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Holonomy perturbations and regularity

for traceless SU.2/ character varieties of tangles

Christopher M. Herald1 and Paul Kirk2

Abstract.The traceless SU.2/ character variety R.S2; ¹ai ; bi º
n
iD1

/ of a 2n-punctured

2-sphere is the symplectic reduction of a Hamiltonian n-torus action on the SU.2/ char-

acter variety of a closed surface of genus n. It is stratified with a finite singular stratum and

a top smooth symplectic stratum of dimension 4n� 6.

For generic holonomy perturbations � , the traceless SU.2/ character variety R� .Y; L/

of an n-stranded tangle L in a homology 3-ball Y is stratified with a finite singular stratum

and top stratum a smooth manifold. The restriction to R.S2; ¹ai ; bi º
n
iD1

/ is a Lagrangian

immersion which preserves the cone neighborhood structure near the singular stratum.

For generic holonomy perturbations � , the variant R\
� .Y;L/, obtained by taking the

connected sum of L with a Hopf link and considering SO.3/ representations with w2 sup-

ported near the extra component, is a smooth compact manifold without boundary of di-

mension 2n�3, which Lagrangian immerses into the smooth stratum ofR.S2; ¹ai ; biº
n
iD1

/.

The proofs of these assertions consist of stratified transversality arguments to eliminate

non-generic strata in the character variety and to insure that the restriction map to the

boundary character variety is also generic.

The main tool introduced to establish abundance of holonomy perturbations is the use

of holonomy perturbations along curves C in a cylinder F �I , where F is a closed surface.

WhenC is obtained by pushing an embedded curve onF into the cylinder, we prove that the

corresponding holonomy perturbation induces one of Goldman’s generalized Hamiltonian

twist flows on the SU.2/ character variety M.F / associated to the curve C .
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1. Introduction

The symplectic properties of character varieties of surfaces have been studied

extensively, beginning with the work of Atiyah and Bott [2] and Goldman [8].

Moreover, when a 3-dimensional manifold Y has boundary surface F, the char-

acter variety of Y gives rise to a Lagrangian submanifold in the character variety

of F, although there are some issues with singularities complicating this picture.

In this paper we establish the analogous symplectic properties in the more chal-

lenging setting of the SU.2/ traceless character varieties of a codimension two

pair .M;L/, whereM is a homology 3-ball and L is an n-tangle, and its boundary

codimension two pair .@M; @L/ D .S2; ¹ai ; bi º
n
i D 1/.

We remind the reader that the traceless character variety R.M;L/ of a codi-

mension 2 pair .M;L/ is the real semi-algebraic set of conjugacy classes of SU.2/

representations of �1.M nL/which send every meridian ofL to a traceless matrix

(see Section 2). When M is a 3-manifold, a variant R\ .M;L/ is defined roughly

by replacing L by its connected sum with a Hopf link (see Section 9). The con-

struction of R\ was introduced in [19] as a means to ensure that the critical set of

the Chern–Simons function is disjoint from the set of points with non-trivial sta-

bilizer under the action of the group of gauge transformations. Finally, R� .M;L/

and R
\
� .M;L/ denote the holonomy perturbed versions of these traceless charac-

ter varieties (see Section 2).

The main results of this paper are theorems B and C, stated below. To explain

the statements of these theorems, we first describe another important result of this

article, one which only involves character varieties of surfaces, and which should
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be of independent interest. It is well known ([8]) that the character variety of

a closed surface is a stratified symplectic space. Removing the n handles from

a genus n closed surface F produces a 2n-punctured sphere. We prove that the

traceless character variety of the 2n-punctured 2-sphere is a symplectic reduction

of the character variety of F . We state the theorem somewhat imprecisely here

and refer to Theorem 4.4 for a more careful statement.

Theorem A. LetF be a closed, oriented surface of genusn, andS0 � F be a
2n-punctured sphere obtained by removing tubular neighborhoods ofn disjoint
homologically essential curves inF .

LetM.F / denote the variety of conjugacy classes ofSU.2/ representations of
�1.F / andR.S2; ¹ai ; bi º

n
i D 1/; the variety of conjugacy classes ofSU.2/ represen-

tations ofS0 which send the boundary circles to traceless matrices.
There is a Hamiltoniann-torus action on (an open subset of )M.F / with mo-

ment map�WM.F /! Rn , for which the symplectic quotient isR.S2; ¹ai ; bi º
n
i D 1/.

We now can state our first main result, Theorem 8.1, in slightly simplified form

as follows.

Theorem B. AssumeY is a Z -homology ball containing ann-strand tangleL,
with n � 2. ThenR� .Y; L/ is compact for any perturbation�. There exist
arbitrarily small perturbations so thatR� .Y; L/ is the union of two strata

R� .Y; L/ D R� .Y; L/
Z =2;Z =2 tR� .Y; L/

U.1/;U.1/ ;

with the following properties:R� .Y; L/
Z =2;Z =2 is a smooth manifold of dimension

2n � 3, andR� .Y; L/
U.1/;U.1/ a �nite set. Each point inR� .Y; L/

U.1/;U.1/ has a
neighborhood inR� .Y; L/ homeomorphic to a cone onCP n� 2.

The restriction mapR� .Y; L/ ! R.S2; ¹ai ; bi º
n
i D 1/ takes the0-manifold

R� .Y; L/
U.1/;U.1/ into the0-manifoldR.S2; ¹ai ; bi º

n
i D 1/

U.1/ , and Lagrangian im-
merses the.2n�3/-manifoldR� .Y; L/

Z =2;Z =2 in the symplectic.4n�6/-manifold
R.S2; ¹ai ; bi º

n
i D 1/

Z =2.

Our second main result is Theorem 9.1, the analogue of Theorem B for

R\ .Y; L/. Theorem 9.1 states the following.

Theorem C. AssumeY is a Z -homology ball containing ann-strand tangleL,
with n � 2. ThenR\

� .Y; L/ is compact for any perturbation�. There exist
arbitrarily small perturbations so thatR\

� .Y; L/ is a smooth manifold of dimension
2n � 3, and the restriction mapR\

� .Y; L/ ! R.S2; ¹ai ; bi º
n
i D 1/ is a Lagrangian

immersion into the smooth stratum.
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Theorems B and C are satisfying results, in that they show that although

R.S2; ¹ai ; bi º
n
i D 1/ and R� .Y; L/ are not smooth symplectic (resp. Lagrangian

immersed) manifolds, they are the next best thing; namely, their singular strata

are finite sets, and the restriction map is stratum preserving. In the case of the

variant R
\
� .Y; L/, the situation is even nicer. Theorem C says that R

\
� .Y; L/ is

generically a smooth manifold which immerses into the top (smooth) stratum of

R.S2; ¹ai ; bi º
n
i D 1/.

When n D 2, the results are simpler to state but still of considerable interest.

In [13, 14] the authors developed a Lagrangian–Floer theory for certain immersed

curves in the 2-dimensional variety R.S2; ¹a1; b1; a2; b2º/, a space also known as

the pillowcase. It is a 2-sphere with four orbifold points obtained as the quotient

of the 2-torus by the hyperelliptic involution.

As a corollary of theorems B and C when n D 2, one has the following.

Corollary D. Given a2-tangle in a homology3-ball, there exist arbitrarily small
holonomy perturbations� so thatR� .Y; L/ is a compact1-manifold with2 bound-
ary components and the restriction mapR� .Y; L/! R.S2; ¹a1; b1; a2; b2º/ is an
immersion taking the boundary points to the orbifold pointsof the pillowcase, and
immersing the interior into the complement of the four orbifold points.

Similarly, there exist arbitrarily small holonomy perturbations � so that
R

\
� .Y; L/ is a compact1-manifold without boundary, and the restriction map

R� .Y; L/ ! R.S2; ¹a1; b1; a2; b2º/ is an immersion which misses the four orb-
ifold points.

As explained in [14], Corollary D is nearly sufficient in the case of n D 2 to

define a Lagrangian–Floer theory associated to 2-tangle decompositions of links.

In fact, the article [14] exhibits many examples of decompositions of knots L in

S3 into two 2-tangles:

.S3; K/ D .Y1; L1/ [.S 2;¹a1;b1;a2 ;b2º/ .Y2; L2/

with the property that the restriction maps

R\
� .Y1; L1/ �! R.S2; ¹a1; b1; a2; b2º/

and

R� .Y2; L2/ �! R.S2; ¹a1; b1; a2; b2º/

are transversely immersed unobstructed 1-manifolds in the pillowcase. We called

the resulting Lagrangian–Floer theory pillowcase homologyof the tangle decom-

position. In those examples, the pillowcase homology agrees with known or con-

jectured calculations of the reduced instanton knot Floer homology defined by

Kronheimer and Mrowka [19, 20].
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We expect that a similar Lagrangian–Floer theory can be constructed for all

n � 2. More precisely, our goal is to produce a tangle-theoretic counterpart to

the reduced instanton knot Floer homology for knots and links in 3-manifolds

in terms of traceless character varieties. We propose to take the Lagrangian–

Floer homology of the LagrangiansR� .Y1; L1/ andR
\
� .Y2; L2/ in the symplectic

variety R.S2; ¹ai ; bi º
n
i D 1/. Theorems B and C provide a guarantee that traceless

character varieties do indeed give rise to a Lagrangian intersection picture, after

generic small perturbations. We point the interested reader to Section 10, which

explains these ideas in greater detail.

We briefly outline the proofs of Theorems B and C. Consider a pair .Y; L/,

where L is an n-strand tangle in a 3-manifold Y with 2-sphere boundary. Denote

by X the complement of a tubular neighborhood of L in Y and by F the boundary

ofX , a closed genus n surface. Set S0 D @Y nnbd.L/. Then the differential of the

restriction map on SU.2/ character varieties from M.X/ to M.F / has Lagrangian

image at each point.

It is a general property of symplectic reduction that if M is a symplectic

manifold with HamiltonianG action and moment map�WM ! g� , and i WL! M

is a Lagrangian immersion which is transverse to the level set �� 1.0/, then

L \ �� 1.0/ Lagrangian immerses to the symplectic quotient. Therefore, if the

restriction j WM.X/ ! M.F / is a Lagrangian immersion transverse to �� 1.0/,

for � the moment map of Theorem A, then R.Y; L/ D .� ı j /� 1.0/ Lagrangian

immerses into the symplectic quotient R.S2; ¹ai ; bi º
n
i D 1/.

In general, j WM.X/ ! M.F / need not be a Lagrangian immersion, even

on its top stratum. For example, it is well known that the presence of incom-

pressible surfaces in X increases the dimension of M.X/. Moreover, even when

j WM.X/!M.F / is an immersion, it need not be transverse to �� 1.0/.

Fixing up M.X/ and its restriction to M.F / in a manner consistent with the

symplectic structure and compatible with the perturbations of the Chern–Simons

functional used to construct instanton Floer theory is accomplished by means of

holonomy perturbations � . We first appeal to the results of [12] to fix M.X/;

this prepares us for the delicate part of the argument, namely establishing the

existence of arbitrarily small holonomy perturbations � making the restriction

map M� .X/!M.F / transverse to �� 1.0/ in a stratum preserving sense.

LetA1; : : : ; An be simple closed curves in the 2n-punctured 2-sphere S0 which

form meridians to the n components of L, that is, they are boundary curves to half

the punctures. These form a half symplectic basis for H1.F /, where F is the

closed surface obtained by adding n handles to the boundary circles of S0. The

curves A1; : : : ; An determine a function �WM.F / ! Rn on the SU.2/ character

variety of F (Definition 4.2), essentially by taking a character around each Ai .
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Results of [9] and [17] are used to show that � is (essentially) the moment map

for a Hamiltonian .S1/n action on M.F / with symplectic quotient �� 1.0/=.S1/n

(essentially) the traceless character variety R.S2; ¹ai ; bi º
n
i D 1/.

The results of [12] show that, after appropriate holonomy perturbations � , the

restriction map j WM� .X/ ! M.F / is a Lagrangian immersion. We show that

(with further perturbation) j can be made transverse to �� 1.0/, and R� .Y; L/ is

identified with M� .X/\j
� 1.�� 1.0//. Symplectic reduction then implies that the

compositeR� .Y; L/! �� 1.0/=.S1/n D R.S2; ¹ai ; bi º
n
i D 1/ is again a Lagrangian

immersion.

The proof of Theorem C is similar, but the role of the map called � above,

the n-tuple of traces, is modified slightly to also include the anticommutativity

condition between the earring meridian and the meridian of the strand about which

the earring has been added.

The difficulties in carrying out this outline arise in dealing with the parenthet-

ical comments in the previous paragraphs. The character varieties are not man-

ifolds, but rather are stratified spaces, and one must work stratum-by-stratum to

ensure the entire perturbed character variety has the appropriate structure after

suitable holonomy perturbations. One needs to perturb so that j is transverse to

�� 1.0/. Hence, much of the technical work consists of establishing that holo-

nomy perturbations are sufficiently abundant to ensure that transversality holds in

a stratified sense.

In order to achieve transversality with �� 1.0/, we use perturbations supported

in a cylinder F � Œ0; 1�, so we examine the homeomorphisms of the character va-

riety ˆ� WM.F /!M.F / induced by holonomy perturbations � along embedded

curves pushed in from F �¹0º. Perhaps surprisingly, these perturbations give rise

to well known Hamiltonian isotopies of M.F /. Namely, Theorem 6.3 identifies

these isotopies with the twist flows on flat moduli spaces of surfaces discovered

by Goldman [8]. The statement is as follows. We refer the reader to Section 6 for

the construction of the maps ˆ� .

Theorem E. Let �C;t be the1-parameter family of holonomy perturbations
�C;t D .NC ; t�/ whereC � F is an embedded curve and�WR ! R a pertur-
bation function. Let̂ � C;t

WM.F / ! M.F / be the corresponding isotopy. Then
ˆ� C;t

restricts to a Hamiltonian isotopy on the smooth stratumM.F /Z =2. In fact,
ˆ� C;t

is equal to Goldman's Hamiltonian twist �ow associated toC , generated by
the function

fC WM.F / �! R; fC .Œ��/ D  .cos� 1 Re.�.C ///;

for  an antiderivative of�.
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We finish this section by providing a brief roadmap of the arguments to come.

Section 2 provides background about character varieties and perturbed character

varieties, along with the traceless versions of these spaces. Section 3 summarizes

a well known identification of the character variety tangent space with a certain

cohomology group, and then generalizes this identification to the context of per-

turbed character varieties. Section 4 describes, in detail, the traceless character

variety of a 2-sphere with 2n punctures and relates it to the character variety of

the genus n surface F obtained by identifying pairs of boundary circles.

Section 5 describes a specific collection of embedded curves in F , and com-

piles some necessary information about how these curves intersect the standard

embedded representatives of the fundamental group generators. The curves in

this collection will ultimately be used to build a collection of perturbations to

solve transversality problems in the traceless character variety of a 3-manifold

with boundary F .

Section 6 is focused on the perturbed character variety of F � Œ0; 1�, for

perturbations involving the special curves from Section 4, lying on different slices

F � ¹tº. The perturbed character variety of F � Œ0; 1� determines a mapping

ˆWM.F � ¹0º/ ! M.F � ¹1º/. We derive certain properties of this family of

maps ˆ parameterized by perturbations.

Sections 7 and 8, finally, take up the question at the heart of the paper. For

an n-component tangle complement in a Z -homology ball, we identify a collar

neighborhood of the boundary with F � Œ0; 1� and use a combination of perturba-

tions in F �Œ0; 1� and other perturbations deeper in the interior of the 3-manifold to

solve a number of potential transversality issues in the traceless character variety.

Section 9 addresses the same question applied to the traceless character variety

when an earringhas been added to one of the arcs in the tangle.

Section 10 describes a series of conjectures about Lagrangian–Floer theories

involving traceless character varieties which form the motivation for the technical

details in this paper. This material is not needed to describe the results in the

paper, but reading this section may bolster the reader’s motivation before wading

into the technicalities of sections 5–8.

Acknowledgments. The authors thank Lisa Jeffrey for discussions critical to the

proof of Theorem A. They also thank Matthew Hedden, Henry Horton and Dan

Ramras for illuminating discussions.
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2. Character varieties, perturbations, and stabilizers

Identify SU.2/ with the group of unit quaternions, and the Lie algebra su.2/

with the span of ¹i ; j ; k º. Every unit quaternion can be written in the form

e�P D cos˛Csin˛P forP a purely imaginary unit quaternionP ; this description

is unique, for unit quaternions different than ˙1, if we choose 0 < ˛ < � . Here,

unit vectors in the Lie algebra correspond to purely imaginary quaternions of

length one with respect to the positive definite inner product

hv; wi D �Re.vw/:

The function ReWSU.2/ ! R on unit quaternions corresponds to one half the

trace on SU.2/ matrices. Its point preimages are precisely the conjugacy classes

in SU.2/.

Given a compact 2-or 3-manifold M , we use the notation M.M/ for the space

of conjugacy classes of SU.2/ representations of �1.M/,

M.M/ D Hom.�1.M/; SU.2//=conj

and call M.M/ the character varietyofM . Given a properly embedded codimen-

sion two submanifold L �M , we call an element of �1.M nL/ a meridianif it is

freely homotopic inM nL to the boundary of a 2-disk hitting L transversely once.

We define a traceless representation of�1.M n L/ to be an SU.2/ representation

which satisfies the following condition:

Re.�.m// D 0 for each meridian m 2 �1.M n L/: (2.1)

We denote byR.M;L/ the space of conjugacy classes of traceless representations

of �1.M n L/:

R.M;L/ D ¹� 2 Hom.�1.M n L/; SU.2// j � satisfies (2.1)º=conj; (2.2)

and call R.M;L/ the traceless character varietyof .M;L/. Note that condi-

tion (2.1) is conjugation invariant, so it is not important how these meridians are

connected to the chosen base point (in order to view them as representing elements

of �1).

We will need to use holonomy-perturbed versions of these varieties when M

is an oriented 3-manifold. Fix k > 3 genus.@M/. Denote by X the Banach space

of perturbation functions

X D ¹f WR �! R j f is C k , odd, 2�-periodicº: (2.3)
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Each f defines a conjugation equivariant function F WSU.2/! SU.2/ by

F.e�Q / D ef .�/Q : (2.4)

Given a 3-manifold M , define perturbation data,� D ¹.Ni ; fi /º
p
i D 1, forM to

be a finite collection of disjoint orientation preserving embeddingsNi WS
1�D2 �

Int.M/, and for each embedding, a choice fi 2 X. We call the collection of solid

tori
F

i .Ni .S
1�D2// the supportof the perturbation� , and abbreviate it to

F
i Ni .

Define a �-perturbed representation ofM to be a representation

�W�1

�
M n

� G

i

Ni

��
�! SU.2/

which satisfies the perturbation condition:

�.�i / D Fi .�.�i //; i D 1; : : : ; p; (2.5)

where �i D Ni .¹1º � @D
2/ and �i D Ni .S

1 � ¹1º/, and Fi is associated to fi as

in equation (2.4). Like condition (2.1), condition (2.5) is conjugation independent

and hence is independent of the choice of path fromNi .1; 1/ to the base point used

to define �1
�
M n

� F
i Ni

��
.

We denote by M� .M/ the perturbed character variety:

M� .M/ D
°
� 2 Hom

�
�1.M n

� G

i

Ni

��
; SU.2/

� �
�
� � satisfies (2.5)

±
=conj:

Similarly, if M contains a properly embedded codimension two submanifold

L and the embeddings Ni miss L, then we denote by R� .M;L/ the space of

conjugacy classes of �-perturbed traceless representations:

R� .M;L/ D
°
� 2 Hom

�
�1.M n

�
L [

� G

i

Ni

���
; SU.2//

�
�
�

� satisfies (2.1) and (2.5)
±
=conj:

If fi D 0 for all i , then M� .M/ andR� .M;L/ are naturally identified with M.M/

and R.M;L/, respectively.

For an illustration of the effect perturbations have on traceless character vari-

eties, we offer the reader the following instructive examples. In [14, Section 11.6]

the space R.Y; L/ for a certain 2-tangle in a 3-ball associated to the .3; 4/ torus

knot is identified: it is a singular real algebraic variety homeomorphic to the letter

�. A 1-parameter family of perturbations �t is described, so that R� t
.Y; L/ is a

homeomorphic to the disjoint union of an interval and a circle when t ¤ 0. The
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reader should keep this example in mind when trying to understand the statement

of Theorem 8.1. In particular, neighborhoods of the endpoints of the interval can

be viewed as cones on CP 0. The second example concerns the case when T is

the trivial 2-tangle in a 3-ball B . Then R\ .B; T / is homeomorphic to a 2-sphere

(see Section 9 for the definition of R\ , a variant of R), and Theorem 7.1 of [13]

shows that there exists a 1-parameter family of perturbations �t so thatR
\
� t
.B; T /

is a smooth circle whenever t ¤ 0. This second example illustrates the content

of Theorem 9.1. In both cases, perturbations serve to break a symmetry on the

unperturbed varieties: in the first case a Z=2 symmetry on the letter � with an arc

of fixed points, and in the second case the rotational S1 symmetry on S2.

If i WZ � M is a connected subspace, then the map i� W�1.Z/ ! �1.M/

induces a restriction map i � WM.M/ ! M.Z/. We will also call the analogous

maps R.Y; L/ ! R.@Y; @L/ and R� .Y; L/ ! R.@Y; @L/ in the traceless context

restriction maps.

Under the conjugation action, a representation � has stabilizer either isomor-

phic to Z=2, a maximal torus U.1/ � SU.2/, or the entire group SU.2/; we call �

irreducible, abelian, and central in these respective cases. By this convention, a

central representation is not called abelian.

Denote byM� .M/G the subspace of conjugacy classes of representations with

stabilizer G. Stabilizers determine a partition

M.M/ DM.M/Z =2 tM.M/U.1/ tM.M/SU.2/ :

WhenM is a 3-manifold and� perturbation data, one obtains a similar partition of

M� .M/. If .M;L/ is a codimension two proper pair with L nonempty, a traceless

representation cannot be central. Hence,

R.M;L/ D R.M;L/Z =2 tR.M;L/U.1/ :

Restricting to a subspace need not preserve stabilizers. The stabilizer of the

restriction of a representation � to a subspace may be larger than the stabilizer of

�. For a 3-manifold M with nonempty boundary we may therefore refine the par-

tition of M.M/ to a partition indexed by two subgroups, namely the stabilizer and

the stabilizer of the restriction to the boundary. For example, M� .M/Z =2;SU.2/ de-

notes the subspace of conjugacy classes of � perturbed representations which are

irreducible and restrict to central representations on the boundary. We use similar

decorations on R� .M;L/, e.g., R� .M;L/
Z =2;U.1/ denotes the set of traceless per-

turbed representations that are irreducible on �1.M n L/ but which have abelian

restriction to �1.@M n @L/.
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3. Tangent spaces

We remind the reader of the relationship between tangent spaces of character

varieties and cohomology. For any space M , the Zariski tangent space of M.M/

at a representation � is identified with the cohomology group H1.M I su.2/ad � /

(see [24]). We outline some aspects of this identification and indicate how to

generalize this in the context of perturbations.

A presentation hx1; : : : ; xn j w1; : : : ; wr i of �1.M/ determines a relation map

RWSU.2/n �! SU.2/r ;

.X1; : : : ; Xn/ 7�! .w1.X1; : : : ; Xn/; : : : ; wr .X1; : : : ; Xn//;

so that the assignment of an element Xi 2 SU.2/ to each generator xi determines

a representation if and only if

R.X1 : : : ; Xn/ D .1; 1; : : : ; 1/ D 1:

This gives identifications

Hom.�1.M/; SU.2// D R� 1.1/ and M.M/ D R� 1.1/=conj:

The presentation for �1.M/ determines a 2-complex KM with one 0-cell, n

1-cells, and r 2-cells. A representation �W�1.M/! SU.2/ can be composed with

the adjoint representation adWSU.2/! Aut.su.2// to determine a local coefficient

system on the 2-complex KM which we denote by ad �. This data determines the

cellular cochain complex for KM (see e.g. [5]) whose chain groups are given by

C 0.KM I su.2/ad � / D su.2/;

C 1.KM I su.2/ad � / D Funct.¹x1; : : : ; xnº; su.2// D su.2/n ;

and

C 2.KM I su.2/ad � / D Funct.¹w1; : : : ; wr º; su.2// D su.2/r :

Here, the vector space su.2/ is viewed as a �1.M/ module via the adjoint action.

The differential d 0WC 0.KM I su.2/ad � /! C 1.KM I su.2/ad � / is given by

d 0v D ..ad �.x1/ � 1/v; : : : ; .ad�.xn/ � 1/v/:

Right translation by the n-tuple .X � 1
1 ; : : : ; X � 1

n / 2 SU.2/n provides an iden-

tification of T.X 1;:::;X n/ SU.2/n with T1 SU.2/n D su.2/n . The differential d 0

can then be identified with the derivative at � of the orbit map oWSU.2/ !

SU.2/n ; o.g/ D .ad �.g/.X1/; : : : ; ad �.g/.X1//: The tangent space to the or-

bit is therefore identified with the 1-coboundaries B1.KM I su.2/ad � /; and the

tangent space to the stabilizer Stab.�/ is identified with H0.KM I su.2/ad � / D

H0.M I su.2/ad � /.
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Similarly, the identifications of the tangent spaces SU.2/n and SU.2/r with

su.2/n and su.2/r , respectively, allow us to identify the differential

d 1WC 1.KM I su.2/ad � / �! C 2.KM I su.2/ad � /

with the derivative dR� . Hence, at smooth points of M.M/,

T� M.M/ D H1.KM I su.2/ad � / D H1.M I su.2/ad � /: (3.1)

We take equation (3.1) as a definition of T� M.M/ at singular points.

If the 2-complex determined by the presentation is aspherical, then

H2.�1.M/I su.2/ad � / D H2.KM I su.2/ad � / D cokerdR� :

If in addition M is an aspherical manifold, these groups equal H2.M I su.2/ad � /.

For example, when M is an oriented 2-manifold (other than S2) and the presen-

tation is given by a cell structure of M with one 0-cell, then Hi .M I su.2/ad � / D

Hi .�1.M/I su.2/ad � / D Hi .KM I su.2/ad � / for all i . In general, however, the i th

cohomology of M , �1M and KM for i > 1 need not agree.

We next indicate how to introduce perturbations into this perspective. Suppose

that M is a 3-manifold with given perturbation data � D ¹.Ni ; fi /º
p
i D 1. Given a

presentation

�1

�
M n

� G

i

Ni

��
D hx1; : : : ; xq j w1; : : : ; wsi;

�1

�
M n

� G

i

Ni

��
D hx1; : : : ; xq j w1; : : : ; wsi;

express the meridians �i and longitudes �i of Ni as words in the generators x` .

Then the relation map RWSU.2/q ! SU.2/s can be augmented to

R� D R � .P1; : : : ; Pp /WSU.2/q �! SU.2/s � SU.2/p ;

where

Pi .X1; : : : ; Xn/ D Fi .�i .X1; : : : ; Xn//�i .X1; : : : ; Xn/
� 1: (3.2)

It is easy to see that

M� .M/ D R� 1
� .1/=conj: (3.3)

Notice that this implies that M� .M/ is compact for any perturbation data � , since

it is the quotient by SU.2/ of a closed subset of SU.2/q .
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For � 2M� .M/, define

H1
� .M I su.2/ad � / D ker.dR� /� =B

1.M I su.2/ad � /: (3.4)

Then

T� M� .M/ D H1
� .M I su.2/ad � /:

When all the perturbation functions fi are zero,

H1
� .M I su.2/ad � / D H1.M I su.2/ad � /:

One can also define the perturbed 0th cohomology as before:

H0
� .M I su.2/ad � / D ¹v 2 su.2/ j ad �.xi /.v/ D v for all xi º: (3.5)

The cellular chain complex for the 2-complex KM associated to the presenta-

tion is not adequate to compute the second cohomology whenM is a 3-manifold,

and the introduction of perturbations � makes it difficult to present a clean defini-

tion of H2
� .M I su.2/ad � / in terms of cellular chains. In light of these difficulties,

we instead refer to [12] for a definition of Hi
� .M I su.2/ad � / as the cohomology of

a Fredholm complex constructed by deforming the twisted de Rham complex. To

give a full definition would take us too far afield.

We will use several facts about these groups. First, the 0th and 1st cohomology

are canonically isomorphic with the definitions (3.4) and (3.5). Second, if � 2

M� .M/, then there is a Kuranishi map

KWH1
� .M I su.2/ad � / �! H2

� .M I su.2/ad � /; (3.6)

equivariant with respect to the action of the stabilizer Stab.�/ of �, so that, locally

near �,

M� .M/ Š K � 1.0/=Stab.�/:

Third, if � takes values in the diagonal circle subgroup of SU.2/, then the adjoint

action on su.2/ splits equivariantly with respect to the splitting su.2/ D Ri ˚Cj ;

the action is trivial on the R summand and weight two on the complex summand.

The corresponding Fredholm complex splits accordingly, and

Hi
� .M I su.2/ad � / D Hi

� .M IR/˚ H1
� .M ICad � /: (3.7)

Finally, we will use an upper semicontinuity property of the dimensions of

these cohomology groups: dim Hi
� .M I su.2/ad � / � dim Hi

� 0
.M I su.2/ad � 0

/ for

all � close enough to �0 and for � 2 M� .M/ close enough to �0 2 M� 0
.M/.
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Again we refer to [12] for a careful description of the topology on the space

of perturbations. For our purposes it suffices to compare perturbations � D

¹.Ni ; fi /º and �0 D ¹.N 0
i ; f

0
i /º for which the embeddings coincide, i.e. Ni D

N 0
i , in which case we can measure their distance using the C k metric on the

perturbation functions fi ; f
0

i 2 X. The distance between � 2 M� .M/ and �0 2

M� 0 .M/ can be taken to be the distance between the q-tuples .�.x1/; : : : ; �.xq//

and .�0.x1/; : : : ; �
0.xq// in SU.2/q for a set of generators xi of �1

�
M n

F
i Ni

�
.

4. The traceless character variety of the punctured sphere

The complement of a tubular neighborhood of an n-strand tangle in a homology

3-ball Y is a 3-manifold X whose boundary is a closed genus n surface F .

Moreover, the surface F is the union of S0 D F \ @Y , a 2-sphere with 2n open

disks removed, and n cylinders. The 2n boundary circles of S0 are paired by the

cylinders.

To keep careful track of curves on F and S0 and paths connecting them to a

base point, we identify S2 with R2 together with a point at infinity. Then S2 can

be decomposed as a union of sectors S1; : : : ; Sn , ordered counterclockwise, i.e.,

in polar coordinates S` D
®
.r; �/

�
� � 2

� 2�.` � 1/
n ; 2�`

n

�¯
. Let ai ; bi denote a pair of

points lying on the central ray of each sector, and remove a pair of small disjoint

disk neighborhoods of each ai and bi to obtain S0. Attaching cylinders to each

pair of boundary circles yields an oriented closed surfaceF of genus n, containing

the 2n-punctured 2-sphere S0. The sector indexing should be viewed as a cyclic

ordering.

Figure 1 portrays, in the first two sectors, embedded simple closed curves

Ai ; Bi ; Di , i D 1; 2, each with its own arc A i
; B i

; D i
from the central base

point to the curve. Make analogous choices in each sector.

To keep the notation unencumbered, whenever we consider Ai as an element

of �1.S0/ or �1.F /, we always mean the representative based loop A i
�Ai �

� 1
A i

,

and similarly for Bi and Di . With these choices,

�1.S0/ D
D
Ai ; Bi

�
�
�

nY

i D 1

AiB
� 1
i D 1

E
; (4.1)

�1.F / D
D
Ai ; Di

�
�
�

nY

i D 1

ŒAi ; Di � D 1
E
;
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Figure 1

and the inclusion �1.S0/! �1.F / is given by

Ai 7�! Ai ; Bi 7�! DiAiD
� 1
i :

With the standard orientation of S2 (represented by the standard orientation on

R2 n ¹2n disksº), Ai �Di D �1, Ai �Dj D 0 for i ¤ j , Ai � Aj D 0 D Di �Dj .

The curves Ai ; Bi form meridians to the ai ; bi .

We will show that the traceless character variety R.S2; ¹ai ; bi º
n
i D 1/ has 22n� 2

singular points. Moreover, away from these singular pointsR.S2; ¹ai ; bi º
n
i D 1/will

be identified with the symplectic reduction of M.F /with respect to a Hamiltonian

torus action. We remark that the results of this section are purely 2-dimensional;

they do not refer to any 3-manifold or to holonomy perturbations.

It is well known that M.F / is a stratified real-algebraic variety. In fact, the

stabilizer decomposition

M.F / DM.F /Z =2 tM.F /U.1/ tM.F /SU.2/ (4.2)

is a decomposition into smooth symplectic manifolds. The irreducible stratum

M.F /Z =2 has dimension 6n � 6 (see [8]), the abelian stratum M.F /U.1/ has

dimension 2n, and the central stratum M.F /SU.2/ is a finite set containing 22n

points (see [10]). Tangent spaces to these strata are identified with the invariant

subspace of the first cohomology, T� M.F / Š H1.F I su.2/ad � /
Stab.�/ , and the

symplectic structure on each stratum is given by the (restriction to this tangent

space of the cup product composed with the inner product h�; �iW su.2/�su.2/! R,
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that is,

!W .˛; ˇ/ 2 H1.F I su.2/ad � / �H1.F I su.2/ad � / 7�! �Re.˛ [ ˇ/ \ ŒF � 2 R:

The traceless character variety R.S2; ¹ai ; bi º
n
i D 1/ has a decomposition

R.S2; ¹ai ; bi º
n
i D 1/ D R.S

2; ¹ai ; bi º
n
i D 1/

Z =2 tR.S2; ¹ai ; bi º
n
i D 1/

U.1/ (4.3)

into the irreducible and abelian representations.

Proposition 4.1. The abelian stratumR.S2; ¹ai ; bi º
n
i D 1/

U.1/ consists of22n� 2

points, and the irreducible stratumR.S2; ¹ai ; bi º
n
i D 1/

Z =2 is a smooth manifold
of dimension4n� 6.

Proof. If � 2 R.S2; ¹ai ; bi º
n
i D 1/

U.1/ , then � is conjugate to a unique representation

which takesA1 to i and eachAi ; i D 2; : : : ; n and Bi ; i D 1; : : : ; n to˙i . Half of

the resulting 2n � 1 signs satisfy the relation in (4.1). This proves the first claim.

The rest of the proof of Proposition 4.1 can be found in [21] or [15]. It also follows

from Theorem 4.4 below. �

The inclusion S0 � F induces a restriction map

r WM.F / �!M.S0/: (4.4)

The traceless character variety R.S2; ¹ai ; bi º
n
i D 1/ is identified with the subspace

of M.S0/ consisting of representations � satisfying the traceless condition (2.1)

around the punctures.

The restriction map (4.4) is neither surjective nor injective, but the image

of r contains R.S2; ¹ai ; bi º
n
i D 1/. To see this, note that any two traceless SU.2/

elements are conjugate. Hence, given any � 2 R.S2; ¹ai ; bi º
n
i D 1//, there exist

d1; : : : ; dn 2 SU.2/; such that �.Bi / D di �.Ai /d
� 1
i . Setting Q�.Di / D di ,

Q�.Ai / D �.Ai / defines Q� 2M.F / satisfying r. Q�/ D �.

The rest of this section is devoted to the proof that R.S2; ¹ai ; bi º
n
i D 1/ is the

symplectic quotient of M.F / by a torus action. We define the moment map and

torus action next.

Definition 4.2. Let �WM.F /! Rn be the map

�.�/ D .� sin� 1.Re.�.A1///; : : : ;� sin� 1.Re.�.An////:

Notice that if Q is a purely imaginary unit quaternion and s 2 Œ0; ��, then

Re.esQ / D cos s, and hence � sin� 1.Re.esQ // D s � �
2 .
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We next introduce a torus action on an open, dense subset of M.F /.

Definition 4.3. Let M.F /0 � M.F / denote the open subset of representations �

satisfying �.Ai / ¤ ˙1 for each i . Notice that �� 1.0/ �M.F /0. Define

H WSU.2/ n ¹˙1º �! su.2/; H.esQ / D Q (4.5)

for s 2 .0; �/ and Q 2 su.2/, with kQk D 1. That is,

H.g/ D .g � Re.g//=kg � Re.g/k:

Note that H.hgh� 1/ D hH.g/h� 1 for all g; h 2 SU.2/. We then define an Rn

action on M.F /0 on the right by

.� � t /.Ai / D �.Ai / and .� � t /.Di / D �.Di /e
ti H.�.A i // (4.6)

for all i , where t D .t1; : : : ; tn/. This action is periodic with period 2� in each

factor, so it induces an action of the n-torus T n D .S1/n on M.F /0. Since

geti H.�.A i // g� 1 D eti gH.�.A i //g �1

D eti H.g�.A i /g �1/ ;

this induces an action on conjugacy classes.

Following [8, 17], we prove the following theorem. The authors thank Lisa

Jeffrey for help with the argument.

Theorem 4.4. TheT n action has the following properties.

(1) The restrictionr WM.F /0 !M.S0/ induces a homeomorphism

�� 1.0/=T n Š R.S2; ¹ai ; bi º
n
i D 1/:

(2) TheT n action is free on the preimager � 1.M.S0/
Z =2/, and the stabilizer of

points in the preimageM.F /Z =2 \ r � 1.M.S0/
U.1/ / is S1.

(3) The T n action on the smooth.6n � 6/-dimensional irreducible stratum
M.F /

Z =2
0 is Hamiltonian, and�WM.F /Z =2

0 ! Rn is a moment map for this
action.

(4) The restriction�0D �j
M .F / Z =2

0
\ r �1.M .S 0/Z =2/

has0 2 Rn as a regular value.
Under the identi�cation in(1), the corresponding (Marsden-Weinstein) sym-
plectic quotient.�0/� 1.0/=T n is the smooth.4n�6/-dimensional symplectic
manifoldR.S2; ¹ai ; bi º

n
i D 1/

Z =2:
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Proof. Since eti H.�.A i // commutes with �.Ai /,

.� � t /.Bi / D .� � t /.DiAiD
� 1
i / D �.DiAiD

� 1
i / D �.Bi /;

and so r WM.F /0 !M.S0/ factors through the orbit map M.F /0 !M.F /0=T n .

Conversely, if �1; �2 2 M.F /0 are two representations whose restrictions r.�1/

and r.�2/ to �1.S0/ are conjugate, then there exists g 2 SU.2/ so that

g�1.Ai /g
� 1 D �2.Ai / and g�1.DiAiD

� 1
i /g� 1 D �2.DiAiD

� 1
i / for each i .

It follows that, for each i , �2.Di /
� 1g�1.Di /g

� 1 commutes with �2.Ai / and hence

there exists a ti so that �2.Di /
� 1g�1.Di /g

� 1 D eti H.� 2.A i // : Therefore, g�1g
� 1 D

�2 � t , where t D .t1; : : : ; tn/. We conclude that the restriction r WM.F /0 !M.S0/

induces a homeomorphism M.F /0=T n onto its image in M.S0/.

As observed above, the image of the map r WM.F / ! M.S0/ contains

R.S2; ¹ai ; bi º
n
i D 1/. If � 2 M.F / satisfies �.�/ D 0, then Re.�.Ai // D 0

and so � 2 M.F /0. Moreover, Re.�.Bi // D Re.�.DiAiD
� 1
i // D 0 so that

r.�/ 2 R.S2; ¹ai ; bi º
n
i D 1/. Hence, r sends �� 1.0/ onto R.S2; ¹ai ; bi º

n
i D 1/ and

therefore �� 1.0/=T n Š R.S2; ¹ai ; bi º
n
i D 1/ �M.S0/: This proves claim (1).

We next show that the action is free on r � 1.M.S0/
Z =2/ and has S1 stabilizer at

each point in r � 1.M.S0/
U.1/ / \M.F /Z =2. Suppose that � 2 M.F /0\M.F /

Z =2,

Œt � 2 T n and g 2 SU.2/ satisfy � � t D g�g� 1. If g D ˙1, then

�.Di /e
ti H.�.A i // D .� � t /.Di / D g�.Di /g

� 1 D �.Di /

so that each ti � 0 mod 2� , and hence Œt � D 1 2 T n .

Assume, therefore, that g D esP with s 2 .0; �/, with P a unit purely

imaginary quaternion. Since g�.Ai /g
� 1 D .� � t /.Ai / D �.Ai /, we have

H.�.Ai // D �i P for some �i 2 ¹˙1º. In particular, the �.Ai / all commute.

In addition, for each i , �.Di /e
ti � i P D esP �.Di /e

� sP implies that

e.t i � i C s/�.D i /P�.D i / �1

D esP :

Since s 2 .0; �/, this is only possible (for each i) if either

�.Di /P�.Di /
� 1 D P and ti �i � 0 mod 2�; (4.7)

or else

�.Di /P�.Di /
� 1 D�P and ti �i � �2s mod 2�: (4.8)
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If the first case holds for all i , then � is an abelian representation on �1.F /, which

we have ruled out with the hypothesis that � 2M.F /Z =2. If for some i the second

case holds, then �.Di / must be a purely imaginary unit quaternion orthogonal

to P . This implies that �.Bi / D �.Di /�.Ai /�.D
� 1
i / D ��.Ai /.

In either case we see that all the �.Ai / and �.Bi / commute. That is, we have

shown that if there exists a g 2 SU.2/ and t 2 T n so that � � t D g�g� 1, then

either g D ˙1 and Œt � D 1 2 T n or r.�/ 2 M.S0/
U.1/ . Hence, the T n action is

free on M.F /0 n r
� 1.M.S0/

U.1/ / D r � 1.M.S0/
Z =2/.

To see that the stabilizer is 1-dimensional if r.�/ 2 M.S0/
U.1/ , observe that

for each index i so that the second case ti �i � �2s mod 2� holds (and there is at

least one such index if the stabilizer is nontrivial in T n), eti i D e� 2� i s. The �i are

determined up to an overall sign by �, and hence the stabilizer is the 1-dimensional

subgroup of T n consisting of those n-tuples .et1i ; : : : ; etni / so that

eti i D

´
1 if �.Di /�.Ai /�.Di /

� 1 D �.Ai /

e� i t i if �.Di /�.Ai /�.Di /
� 1 D �.Ai /

� 1:

This proves (2).

We turn now to the symplectic properties. The function hWSU.2/ ! R given

by h.g/ D � sin� 1.Re.g//, or equivalently, by h.esQ / D s � �
2 for a purely

imaginary unit quaternion Q and s 2 Œ0; ��, satisfies

hH.g/; vi D
d

dt
h.getv /

�
�
�
t D 0

for all g 2 SU.2/ n ¹˙1º and v 2 su.2/

whereH is the function defined in equation (4.5). Thus the functionsH and h sat-

isfy the relationship described in Section 1 of Goldman’s article [9] (see Section 6

for more details). For each i D 1; : : : ; n, define the function hA i
WM.F /

Z =2
0 ! R

by

hA i
.�/ D h.�.Ai //:

Since the Ai are disjoint, [9, Corollary 3.6] shows that the hA i
Poisson-commute.

Then [9, Theorem 4.7] shows that the Hamiltonian flow induced on M.F /
Z =2
0

by hA i
is given by

t � �.E/ D

´
�.Di /e

tH.�.A i // if E D Di

�.E/ if E D Ai ; or E D Aj ; Bj ; j ¤ i:

This flow is 2�-periodic and the corresponding S1 action is precisely that one

obtained by restricting the T n action to the i th factor. Since the hA i
Poisson-com-

mute, the entire T n action is Hamiltonian. Moreover, since �D .hA 1
; : : : ; hA n

/,

�WM.F /
Z =2
0 ! Rn is a moment map for the T n action. This proves (3).
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To verify claim (4), we must check that 0 is a regular value for the restriction of

� to M.F /
Z =2
0 \ r � 1.M.S0/

Z =2/. This is more or less well known, but we provide

an argument here for completeness.

Pick � 2 M.F /
Z =2
0 \ r � 1.M.S0/

Z =2/ \ �� 1.0/. Since �.�/ D 0, it follows

that, for each i , H1.Ai I su.2/ad � / Š R. The differential of � at �,

d�� WT� .M.F /
Z =2/ �! Rn

can be identified with the map

R6n� 6 Š H1.F I su.2/ad � / �! H1
� G

i

Ai I su.2/ad �

�
Š Rn :

The long exact sequence of the pair
�
F;

F
i Ai

�
identifies the cokernel with a

subspace of H2 �
F;

F
i Ai I su.2/a ad �

�
, which, by replacing

F
i Ai by a small

neighborhood and applying excision, is isomorphic to H2.S0; @S0I su.2/ad r .�/ /.

Poincaré duality then identifies this with H0.S0I su.2/ad r .�/ /; which vanishes be-

cause r.�/ 2 M.S0/
Z =2, i.e., because r.�/ is irreducible. Hence, the differential

is onto.

The proof is completed by recalling that the symplectic quotient [22] by the

Hamiltonian free T n action on M.F /
Z =2
0 \ r � 1.M.S0/

Z =2/ is defined to be the

manifold .�0/� 1.0/=T n , which we have identified withR.S2; ¹ai ; bi º
n
i D 1/

Z =2: �

Corollary 4.5. Suppose that̀WL!M.F /
Z =2
0 \ r � 1.M.S0/

Z =2/ is a Lagrangian
immersion which is transverse to.�0/� 1.0/. Then its symplectic reductionL0 WD

.�0ı `/� 1.0/ Lagrangian immerses toR.S2; ¹ai ; bi º
n
i D 1/.

Proof. This is a basic property of symplectic reduction and moment maps. If

the Lagrangian immersion ` meets .�0/� 1.0/ cleanly, then the restriction of ` to

the preimage of .�0/� 1.0/, composed with the quotient map, is Lagrangian (see,

for example, [22]). In our case, the stronger hypothesis that ` meets .�0/� 1.0/

transversely implies that ` also meets the orbits in .�0/� 1.0/ transversely, and so

we obtain a Lagrangian immersion L0D .�0ı `/� 1.0/! R.S2; ¹ai ; bi º
n
i D 1/. �

It will be simpler in the following to work with the map

T WM.F / �! Rn ; T .�/ D .Re.�.A1//; : : : ;Re.�.An///: (4.9)

rather than the moment map � of Definition 4.2. Although T is not a moment

map for the T n action, the level sets of T and � coincide. Furthermore, since the

function sin� 1.x/ is a diffeomorphism near 0, the restriction

T WM.F /
Z =2
0 \ r � 1.M.S0/

Z =2/ �! Rn (4.10)

has 0 as a regular value, and

R.S2; ¹ai ; bi º
n
i D 1/ D T

� 1.0/=T n :
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5. Perturbation curves

Our desired transversality results will be established with the help of a carefully

constructed collection of curves on the surface F . This section will be devoted to

specifying these curves and tabulating how they intersect with the standard fun-

damental group generators. These intersections will be important in the analysis

of the effect of perturbing using these curves (pushed slightly into the 3-manifold

from the boundary).

Definition 5.1. Fix two embedded, oriented, unbased, transverse curves C and E

in F missing the base point, and equip E with an embedded arc E starting at the

base point and ending on E. Assume that either C intersects E transversely in a

single point and misses the arc E , or that C misses E but intersects the arc E

transversely in a single point.

Define the longitude ofC with respect toE, �C .E/, as follows.

(1) In the first case, �C .E/ travels from the base point along E , then forward

along E to the intersection with C , then around C returning to the intersec-

tion point, then backward along the same portion of E, and finally back to

the base point along E .

(2) In the second case, �C .E/ travels along E from the base point to the

intersection with C , then around C returning to the intersection point, then

backward along E to the base point.

Definition 5.2. A special perturbation curveis an oriented, embedded, unbased

curve C in F satisfying the condition that, for each E 2 ¹Ai ; Di º
n
i D 1, if C \ .E [

E / is nonempty then either C meets E transversely one point and misses E , or

C is disjoint from E but intersects E transversely in one point.

We now tabulate a finite collection of special perturbation curves, together

with the curves in the family ¹Ai ; Di º
n
i D 1 which intersect them, in Table 1. The

first column, labeled Perturbation curve, lists 11 families of special perturbation

curves, CI.i/ through CXI.ij /. These are illustrated in figures 2–6. Recall that the

sector indexing should be viewed as a cyclic ordering. In figures 3–6 we illustrate

the curves we have in mind if 1 � i < j � n, but the curves in Table 1 when j < i

are intended to denote the analogous curves that cross sectors from i to j in the

counterclockwise direction.
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The special perturbation curves CI.i/; CII.i/; and CIII.i/ lie in the interior of

the i th sector. In particular, they miss A` ; B` andD` as well as A `
; B `

; and D `
;

for ` ¤ i . The curves CIV.ij /; CV.ij /; CVI.ij /; and CVII.ij / miss A` ; B` , and

D` when ` ¤ i; j , but they do meet A `
; B `

; and D `
; for ` ¤ i; j . The curves

CVIII.ij /; CIX.ij /; CX.ij /; and CXI.ij / miss A` ; B` , and D` as well as A `
; B `

;

and D `
; for ` ¤ i; j .

Figure 2. The special perturbation curves CI.i/;CII.i/; and CIII.i/ in the i th sector.

Figure 3. The special perturbation curves CIV.ij / and CV.ij / in the i th and j th sectors.
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Figure 4. The special perturbation curves CVI.ij / and CVII.ij / in the i th and j th sectors.

Figure 5. The composite special perturbation curves CVIII.ij / and CIX.ij / in the i th and

j th sectors.

CX .ij / C XI .ij /

Figure 6. The composite special perturbation curves CX.ij / and CXI.ij / in the i th and j th

sectors.
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For each special perturbation curveC in the first column, the Intersecting curve
column lists all the embedded curves E in the set ¹Ai ; Di º

n
i D 1 which intersect C .

In each case, E meets C transversely in one point. Notice that we do not list any

E as an intersection curve if the perturbation curve C only intersects the path E .

The third column, labeled Longitude, expresses the longitude �C .E/ of C with

respect to E, as an element of �1.F /. The last column records the sign of the

intersection E � C .

We leave it as a straightforward exercise to verify most of the formulas in the

third column of Table 1 for the longitudes with respect to the intersecting curves,

but we illustrate the case of the perturbation curve CIV.12/ and intersection curve

A2, in Figure 7. The longitude, also illustrated there, is easily seen to represent

the word D� 1
2 A1. The sign is given by A2 � CIV.12/ D 1.

Figure 7. The longitude for the perturbation curve CIV.1; 2/ and intersecting curve A2

equals D�1
2
A1.
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Table 1. Perturbation curves illustrated in figures 2–6 with their longitudes for each inter-

secting curve E 2 ¹Ai ;Di º
n
iD1

.

Perturbation Intersecting Longitude � C .E/ sign

curve C curve E

CI.i / A i A i D i A �1
i

� 1

CII.i / D i D i A i D �1
i

1

CIII.i / D i D i A i 1

A i A i D i � 1

CIV.ij / , D i D �1
j

A i 1

i ¤ j Aj D �1
j

A i 1

CV.ij / , A i D j D i � 1

i ¤ j Aj D i D j � 1

CVI.ij / , A i A i Aj A i D i A �1
i

� 1

i ¤ j D i Aj A i D i 1

D j A i D i Aj 1

CVII.ij / , D i D �1
j

A i D i 1

i ¤ j A i A i D �1
j

A i D i A �1
i

� 1

Aj D �1
j

A i D i 1

CVIII.ij / , D i .
Q j �1

`DiC1
A `B �1

`
/D �1

j
.
Q j

`Di
A `B �1

`
/ �1A i 1

i ¤ j Aj D �1
j

.
Q j

`Di
A `B �1

`
/ �1A i .

Q j �1

`DiC1
A `B �1

`
/ 1

CIX.ij / , D i .
Q j �1

`DiC1
A `B �1

`
/D �1

j
.
Q j

`Di
A `B �1

`
/ �1A i D i 1

i ¤ j Aj D �1
j

.
Q j

`Di
A `B �1

`
/ �1A i D i .

Q j �1

`DiC1
A `B �1

`
/ 1

A i A i .
Q j �1

`DiC1
A `B �1

`
/D �1

j
.
Q j

`Di
A `B �1

`
/ �1A i D i A �1

i
� 1

CX.ij / , A i .
Q j

`Di
A `B �1

`
/D j .

Q j �1

`DiC1
A `B �1

`
/ �1D i � 1

i ¤ j Aj .
Q j �1

`DiC1
A `B �1

`
/ �1D i .

Q j

`Di
A `B �1

`
/D j � 1

CXI.ij / , D i .
Q j �1

`DiC1
A `B �1

`
/A j .

Q j

`Di
A `B �1

`
/ �1A i D i � 1

i ¤ j A i A i .
Q j �1

`DiC1
A `B �1

`
/A j .

Q j

`Di
A `B �1

`
/ �1A i D i A �1

i
� 1

D j .
Q j

`Di
A `B �1

`
/ �1A i D i .

Q j �1

`DiC1
A `B �1

`
/A j 1
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6. Perturbations in a cylinder F � I

The transversality arguments in this article consist of two types. In part, we make

use of general results about the generic structure of the perturbed moduli space

M� .X/ for a 3-manifoldX with boundary F , proven in [12]. In this paper, we also

make arguments concerning how traceless conditions and earring anticommuta-

tivity conditions cut this moduli space down, and these are not addressed in [12].

For the latter arguments, we show that it is sufficient to use perturbation curves

which lie in a collar neighborhood of @X . To set up these arguments, we present in

this section some basic results about the effect of perturbing in a cylinderF �Œ0; 1�.

We begin by examining the effect of one such perturbation.

Suppose that C � F is an embedded oriented curve. Let NC denote a tubular

neighborhood of C � ¹ 1
2 º in the cylinder F � I , framed so that its longitude �

is represented by the push off C � ¹ 1
2 C �º. Fix � 2 X (see equation (2.3)) and

consider the perturbation data �C D .NC ; �/.

Proposition 6.1. With�C as above, the restriction map

M� C
.F � I / �!M.F � ¹1º/

is a homeomorphism, preserving the orbit type strati�cation, and the same is true
for restriction to the other end. This is a di�eomorphism on each stratum.

Proof. Since the statement of the proposition involves representations up to con-

jugation, its veracity is independent of where we place the basepoint. For con-

venience, choose a basepoint x in F that is not on C . We fix the base point

.x; 0/ 2 F � I in the cylinder. Let ¹Ai ; Di º
n
i D 1 denote the usual set of genera-

tors for �1.F /. We consider two cases, when C is non-separating and when C is

separating in F .

Consider first the case when C is non-separating. Since homeomorphisms of

F induce homeomorphisms ofM.F /which are diffeomorphisms on each stratum,

it is sufficient to consider the case when C is the special perturbation curve CI.1/

of Figure 2. View the longitude � of C as a based loop by connecting it to the

base point so that � and D1 are homotopic relative to the base point.

The Seifert–Van Kampen theorem shows that

�1.F � I n NC / D
D
Ai ; Di ; m

�
�
�

nY

i D 1

ŒAi ; Di � D 1
E
D �1.F / � Z hmi;

where m is a meridian for C connected to the base point the same way as �. Thus

any � 2M.F / may be extended to �1.F � I n NC / by sending m to any element
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in SU.2/. For such an extension Q� to satisfy the perturbation condition (2.5),

Q�.m/ D 1 if �.�/ D ˙1, and otherwise Q�.m/ D F.�.�//, where F.e�Q / D e�.�/Q

when kQk D 1. Hence, the extension of � to Q� in M� C
.F � I / is unique.

It is clear that the stabilizers of � and Q� coincide, since Q�.m/ commutes with

the element �.D1/ in the image of the first factor of the free product, and since

Q�.m/ D 1 if �.D1/ is central. This extension map � 2 M.F / 7! M.F � Œ0; 1�/ is

an inverse for the restriction map sending Q� to its restriction to �1.F /; that is, its

restriction to the first factor in the free product.

The longitude ofNC can be expressed as the word �.A1; B1; : : : ; An ; Bn/. The

map SU.2/2n ! SU.2/2nC 1 given by

.a1; b1; : : : ; an ; bn/ 7�! .a1; b1; : : : ; an ; bn ; F.�.a1; b1; : : : ; an ; bn///

is smooth and equivariant with respect to conjugation. The map SU.2/2nC 1 !

SU.2/2n which projects onto the first 2n factors is also smooth and equivariant.

These two maps induce bijections on their subquotients M� C
.F � I / ŠM.F / by

the previous paragraphs, and hence they induce inverse homeomorphisms. These

are smooth diffeomorphisms on each stratum, since the orbit type stratification of

M.F / coincides with its stratification as an algebraic variety.

Now consider the case when C is separating. Assume the path component of

F n C containing the base point has genus g. Up to homeomorphism of F , we

may assume that C is the curve depicted in Figure 8.

Figure 8
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Thus C misses A1; D1; : : : ; Ag ; Dg and their paths from the base point, but C

intersects the paths from the base point to Ag C 1; Dg C 1; : : : ; An ; Dn .

The Seifert–Van Kampen theorem in this case shows that �1.F � Œ0; 1� nNC /

has a presentation with generators

Ai D Ai � ¹0º; Di D Di � ¹0º; A0
i D Ai � ¹1º; D0

i D Di � ¹1º; m

where m is the meridian of NC , subject to the relations

nY

i D 1

ŒAi ; Di � D 1 D
nQ

i D 1
ŒA0

i ; D
0
i �; (6.1a)

A0
i D

´
Ai if i � g;

mAim
� 1 if i > g;

; (6.1b)

D0
i D

´
Di if i � g;

mDim
� 1 if i > g:

(6.1c)

The longitude � represents
Q g

i D 1ŒAi ; Di �. Again, one sees that given a repre-

sentation �W�1.F /! SU.2/, there exists a unique extension of � to

Q�W�1.F � Œ0; 1� nNC / �! SU.2/

satisfying the perturbation condition. In fact, � determines Q�.�/ by Q�.�/ D

�
� Q g

i D 1ŒAi ; Di �
�
, which in turn determines Q�.�/ by the perturbation condi-

tion (2.5). Then � and Q�.m/ determine Q�.A0
i / and Q�.D0

i / by the relations (6.1). The

relation Q�
� Q n

i D 1ŒA
0
i ;D

0
i �

�
D1 is a consequence of the fact that �

� Q n
i D 1ŒAi ;Di �

�
D1

and Q�.Œm; ��/ D 1. The rest of the argument is similar to the first case, and we leave

the details to the reader. �

Denote by ˆ� C
WM.F /!M.F / the composite homeomorphism

M.F / DM.F � ¹0º/ �M� C
.F � I / �!M.F � ¹1º/ DM.F /:

Recall that �C .E/ denotes the longitude of C with respect to E, from Defini-

tion 5.1, and �C denotes the perturbation data �C D ¹NC ; �º.

Proposition 6.2. Let C be an embedded curve inF and � 2 X, determining
perturbation data�C D ¹NC ; �º. Let E be a loop inF , for exampleE 2
¹Ai ; Di º

n
i D 1, E a path fromE to the base point, and let� 2M.F /.

If C is disjoint fromE [ E , then

ˆ� C
.�/.E/ D �.E/:
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