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SUMMARY

Visual cortical areas subserve cognitive functions
by interacting in both feedforward and feedback
directions.While feedforward influences convey sen-
sory signals, feedback influences modulate feedfor-
ward signaling according to the current behavioral
context. We investigated whether these interareal
influences are subserved differentially by rhythmic
synchronization. We correlated frequency-specific
directed influences among 28 pairs of visual areas
with anatomical metrics of the feedforward or feed-
back character of the respective interareal projec-
tions. This revealed that in the primate visual system,
feedforward influences are carried by theta-band
(�4 Hz) and gamma-band (�60–80 Hz) synchroni-
zation, and feedback influences by beta-band
(�14–18 Hz) synchronization. The functional directed
influences constrain a functional hierarchy similar to
the anatomical hierarchy, but exhibiting task-depen-
dent dynamic changes in particular with regard
to the hierarchical positions of frontal areas. Our
results demonstrate that feedforward and feedback
signaling use distinct frequency channels, suggest-
ing that they subserve differential communication
requirements.

INTRODUCTION

Many aspects of cognitive performance can only be explained

through the concept of feedback influences. For example, reac-

tion times are shortened when stimulus locations are precued

and attention can be predirected, an effect that cannot be

explained if only feedforward input is considered (Posner et al.,
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1980). Numerous neurophysiological studies have demon-

strated the effects of feedback influences on neuronal activity

(Moran and Desimone, 1985), yet the mechanisms through

which feedback influences are exerted remain elusive. Anatom-

ical studies show that structural connections in the feedforward

direction, i.e., from the primary sensory areas to higher order

areas, are reciprocated by connections in the feedback direction

(Felleman and Van Essen, 1991; Markov et al., 2014b). In addi-

tion, it is well established that feedforward and feedback con-

nections follow a characteristic pattern with regard to cortical

layers. Feedforward connections target the granular layer (Felle-

man and Van Essen, 1991); they originate preferentially in supra-

granular layers, and this preference is stronger for projections

traversing more hierarchical levels, i.e., it is quantitatively related

to the hierarchical distance (Markov et al., 2014b). Feedback

connections avoid targeting the granular layer (Felleman and

Van Essen, 1991); they originate preferentially in the infragranular

layers, and again, this preference is stronger for projections

traversing more hierarchical levels and is thereby quantitatively

related to hierarchical distance (Markov et al., 2014b). These

asymmetries have been used to arrange the visual cortical areas

into a hierarchy (Felleman and Van Essen, 1991; Markov et al.,

2014b), which has influenced many theories of cognition and

brain function (Bastos et al., 2012; Dehaene et al., 1998; Lamme

and Roelfsema, 2000; Mesulam, 1998).

Recent studies have documented a neurophysiological asym-

metry between the layers of visual cortex. While supragranular

layers show local gamma-band synchronization, infragranular

layers show local alpha/beta-band synchronization (Buffalo

et al., 2011; Roberts et al., 2013; Xing et al., 2012). Local rhythmic

synchronization can lead to interareal synchronization (Bosman

et al., 2012; Buschman and Miller, 2007; Gregoriou et al.,

2009; Salazar et al., 2012), which has been proposed as a

mechanism of effective interareal interaction (Bosman et al.,

2012; Fries, 2005; Womelsdorf et al., 2007). Given that supragra-

nular layers primarily send feedforward projections and infragra-

nular layers primarily feedback projections, this leads to the
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Figure 1. ECoG Electrode Distribution and Coregistration with Atlases

(A) Intraoperative photograph of the brain of monkey 1 after placement of the ECoG grid.

(B) Rendering of the brain of monkey 1 based on structural MRI scans. Lines indicate the boundary of the covered brain region and the major sulci, and dots

indicate the 252 subdural electrodes (electrode color refers to headstage number, see Experimental Procedures for details).

(C–F) Midthickness surface of the brain coregistered in Caret (http://www.nitrc.org/projects/caret/) to the Macaque.F99 space and thereby to the following

atlases: (C), ‘‘Felleman-VE all (1991)’’; (D), ‘‘PHT 00 (PaxinosEtAl)’’; (E), ‘‘Markov-CC10’’; (F), ‘‘Markov-CC12.’’ The visual areas that were covered by the ECoG grid

are highlighted.

(G) Parcellation of ECoG-covered regions into cortical areas.

(H–N) Same as (A)–(G), but for monkey 2.
hypothesis that interareal synchronization in the gamma-fre-

quency bandmight mediate feedforward influences, and interar-

eal synchronization in the beta-frequency band might mediate

feedback influences (Bastos et al., 2012; van Kerkoerle et al.,

2014; Wang, 2010).

RESULTS

To test this prediction, we recorded local field potentials (LFPs)

from electrocorticography (ECoG) grids implanted onto the left

hemispheres of two macaque monkeys (Figures 1A, 1B, 1H,

and 1I) performing a visuospatial attention task (Figure 2 and

Experimental Procedures) (Bosman et al., 2012; Brunet et al.,

2013, 2014; Rubehn et al., 2009). The ECoG grid covered eight

visual areas: V1, V2, V4, TEO, DP, 7A, 8L, and 8M (lateral and

medial parts of area 8/FEF). The 252 electrodes were assigned

to cortical areas by coregistering intraoperative photographs

with several macaque brain atlases (Van Essen, 2012) (Figures

1C–1F and 1J–1M), to produce the anatomically defined area

boundaries which were used to assign electrodes to areas (Fig-

ures 1G and 1N). For the frequency bands analyzed here, ECoG

signals reflect neuronal activity from both superficial and deep

cortical layers (Watanabe et al., 2012). For the analysis of interar-

eal synchronization and influences, we removed the common
recording reference by subtracting signals from immediately

neighboring electrodes from each other, to arrive at local bipolar

derivations, which we will refer to as ‘‘sites’’ (see Experimental

Procedures for details).

Interareal Synchronization Occurs in Narrow Theta,
Beta, and Gamma Frequency Bands
Between pairs of sites from different areas, interareal synchroni-

zation is quantified by the coherence metric (see Experimental

Procedures). For an example pair of areas, V1 and DP, the inter-

areal coherence during visual stimulation and attention task

performance (‘‘postcue’’ period, see Figure 2), revealed three

distinct and relatively narrow bands: a theta-, a beta-, and a

gamma-frequency band (Figure 3A). This spectral pattern was

consistent across interareal site pairs in both monkeys (Figures

3C and 3D), including areas V1 and V2 (see Figure S1 available

online). We determined frequency-specific directed influences

by calculating Granger-causal (GC) influences between all

possible interareal pairs of sites (Dhamala et al., 2008). The spec-

trum of GC influences of site 1 onto site 2 quantifies, per fre-

quency, the variance in site 2 that is not explained by the past

of site 2, but by the past of site 1. For our example pair of areas,

the V1-to-DP influence is a feedforward influence and the DP-to-

V1 influence a feedback influence (Markov et al., 2014b). The GC
Neuron 85, 390–401, January 21, 2015 ª2015 Elsevier Inc. 391
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Figure 2. Selective Visual Attention Task

After touching a bar, the acquisition of fixation, and a prestimulus baseline

interval of 0.8 s, two isoluminant and iso-eccentric stimuli were presented. In

each trial, the light grating stripes of one stimulus were slightly tinted yellow

and the stripes of the other stimulus were slightly tinted blue, assigned

randomly. After a variable amount of time (1–1.5 s in monkey 1, 0.8–1.3 s in

monkey 2), the color of the fixation point changed to blue or yellow, indicating

the stimulus with the corresponding color to be the behaviorally relevant one.

The ‘‘prestimulus’’ period was defined as the time period from fixation to

stimulus onset, the ‘‘precue’’ period as the time from stimuli onset until cue

presentation, and the ‘‘postcue’’ period as the time period from 0.3 s after cue

onset until the first shape change in one of the stimuli. See Experimental

Procedures for details.
feedforward influence was stronger than the feedback influence

in the theta and gamma-bands, whereas the feedback influence

was stronger in the beta-band (Figure 3B).

Asymmetries in Granger-Causal Influences Relate to
Anatomical Asymmetries
To test whether this pattern held generally, we related GC influ-

ences to anatomical projections, specifically to a metric of their

feedforward or feedback character. When retrograde tracer is in-

jected into a target area, target-projecting neurons are labeled in

all source areas. If a source area is providing feedforward input

to the target area, the SLN of this projection, i.e., the proportion

of [supragranular labeled neurons] relative to [supragranular plus

infragranular labeled neurons] is high (Markov et al., 2014b). Vice

versa, if a source area provides feedback input to the target, the

SLN of this projection is low. Hence, the SLN metric quantifies

the degree to which an interareal anatomical projection is

feedforward or feedback (Figure 4A). We related SLN, across

all interareal projections, to the corresponding GC influences

(GCIs). We defined

½GCIðsource>targetÞ �GCIðtarget>sourceÞ�=
½GCIðsource>targetÞ+GCIðtarget>sourceÞ�

as the directed influence asymmetry index, or DAI.We correlated

the DAI with the corresponding SLN values, across all area pairs

(Spearman rank correlation between DAI values from two mon-

keys with ECoG recordings and SLN values from an independent

set of 25 monkeys). Because the DAI is defined per frequency,

the DAI-SLN correlation was also determined per frequency,

and the resulting correlation spectrum is shown in Figure 4B. A

positive DAI-SLN correlation for a given frequency indicates

that this frequency channel conveys feedforward influences,

and a negative correlation indicates feedback influences. Thus,

the correlation spectrum demonstrates that feedforward influ-

ences are conveyed through theta- and gamma-frequency
392 Neuron 85, 390–401, January 21, 2015 ª2015 Elsevier Inc.
channels, and feedback influences are conveyed through a

beta-frequency channel. Figure S2 shows the DAI-SLN correla-

tion spectrum up to 250 Hz, demonstrating that GC influences

in the broadband high-frequency range beyond the gamma-

band are not systematically related to anatomical asymmetries.

Figure S2 also shows that the DAI-SLN correlation spectrumwas

similar before the attentional cue was presented (precue period)

and even before stimulus onset (prestimulus period).

Asymmetries in Granger-Causal Influences Define a
Functional Hierarchy
The pattern of anatomical feedforward and feedback projections

across all pairs of visual areas is largely consistent with a global

hierarchy in which each area occupies a hierarchical level. This

defines a given interareal projection as either bottom-up or

top-down. Importantly, such a hierarchy is a global model fitted

to all interareal projections, and the bottom-up (top-down) rela-

tionships derived from the global hierarchy agree only partly

with the feedforward (feedback) characteristic found for individ-

ual interareal projections. The correlations between the anatom-

ical SLN metric and the functional DAI metric suggest that it

might be possible to construct a hierarchy of visual cortical areas

from DAI values alone. This would demonstrate that not only the

anatomical but also the functional relations across many pairs of

areas are consistent with a global hierarchy. To explore this, we

first used the postcue period and combined all evidence avail-

able in the DAIs across the frequency spectrum, by averaging

the DAIs of the theta-, beta-, and gamma-frequency bands, after

inverting the sign of the beta-band DAI, because of its negative

correlation to SLN. This multifrequency band DAI (mDAI) was

strongly correlated with the SLN across all pairs of areas (Fig-

ure 4C) (R = 0.6, p < 1E�8, using Spearman rank correlation

here and in the following correlation tests).

We proceeded to test whether a functional hierarchy could be

derived from the mDAI values. First, the mDAI values, which can

range from�1 to 1, were rescaled into a range from�5 to 5. This

corresponds to the notion that there might be up to 10 distinct

hierarchical levels (Felleman and Van Essen, 1991). Second,

we considered each area in turn as target area, and shifted the

rescaled mDAI values of all source areas such that the smallest

value was one. This corresponds to the notion that, while interar-

eal influences can be feedforward or feedback directed, result-

ing in positive or negative mDAI values, the resulting hierarchical

levels are all positive, and the lowest hierarchical level is level

one. Third, we averaged the resulting functional-hierarchical

levels across all target areas and across the two monkeys. If

the functional-hierarchical levels estimated for a given source

area are consistent across target areas and animals, this will

result in a small standard error, indicating that functional-hierar-

chical levels are well defined. If functional-hierarchical levels are

well defined and furthermore differ between areas, this demon-

strates that area-pairwise GC influences are largely consistent

with a global hierarchy. Figure 4D (black dots) shows for the eight

areas the resulting functional-hierarchical levels and their stan-

dard errors, demonstrating the existence of a GC-influence-

based functional hierarchy. In Figure 4D, the different areas are

ordered on the x axis according to increasing functional hierar-

chical level. This functional hierarchy correlates strongly with
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C Figure 3. Example Coherence and Granger

Causality Spectra and Average Coherence

Spectra per Monkey

(A and B) (A) Coherence and (B) GC influence

spectra for an example pair of areas: V1 and DP.

Values in the ranges 45–55 Hz and 95–105 Hz are

masked because of residual line noise. The

example stems from monkey 1.

(C) For monkey 1, all interareal coherence spectra

were averaged, and peaks were found using an

automatic peak-detecting algorithm (see Experi-

mental Procedures for details). To assess the theta

peak with 1 Hz spectral resolution, the analysis of

the lower frequencies used 1 s epochs and Hann

tapering. The resulting band definitions are indi-

cated by gray bars.

(D) Same as (C), but for monkey 2 (line noise

masking not necessary).
themost recent anatomical hierarchy (Markov et al., 2014b) of vi-

sual cortex (R = 0.93, p = 0.002).

To probe the robustness of the functional hierarchy, one or

multiple areas were removed and the functional hierarchy con-

structed on the remaining areas. The red dots in Figure 4D

show that removal of V1 leaves the hierarchical positions of the

remaining seven areas essentially unchanged. These positions

were plotted against the positions from the full model as red

dots in Figure 4E, demonstrating a strong correlation (R = 0.96,

p = 0.003). This correlation remained significant even after

removal of up to three areas from the lower end of the hierarchy,

or up to two areas from the upper end (Figure 4E, other colors).

Functional Hierarchy Changes Dynamically with
Behavioral Context
The functional hierarchy is defined by GC influences, with the

intriguing consequence that it might change dynamically. This

would require dynamic changes in GC influences between areas,

which have been described, e.g., between FEF and V4 during

the course of task performance (Gregoriou et al., 2009). There-

fore, we investigated whether the functional hierarchy changed

across different task periods. We found that the postcue hierar-

chy (shown again in Figure 5A) is already largely present during

the precue period (Figure 5B). Areas V1, V2, V4, TEO, DP, and

7A arranged in their well-established order. However, 8L, the

lateral part of FEF, assumes a lower level in the precue period

(Figure 5B). In the prestimulus period (Figure 5C), both 8L and

8M move to the bottom of the hierarchy. Furthermore, V1, V2,

and V4 move closer together. These analyses demonstrate

that the DAI-based functional hierarchy is not fixed as are anat-

omy-based hierarchies. The most recent anatomy-based hierar-

chy (Markov et al., 2014b) shows an R = 0.93 correlation to

the postcue functional hierarchy (Figure 5A, p = 0.002), an R =

0.91 correlation to the precue functional hierarchy (Figure 5B,

p = 0.005), and no significant correlation to the prestimulus func-
Neuron 85, 390–401
tional hierarchy (Figure 5C, p = 0.2). Once

the stimulus and cue are present, interar-

eal influences are most likely exerted in

both bottom-up and top-down directions.
Note that anatomical connections in the two directions are pre-

sent at all times. This might explain why the anatomical hierarchy

correlates particularly well with the functional hierarchy during

the postcue period.

Global Consistency of the Functional and Anatomical
Hierarchies
As mentioned above, the anatomical hierarchy is a global model

fitted to all interareal projections, and the bottom-up (top-down)

relationships derived from the global hierarchy agree only partly

with the feedforward (feedback) characteristic found for individ-

ual interareal projections. Across the interareal anatomical pro-

jections considered here, 80% have a feedforward (feedback)

characteristic that matches the relative position of the areas

in the anatomical hierarchy (36/45 interareal projections with

at least ten labeled neurons, see Experimental Procedures for

details; defining feedforward as SLN > 0.5). Interestingly, across

the interareal GC influences considered here, 86% have a feed-

forward (feedback) characteristic that matches the relative posi-

tion of the areas in the functional hierarchy (24/28 area pairs;

defining feedforward as mDAI > 0 during the postcue period).

Thus, the degree of hierarchical organization appears similar in

anatomy and function (p = 0.79, jackknife test across areas).

Individual interareal functional relationships also agreed in

most cases with the anatomical hierarchy (Figures S3–S5).

When separate tests (Bonferroni corrected across all tests)

were performed per area pair, frequency band, andmonkey, sig-

nificant differences between GC influences in the two directions

agreed with the anatomical hierarchy in 77% of cases (47 of 61,

p < 0.001 across all tests; p < 0.02 for theta, p < 0.03 for beta, p <

0.005 for gamma; binomial tests).

Correspondingly, when we averaged GC influence spectra

separately for the bottom-up and top-down directions, they

showed clear differences. To determine which direction is bot-

tom-up and which one top-down, we used the most recent
, January 21, 2015 ª2015 Elsevier Inc. 393
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Figure 4. Granger-Causal Influences Correlate Directly with

Anatomy and Establish a Functional Hierarchy

(A) Schematic of retrograde anatomical tracing method and calculation of SLN

values. Retrograde tracer is injected into a target area and labels neurons in

several source areas projecting to the target area. Source areas hierarchically

lower (higher) than the target area have a progressively higher (lower) pro-

portion of labeled neurons in the supragranular layers, i.e., the lower (higher)

the source area relative to the target area, the higher (lower) the SLN value of

the source-to-target projection.

(B) Spearman rank correlation across area pairs, between DAI values from two

monkeys with ECoG recordings and SLN values from an independent set of 25

monkeys. This DAI-SLN correlation was calculated per frequency bin of the

DAI, resulting in the spectrum. The gray-shaded region shows the 99.9%

confidence interval, corresponding to a 95% confidence interval after cor-

recting for the multiple comparisons across frequencies. Theta and gamma

influences were related to anatomical feedforward projections, and beta in-

fluences to feedback projections. To assess the theta peak with 1 Hz spectral

resolution, the analysis used 1 s epochs and Hann tapering. Only SLN values

based on at least ten labeled neurons were included.

(C) Correlation between SLN and the DAI combined across theta-, beta-, and

gamma-bands as specified on the y axis.

(D) Black dots indicate hierarchical levels for all areas, derived by taking each

area in turn as target and assigning the hierarchical level to the other areas

based on their GC influences to the target. Error bars show the SEM across

target areas. Red dots indicate hierarchical levels after removing V1, revealing

immunity to this manipulation.

(E) Red dots indicate hierarchical levels of the full model versus one with V1

removed. Other colors indicate corresponding analyses after removing more

areas from the lower or upper end of the hierarchy.
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anatomical hierarchy (Figure 6A) (Markov et al., 2014b) rather

than the functional hierarchy, thereby avoiding circularity. We

defined each area in turn as the target area, and averaged its

GC influences to all other areas, separately for the bottom-up

and top-down directions (Figure 6B). Theta-band influences

were more bottom-up directed for seven of eight target areas

(and not significantly different for the remaining area), beta-

band influences were more top-down directed for all target

areas, and gamma-band influences were more bottom-up

directed for all target areas. In the grand average across all 28

pairs of areas and both animals, this pattern was highly signifi-

cant (Figure 6C, p = 0 for each of the three frequency bands).

The same held also for each monkey individually without align-

ment of frequency bands between animals (Figure 7, p = 0 for

each of the three frequency bands and each animal).

Additional analyses showed that this pattern was not due

to observation noise (Nalatore et al., 2007) (Figures S6A and

S6B) or the bipolar derivation scheme (Figures S6C and S6D).

Regarding the theta-band, we note that the visual cortical

theta rhythm is partly locked to microsaccades (Bosman et al.,

2009). Therefore, theta-rhythmic microsaccades with corre-

sponding retinal imagemotion and subsequent visual responses

might contribute to the feedforward GC influences in the theta-

band. For the gamma-band, an analysis that excluded micro-

saccade effects left the pattern of GC influences unchanged

(Figures S6E and S6F). We also performed a conditional GC

influence analysis (Wen et al., 2013), which aimed at estimating

the GC influences that two areas exert directly onto each other,

while excluding influences mediated by any one of the remaining

visual areas. This analysis left the pattern of results unchanged

for gamma and beta, and suggested the involvement of larger

networks for theta (Figure S7).
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Figure 5. The Functional Hierarchy Is Dynamic

The dynamics of the functional hierarchy with cognitive context is shown

through three main periods of the task.
Attention Enhances Top-Down and Bottom-up
Influences in a Spatially Specific Manner
Finally, we tested the prediction that top-down beta-band influ-

ences are enhanced when a cognitive task requires stronger

top-down control. Top-down control is expected to be enhanced

by selective attention. Indeed, when selective attention was

directed to the contralateral as compared to the ipsilateral stim-

ulus, top-down beta-band GC influences were enhanced in

the grand average (p < 0.001) and in all pairs of areas with a

significant attention effect (n = 13, p < 0.0005, binomial test).

This enhanced top-down beta-band influence might lead

to enhanced bottom-up gamma-band influences (Bressler and

Richter, 2014; Lee et al., 2013). Indeed, when selective attention

was directed to the contralateral as compared to the ipsilat-

eral stimulus, bottom-up gamma-band GC influences were

enhanced in the grand average (p < 0.001) and in 93% of area

pairs with a significant attention effect (n = 13/14, p < 0.002,

binomial test).

DISCUSSION

In summary, we have shown that among primate visual cortical

areas, feedforward communication utilizes the theta and

gamma-bands and feedback communication the beta-band.

As gamma-band synchronization predominates in superficial

and beta-band synchronization in deep cortical layers (Buffalo

et al., 2011; Roberts et al., 2013; Xing et al., 2012), these asym-

metries in directed influences are likely related to the laminar

pattern of interareal anatomical projections. Future studiesmight

test this directly with simultaneous multiarea multilayer record-

ings of LFP and spikes, and extend coverage to more cortical

and subcortical structures, and the previous laminar analyses

(Buffalo et al., 2011; Roberts et al., 2013; Xing et al., 2012) to

the theta-band.

Feedforward and feedback interareal influences need to fulfill

different requirements, which might be met by synchronization

in different frequency bands. It is conceivable that interareal syn-

chronization entails higher energetic costs for gamma than beta

(Niessing et al., 2005), and bottom-up signaling might be equip-

ped with the gamma-band rhythm in order to achieve higher

communication throughput. Inputs may have differential effects

at their target structure uniquely due to the rhythm through which

they have been transferred. For example, target cells and/or

local circuits with resonant properties in particular frequency

bands might be addressed differentially by inputs with different

rhythms (Hasenstaub et al., 2005; Lee et al., 2013; Wang,

2010). In that sense, the frequency band through which an input

is mediated might functionally tag that input for differential

further processing.
(A) The postcue period, when the stimulus was on, the attentional cue had

been given and attention had been deployed.

(B) The precue period, when the stimulus was on, but the attentional cue had

not yet been given.

(C) The prestimulus period, when the animal was fixating, but the stimulus was

not yet presented. Each area’s mean hierarchical position is depicted relative

to the others. Error bars indicate standard error of the mean in the hierarchical

position across the different areas taken as targets.

Neuron 85, 390–401, January 21, 2015 ª2015 Elsevier Inc. 395
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B Figure 6. Granger-Causal Influences in the

Bottom-Up and Top-Down Directions

(A) Hierarchical ranking of the recorded visual areas

according to the most recent anatomical hierar-

chical model (Markov et al., 2014b). This

hierarchical model specifies each interareal

influence as either bottom-up (green arrows) or top-

down (black arrows).

(B) For each row, the area indicated on the left was

taken as target area. The target area’s GC in-

fluences to all other areas were sorted into bottom-

up and top-down influences as indicated by the

green and black arrows in (A). Average bottom-up

spectra are shown in green, average top-down

spectra in black. Spectra were averaged across

monkeys after aligning frequency peaks.

(C) Same as (B), but grand averaging across all

target areas.

396 Neuron 85, 390–401, January 21, 2015 ª2015 Elsevier Inc.
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Figure 7. Granger-Causal Influence Spectra in the Bottom-Up and Top-Down Directions per Monkey

(A) GC influence spectra averaged over all interareal site pairs, separately for the bottom-up and top-down direction (as indicated by the color legend) in

monkey 1. Hierarchical position of each area was determined based on themost recent anatomical hierarchical model of the visual system (Markov et al., 2014b).

GC influence values in the range from 45–55 Hz and 95–105 Hz are masked because of residual line noise. To assess the theta peak with 1 Hz spectral resolution,

the analysis of the lower frequencies used 1 s epochs and Hann tapering.

(B) Same as (A), but for monkey 2 (line noise masking not necessary). ***p < 0.001.
We have demonstrated that functional hierarchy exhibits dy-

namic changes. This might be due to differential activation of su-

perficial and deep layers. Specific activation of the superficial

layers of a source area could increase its gamma-band influence

on target areas. This increased gamma-band influence will move

the source area to a lower level of the hierarchy. By contrast, if

the deep layers of an area are activated, this might enhance its

beta-band influence on other areas, thereby moving the area

up the hierarchy. Future multilayer recordings in multiple areas

can test these predictions. These recordings would be particu-

larly useful during cognitive tasks that systematically manipulate

the amount of feedforward and feedback signaling.

Such tasks might be derived from the conceptual framework

of predictive coding (Bastos et al., 2012). This framework holds

that statistical regularities of sensory inputs are learned by

shaping feedforward connectivity and thereby response proper-

ties of higher-area visual neurons, and that these neurons in turn

continuously feedback predictions to lower areas. Lower areas

then feed forward only the difference between the prediction

and the actual input, i.e., the prediction error. When prediction

errors again reach higher areas, they influence predictions in

an accumulative fashion. This accumulation constitutes a low-

pass filter such that predictions change slower than prediction

errors (Friston, 2008). The more rapidly changing prediction

errors might require the gamma rhythm for being fed forward.

At the same time, the low-pass filtering entailed in generating

predictions might render the beta rhythm ideal for feedback.

The segregation of feedforward and feedback processing

through distinct frequencies and layers has been proposed as

a key architectural feature of circuits involved in predictive cod-

ing (Bastos et al., 2012).

Indeed, several previous studies have found that conditions

entailing the feedback of predictions led to increased oscillations
in relatively lower frequencies, and conditions entailing the

feeding forward of prediction errors led to increased oscillations

in relatively higher frequencies. For example, a study in the cat

visual system investigated rhythmic synchronization between

primary visual cortex (area 17) and visual association cortex

(area 7), while cats observed either expected or unexpected

visual stimuli (von Stein et al., 2000). When expected stimuli

matched the prediction and triggered a go response, synchroni-

zationwas strongest in a 4–12Hz band;when unexpected stimuli

induced a prediction error, synchronization was strongest in the

gamma-frequency band. A magnetoencephalography study in

human subjects used audiovisual speech to generate conditions

in which auditory speech signals either matched or violated pre-

dictions based on visual speech (Arnal et al., 2011). When visual

speech correctly predicted auditory input, rhythmic brain re-

sponses were dominated by a 3–4 Hz response. By contrast,

when auditory input violated vision-based predictions, this led

to a response in a 14–15Hz and a 60–80Hz band. In both of these

studies, the response to the predicted stimulus entailed a lower

and the response to the unpredicted stimulus a higher frequency

band. Similarly, a recent study in rodent hippocampus compared

track runs with retrospective and prospective coding (Bieri et al.,

2014). During retrospective coding, place fields reflect recently

visited locations and therefore likely memory encoding. During

prospective coding, place fields reflect upcoming locations and

therefore likely memory retrieval. Runs with retrospective and

prospective coding occur spontaneously intermingled. During

retrospective coding, relatively faster gamma (60–100 Hz), and

during prospectively coding, relatively slower gamma (25–

55 Hz) occurs in hippocampus. We would like to tentatively iden-

tify retrospective coding andmemory encodingwith feedforward

signaling of prediction errors during fast gamma, andprospective

coding and memory retrieval with feedback signaling of
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predictions during slow gamma (Fries, 2009). A similar rationale

might hold when prediction is not related to long- but to short-

term memory. In one study, a cue stimulus was encoded into

short-term memory, then disappeared for a delay period and

subsequently had to be found in an array comprising the cue

among three distracters (Buschman andMiller, 2007). In a search

condition, distracters differed from each other and therefore, the

cue had to be fed back from short-term memory stores for com-

parison with the array stimuli. In a pop-out condition, all dis-

tracters were identical and the task could be performed on feed-

forward signals alone. Compared to the pop-out task, the search

task enhanced prefrontal-parietal coherence in a 22–34 Hz fre-

quency band and reduced it in a 35–55 Hz frequency band.

Thus again, the condition requiring feedback involved stronger

synchrony in a lower frequency band, and the condition requiring

the feeding forward of a salient sensory stimulus involved stron-

ger synchrony in a higher frequency band.

As intriguing as these results are, the operationalization of

feedforward versus feedback signaling through cognitive tasks

remains a challenge. For example, a particularly clean way to op-

erationalize top-down signaling is by means of selective visual

attention. During a selective visual attention task, attention in

different trials is placed onto one of several stimuli that are equal

in terms of size, contrast and eccentricity, such that attending to

either individual stimulus is expected to be equally difficult.

Because sensory stimuli remain identical across attention condi-

tions, bottom-up signaling also appears to be controlled. How-

ever, when attention is placed onto a stimulus and enhanced

top-down signals reach the visual cortical representation of the

attended stimulus, this is expected to cause enhanced bot-

tom-up signaling of that stimulus (Lee et al., 2013). In agreement

with this expectation, bottom-upGC influences fromV1 to V4 are

enhancedwhen they signal the attended stimulus (Bosman et al.,

2012). Thus, enhanced bottom-up signaling can be a conse-

quence of enhanced top-down signaling, and even a selective

attention paradigm, that is controlled for difficulty and sensory

stimulation, does not disentangle the two by means of a simple

cognitive contrast. Therefore, we based our present analysis

not on a comparison between cognitive conditions, but rather

on a comparison of GC influences with the feedforward or feed-

back character of the corresponding anatomical projections.

Finally, we note that the definition of the functional hierarchy

through the assessment of interareal GC influences might be

transferrable to human experiments. In human subjects, post-

mortem interareal tracer studies have so far met strong technical

limitations. By contrast, intracranial LFP recordings (Tallon-Bau-

dry et al., 2001) and/or MEG recordings together with source

analysis (Siegel et al., 2008) might offer an opportunity to arrive

at a hierarchical model of the human brain, including uniquely

human brain areas, by capitalizing on the functional hierarchy

presented here.
EXPERIMENTAL PROCEDURES

Summary

Two adult male rhesus monkeys performed a visual attention task, during

which they fixated a central spot and released a bar when the behaviorally rele-

vant stimulus underwent a shape change (Figure 2). Behavioral relevance was
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assigned on a trial-by-trial basis with a centrally presented cue. Two stimuli

were presented, one in the lower right visual hemifield and one in the upper

left visual hemifield. Neuronal signals were recorded from the left hemisphere

in twomonkeys using subdural ECoG grids consisting of 252 electrodes (1mm

diameter), which were spaced 2–3 mm apart (Bosman et al., 2012; Brunet et

al., 2013, 2014; Rubehn et al., 2009). Data were recorded in 9 sessions in mon-

key 1 and 14 sessions in monkey 2. The postcue analysis used the time period

from 0.3 s after cue onset until the first shape change in one of the stimuli. Only

trials with a correct behavioral report were used. For each trial, this period was

cut into nonoverlapping 0.5 s data epochs. This resulted in 3,874 epochs for

monkey 1 and 3,492 epochs for monkey 2. For both the prestimulus and pre-

cue periods, there were 4,239 and 4,396 epochs of 0.5 s in monkey 1 and 2,

respectively. For each site and recording session, the data epochs were

normalized by their standard deviation and subsequently pooled across ses-

sions. Data epochs were multitapered using three Slepian tapers and Four-

ier-transformed (Mitra and Pesaran, 1999). The epoch lengths of 0.5 s resulted

in a spectral resolution of 2 Hz and the multitapering in a spectral smoothing

of ±3 Hz. Where mentioned explicitly, we used Hann-tapered 1 s epochs for

1 Hz spectral resolution. The Fourier transforms were the basis for calculating

the coherence spectra and for calculating the GC influence spectra through

nonparametric spectral matrix factorization (Dhamala et al., 2008). The

nonparametric estimation of GC influences spectra has certain advantages

over parametric approaches, e.g., it does not require the specification of a

particular autoregressive model order.

Experimental Paradigm

All procedures for the electrophysiological recordings were approved by

the ethics committee of the Radboud University Nijmegen (Nijmegen, The

Netherlands). After touching a bar, the acquisition of fixation, and a prestimu-

lus baseline interval of 0.8 s, two isoluminant and isoeccentric stimuli (drifting

sinusoidal gratings, diameter: 3 degrees, spatial frequency:�1 cycles/degree,

drift velocity: �1 deg/s, resulting temporal frequency: �1 cycle/s, contrast:

100%) were presented on a CRT monitor (120 Hz refresh rate noninterlaced).

In each trial, the light grating stripes of one stimulus were slightly tinted

yellow, and the stripes of the other stimulus were slightly tinted blue, assigned

randomly (Figure 2). After a variable amount of time (1–1.5 s in monkey 1, 0.8–

1.3 s inmonkey 2), the color of the fixation point changed to blue or yellow, indi-

cating the stimulus with the corresponding color to be the behaviorally relevant

one. A trial was considered correct and the monkey was rewarded when the

bar was released within 0.15–0.5 s of the change in the cued stimulus. No

reward but a timeout was given when monkeys released the bar in response

to equally likely changes of the noncued stimulus. In monkeys 1 and 2, 94%

and 84% of bar releases, respectively, were correct reports of changes in

the relevant stimulus. The stimulus change consisted of the stimulus’ stripes

undergoing a gentle bend, lasting 0.15 s. Either one of the stimuli, irrespective

of being cued or not, could change at a random time between stimulus onset

and 4.5 s after cue onset. Trials were terminated without reward when the

monkey released the bar outside the response window, or when it broke

fixation (fixation window, 0.85 degree radius in monkey 1, 1 degree radius in

monkey 2). For the analyses presented here, if not specified otherwise, data

from all correct trials of both attention conditions were pooled.

Neurophysiological Recordings

The ECoG grids were implanted under aseptic conditions with isoflurane/fen-

tanyl anesthesia. Intraoperative photographs were acquired for later coregis-

tration (Figures 1A and 1H). Signals were amplified, high-pass filtered at

0.159 Hz, low-pass filtered at 8 kHz, and digitized at roughly 32 kHz with a

Neuralynx Digital Lynx acquisition system. Local Field Potentials were ob-

tained by low-pass filtering at 250 Hz and down sampling to 1 kHz.

Electrodes were recorded through eight 32-channel headstages, against a

silver wire implanted epidurally over right occipital cortex, which served as

common recording reference. Offline, the signals were re-referenced to re-

move the common recording reference and thereby preclude it from affecting

coherence and GC influence. For re-referencing, we chose the bipolar deriva-

tion scheme as explained in detail below. Each bipolar derivation removed the

common recording reference while using only two electrodes with a constant

interelectrode distance and taken from the same finger and the same lane of



the ECoG grid. The electrodes were arranged in lanes (Figures 1B and 1I). Two

neighboring lanes always ran parallel on one ‘‘finger’’ of the polyimide foil that

provided the backbone of the array (Rubehn et al., 2009). The lanes ran medi-

olaterally overmost of the covered region and posterioanteriorally at the frontal

end of the covered region. In Figure 1, electrodes recorded through the same

headstage are shown in the same color, and electrodes on alternating lanes in

dark/light, such that electrodes of the same lane and recorded through the

same headstage were given the same color and darkness. If not stated other-

wise, all analyses used bipolar derivations, i.e., sample-by-sample differences

between immediately neighboring electrodes. Bipolar derivations were ob-

tained for all pairs of immediately neighboring electrodes on the same lane,

which were also recorded through the same headstage. As mentioned above,

this realized several aims: (1) Bipolar derivation cleanly removed the common

recording reference. (2) Each bipolar derivation used only two immediately

neighboring electrodes and thereby minimal space, which allowed optimal

attribution of the resulting signals to cortical areas. Bipolar derivations were

only used when both electrodes had been assigned to one and the same

area, whereas pairs of electrodes that crossed area boundaries were dis-

carded. (3) The use of two electrodes that neighbored each other along a

lane of a given finger ensured a constant distance of 2.5 mm along the cortical

surface. (4) The use of electrode pairs from the same lane almost always al-

lowed using electrodes amplified by the same headstage. The few bipolar der-

ivations that bridged from one headstage to the next were discarded. Each

headstage introduced headstage-specific noise into all signals amplified

through that headstage, probably by the headstage-wise reference amplifica-

tion. Bipolar derivation using electrode pairs recorded through the same head-

stage removed headstage-specific noise, whereas bipolar derivation using

electrode pairs recorded through two separate headstages would have

summed the headstage-specific noises. For these reasons, the particular re-

referencing scheme was optimal for the purposes of this study. Other studies

might benefit from different referencing schemes, e.g., if the absolute phase of

a rhythm needs to be assessed. While the absolute phase is irrelevant for both

the coherence and the GC influence metric, and therefore the direction of dif-

ferentiation does not change the results, we document that for the mediolater-

ally running lanes, the bipolar derivation was calculated as [(lateral electrode)�
(medial electrode)], and for the posterior-anteriorly running lanes, the bipolar

derivation was calculated as [(anterior electrode) � (posterior electrode)].

As an explicit control for the arbitrary absolute phases obtained from bipolar

derivations, we also used a current-source density (CSD) approach (Figures

S6C and S6D). For each CSD site, three immediately neighboring electrodes

along a lane of electrodes and recorded through the same headstage were

used, and the average signal of the two flanking electrodes was subtracted

from the signal of the central electrode. CSDs were assigned to the area in

which the central electrode was located. If neighboring areas shared an elec-

trode in one of their CSDs, this CSDwas excluded from the area with the larger

number of electrodes when calculating coherence or GC influences between

those areas.

Data Analysis General

Data analysis used the FieldTrip toolbox (Oostenveld et al., 2011). Power line

artifacts at 50, 100, and 150 Hz were estimated and subtracted from the data

using a Discrete Fourier Transform. We defined individual beta and gamma-

bands in each monkey by using a peak detection algorithm that searched

blindly across the coherence spectrum averaged across all site pairs of all vi-

sual areas (Figures 3C and 3D). The algorithm fitted parabolas to the peaks.

Frequency bands were defined by the resulting peak frequencies and the full

width at half maximum. For the postcue period, this resulted in the following

bands: in monkey 1, the gamma-band was 67–83 Hz (peak frequency was

74Hz), and the beta-band was 12–24 Hz (peak frequency was 18 Hz). In mon-

key 2 the gamma-band was 54–74 Hz (peak frequency was 64 Hz), and the

beta-band was 7–21 Hz (peak frequency was 14 Hz). The theta-band was

defined on individual peaks of the coherence spectrum averaged across all

site pairs of all visual areas and taking half of the maximum as width. This re-

sulted in the following theta-band for both monkeys: 2–6 Hz (peak frequency

was 4 Hz). In both monkeys, the gamma, beta, and theta-band peaks were

the only peaks detected in these average spectra. The same method was

applied for the definition of individual beta- and gamma-bands in the other pe-
riods of the task, the prestimulus period from fixation to stimulus onset, and the

precue period from stimulus onset until cue presentation (Figure 2). This gave

nearly identical results, except for the period preceding stimulus onset, where

no gamma peak could be detected in the average spectra and correspond-

ingly, the gamma-band was not included in Figures 5C and S5.

Analysis of Conditional Granger-Causal Influences

For the computation of conditional GC influences, we used multivariate

nonparametric spectral matrix factorization (mNPSF). The input to the mNPSF

algorithm consists of the complete cross-spectral density matrix. In the orig-

inal data, the number of power and crossspectra was 4,753 in monkey 1 (97

sites) and 5,886 inmonkey 2 (108 sites). For themNPSF algorithm to converge,

the input size had to be reduced. Therefore, the bipolar derived signals were

low-pass filtered with a cutoff at 90 Hz and downsampled to 300 Hz. Subse-

quently, a principal component analysis (PCA) on the time courses of all signals

from a given area was performed, and only the principal components (PCs)

that explained most variance were kept, until at least 90% of the variance of

that area was explained. This reduced the number of power and cross spectra

to 2,701 inmonkey 1 (73 PCs) and to 3,240 inmonkey 2 (80 PCs). Thus, input to

themNPSF algorithmwas reduced by 43% inmonkey 1 and 45% inmonkey 2.

The analysis of regular, i.e., nonconditional, GC influences gave similar re-

sults when applied to the original data and after those reduction steps, i.e.,

there was a strong correlation between DAIs (see main text for definition)

with and without reduction (theta, R = 0.82, p = 2E�14; beta, R = 0.88, p =

3E�19; gamma, 0.74, p = 1E�10). Therefore, regular GC influence analyses

did not use these reduction steps.

We computed blockwise, conditional GC influences between each pair of

areas, treating the PCs representing all other areas as the block to be condi-

tioned on (Wen et al., 2013). Consider the PCs belonging to area 1, to area

2, and to the remaining areas. To compute the conditional GC influence that

area 1 exerts onto area 2, conditioned on the rest, we performed mNPSF on

two cross-spectral density matrices: (1) on the cross-spectral density matrix

containing all PCs, and (2) on the cross-spectral density matrix containing

PCs from area 2 and the remaining areas to be conditioned on. The resulting

transfer functions and noise covariance matrices from the two factorizations

are used to derive the GC influence from area 1 onto area 2, conditioned on

the rest, which quantifies, per frequency, the unique variance in area 1 that

contributes to predictions about area 2, above and beyond the variance pre-

sent in the other areas. This procedure was repeated for all possible pairs of

areas, in both directions.

Analysis Excluding Microsaccade Effects for the Gamma-Band

Horizontal and vertical eye position was monitored at 230 Hz. Microsaccades

(MSs) were detected using a velocity threshold of 5 SD.We selected all pairs of

MSs that were separated by at least 0.8 s. Of those 0.8 s, we discarded 0.3 s

post-MS and used the remaining 0.5 s for the analysis. At 0.3 s after a micro-

saccade, the LFP gamma phase is no longer locked to the microsaccade, and

it is generally not phase-locked to an upcoming microsaccade (Bosman et al.,

2009). Thus, these 0.5 s epochs were used to analyze GC influences in the

absence of any effects from gamma locking to microsaccades.

Region of Interest Definition

For both monkeys implanted with ECoG grids, individual structural MRIs were

acquired and the brains were segmented. ECoG electrode positions were co-

registered with the segmented brains based on high-resolution intraoperative

photographs, using the sulci for alignment (Figure 1). In order to assign an elec-

trode to a cortical area, we co-registered the individual segmented brains

to the F99 template brain (CARET v5.62). On the F99 brain, several different

monkey brain atlases are defined (Felleman and Van Essen, 1991; Markov

et al., 2011, 2014a; Paxinos et al., 1999): ‘‘Felleman and Van Essen.1991

(FVE91),’’ ‘‘Paxinos et al.2000 (PHT00),’’ ‘‘Markov et al.2010 (CC10),’’ and

‘‘Markov et al.2012 (CC12).’’ These atlases were projected onto the individual

segmented brains (Figure 1). Thereby, for each atlas, each ECoG electrode

was assigned to a cortical area. Across atlases, an electrode was assigned

to the area to which it was assigned in the majority of atlases. If there was a

tie, we considered a fifth atlas, not available in CARET, namely the atlas by

Saleem and Logothetis (Saleem and Logothetis, 2007). With regard to 7A,
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one of the atlases (‘‘Paxinos et al.2000’’) distinguishes between the more

lateral 7A/PG and the more medial 7A/OPT. The majority of 7A studies con-

cerned with visual function have dealt with 7A/OPT (Constantinidis and Stein-

metz, 2001a, 2001b; Raffi and Siegel, 2005; Rawley and Constantinidis, 2010),

and also the 7A retrograde tracer injection used here, targeted the medial part

of 7A (Markov et al., 2014a), i.e., was most consistent with an injection in 7A/

OPT. Therefore, we restricted our definition of 7A to 7A/OPT and defined the

lateral boundary of 7A according to ‘‘Paxinos 2000.’’ After final electrode

assignment, we selected the electrodes assigned to the areas V1, V2, V4,

TEO, 8L, 8M, DP, and 7A (Figure 1). Bipolar derivations were used in the anal-

ysis only when both electrodes had been assigned to one and the same area,

excluding pairs of electrodes that crossed area boundaries. The resulting sites

(i.e., bipolar derivations) were distributed as follows: Monkey 1: V1: 31 sites,

V2: 9 sites, V4: 19 sites, DP: 10 sites, TEO: 5 sites, 8/FEF: 15 sites (8M: 7 sites;

8L: 8 sites), 7A: 8 sites; Monkey 2: V1: 50 sites, V2: 14 sites, V4: 18 sites, DP: 8

sites, TEO: 3 sites, 8/FEF: 5 sites (8M: 2 sites; 8L: 3 sites), 7A: 10 sites.

Retrograde Tracer Database

Description of the anatomical data set acquisition and analysis has been re-

ported in (Markov et al., 2014a). The values that we used correspond to mul-

tiple injections each into V1, V2, V4 and single injections into areas DP, TEO,

8/FEF (8L and 8M) and 7A. SLN valueswere obtained as described in Figure 4A

(Markov et al., 2014b). For the correlation with DAI values, only SLN values

based on at least 10 labeled neurons were included. Updates, atlases and

additional information concerning the anatomical data set that was used for

this work is available at www.core-nets.org.

Statistical Testing

We first tested for each area pair, whether the average GC influence between

all interareal site pairs was significant, i.e., whether it reliably exceeded the bias

level. We estimated the bias by randomly pairing epochs before GC influence

calculation. For each of 500 randomizations, the mean over the GC influences

in the two directions was placed into a randomization distribution and the 95th

percentiles of the resulting distributions were used to determine the bias level.

Every interareal GC influence reported in Figures S3, S4, and S5 exceeded the

bias level.

For a given GC influence, we used the bootstrap method (100 bootstrap

iterations) across epochs to estimate the 95% confidence intervals in order

to determine whether the GC influences in the bottom-up and top-down direc-

tions were significantly asymmetric (Efron and Tibshirani, 1994). Confidence

intervals and the resulting statistics are reported in Figures 3, 6, 7, and S3–

S6. Under the null hypothesis, GC influences in the bottom-up and top-

down directions stem from the same distribution and their expected difference

is zero. Therefore, observed differences between bottom-up and top-down

GC influences were tested against that value of zero. The bootstrap method

was also used to estimate 95% confidence intervals for the coherence spectra

in Figures 3, S1, and S3–S5.

In the analysis shown in Figures 4B and S2, we used the Spearman rank cor-

relation and the bootstrap method across epochs to estimate the 99.9% con-

fidence interval, corresponding to a 95% confidence interval after correcting

for the multiple comparisons across frequencies.

All other reported correlation coefficients are also based on the Spearman

rank correlation. This pertains to the following figures and/or the correspond-

ing text: Figures 4C–4E, 5, S7C, and S7D.

To test whether attention modulated top-down beta-band influences and

bottom-up gamma-band influences, we used a randomization approach.

The null hypothesis is that influences during the two attention conditions

stem from the same distribution. Therefore, under the null hypothesis, atten-

tion condition labels can be randomly assigned. For every epoch in the post-

cue period, we randomly assigned the conditions ‘‘attention contralateral’’ and

‘‘attention ispilateral.’’ We computed GC influence for all area pairs at the mon-

key-specific frequency bands, and the difference between the conditions. This

procedure was repeated 1,000 times, creating a randomization distribution

that realized the null hypothesis. We then compared the empirically observed

differences betweenGC influences during attention contralateral versus atten-

tion ipsilateral, to this randomization distribution. If the empirically observed

difference was larger than the 97.5th percentile or smaller than the 2.5th
400 Neuron 85, 390–401, January 21, 2015 ª2015 Elsevier Inc.
percentile of the randomization distribution, the observed effect was deemed

significant at p % 0.05.
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