The neural basis of sign language processing in deaf signers: An Activation Likelihood Estimation meta-analysis

Trettenbrein, P. C.1,2,3, Papitto, G. C.2,3, Zaccarelli, E. 1,3 & Friederici, A. D.1

1Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
2International Max Planck Research School on Neuroscience of Communication: Structure, Function, & Plasticity (IMPRS NeuroCom), Leipzig, Germany
3OsF.io

* trettenbrein@cbs.mpg.de

Introduction

Sign language processing (SLP) has been studied using functional magnetic resonance imaging (fMRI) and positron emission tomography (PET) for about 25 years. Deaf signers have been shown to recruit similar perisylvian regions for SLP as those identified in studies on verbal language. To date, the literature on sign language has only been reviewed qualitatively due to the involvement of the right hemisphere in SLP remains subject to debate.

Aims of the present study:
1. Investigate spatial convergence for fMRI and PET studies of SLP using Activation Likelihood Estimation.
2. Evaluate neuroanatomical localization and lateralization of converging clusters for SLP.
3. Dissociate linguistic and visuo-spatial processing when language is used in the visuo-gestural modality.

Methods

• Systematic literature search in PubMed and Web of Science (Müller et al., 2018). See Figure 1.
• Activation Likelihood Estimation using the GingerALE toolbox (Eickhoff et al., 2012, 2009) version 2.3.6 (Eickhoff et al., 2017) with the Turkeltaub ALE method which corrects for within-experiment effects derived from foci proximity (Turkeltaub et al., 2012).
• Mass overlap analysis in inferior frontal gyrus using cytoarchitectonically defined BA 44 and BA 45 (Amunts et al., 1999) from the SPM Anatomy Toolbox (Eickhoff et al., 2007, 2005).
• Lateralization analysis by computing weighted (AveLI) as well as “basic” lateralization indices using AveLI version 2017.4.3 (Matsuo, Chen, & Tseng, 2012).
• Meta-analytic connectivity modeling using BrainMap database (Laird et al., 2011).

Results

Sign language comprehension

Figure 2: Spatial convergence for “sign language processing > control/baseline” contrasts. (A) Left hemisphere. (B) Right hemisphere. Mask dimensions = 77 x 96 x 79; number of within-brain voxels = 229,781; number of foci = 395; number of experiments = 24; number of subjects = 329; thresholding method = cluster-level inference; thresholding value = .05; number of thresholding permutations = 10,000; cluster-forming value = .001.

Lateralization analysis

Table: Lateralization summary

<table>
<thead>
<tr>
<th>Area</th>
<th>Hemisphere</th>
<th>Left Hemisphere</th>
<th>Right Hemisphere</th>
<th>p-value for a comparison</th>
</tr>
</thead>
<tbody>
<tr>
<td>Area 45</td>
<td>Left hemisphere</td>
<td>0.75</td>
<td>0.68</td>
<td>0.14</td>
</tr>
<tr>
<td>Area 64</td>
<td>Right hemisphere</td>
<td>0.54</td>
<td>0.26</td>
<td>0.87</td>
</tr>
<tr>
<td>Broca’s region (area 44 and 45)</td>
<td>Left hemisphere</td>
<td>0.65</td>
<td>0.46</td>
<td>0.20</td>
</tr>
<tr>
<td>Broca’s area (area 44 and 45)</td>
<td>Right hemisphere</td>
<td>0.68</td>
<td>0.46</td>
<td>0.20</td>
</tr>
<tr>
<td>Extra hemispheric</td>
<td>Left hemisphere</td>
<td>0.24</td>
<td>0.20</td>
<td>0.10</td>
</tr>
<tr>
<td>Extra hemispheric</td>
<td>Right hemisphere</td>
<td>0.24</td>
<td>0.20</td>
<td>0.10</td>
</tr>
</tbody>
</table>

Figure 3: Lateralization indices (AveLI and baseLI) and total number of voxels that survived cluster analysis (i.e. have an ALE score in output image) within cytoarchitectonic or hemispheric masks.

Manual and facial action observation

Figure 4: Convergence for “sign observation > control/baseline” contrasts. (A) Left hemisphere. (B) Right hemisphere. Number of foci = 549; number of experiments = 26; number of subjects = 451; thresholding as in Figure 1.

Sign language production

Figure 5: Convergence for “sign production > control/baseline” contrasts. Number of foci = 363; number of experiments = 8; number of subjects = 90; thresholding as in Figures 1 and 2.

Systematic literature search

Figure 1: Search term: “sign language” AND (imri OR fmri) OR (“magnetic resonance imaging OR functional magnetic resonance imaging) OR pet OR “positron emission tomography”

Functional specialization for language

Figure 7: Significant clusters of sign language comprehension > action observation contrast and functional attributions in BrainMap database. (A) Left hemisphere. (B) Right hemisphere. (C) Functional association for voxels in cluster. (D) and (E) Transverse planes. (F) Number of studies organized by subdomain.

Discussion

• Sign language comprehension in deaf signers recruits widely distributed bilateral fronto-temporo-occipital networks yet is strongly or completely left-lateralized in Broca’s region (especially BA 44), insula, and precentral gyrus. Sign production is left-lateralized.
• Activation in right inferior frontal gyrus during sign language comprehension is not specific to language-processing but may be specific to the processing of language in the visuo-gestural modality.
• Broca’s region (left BA 44 and 45) is a hub in the language network, independent of the modality of language use (spoken, written, or signed).

Neuroanatomy of sign language

Figure 8: Schematic of brain regions involved in sign language comprehension and production identified in this study.

Data availability

The collected foci data as well as all files resulting from the different analyses and diagnostics are available for download on the Open Science Framework.

Project page: https://osf.io/w7eau

References

A complete list of references cited on this poster is available online.