experiment.
Model comparing Experiment 1 and Experiment 3: Correlated subject slopes for block, response time; correlated item slopes for Shipley score, experiment, response time, and BLUPs from RT model.

Random Effect Structure

Experiment 1: Correlated subject slopes for block, match status, semantic relatedness, response time, number of consonants, RT: match, RT:semantic; correlated item slopes for match, RT, BLUP from RT model, Shipley score, block:match, block:semantic, and RT:match.
Experiment 2: Decorrelated subject slopes for block, match status, response time, number of consonants, block:semantic, RT: semantic; decorrelated item slopes for block, match, semantic, block:semantic, and RT:semantic.
Experiment 3: Decorrelated subject slopes for block, response time, number of consonants, block:match, RT:match; decorrelated
item slopes for RT, BLUP from RT model, Shipley score, block: semantic, and RT:semantic.

Random Effect Structure

Model comparing Experiment 1 and Experiment 2: Decorrelated subject slopes for block, match status, response time, number of consonants, RT:match, RT:semantic; decorrelated item slopes for group, match status, response time, BLUPs from Rt model, Shipley score, block:match, block:unrelated, RT:match, RT:unrelated, RT:experiment, RT:semantic:experiment, block:match:experiment, and block:unrelated:experiment.
Model comparing Experiment 1 and Experiment 3: Decorrelated subject slopes for block, unrelated, response time, number of consonants, block:match, RT:unrelated; decorrelated item slopes for experiment, response time, BLUPs from RT model, Shipley score, block:match, block:unrelated, and RT:unrelated.

Table C4
Summary of Single-Experiment Word Duration Models

Experiment	Estimate (β)		$S E$	t-value	χ^{2}	$p\left(\chi^{2}\right)$
Experiment $1:$ Young adults, no time pressure						
Block	4.145	4.346	.95	.90	.347	
Match status	$\mathbf{1 8 . 7 8 3}$	$\mathbf{3 . 4 0 5}$	$\mathbf{5 . 5 2}$	$\mathbf{3 0 . 0 9}$	$<.001$	
Semantic relatedness	-4.268	2.749	-1.55	2.33	.127	
Trial-level RT	$\mathbf{- 3 3 . 2 8 1}$	$\mathbf{1 3 . 2 7 4}$	$\mathbf{- 2 . 5 1}$	$\mathbf{5 . 7 3}$	$\mathbf{. 0 1 7}$	
BLUP from RT model	146.588	76.192	1.92	2.75	.097	
Shipley score	-.098	2.470	-.04	.00	.969	
Block:match	1.308	3.793	.34	.12	.731	
Block:semantic	2.108	3.739	.56	.31	.576	
RT:match	-19.718	15.563	-1.27	1.56	.212	
RT:semantic	$\mathbf{5 0 . 6 6 7}$	$\mathbf{1 5 . 3 4 4}$	$\mathbf{3 . 3 0}$	$\mathbf{9 . 8 4}$	$\mathbf{. 0 0 2}$	

	Experiment 2: Young adults, time pressure							
	-4.577	2.863	-1.60	2.39	.122			
Block	$\mathbf{1 2 . 7 1 7}$	$\mathbf{3 . 6 1 2}$	$\mathbf{3 . 5 2}$	$\mathbf{1 0 . 1 2}$	$\mathbf{. 0 0 2}$			
Match status	-5.298	2.767	-1.92	3.66	.056			
Semantic relatedness	-10.080	8.258	-1.22	1.47	.225			
Trial-level RT	427.909	471.328	.91	.81	.369			
BLUP from RT model	-3.103	1.548	-2.01	3.62	.056			
Shipley score	-7.161	4.337	-1.65	2.69	.101			
Block:match	2.987	4.302	.69	.48	.489			
Block:semantic	27.527	14.706	1.87	3.45	.063			
RT:match	12.328	14.092	.88	.76	.382			
RT:semantic								

	Experiment 3: Older adults, no time pressure					
	-4.664	3.655	-1.28	1.56	.212	
Block	5.105	4.451	1.15	1.31	.253	
Match status	$\mathbf{- 1 1 . 3 0 4}$	$\mathbf{3 . 7 1 1}$	$\mathbf{- 3 . 0 5}$	$\mathbf{8 . 8 6}$	$\mathbf{. 0 0 3}$	
Semantic relatedness	-10.255	9.019	-1.14	1.27	.259	
Trial-level RT	$\mathbf{1 7 9 . 6 5 1}$	$\mathbf{8 2 . 4 4 1}$	$\mathbf{2 . 1 8}$	$\mathbf{4 . 2 2}$	$\mathbf{. 0 4 0}$	
BLUP from RT model	$\mathbf{- 6 . 7 1 1}$	$\mathbf{3 . 1 0 7}$	$\mathbf{- 2 . 1 6}$	$\mathbf{4 . 1 9}$	$\mathbf{. 0 4 1}$	
Shipley score	$\mathbf{- 1 9 . 7 8 6}$	$\mathbf{7 . 5 5 8}$	$\mathbf{- 2 . 6 2}$	$\mathbf{5 . 8 3}$	$\mathbf{. 0 1 6}$	
Block:match	5.570	5.452	1.02	1.04	.308	
Block:semantic	-20.459	15.402	-1.33	1.75	.186	
RT:match	7.360	17.078	.43	.19	.667	
RT:semantic						

Note. Bolded predictors are significant at $p<.05$; italicized predictors are marginal at $.05<p<.10$.

Table C5
Cross-Experiment Comparison Models, Word Duration

Experiment	Estimate (β)	SE	t-value	χ^{2}	$p\left(\chi^{2}\right)$
Experiment 1 vs. Experiment 2					
Experiment	-53.213	15.479	-3.44	10.24	. 001
Block	-. 320	2.654	-. 12	DNC	
Match status	16.310	2.442	6.68	44.18	<. 001
Semantic relatedness	-5.564	1.983	-2.81	7.85	. 005
Trial-level RT	-21.480	7.563	-2.84	7.66	. 006
BLUP from RT model	-69.426	299.063	-. 23	. 05	. 817
Shipley score	-2.340	1.352	-1.73	2.88	. 090
Experiment:block	-8.629	5.302	-1.63	2.55	. 110
Experiment:match	1.061	4.821	. 22	. 05	. 826
Experiment:unrelated	. 605	3.928	. 15	. 02	. 878
Block:match	-4.295	2.654	-1.62	2.60	. 107
Block:semantic	2.531	2.957	. 86	. 73	. 393
Experiment:RT	11.771	14.258	. 83	. 67	. 411
Match:RT	7.070	10.322	. 68	. 47	. 494
Unrelated:RT	17.762	10.525	1.69	2.82	. 093
Experiment:block:match	-5.612	5.193	-1.08	1.16	. 281
Experiment:block:unrelated	1.623	4.720	. 34	. 12	. 731
Experiment:RT:match	55.878	20.317	2.75	DNC	(*)
Experiment:RT:unrelated	-17.517	19.453	-. 90	. 81	. 369
Experiment 1 vs. experiment 3					
Experiment	54.658	23.563	2.32	5.02	. 025
Block	-. 764	2.804	-. 27	. 07	. 785
Match status	14.856	3.050	4.87	23.58	<. 001
Semantic relatedness	-5.451	2.455	-2.22	4.92	. 027
Trial-level RT	-24.785	8.425	-2.94	8.25	. 004
BLUP from RT model	-285.849	456.564	-. 63	. 36	. 550
Shipley score	-4.191	2.358	-1.78	2.82	. 093
Experiment:block	-8.503	5.605	-1.52	2.23	. 136
Experiment:match	-2.320	6.083	-. 38	. 14	. 704
Experiment:unrelated	-10.309	4.904	-2.1	4.41	. 038
Block:match	-4.368	3.156	-1.38	1.91	. 167
Block:semantic	2.814	2.829	. 99	. 98	. 321
Experiment:RT	-1.668	15.298	-. 11	. 01	. 914
Match:RT	-9.736	10.881	-. 89	. 79	. 375
Unrelated:RT	17.368	9.539	1.82	3.29	. 070
Experiment:block:match	-20.408	6.293	-3.24	10.48	. 001
Experiment:block:unrelated	5.289	5.660	. 93	. 87	. 351
Experiment:RT:match	-19.191	21.651	-. 89	. 78	. 378
Experiment:RT:unrelated	-25.535	19.094	-1.34	1.77	. 183

Note. $\quad \mathrm{DNC}=\mathrm{did}$ not converge. Bolded predictors are significant at $p<$.05 ; italicized predictors are marginal at $.05<p<.10$.

Random Effect Structure

Experiment 1: Decorrelated subject slopes for block; decorrelated item slopes for Shipley score, response time, BLUP from RT model, block:match, block:unrelated, and RT:unrelated.
Experiment 2: Decorrelated subject slopes for block, match, response time, block:match, block:semantic; decorrelated item slopes for Shipley score, RT, BLUPs from RT model, block: match, and block:semantic.
Experiment 3: Decorrelated subject slopes for block, block:semantic, RT:match; decorrelated item slopes for Shipley score, block, semantic relatedness, response time, BLUPs from RT model, block:match, and block:semantic.

Random Effect Structure

Model comparing Experiment 1 and Experiment 2: Decorrelated subject slopes for block, response time; decorrelated item slopes for Shipley score, experiment, response time, and BLUPs from RT model.
Model comparing Experiment 1 and Experiment 3: Decorrelated subject slopes for block, block:semantic; decorrelated item slopes for Shipley score, experiment, response time, BLUPs from RT model, block:match, and block:unrelated.

Random Effect Structure

Experiment 1: Decorrelated subject slopes for block, block:match, block:semantic; decorrelated item slopes for Shipley score, BLUPs from RT model, block:match, and block:semantic.
Experiment 2: Correlated subject slopes for block and trial-level RT; correlated item slopes for Shipley score, BLUP from RT model, and block:semantic.
Experiment 3: Decorrelated subject slopes for match, trial-level RT, block:match, RT:match, RT:semantic; decorrelated item slopes for Shipley score, trial-level RT, BLUPs from RT model, and block:match.

Random Effect Structure

Model comparing Experiment 1 and Experiment 2: Correlated random subject slopes for block; correlated random item slopes for Shipley score, experiment, and BLUPs from RT model.
Model comparing Experiment 1 and Experiment 3: Subject intercept; correlated random item slopes for Shipley score, experiment, trial-level RT, and BLUPs from RT model.

Table C6
Summary of Single-Experiment Models of Initial Consonant Duration

Experiment	Estimate (β)	$S E$	t-value	χ^{2}	$p\left(\chi^{2}\right)$

Block	$\mathbf{- 2 . 2 4 5}$	$\mathbf{. 8 1 9}$	$\mathbf{- 2 . 7 4}$	$\mathbf{6 . 3 3}$	$\mathbf{. 0 1 2}$
Match status	$\mathbf{1 0 . 8 5 2}$	$\mathbf{1 . 8 9 5}$	$\mathbf{5 . 7 3}$	$\mathbf{1 6 . 9 0}$	$<. \mathbf{0 0 1}$
Semantic relatedness	-2.397	1.759	-1.36	1.80	.180
Trial-level RT	$\mathbf{- 3 5 . 5 3 2}$	$\mathbf{4 . 7 2 8}$	$\mathbf{- 7 . 5 2}$	$\mathbf{3 0 . 0 7}$	$<. \mathbf{0 0 1}$
BLUP from RT model	$\mathbf{4 4 . 1 4 5}$	$\mathbf{2 0 . 0 4 3}$	$\mathbf{2 . 2 0}$	$\mathbf{4 . 3 4}$	$\mathbf{. 0 3 7}$
Number of consonants	$\mathbf{3 9 . 7 8 6}$	$\mathbf{7 . 3 2 2}$	$\mathbf{5 . 4 3}$	$\mathbf{2 6 . 1 7}$	$<.001$
Shipley score	.125	.651	.19	.04	.849
Block:match	.621	2.079	.30	.09	.768
Block:semantic	3.139	2.103	1.49	2.19	.139
RT:match	$\mathbf{- 3 1 . 2 3 2}$	$\mathbf{8 . 6 9 3}$	$\mathbf{- 3 . 5 9}$	$\mathbf{9 . 8 7}$	$\mathbf{. 0 0 2}$
RT:semantic	5.651	8.045	.70	.46	.499

Experiment 2: Young adults, time pressure

Block	$\mathbf{- 2 . 3 1 5}$	$\mathbf{. 7 3 6}$	$\mathbf{- 3 . 1 4}$	$\mathbf{7 . 9 6}$	$\mathbf{. 0 0 5}$
Match status	$\mathbf{8 . 6 2 1}$	$\mathbf{1 . 9 5 3}$	$\mathbf{4 . 4 2}$	$\mathbf{1 5 . 3 6}$	$<.001$
Semantic relatedness	$\mathbf{- 3 . 7 5 9}$	$\mathbf{1 . 4 7 8}$	$\mathbf{- 2 . 5 4}$	$\mathbf{6 . 4 4}$	$\mathbf{. 0 1 1}$
Trial-level RT	$\mathbf{- 1 4 . 9 8 0}$	$\mathbf{3 . 5 9 2}$	$\mathbf{- 4 . 1 7}$	$\mathbf{1 4 . 6 1}$	$<.001$
BLUP from RT model	-11.917	76.347	-.16	.02	.876
Number of consonants	$\mathbf{2 7 . 2 7 6}$	$\mathbf{5 . 8 1 0}$	$\mathbf{4 . 7 0}$	$\mathbf{2 0 . 4 2}$	$<.001$
Shipley score	-.498	.251	-1.99	3.59	.058
Block:match	.122	1.796	.07	.00	.946
Block:semantic	-1.534	1.885	-.81	.62	.431
RT:match	-.866	7.570	-.11	.01	.912
RT:semantic	16.658	9.217	1.81	3.18	.075

Note. Bolded predictors are significant at $p<.05$; italicized predictors are marginal at $.05<p<.10$.

Table C7
Cross-Experiment Comparison Models, First Consonant Duration

Experiment	Estimate (β)	$S E$	t-value	χ^{2}	$p\left(\chi^{2}\right)$

Experiment 1 vs. Experiment 2

	$\mathbf{- 1 1 . 3 8 0}$	$\mathbf{2 . 9 9 6}$	$\mathbf{- 3 . 8 0}$	$\mathbf{1 2 . 2 5}$	$<. \mathbf{0 0 1}$
Experiment	$\mathbf{- 2 . 0 8 1}$	$\mathbf{. 5 7 3}$	$\mathbf{- 3 . 6 3}$	$\mathbf{1 1 . 4 3}$	$<.001$
Block	$\mathbf{1 0 . 4 1 8}$	$\mathbf{1 . 3 0 5}$	$\mathbf{7 . 9 8}$	$\mathbf{4 3 . 7 8}$	$<.001$
Match status	$\mathbf{- 2 . 5 6 2}$	$\mathbf{1 . 0 3 8}$	$\mathbf{- 2 . 4 7}$	$\mathbf{5 . 9 5}$	$\mathbf{. 0 1 5}$
Semantic relatedness	$\mathbf{- 2 5 . 1 6 6}$	$\mathbf{2 . 9 9 7}$	$\mathbf{- 8 . 4 0}$	$\mathbf{4 7 . 3 8}$	$<.001$
Trial-level RT	$\mathbf{4 2 . 8 3 7}$	$\mathbf{1 8 . 1 7 7}$	$\mathbf{2 . 3 6}$	$\mathbf{5 . 2 3}$	$\mathbf{. 0 2 2}$
BLUP from RT model	$\mathbf{3 4 . 2 9 1}$	$\mathbf{6 . 3 0 6}$	$\mathbf{5 . 4 4}$	$\mathbf{2 7 . 3 6}$	$<.001$
Number of consonants	-.428	.251	-1.70	2.81	.094
Shipley score	.266	1.141	.23	.05	.816
Experiment:block	-3.557	2.475	-1.44	2.05	.152
Experiment:match	-1.325	2.073	-.64	.41	.523
Experiment:unrelated	.751	1.388	.54	.29	.589
Block:match	.592	1.398	.42	.18	.673
Block:semantic	$\mathbf{1 9 . 4 5 1}$	$\mathbf{5 . 8 1 8}$	$\mathbf{3 . 3 4}$	DNC	$\mathbf{(*)}$
Experiment:RT	$\mathbf{1 4 . 5 1 2}$	$\mathbf{5 . 4 9 2}$	$\mathbf{- 2 . 6 4}$	$\mathbf{6 . 7 9}$	$\mathbf{. 0 0 9}$
Match:RT	6.538	5.833	1.12	1.20	.274
Unrelated:RT	-.068	2.662	-.03	.00	.980
Experiment:block:match	-4.844	2.657	-1.82	3.30	.069
Experiment:block:unrelated	$\mathbf{2 5 . 7 1 6}$	$\mathbf{1 0 . 7 2 4}$	$\mathbf{2 . 4 0}$	$\mathbf{5 . 7 2}$	$\mathbf{. 0 1 7}$
Experiment:RT:match	5.693	11.839	.48	.23	.634
Experiment:RT:unrelated					

	Experiment 1 vs. Experiment 3							
Experiment	$\mathbf{1 2 . 9 5 7}$	$\mathbf{4 . 9 9 6}$	$\mathbf{2 . 5 9}$	DNC	$(*)$			
Block	-1.205	.647	-1.86	DNC	(\cdot)			
Match status	$\mathbf{5 . 5 6 5}$	$\mathbf{1 . 4 8 2}$	$\mathbf{3 . 7 5}$	DNC	$(*)$			
Semantic relatedness	-1.543	1.365	-1.13	DNC				
Trial-level RT	$\mathbf{- 2 4 . 0 6 0}$	$\mathbf{4 . 0 2 5}$	$\mathbf{- 5 . 9 8}$	$\mathbf{2 8 . 7 2}$	$<.001$			
BLUP from RT model	$\mathbf{3 8 . 6 9 0}$	$\mathbf{1 1 . 1 5 9}$	$\mathbf{3 . 4 7}$	DNC	$(*)$			
Number of consonants	$\mathbf{3 5 . 1 8 6}$	$\mathbf{6 . 9 9 6}$	$\mathbf{5 . 0 3}$	DNC	$(*)$			
Shipley score	-.042	.381	-.11	.01	.923			
Experiment:block	1.243	1.264	.98	DNC				
Experiment:match	$\mathbf{- 6 . 2 8 4}$	$\mathbf{2 . 9 6 9}$	$\mathbf{- 2 . 1 2}$	DNC	$(*)$			
Experiment:unrelated	.145	2.653	.06	DNC				
Block:match	.344	2.012	.17	.03	.865			
Block:semantic	1.130	1.652	.68	DNC				
Experiment:RT	9.926	7.426	1.34	1.67	.197			
Match:RT	-6.910	5.447	-1.27	DNC				
Unrelated:RT	-.566	5.512	-.10	.01	.921			
Experiment:block:match	-4.458	3.606	-1.24	DNC				
Experiment:block:unrelated	-5.126	2.715	-1.89	3.50	.061			
Experiment:RT:match	$\mathbf{3 0 . 2 7 6}$	$\mathbf{1 0 . 6 8 2}$	$\mathbf{2 . 8 3}$	DNC	$(*)$			
Experiment:RT:unrelated	-18.670	10.489	-1.78	2.83	.093			

Note. Bolded predictors are significant at $p<.05$; italicized predictors are marginal at $.05<p<.10$.

Table C8
Summary of Single-Experiment Models of Vowel Duration

Experiment	Estimate (β)	$S E$	t-value	χ^{2}	$p\left(\chi^{2}\right)$

Experiment 1: Young adults, no time pressure

Table C9
Cross-Experiment Comparison Models, Vowel Duration

Experiment	Estimate (β)	SE	t-value	χ^{2}	$p\left(\chi^{2}\right)$
Experiment 1 vs. Experiment 2					
Experiment	-15.270	6.270	-2.44	5.50	. 019
Block	2.337	1.116	2.09	4.14	. 042
Match status	1.199	1.307	. 92	. 84	. 359
Semantic relatedness	-. 453	1.054	-. 43	. 18	. 668
Trial-level RT	7.660	3.245	2.36	5.29	. 022
BLUP from RT model	65.306	36.915	1.77	3.00	. 083
Shipley score	-. 807	. 531	-1.52	2.23	. 135
Experiment:block	-5.640	2.230	-2.53	5.90	. 015
Experiment:match	2.006	2.590	. 77	. 60	. 439
Experiment:unrelated	1.382	2.102	. 66	. 430	. 511
Block:match	-5.599	1.390	-4.03	16.19	<. 001
Block:semantic	-. 862	1.266	-. 68	. 46	. 500
Experiment:RT	4.546	6.044	. 75	. 56	. 453
Match:RT	-. 750	5.613	-. 13	. 02	. 894
Unrelated:RT	13.383	5.329	2.51	6.29	. 012
Experiment:block:match	-2.530	2.779	-. 91	. 83	. 363
Experiment:block:unrelated	. 808	2.530	. 32	. 10	. 750
Experiment:RT:match	16.470	11.067	1.49	2.19	. 139
Experiment:RT:unrelated	-15.228	10.636	-1.43	2.04	. 153

	Experiment 1 vs. Experiment 3				
Experiment	$\mathbf{1 5 . 5 5 0}$	$\mathbf{6 . 5 1 2}$	$\mathbf{2 . 3 9}$	$\mathbf{5 . 3 1}$	$\mathbf{. 0 2 1}$
Block	$\mathbf{3 . 0 2 6}$	$\mathbf{1 . 1 3 4}$	$\mathbf{2 . 6 7}$	$\mathbf{6 . 5 2}$	$\mathbf{. 0 1 1}$
Match status	.844	1.437	.59	.35	.557
Semantic relatedness	1.342	1.132	1.19	1.40	.236
Trial-level RT	.665	2.648	.25	.06	.802
BLUP from RT model	$\mathbf{4 5 . 6 0 2}$	$\mathbf{1 8 . 6 9 7}$	$\mathbf{2 . 4 4}$	$\mathbf{5 . 5 3}$	$\mathbf{. 0 1 9}$
Shipley score	-.563	.660	-.85	.72	.396
Experiment:block	-4.289	2.267	-1.89	3.41	.065
Experiment:match	4.596	2.867	1.60	2.56	.109
Experiment:unrelated	-1.955	2.267	-.86	.74	.389
Block:match	-3.293	1.771	-1.86	3.40	.065
Block:semantic	-.562	1.338	-.42	.18	.675
Experiment:RT	$\mathbf{- 1 5 . 3 6 9}$	$\mathbf{5 . 8 7 6}$	$\mathbf{- 2 . 6 2}$	$\mathbf{. 6 8}$	$\mathbf{. 0 0 9}$
Match:RT	-7.951	5.140	-1.55	2.39	.122
Unrelated:RT	$\mathbf{1 0 . 5 9 4}$	$\mathbf{4 . 6 6 0}$	$\mathbf{2 . 2 7}$	$\mathbf{5 . 1 5}$	$\mathbf{. 0 2 3}$
Experiment:block:match	1.516	2.916	.52	.27	.604
Experiment:block:unrelated	3.319	2.607	1.27	1.62	.204
Experiment:RT:match	-5.023	10.230	-.49	.24	.624
Experiment:RT:unrelated	$\mathbf{- 2 1 . 4 1 7}$	$\mathbf{9 . 2 9 0}$	$\mathbf{- 2 . 3 1}$	$\mathbf{5 . 2 9}$	$\mathbf{. 0 2 1}$

Note. Bolded predictors are significant at $p<.05$; italicized predictors are marginal at $.05<p<.10$.

Table C10
Summary of Single-Experiment Models of Vowel Distance

Experiment	Estimate (β)	$S E$	t-value	χ^{2}	$p\left(\chi^{2}\right)$
Experiment 1: Young adults, no time pressure					
Block	-3.708	1.922	-1.93	3.72	.054
Match status	7.479	4.857	1.54	2.36	.124
Semantic relatedness	-3.849	3.902	-.987	.97	.324
Trial-level RT	3.484	10.404	.335	.11	.738
BLUP from RT model	71.482	81.217	.88	.76	.384
Shipley score	2.574	2.721	.946	.87	.349
Block:match	-3.317	7.281	-.456	.2	.651
Block:semantic	.599	6.105	.098	.01	.922
RT:match	23.994	21.374	1.123	1.25	.263
RT:semantic	-32.140	20.031	-1.605	2.56	.109

Block	-5.966	2.719	-2.195	$\mathbf{4 . 3 7}$	$\mathbf{. 0 3 7}$
Match status	$\mathbf{1 2 . 9 2 1}$	$\mathbf{5 . 2 6 1}$	$\mathbf{2 . 4 5 6}$	$\mathbf{6 . 0 1}$	$\mathbf{. 0 1 4}$
Semantic relatedness	1.172	4.391	.267	.07	.790
Trial-level RT	-3.409	10.141	-.336	.11	.738
BLUP from RT model	503.629	268.912	1.873	3.13	.077
Shipley score	-.623	.884	-.705	.49	.485
Block:match	-3.774	5.751	-.656	.51	.513
Block:semantic	-.365	6.010	-.061	.95	.952
RT:match	12.462	21.787	.572	.57	.569
RT:semantic	2.781	22.242	.125	.02	.901

Experiment 3: Older adults, no time pressure						
	-.200	2.098	-.096	.01	.924	
Block	1.295	6.496	.199	.04	.843	
Match status	-2.664	4.358	-.611	.36	.547	
Semantic relatedness	$\mathbf{2 1 . 8 7 5}$	$\mathbf{1 0 . 3 0 7}$	$\mathbf{2 . 1 2 2}$	$\mathbf{4 . 4 5}$	$\mathbf{. 0 3 5}$	
Trial-level RT	20.551	48.912	.42	.18	.675	
BLUP from RT model	-2.223	1.814	-1.226	1.44	.231	
Shipley score	-6.678	7.499	-.89	.77	.381	
Block:match	5.628	5.368	1.048	1.09	.296	
Block:semantic	48.689	24.065	2.023	3.81	.051	
RT:match	-19.634	18.771	-1.046	1.09	.297	
RT:semantic						

Note. Bolded predictors are significant at $p<.05$; italicized predictors are marginal at $.05<p<.10$.

Table C11
Cross-Experiment Comparison Models, Vowel Distance

Experiment	Estimate (β)	SE	t-value	χ^{2}	$p\left(\chi^{2}\right)$
Experiment 1 vs. Experiment 2					
Experiment	12.185	12.551	. 971	. 930	. 335
Block	-5.528	1.555	-3.556	11.310	<. 001
Match status	9.815	3.838	2.558	6.520	. 011
Semantic relatedness	-1.865	3.138	-. 594	. 350	. 552
Trial-level RT	-2.759	7.447	-. 371	. 140	. 711
BLUP from RT model	64.059	71.047	. 902	. 790	. 373
Shipley score	. 665	1.032	. 644	. 410	. 524
Experiment:block	-3.809	3.094	-1.231	1.500	. 220
Experiment:match	14.348	7.607	1.886	3.550	. 060
Experiment:unrelated	1.797	6.264	. 287	. 080	. 774
Block:match	. 124	4.100	. 030	DNC	
Block:semantic	. 815	3.748	. 217	. 050	. 828
Experiment:RT	-25.000	14.390	-1.737	3.010	. 083
Match:RT	7.838	15.909	. 493	. 240	. 623
Unrelated:RT	-15.544	15.523	-1.001	1.000	. 317
Experiment:block:match	-2.511	8.205	-. 306	. 090	. 760
Experiment:block:unrelated	4.157	7.502	. 554	. 310	. 580
Experiment:RT:match	-5.968	31.438	-. 190	. 040	. 850
Experiment:RT:unrelated	36.171	30.972	1.168	1.360	. 243

	$\mathbf{3 5 . 5 6 5}$	$\mathbf{1 6 . 0 7 3}$	$\mathbf{2 . 2 1 3}$	$\mathbf{4 . 6 5 0}$	$\mathbf{. 0 3 1}$
Experiment	-1.970	1.503	-1.311	1.710	.191
Block	4.667	4.148	1.125	.126	.261
Match status	-6.109	3.269	-1.869	3.490	.062
Semantic relatedness	11.031	8.266	1.334	1.760	.184
Trial-level RT	34.905	44.080	.792	.620	.431
BLUP from RT model	-.252	1.561	-.161	.030	.872
Shipley score	4.894	3.002	1.630	2.650	.103
Experiment:block	-8.582	8.263	-1.039	1.080	.300
Experiment:match	4.055	6.537	.620	.380	.536
Experiment:unrelated	-6.824	4.234	-1.612	2.590	.108
Block:match	1.552	3.808	.407	.100	.684
Block:semantic	13.024	14.516	.897	.790	.373
Experiment:RT	$\mathbf{2 9 . 3 5 8}$	$\mathbf{1 4 . 6 7 0}$	$\mathbf{2 . 0 0 1}$	$\mathbf{3 . 9 9 0}$	$\mathbf{. 0 4 6}$
Match:RT	-23.701	13.314	-1.780	3.160	.076
Unrelated:RT	-5.954	8.373	-.711	.500	.478
Experiment:block:match	7.513	7.532	.998	.990	.319
Experiment:block:unrelated	9.251	29.330	.315	.100	.753
Experiment:RT:match	33.853	26.595	1.273	1.610	.204
Experiment:RT:unrelated					

Note. Bolded predictors are significant at $p<.05$; italicized predictors are marginal at $.05<p<.10$.

Appendix D

Condition Means by Experiment

Table D1
Mean and Standard Errors for Each Dependent Variable, Broken Down by Experiment and Condition, are Presented Below

Variable	Experiment 1		Experiment 2		Experiment 3	
	M	$S E$	M	$S E$	M	$S E$
Reaction time (ms)						
Competitor	730.828	6.139	682.087	5.320	903.763	8.936
Match	613.776	5.146	549.004	4.566	776.781	5.559
Unrelated	745.887	6.187	684.229	4.971	924.553	8.914
Word duration (ms)						
Competitor	376.807	3.762	323.857	3.663	397.651	4.105
Match	370.838	3.479	324.491	3.295	393.569	3.815
Unrelated	380.109	3.801	331.083	3.532	421.518	4.501
Initial consonant duration (ms)						
Competitor	59.042	1.846	45.812	1.627	58.542	1.678
Match	54.423	1.653	42.996	1.349	56.902	1.603
Unrelated	58.291	1.832	48.281	1.574	61.645	1.859
Vowel duration (ms)						
Competitor	156.903	1.918	141.885	1.773	163.598	1.685
Match	153.908	1.774	136.296	1.605	158.709	1.656
Unrelated	154.248	1.947	141.776	1.817	167.668	1.923
Vowel distance (Hz)						
Competitor	245.888	5.223	264.282	5.349	268.639	4.635
Match	244.025	4.768	254.768	5.004	274.651	3.774
Unrelated	245.834	5.090	257.240	5.171	285.792	4.952

Note. Although reaction time models were run with a log-transformed dependent variable, the raw values are presented below for easier interpretability.

Received October 11, 2017
Revision received March 15, 2018
Accepted April 23, 2018

[^0]: ${ }^{1}$ In contrast to the context-specific effects of disruption examined here, other work has examined how acoustic properties are related to contextindependent features of words (e.g., word frequency: Gahl, 2008; phonological neighborhood density: Gahl \& Strand, 2016; informativity: Seyfarth, 2014). Note that these effects may be due to mechanisms that overlap with those driving context-specific predictability effects (e.g., Bell, Brenier, Gregory, Girand, \& Jurafsky, 2009).

[^1]: Note. Images are from the bank of standardized stimuli (BOSS; Brodeur, Guérard, \& Bouras, 2014) and are authorised for redistribution according to the creative commons attribution (Share Alike 3.0 License, https://creativecommons.org/licenses/by-Sa/3.0/).

[^2]: ${ }^{2}$ We have also conducted models using more restrictive criteria, in which we restrict the data pool to only items where a response is available for all three conditions (match, unrelated, competitor) for a single participant. Although this more conservative approach better controls the distribution of data across conditions, it resulted in the removal of nearly 30% of the data. We found the effects in this more conservative analysis to be broadly consistent with the analyses reported here, so we have chosen to present this analysis, which is a more complete data set.

[^3]: ${ }^{3}$ There was a significant three-way interaction of experiment, match status, and RT; this reflected the non-significant negative interaction of match status and RT in Experiment 1 vs. the non-significant positive interaction in the current experiment. This does not provide evidence in favor of increased effects with decreased RTs. (Note a similar interaction was found for initial consonant duration as well.)

[^4]: ${ }^{4}$ There was a significant interaction of block and match status, such that overall reduction of word durations across blocks was strongest for mismatch trials.
 ${ }^{5}$ There was a significant three-way interaction of experiment, match status, and block; this reflected the non-significant interaction of match status and block in Experiment 1 vs. the significant interaction in the current experiment.

