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That speakers can vary their speaking rate is evident, but how they accomplish this has hardly been
studied. Consider this analogy: When walking, speed can be continuously increased, within limits,
but to speed up further, humans must run. Are there multiple qualitatively distinct speech “gaits” that
resemble walking and running? Or is control achieved by continuous modulation of a single gait?
This study investigates these possibilities through simulations of a new connectionist computational
model of the cognitive process of speech production, EPONA, that borrows from Dell, Burger, and
Svec’s (1997) model. The model has parameters that can be adjusted to fit the temporal character-
istics of speech at different speaking rates. We trained the model on a corpus of disyllabic Dutch
words produced at different speaking rates. During training, different clusters of parameter values
(regimes) were identified for different speaking rates. In a 1-gait system, the regimes used to achieve
fast and slow speech are qualitatively similar, but quantitatively different. In a multiple gait system,
there is no linear relationship between the parameter settings associated with each gait, resulting in
an abrupt shift in parameter values to move from speaking slowly to speaking fast. After training,
the model achieved good fits in all three speaking rates. The parameter settings associated with each
speaking rate were not linearly related, suggesting the presence of cognitive gaits. Thus, we provide
the first computationally explicit account of the ability to modulate the speech production system to
achieve different speaking styles.
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Speaking is a uniquely human behavior. It is by nature temporal:
concepts and ideas are encoded as a stream of rapidly fluctuating
sound, and the correct ordering and duration of the components is

of crucial importance for intelligibility and conveying meaning. At
the same time, there is great variability in the timing of speech
sounds: different speakers have different habitual speech rates, and

This article was published Online First December 30, 2019.
X Joe Rodd, Psychology of Language Department, Max Planck In-

stitute for Psycholinguistics, Nijmegen, the Netherlands, and Centre for
Language Studies, Radboud University; X Hans Rutger Bosker, Psy-
chology of Language Department, Max Planck Institute for Psycholin-
guistics, and Donders Institute for Brain and Behaviour, Radboud
University; Mirjam Ernestus, Centre for Language Studies, Radboud
University, and Max Planck Institute for Psycholinguistics; X Phillip
M. Alday, Psychology of Language Department, Max Planck Institute
for Psycholinguistics; Antje S. Meyer, Psychology of Language De-
partment, Max Planck Institute for Psycholinguistics, and Donders
Institute for Brain and Behaviour, Radboud University; Louis ten
Bosch, Max Planck Institute for Psycholinguistics, and Centre for
Language Studies, Radboud University.

This research was supported by Netherlands Organization for Scien-
tific Research (NWO) Gravitation Grant 024.001.006 to the Language

in Interaction Consortium. We are grateful to Jeroen van Paridon,
Laurel Brehm, and Lou Boves for useful comments on our modelling
and analysis methods. Elements of the work presented in the article
have previously been presented at the following venues: seminars at the
University of Munich (January 2018), University of Düsseldorf (March
2019), University of Amsterdam (April 2019), and University of
Utrecht (April 2019); and at the following workshops and conferences:
“International Workshop on Speech Production” (Nijmegen, June 2018);
“Architectures and Mechanisms for Language Processing” (AMLaP, Ber-
lin, September 2018); “Crossing the Boundaries: Language in Interaction”
(Nijmegen, April 2019); “Phonetics and Phonology in Europe” (PaPE
Lecce, June 2019).

Correspondence concerning this article should be addressed to Joe Rodd,
Psychology of Language Department, Max Planck Institute for Psycholin-
guistics, Postbus 310 6500 AH Nijmegen, the Netherlands. E-mail:
joe.rodd@mpi.nl

T
hi

s
do

cu
m

en
t

is
co

py
ri

gh
te

d
by

th
e

A
m

er
ic

an
Ps

yc
ho

lo
gi

ca
l

A
ss

oc
ia

tio
n

or
on

e
of

its
al

lie
d

pu
bl

is
he

rs
.

T
hi

s
ar

tic
le

is
in

te
nd

ed
so

le
ly

fo
r

th
e

pe
rs

on
al

us
e

of
th

e
in

di
vi

du
al

us
er

an
d

is
no

t
to

be
di

ss
em

in
at

ed
br

oa
dl

y.

Psychological Review
© 2019 American Psychological Association 2020, Vol. 127, No. 2, 281–304
ISSN: 0033-295X http://dx.doi.org/10.1037/rev0000172

281

https://orcid.org/0000-0002-3939-9712
https://orcid.org/0000-0002-2628-7738
https://orcid.org/0000-0002-9984-5745
https://orcid.org/0000-0002-9984-5745
mailto:joe.rodd@mpi.nl
http://dx.doi.org/10.1037/rev0000172


individual speakers can vary their speech rate from situation to
situation, and even within utterances in the same conversation
(e.g., Miller, Grosjean, & Lomanto, 1984; Quené, 2008). A por-
tion of this variation presumably arises to accommodate differ-
ent communicative situations: speakers may slow down to
provide listeners with sufficient time to extract the necessary
details from the acoustic signal (e.g., Bosker & Cooke, 2018;
Cooke, King, Garnier, & Aubanel, 2014; Lindblom, 1990).
Alternatively, they may speed up, for instance to convey more
content in the same period of time. Listeners use speech rate
information in shaping their perception (Dilley & Pitt, 2010;
Kaufeld, Ravenschlag, Meyer, Martin, & Bosker, 2019;
Maslowski, Meyer, & Bosker, 2019), making control of speech
rate an essential communicative skill.

The fact that humans have control over the rate at which they
speak means that they are capable of adjusting the cognitive
apparatus that plans speech, from the selection of words to the
tightly coordinated movements of the articulators of the vocal
tract. Understanding how speech planning is controlled can give us
insights into how the apparatus itself works. Given the large degree
of speaker-controlled variability in speech, identifying the mech-
anisms of control over speech planning is also important in its own
right. In the present study, we examine the control processes
speakers may engage to achieve different speech rates.

Speech production is classically characterized as a modular,
feed-forward processing system (e.g., Dell & O’Seaghdha, 1992;
Levelt, 1989; Levelt, Roelofs, & Meyer, 1999; Stemberger, 1985).
After a meaning representation has been selected (“conceptualiza-
tion”), the lexical selection stage begins, where abstract represen-
tations of words that best correspond to the conceptual message are
selected. Processes of word form encoding then construct detailed
word form representations. These stages together can be consid-
ered as a formulation phase. Once a word form representation is
selected, a motor execution phase is entered, where movement
commands for the articulatory apparatus (e.g., the tongue, lips,
vocal chords) are calculated, carried out, and monitored (Guenther,
2016; Tourville & Guenther, 2011). Because speakers typically
plan as late as possible, rather than storing a preplanned utter-
ance in working memory (e.g., Damian & Dumay, 2007; Kello,
Plaut, & MacWhinney, 2000; Levelt, 1989; Levelt et al., 1999),
the formulation system must keep up with the desired rate of
articulation, requiring modulation of its operation to maintain
synchronization.

“Gaits” in Speech Production

In a working model of the production system with formulation
and execution phases, adjustment in speaking rate results from
adjusting the state of the formulation system; to speak slowly we
shift to a regime that results in slow speech and to speak fast we
shift to a regime that causes speech to emerge more quickly. How
are these regimes related to each other? How does the regime
invoked to produce slow speech differ from the regime invoked to
produce medium rate speech?

The control mechanisms engaged to regulate speaking rate at the
level of utterance planning and preparation are largely unknown. A
more concrete and readily observable system that operates at a
continuously varying range of speeds is that of human and animal
locomotion. In humans, walking and running gaits are adopted to

achieve movement at different speeds. The movement patterns of
walking and running are qualitatively different; in walking, at least
one foot is on the ground at all times, while in running, both feet
are raised from the ground simultaneously for part of the cycle
(Alexander, 1989; Minetti, 1998). A continuous range of move-
ment speeds can be achieved by first increasing the speed of
walking, and then switching to a running gait to speed up further.
Alongside hard limits on feasibility of certain gaits at certain
speeds, the selection of locomotive gaits is tightly linked to their
relative efficiency. In horses, which typically have walking, trot-
ting, and galloping gaits, each gait has a clear “sweet spot” speed,
at the approximate center of the range of speeds achievable with
that gait, where exertion (ml O2 consumed to move 1 m) is
minimized (Hoyt & Taylor, 1981, their Figure 2). Horses and
migratory animals select these speeds preferentially (Pennycuick,
1975), and avoid the inefficient speeds in the shoulder of each gait.
This feature of gaited systems previously inspired speech research-
ers working at the level of articulatory movements, who link
qualitatively different mechanical realizations of speech move-
ments to their relative efficiency to achieve a required standard of
intelligibility (e.g., Pouplier, 2012), as predicted by the hyper- and
hypoarticulation theory (Lindblom, 1990).

Pouplier (2012) related the metabolic equivalence of the optima
of the locomotive gaits to speaking, conceptualizing the gaits of
speech as equally optimal coordination modes, suitable for differ-
ent contexts. This holds well for the execution phase of speech
production, which incorporates motor planning and articulation,
where there are “many roads to Rome”: Different gestural coor-
dination configurations, which are chosen between according to
local context, can lead to acoustic outcomes that are equivalent for
the listener. For instance, speakers can make use of alternative
vocal tract configurations to achieve speech sounds when articu-
latory freedom is constrained (Lindblom, Lubker, & Gay, 1977).
Immediately adjacent speech sounds also condition the selection of
alternative articulatory configurations, so as to minimize the artic-
ulator movement required (e.g., Boyce & Espy-Wilson, 1997).
This reconfiguration can be thought of as analogous to switching
between gaits in locomotion.

More global contextual factors such as prosody and speech rate
can also lead to gestural reconfiguration in the execution compo-
nent, for instance in coda consonant resyllabification, whereby a
consonant may be realized in a way more similar to an onset
consonant (Scobbie & Pouplier, 2010) in rate-scaling experiments.
Similarly, antiphase synchronization of gestures tends to reconfig-
ure to in-phase synchronization as rate increases (Kelso, Saltzman,
& Tuller, 1986); for instance in West Andalusian Spanish, Parrell
(2012) finds that speakers shift from antiphase oral-glottal coor-
dination in sequences like ['ka.hta] from /casta/, “caste” (with
preaspiration before the [ti]) to in-phase coordination ['ka.tha], by
making the tongue articulation of the /t/ earlier so it occurs at the
same time as the glottal opening.

Alternatively, the speech planning apparatus might be purely
linearly up- or down-regulated in response to changes in required
speaking rate. This is the case for motor tasks where temporal
precision is required, in both gross motor movements (Wright &
Meyer, 1983), and fine movement requiring extensive coordina-
tion, such as piano playing (Bella & Palmer, 2011).
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Approach Adopted in This Study

We extend the metaphor of gaitedness to the psychological
system of speaking rate control. We ask whether there are multiple
cognitive gaits in speech planning that resemble locomotive gates.
Without a choice of gaits, the cognitive regimes adopted to achieve
different speaking rates would be similar in nature, but only
quantitatively different. In other words, the difference between the
regimes required to produce slow and medium speech would be
similar to the difference between the regimes required to produce
medium and fast speech. This is akin to only having one gait,
which can be sped up or slowed down linearly. Alternatively, with
multiple gaits of speech planning, the regimes would differ from
each other in a nonlinear way, with a qualitative difference be-
tween, for instance, the regimes adopted for slow rates (walk-
speaking) and the regimes adopted for fast rates (run-speaking).

We address the question of how speakers control speech rate.
More concretely, we aimed to ascertain how the cognitive regimes
that are associated with each speaking rate relate to each other, to
assess if multiple gaits might be present. To do this, we con-
structed a family of computationally implemented connectionist
models of the formulation phase of speech planning (Strand 1), and
explored how each model variant could be optimized to mimic the
temporal properties of natural word productions taken from a
speech corpus elicited at different cued speaking rates. We then
evaluated the performance of the optimized model variants. This
process allowed us to identify optimal model parameter settings
associated with producing speech at a given rate, which provide a
window onto the arrangement of the regimes of the underlying
cognitive systems (Strand 2).

Computational Model (Strand 1)

A computational model of the speech planning system provides
a psycholinguistic sandbox to explore how the regimes adopted to
achieve speech at different speaking rates relate to each other. We
propose such a computational model, EPONA. EPONA has pa-
rameters that determine its behavior (controlling features such as
rate of activation spreading, rate of activation decay, and connec-
tion weightings). These parameters can be optimized to cause the
model to optimally fit speech data produced at different speaking
rates. The sets of parameter values chosen by the model for each
rate condition mirror the regimes of the cognitive system that the
model emulates. More concretely, we adopted an optimization
procedure which identified the parameter values required to fit the
distributions of three durational features measured from elicited
productions of disyllabic words: first syllable durations, second
syllable durations, and overlap durations. The distributions of
these durational features together form a “fingerprint” of the
regime of the speech production system engaged to achieve that
speaking rate. This process was repeated for three different speak-
ing rates: fast, medium, and slow.

The theoretical model that we selected as inspiration for
EPONA is that of Dell, Burger, and Svec (1997). The model is a
good starting point because it captures the ability to produce
sequences of elements from a hierarchical structure. The model
separates the encoding of the segmental content of the word from
the encoding of the metrical structure (the ordering and timing of
the segmental content, and suprasegmental content such as word
stress). EPONA inherits this property.

How do Regimes Relate to Each Other? (Strand 2)

The parameters of the EPONA model can be thought to repre-
sent the regimes of the cognitive system that underlie natural
speech production at different rates. The different regimes of the
system exist as locations in a multidimensional “parameter space,”
where the parameters form the dimensions.

With a sample of three speaking rates, and assuming that each
rate is associated with a single regime, there are five logical
possibilities for how the regimes might be arranged with respect to
each other. (a) The cognitive system has a single gait, and different
speaking rates are achieved by continuous adjustment of this single
gait. This is akin to only walking, but walking at three different
speeds. (b) The cognitive system has three gaits, one for each
speaking rate. These three gaits are qualitatively different, like
walking, trotting, and galloping in horse locomotion. The cognitive
system has two gaits, grouping the medium speaking rate with
either the slow rate (c) or the fast rate (d). Finally, (e) The
cognitive system has two gaits, a habitual gait adopted for the
medium speaking rate, and an exceptional gait adopted for slow
and fast speaking rates. This fifth option supposes that there is a
default gait for the most frequently used speed, and that a fall-back
“all purpose” gait is adopted for other rates.

In the single-gait scenario, the three regimes would be arranged
along a single axis in parameter space. In a multiple gait scenario,
the three regimes would be arranged in a triangle in parameter
space. Each side of the triangle is potentially the axis of a gait to
which two regimes belong. For each axis, if both speaking rate
regimes belong to the same gait, we would expect a continuous,
linear variation in the predictions of models fitted at points along
the axis. If, however, the two regimes belong to different gaits, we
would expect to see a nonlinearity at some point along the axis,
indicating a shift from the area of parameter space associated with
one gait to the area of parameter space associated with the other.
To distinguish between the single and multiple gait scenarios, we
examined the results of the optimization procedure undertaken in
Strand 1 to identify the arrangement of the regimes in parameter
space. To distinguish between various two- and three-gait scenar-
ios, we fitted additional models at points along the axes between
the three regimes, and assessed the predicted “fingerprints” for
(non)linearity by means of Bayesian statistical modeling.

Serial Order in Speech Production and the Dell et al.
(1997) Model

The core task of the formulation process is to ensure that after
a lexical concept becomes active at the conceptual-formulation
frontier, the gestural scores required to produce it become active at
the frontier between formulation and motor execution. In this
article, we will follow Levelt, Roelofs, and Meyer (1999) and
Tourville and Guenther (2011) in assuming that the gestural score
representation encodes the relative onset and offset times of ab-
stract gestures (comparable with the gestures described by e.g.,
Browman & Goldstein, 1992) of a single syllable, and that this
representation is shared by formulation and motor execution to
allow activation to spread. In the execution component, a more
concrete motor plan and auditory and somatosensory expectations
are retrieved for this gestural score (Guenther, 2016; Tourville &
Guenther, 2011).
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A naive connectionist model of this process might assume direct
connections from each word node to the relevant syllable nodes.
Asking such a model to predict the temporal organization of a
multisyllabic word such as the Dutch word snavel /'sna�.vəl/
“beak,” however, will fail: /'sna�/ and /vəl/ will become active
simultaneously. A successful model therefore needs to account for
serial order; the fact that sequences of speech sounds are over-
whelmingly often produced in the correct order (one or two errors
per 1,000 words; Garnham, Shillcock, Brown, Mill, & Cutler,
1981), despite the subunits of each word presumably being acti-
vated from a single word-level parent node.

It is not trivial to construct a model that, in response to activa-
tion in a single parent node, can activate and then deactivate child
elements in a sequence in turn. In the speech production domain,
the most prominent model to deal with serial ordering is that of
Dell et al. (1997, hereafter the DBS model). Dell et al. (1997)
enumerate the requirements of serial ordering: preparation of the
future, activation of the present and suppression of the past. That
is, an ideal model should (a) prime upcoming syllables, (b) activate
them at the correct time, and (c) deactivate them once they have
been produced.

An example instantiation of the EPONA model capable of
producing three Dutch disyllabic words is illustrated in Figure 1.
The word-level input “plan nodes” are shown at the top of the
model. At the bottom of the model are the syllable-level gestural
score “content nodes.” In between, there are two top-down routes
along which activation can flow. The first route connects the plan
nodes directly to the content nodes (shown with dashed red lines in
Figure 1). The connections of this route are responsible for encod-
ing the segmental content of the word, so we term it the “segmental
route.” The second route is responsible for maintaining correct

serial order of syllables and encoding the metrical structure of the
words by means of a frame node, which represents the word-level
metrical structure, so we term it the “metrical route.” The concept
of separating the planning of segmental content and metrical
structure into separate streams and employing a frame to enforce
serial order is well established in framed-based psycholinguistic
models of the production system (Bock, 1982; Dell, 1986; Garrett,
1976; Levelt, 1989; MacKay, 1972; Shattuck-Hufnagel, 1979;
Stemberger, 1991). Note that throughout this article, C indicates a
consonant, V indicates a vowel, ' indicates the syllable with pri-
mary stress, while a period (.) indicates the syllable boundary.

Frame-based models have two key advantages compared to
models without them. First, because they separate information
about sequential ordering from segmental information, they can
explain the ordering of novel sequences without additional learn-
ing: if the correct frame and the correct content are known,
previous separate experience with the frame and the content can be
combined to produce the sequence correctly. Second, they account
for the observation that errors where subelements are misordered
within a sequence are overwhelmingly outnumbered by errors
where elements from the same position in the sequence exchange
(“caterpillar” ¡ “patterkiller”) or are copied between adjacent
sequences. A model without frames would predict much more
frequent misorderings of the elements within a sequence than is
observed (Boomer & Laver, 1968; MacKay, 1970; Vousden,
Brown, & Harley, 2000; Vousden & Maylor, 2006).

The metrical route is shown in Figure 1 with solid black arrows.
Aside from the frame node, there are structure nodes, which are
connected to all content nodes sharing a metrical structure at the
syllable level. The first connection in the metrical route passes
activation from the plan node to the relevant frame node. The
frame node has an output port for each syllable in the word, so in
our case, two ports. The first port is connected to a structure node
for the metrical shape of the first syllable of the word. The second
port is connected to a structure node for the metrical shape of the
second syllable of the word. A mechanism within the frame node
ensures the activation initially flows primarily from the first port,
and subsequently from the second port; we will address the nature
of this mechanism and the activation flows it generates shortly.
The structure nodes therefore receive activation asynchronously:
First the structure node representing the shape of the first syllable
becomes active, and then the structure node representing the shape
of the second syllable. The structure nodes spread their activation
to all the content nodes that share that structure. In the content
nodes, the incoming activation from the metrical route is multi-
plied by the incoming activation from the segmental route, mean-
ing that nonzero activation must be received from both streams for
the content node to become activated. The activation in the content
nodes can be considered to be the output of the DBS model.

We will now turn to the frame node, which generates activation
streams for each syllable in response to receiving activation from
the word node above it. The DBS model is agnostic regarding the
precise nature of the serial order mechanism employed in the
frame node. Rather than including a pure-connectionist mechanism
such as a competitive queue in the frame node (e.g., Hurlstone,
Hitch, & Baddeley, 2014), Dell et al. (1997) construct a transpar-
ent model that exhibits serial-order behavior. This has the advan-
tage of simplicity and interpretability.

Figure 1. An instance of the EPONA model containing the nodes nec-
essary to produce the Dutch disyllabic words wafel ['wa�.fəl] “waffle,”
navel ['na�.vəl] “navel” and snavel ['sna�.vəl] “beak.” The segmental route
is shown with red dashed connections. At the top level, there is a unique
plan node for each word. Frame nodes are shared between words with the
same metrical structure (wafel and navel both have a 'CV.CVC structure, so
are connected to the same frame node). Each frame node has multiple
output ports (here numbered 1 and 2), one associated with each child
element of the sequence. Each port is connected to a structure node. In turn,
each structure node is connected to all content nodes representing syllables
with the relevant metrical structure. Structure nodes and content nodes are
also shared between words. Multiplication in the content nodes (repre-
sented by asterisks) ensures that only syllables receiving input from both
routes become active. See the online article for the color version of this
figure.
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In EPONA, the frame nodes directly produce parametrically
defined activation patterns for each of the ports after they receive
activation from the plan node. The ports can produce activation at
three (parametrically defined) activation levels: baseline activa-
tion, partial activation, and full activation.

Activation is produced at these levels in a specific order (de-
picted in Figure 2). Before word onset, both ports produce baseline
activation. The activation pattern for the first port (solid lines)
begins with a period of partial activation, then a period of full
activation, then baseline activation. The activation pattern for the
second port (dashed) begins with baseline activation, then partial
activation, then full activation, then baseline activation. The sec-
ond port is therefore producing the same pattern as the first port,
but delayed by the duration of one period. The partial activation
level is proposed by Dell et al. (1997) as a means to prime the
“future” (the next content to be produced). The full activation level
is associated with activating the “present” (the content currently
being produced). The baseline activation state serves as the base-
line for ports connected to items that have not yet been produced,
and is also associated with deactivating the “past” (content that has
already been produced).

Mechanics of the Model

Dell et al. (1997) describe a mechanism that accounts for serial
order behavior in speech production. They used the model to
predict probabilities of speech errors. Error probabilities were
calculated directly from predicted activation levels. To do so, it
was not necessary to extract precise onset and offset times from the
model. Rather than examining errors, we seek to understand how
speakers adjust their speaking rate in correct utterances. To do so,
we propose EPONA, a model that borrows its conception and
underlying connectionist architecture from DBS. EPONA is able
to predict the onset and offset times of syllable level planning
units, and to model differences between speaking rates. EPONA
differs from DBS in the specification of the timing behavior of the
frame node, and extends it to add a rudimentary operationalization
of the execution component. EPONA is implemented computa-
tionally, and is tested with speech timing data, rather than speech
error proportions.

Timing in the Frame Node

The DBS model assumes that all the periods of the activation
patterns associated with the ports of the frame node have equal
duration. A model with this assumption is sufficient for the pre-
diction of the rate of serial order errors, but it is improbable that

such a model will be successful in fitting the relative onset and
offset times of syllables in real speech, where the durations of
syllables in a word are rarely equal (varying as a product of, among
other things, the number of segments, the specific segments in-
volved, the stress status of the syllable, and phonological processes
such as final lengthening: Booij, 1995; Cambier-Langeveld, Nes-
por, & van Heuven, 1997; Slootweg, 1988). There are (at least)
two ways that this constraint could be relaxed to allow the duration
of full activation on each port to differ (and thus the overt pro-
duction of each syllable), which should make the frame node more
effective in encoding the metrical properties of the word shape it
represents. These possibilities are described in the remainder of
this section. We construct variants of EPONA consistent with each
possibility.

The present implementation of EPONA produces only disyl-
labic words, but the mechanisms described here could be adapted
to produce more syllables. In the following descriptions, we again
assume a model producing disyllabic words, and refer to two frame
node output ports, though, of course, frame nodes encoding the
metrical structure of words with more syllables are also possible,
where further ports would be required.

Asynchronous model. The first option to relax the equal
duration constraint is to allow the durations of the periods of the
activation pattern associated with each output port to differ. Thus,
under this variant, the two ports are potentially out of sync relative
to each other after word onset, because one parameter controls the
durations of the activation periods output by the first port, and the
other parameter controls the durations of the output of the second
port. An example of a possible set of frame output patterns
produced by this variant is depicted in the upper cell in Figure 3.
This variant requires two parameters: dur0 and dur1. These control
the duration in ticks of all phases of the output of Port 1 and Port
2, respectively.

Synchronous model. Alternatively, synchronization between
the activation patterns could be maintained, such that when Port 1
is outputting full activation, Port 2 is outputting partial activation,
but allowing the durations of each pair of steps to differ. This
means that both ports always switch activation level at the same
moment, but the amount of time that elapses between these switch-
ing events may vary. An example of a possible set of frame output
patterns produced by this variant is shown in the lower cell in
Figure 3. This variant has four duration parameters: dur0, dur1,
dur2, and dur3, defining the duration of four phases that occur
simultaneously in both output patterns—that is, the parameters all
have influence on the activation patterns emitted from both ports.
The parameter dur0 defines the duration of the first phase, where
Port 1 outputs partial activation and Port 2 outputs baseline acti-
vation. The duration of the second phase, where Port 1 outputs full
activation and Port 2 outputs partial activation is specified by dur1.
The duration of the third phase, where Port 1 outputs baseline
activation and Port 2 outputs full activation is defined by dur2. The
duration of the final phase, where both ports output baseline
activation, is defined by dur3.

Control model. We also constructed a control model variant
that retains the timing structure described by Dell et al. (1997). The
model variant performed poorly relative to the asynchronous and
synchronous model variants, as expected. Full details about the con-
trol model variant are available in the online supplemental materials.

Figure 2. The activation patterns produced by the frame node for Port 1
(purple, solid) and Port 2 (green, dashed). See the online article for the
color version of this figure.
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Execution Component

To calculate the onsets and offsets of each syllable, we need to
connect a model of the execution phase of speech production to the
formulation phase. Our conception of the execution phase is straight-
forward; we assume that the duration of strong activation of a syllable
output node is linearly related to the duration of articulation of that
syllable (cf. Tourville & Guenther, 2011). To identify strong activa-
tion, we compare the activation of each syllable node over time to a
syllable-specific threshold. Syllable-specific thresholds are used to
account for variability in the magnitude of activation change in each
syllable position. When the activation first exceeds this threshold, we
consider syllable production to start, and when it decreases below the
threshold again, we consider syllable production to stop. This proce-
dure is fully specified the methods for Strand 1 (Evaluation of a
Solution), and is functionally equivalent to assuming that execution
faithfully reproduces the temporal dynamics of formulation, and that
continuing activation from formulation is necessary during articulation.

Computational Implementation

The EPONA model is programmed in Python 3, using the
NetworkX library (Hagberg, Schult, & Swart, 2008, Version 1.11),
in which nodes and connections between them are defined and the
spread of activation from node to node can be computed as a
function of time. The optimization and learning of the model is
also programmed in Python, using the Platypus library (Hadka,
2017, version as of April 2017). The code for the model and all
analyses is available as part of the online supplemental materials
and at https://osf.io/3mqgu/.

Speech Corpus

The model requires speech data to compare against. In this case,
speech data were taken from the ‘experiment 1’ subset of the PiNCeR
corpus gathered by Rodd, Bosker, ten Bosch, Ernestus, and Meyer
(2019), which contains speech recordings and is annotated for word
and syllable onset and offset times in ('CV.CVC and 'CCV.CVC)
disyllabic Dutch words. The speech was elicited by means of cued

picture naming, whereby 12 speakers named prefamiliarized line
drawings presented in sets of eight on a “clock face” display. The
words that were elicited are provided in the online supplemental
materials. The picture to be named was indicated by a cueing dot,
which moved clockwise from picture to picture, at slow (915 ms/
word, 1.09 Hz), medium (646 ms/word, 1.56 Hz), and fast (456
ms/word, 2.19 Hz) rates. These speaking rates were selected on the
basis of a pilot experiment where speakers were not cued, but instead
encouraged to speed up or slow down as much as they could. These
rates fall within the range of rates measured in the switchboard corpus
of spontaneous speech (Greenberg, Carvey, Hitchcock, & Chang,
2003), but are all slower than the median rate in that corpus, and are
slower than an estimate of mean rate for Dutch speakers of similar
demographics (Quené, 2008). This is likely because the picture nam-
ing task, which included only middle-to-low frequent concrete nouns,
was relatively hard compared to conversational speech, which in-
cludes many closed class words that are fast to plan.

The word onset and offset times were obtained by a multistep
process. First, forced alignment using MAUS (Schiel, 2015) was
applied to each trial (set of eight pictures). The resulting word bound-
aries were subsequently checked by a panel of experienced annota-
tors, who evaluated whether the segmentation was accurate or not.
Finally, the panel of annotators adjusted the boundaries of words that
were marked as inaccurate in the previous step. Because the words
were disyllabic, the onset of the first syllable and the onset of the word
were simultaneous, and the offset of the second syllable and the offset
of the word were simultaneous. To detect the onset of the second
syllable, and the offset of the first syllable, a metric was employed to
quantify the stability of the acoustic signal. Heightened acoustic
instability was equated with temporal overlap between the gestural
score encoding the first syllable and the gestural score encoding the
second syllable. For further details about this metric, see Rodd,
Bosker, ten Bosch, and Ernestus (2019).

The corpus contains 4,023, 3,575, and 2,627 word tokens for the
slow, medium, and fast rate conditions, respectively. The size of the
corpus sections differ primarily due to more frequent speaker error
and less successful forced alignment in the faster conditions. How-
ever, within each speaking rate section, the remaining tokens were
evenly distributed across the target words, and the proportion of
'CV.CVC versus 'CCV.CVC words was comparable between the
corpus sections (29.7%, 29.9%, 30.6% 'CV.CVC words for fast,
medium, and slow rates, respectively).1

The distributions of the first and second syllables and the
overlap between them are shown for each cueing rate condition in
Figure 4.

Training and Testing the Computational Model
(Strand 1)

Strand 1 concerns the construction of a family of computation-
ally implemented connectionist models of the formulation phase of
speech planning, optimization of the model variants to mimic
temporal properties of natural speech production, and evaluation of
the performance of the model variants.

1 Note that statistical testing to confirm whether or not the corpus sections
differed is not appropriate, because the sets of words here are closed populations,
rather than samples from some larger population (Sassenhagen & Alday, 2016).

Figure 3. The activation patterns produced by the frame node for Port 1 (purple,
solid) and Port 2 (green, dashed) in the asynchronous and synchronous model
variants. The duration of each step in the activation patterns is controlled by various
parameters, depending on the model variant (such as dur0, see text for full details).
See the online article for the color version of this figure.
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Methods: Evaluating the Performance of
Model Variants

Our aim in Strand 2 was to apply simulation of the EPONA to
reveal how the cognitive system underpinning speech production
can be modulated to achieve speech at different speaking rates. To
achieve this, we require the model to simulate the performance of
human speakers using different rates in Strand 1. However, it is not
straightforward to evaluate how well a model simulates human
speech production.

We consider the set of distributions of first and second syllable
duration and overlap duration in each rate condition of the PiNCeR
corpus as a “fingerprint” of the speech production system operat-
ing at that speaking rate (see Figure 4). Together, the fingerprint
distributions capture more about the regimes of the speech pro-
duction system than only the average durations of the syllables and
the overlap between them would do, because the variation present
in the durations is a product of variability inherent to the produc-
tion system operating in a given regime. Because we are not
concerned with individual differences between participants, but,
instead with characterizing the regimes of the speech production
system more broadly, we collapse across the 12 speakers when
constructing the fingerprint distributions. The distributions of the
data in the corpus shown in the violins in Figure 4 are therefore
identical to the fingerprint distributions used to fit the models.
Model optimization is then conducted independently for each
speaking rate.

Optimization procedure. The Platypus (Hadka, 2017) imple-
mentation of the NSGAIII (Deb & Jain, 2014) algorithm was used
to find the best parameter values in each speaking rate for each
model architecture. The fitting procedure is depicted in Figure 5.
The optimizer must find a set of parameter values that produce a
prediction that is a good fit for all three fingerprint distributions
simultaneously. In line with the optimization literature, we will
term such a set of parameter values a solution. Because the model
produces a distribution for each of the three fingerprint distribu-
tions, we obtain three estimates of fit quality for each solution
tested: one for each distribution. In the optimization literature,
such a quality estimate that is to be maximized or minimized is

termed an objective. We obtain independent estimates of fit qual-
ity, in the form of the Kullback-Leibler (KL) divergence for each
objective.

The KL divergence is a commonly used measure of the dissim-
ilarity of two distributions, where a lower KL divergence indicates
more similar distributions. By definition, its magnitude is depen-
dent on the variability of the observed distribution. In our case, the
variability of the observed duration distributions differs substan-
tially between the three objectives. This means that the scales of
the KL divergences calculated for each of the three objectives are
not directly arithmetically comparable. We have no theoretical
reason to prefer that the model concentrate on learning to fit one of
the objectives ahead of the others, but simply summing (or aver-
aging) the KL divergences would place undue weight on one of the
objectives. We must therefore consider all three objectives to-
gether. Such an optimization problem with multiple independent
estimates of fit quality (or objectives) that cannot be straightfor-
wardly collapsed is known as a multiobjective problem. Typically,
there is no single solution that is optimal for all objectives: Solu-
tions that work well for one objective may be poor for another.
Instead, the optimization algorithm aims to identify the solutions
that are Pareto efficient, that is, the fit that they achieve for one
objective cannot be improved upon without worsening the fit for
one of the other objectives. This set of Pareto efficient solutions is
termed the Pareto front.

Alongside the complication of multiple objectives, our models
also have multiple free parameters to be optimized (between 11
and 14 depending on model variant; a full listing of parameters is
available in the online supplemental materials), and are computa-
tionally expensive (time consuming) to evaluate because we sim-
ulate activation spreading through the network for each and every
solution, and require multiple repetitions to simulate the finger-
print distributions. A complex error landscape with more than a
handful of free parameters can prove difficult to search effectively;
a classical method such as grid search, where evenly spaced points
in the parameter space are sampled, requires prohibitively many
model evaluations to get good coverage, and still runs the risk of
missing good solutions between the sampled points. We suspected

Figure 4. The distributions (violins) of the durations measured in the PiNCeR corpus, separated by rate
condition. These form the three “fingerprint” distributions that the model seeks to mimic. See the online article
for the color version of this figure.
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that our parameter space might be quite complex, containing
multiple clusters of good solutions in each rate condition. For these
reasons, we selected NSGAIII. NSGAIII belongs to a class of
optimization algorithms that accumulate knowledge about the
search space over time (in multiple “generations” of learning
“agents”). This means that the search can become gradually more

focused on promising regions of the space. NSGAIII combines the
ability to solve multiobjective problems with active preservation of
diversity in the solutions it retains from generation to generation,
making it suitable to search a space with many local minima. Other
search methods such as particle swarm optimization have a ten-
dency to converge early: that is, they are poor at exploring spaces

Figure 5. A diagrammatic representation of the fitting process. See the text for full details. See the online
article for the color version of this figure.
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where there are local minima (plausible solutions that are good, but
not as good as the best solution in the space) at different positions
(Kennedy, 2011; Peer, Bergh, & Engelbrecht, 2003).

In the remainder of this section, we will discuss the workings of
the evolutionary algorithm in more detail, and then describe the
procedure for evaluating the fit of the models, and the procedure
employed to train the models.

Evolutionary algorithm. The NSGAIII (Deb & Jain, 2014)
algorithm mimics evolution in biology. The evolutionary process
begins by spawning a population of agents. An agent is a carrier of
a “genome” (set of parameter � and � values, which define the
central tendency and spread of distributions associated with each
model parameter) that interacts with other agents to explore the
parameter space. In each generation, the genome of the agent is
varied somewhat by processes of mutation. Therefore each agent
tests a different solution in each generation.

At the start of the optimization procedure, we spawn 464 agents,
a population size recommended by the Platypus package based on
the number of free parameters of the model variant with the most
free parameters (Hadka, 2017). For the first generation, the pa-
rameter � values for each agent (that agent’s genome) are sampled
from relatively broad normal distributions centered around values
that we identified in pretesting as producing plausible activation
sequences (Step 1 in Figure 5).

The model is then evaluated using the parameter � and � values
associated with each agent for that generation, resulting in a fitness
score for each fingerprint distribution for that solution. The sim-
ulation of the model and the procedure for evaluating a solution are
described in the next subsection (Evaluation of a solution) and
depicted as Steps 2 to 6 in Figure 5. The fitness scores are
Kullback-Leibler divergences between the observed and predicted
fingerprint distributions.

Once all agents in the generation are evaluated the Pareto
optimal solutions are selected. Formally, a solution b can be said
to dominate another solution a (denoted a � b) if it has a lower
score on at least one objective while not having a higher score than
a on any objective. The Pareto front is therefore the set of solutions
that are not dominated by any other solution. The solutions of this
first “Pareto front” are assigned a rank of 0. From the remaining
unranked population, a new set of solutions that are Pareto optimal
in the smaller population are identified, and assigned a rank of 1.
This procedure is repeated to find subsequent fronts, with the
agents in the third front being assigned a rank of 2, and so on, until
all agents are ranked.

The agents are then entered into selection “tournaments,” in
which two agents are randomly drawn from the population, com-
pared, and the agent with the lower rank is retained. The losing
agent is discarded from the population and no longer contributes to
future generations. Further tournaments are performed until all
agents have competed once (Step 7 in Figure 5). This has the
advantageous effect that all agents from the best rank will be
retained, all agents from the worst rank will be excluded, and that
agents from the ranks in between have a gradually decreasing
chance of being retained. This, along with a further mechanism to
preserve agents in underrepresented parts of the parameter space
(Deb & Jain, 2014, p. 582), means that the retained agents repre-
sent, broadly, the best half of the initial population, but that,
simultaneously, variability is maintained, which ensures that the

optimization procedure searches the “bumpy” parameter space
effectively.

Then, the evolution stage begins (Step 8). The remaining agents
are randomly paired up and recombined to make offspring by the
simulated binary crossover operator (Deb & Agrawal, 1995; Deb,
Sindhya, & Okabe, 2007), which simulates the mixing of two
genomes in sexual reproduction. For each pair of parents, for each
value in the set of parameter � or �, a polynomial probability
distribution is constructed around each parent value. Two sets of
child values are then sampled from the mixture distribution (Deb
& Agrawal, 1995). This results in child agents that combine traits
from each parent agent. The parents and the children together form
the population for the next generation of evaluation, competition,
and recombination, after having been subjected to further random
mutation by the polynomial mutation operator, where a perturba-
tion is sampled for each parameter � or � value from a polynomial
distribution centered at zero (Deb & Agrawal, 1995; Deb & Goyal,
1996). Because of this mutation step, specific solutions are usually
not repeated in subsequent generations, and the overall fitness of a
next generation may be worse than a previous generation, but in
general the optimization procedure will result in improved scores
over time. In our implementation, 5,000 generations were run.

Evaluation of a solution. The process of evaluating the set of
parameter � and � values associated with an agent is illustrated in
Figure 5 (in the green box), and described in detail below. The aim
of this evaluation procedure is to assess how well each set of
parameter � and � values mimics the observed fingerprint distri-
butions. This requires us to construct a distribution of each of these
variables.

To construct the predicted distributions, we run the model 50
times with each set of parameter � and � values. In each of the 50
repetitions, a small amount of noise is added to each parameter �
value, sampled from a normal distribution centered at 0, the
standard deviation of which is defined by the parameter � value.
These noisified model parameters are used to construct an instance
of the model variant to be tested, with node properties and con-
nection weights defined by the model parameters (Step 2; see the
online supplemental materials for a full listing of the model pa-
rameters).

The model keeps time internally using a unit that is 9 ms long,
a “tick”; activations are recalculated once per tick. This value was
arrived at by pretesting with models where the number of ms that
each tick represents was learnt along with the other parameters. In
the simulations reported here, the duration (in ms) of a tick was
held constant across word productions. A unit of this order of
magnitude is convenient because it allows sufficiently detailed
sampling (e.g., the shortest segments are still represented by sev-
eral ticks) but allows faster computation than a shorter tick length
(cf. typical window shift of 10 ms in MFCC measurements, Young
et al., 2006).

Each model is run for 600 ticks (that is, we calculated the
activations in the network 600 times) which amounts to 5,400 ms,
a duration long enough for the word to be produced and the
activation of all nodes in the network to return to baseline, what-
ever the speech rate condition.

Activation of the plan node always occurs after four ticks, and
persists for 28 ticks at a constant activation level determined by a
model parameter. After 28 ticks, the activation in the plan node
decays, at a decay rate determined by a model parameter. These
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values were also arrived at during pretesting, where these param-
eters were allowed to vary. Holding these parameters constant
across conditions ensures that the differences between speech rates
emerge in the nodes contained in our model, rather than resulting
from higher level processes that we assume to be responsible for
activating the plan nodes. The activation in the plan node spreads
through the nodes of the network, finally reaching the content
nodes (Step 3). The time courses of the activation in the content
nodes of the model are extracted, and the resulting time courses are
linearly interpolated every 0.1 ticks (Step 4), yielding time courses
kts

, for time t and syllable s.
Next, we need to establish the times where we suppose that the

activation in the content nodes is sufficient to result in production
of the syllable. We do this by comparing the interpolated activation
time course kts

against a separate threshold �s for each syllable s.
The threshold for each syllable is calculated as the sum of a
constant which is the same for all syllables, and a weighted
exponential moving average of previous activations in the relevant
content node. This means that the threshold gradually increases in
response to activation in the content node, mimicking short term
adaptation to the activation.

To calculate the threshold, we need to calculate the moving
average activation. We calculate the average over a Gaussian
kernel. First, a weighting factor � is calculated, to cause the
moving average activation to operate over a span of nine ticks (90
observations with one observation every 0.1 ticks). The moving
average activation mts

at a given time t for a given syllable s is then
calculated recursively from the activation time series kts

:

mts
� � kt, t � 1;

�kts
� (1 � �)t�1, t � 1.

� � 2
90 � 1 � 0.022

(1)

Then, the threshold �ts
is calculated as the sum of the offset u,

which is a model parameter, “threshold_constant,” and the moving
average activation mts

, multiplied by a weighting (c � 0.1, for all
conditions):

�t � u � cmt (2)

The moment when the activation in the first syllable content
node exceeds its threshold is taken as the onset word production,
and the time when the activation falls below the threshold again is
taken as the offset of the first syllable. The moment that the
activation in the second syllable content node exceeds its threshold
is taken as the onset of the second syllable, and the time when the
activation falls below its threshold is taken as the offset of word
production (Step 5). In some instances, the model may predict
multiple periods or activation for a syllable, or no activation at all.
In cases where there is not precisely one period of activation above
the threshold for each of the two syllables, no onset or offset times
are recorded for that repetition. This suggests that the set of
parameters is not very robust, and is excessively sensitive to the
subtle changes introduced by the noisification, and should be
dispreferred by the optimization algorithm.

From the syllable-level onset and offset times, the three objec-
tives can be calculated for each repetition: syllable 1 duration,
between-syllable overlap, and syllable 2 duration. The durations
from each of the 50 repetitions (nreps) are collected and a predicted
distribution is constructed (Step 6). To score the quality of the fit

achieved by the values of the parameters, the observed fingerprint
distributions p are compared with the predicted distributions q, for
each fingerprint duration objective obj (Step 7). The predicted and
observed distributions are first binned (bin width 8 ms, from �200
ms to 1,000 ms relative to simulation onset, 150 bins, nbins), and a
constant floor value ε of 1 � 10�13 is added to the count in each
bin. The count in each bin is then divided by the sum of the counts
in all the bins:

pobjb
�

count predictedobjb
� ε

�b�1
nbins count predictedobjb

� ε

qobjb
�

count observedobjb
� ε

�b�1
nbins count observedobjb

� ε

(3)

Then, the Kullback-Leibler divergence is calculated:

KL(pobj, qobj) � �
i�1

nbins

pobji
� log2�pobji

qobji
� (4)

where p is the observed distribution and q is the predicted distri-
bution. KL(pobj, qobj) is taken as the score for the objective obj.

In cases where not all of the 50 simulation repetitions resulted in
a duration (because the onsets and offsets of the syllables stray
outside the period of the binning, because the activation time series
never crosses the threshold, or because the activation times series
crosses the threshold multiple times), the score was penalized by
multiplying the KL by 50 (the number of repetitions, nreps) divided
by the number of values present. This penalization is intended to
favor solutions that are more stable; that is, all 50 repetitions
predicted exactly one period of activation for each syllable:

missing(p, q) � nreps � �
b�1

nbins

count(p, q)b (5)

scoreobj � �KL(pobj, qobj) �
nreps

nreps � missing(p, q) , missing 	 nreps;

KL(pobj, qobj) � nreps * 1.2, otherwise.
(6)

Learning procedure. To test the models, two phases of op-
timization were conducted for each model variant for each rate
condition. During the first 100 generations of the optimization
procedure, some of the parameters are clamped; that is, the algo-
rithm does not adjust them. This phase can be thought of as a rough
initial search of a dimensionally reduced subset of the parameter
space. After this phase, the clamping of these parameters is re-
leased, and all the parameters are fine tuned to optimize the
model’s output. A full listing of the parameters, indicating which
are clamped during the first 100 generations, is available in the
online supplemental materials. The optimization procedure is run
for another 900 generations. During the first 1,000 generations, the
� associated with each parameter is linearly related to the param-
eter � value (� � 0.08 � �), following the observation of a linear
relationship between the center and the spread of the distribution
in, for instance, response times (Luce, 1986; Wagenmakers &
Brown, 2007).

After the 1,000th generation, clamping is applied to most of the
parameter � values, such that they no longer undergo changes
during the evolution and mutation phases of the NSGAIII algo-
rithm (see the table in the online supplemental materials for full
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details), while the parameter � values are released, and therefore
learnt independently. Starting with the 1,500th generation, this is
reversed, and the � values are clamped and � values are learnt.
Starting with the 2,000th generation, � values are again released
from clamping, and � values are clamped. From the 2,500th
generation, no clamping is applied. The learning procedure is
stopped after the 5,000th generation. (This arrangement is depicted
graphically in the shading in Figures 6 and 7.)

This multiphase approach is an attempt to speed up the overall
search for a well performing parameter set, by allowing quick
rejection of unpromising areas of the parameter space during the
first 100 generations, and successively finer-grained searching in
the subsequent phases. The long total run, of 5,000 generations,
ensured that the optimization process was sufficiently converged
to make valid model comparisons.

Explicit Test of the Advantage of Nonlinearity

It is also possible to vary the fitting procedure to more directly
assess the hypothesis of the presence of gaits manifested as qual-
itatively different regimes in the parameter space. This “linear
constraint” model is functionally identical to the asynchronous
model variant, but is optimized in a different manner, to force the
parameter values found during the optimization routine to be
linearly related. Instead of conducting an independent optimization
run for each rate condition, the parameters of the linear constraint
model associated with all three speaking rates are optimized to-
gether via a metamodel. This metamodel has parameters for the
slope of a line for each of the model parameters, as well as an
intercept parameter for each speaking rate. From these slopes and
intercepts, parameter values for each speaking rate are derived, and

passed to instantiations of the asynchronous model variant for each
speaking rate. The KL scores for each metric are gathered from the
submodels, and together form the nine objectives (syllable 1 du-
ration, syllable 2 duration, and overlap duration for each of the
three speaking rates) of the multiobjective optimization routine.
For clarity and conciseness, the results obtained from this addi-
tional model variant are reported along with those of the other
model variants in the next section, where the model variant is
referred to as the “asynchronous model variant with linearity
constraint.”

Results: Model Performance

Conventionally, statistical comparison of models for the purpose
of model selection takes into account the number of parameters
(degrees of freedom) that each model has; assigning models a
“handicap” per extra degree of freedom to identify the model that
strikes the best balance between quality of fit and parsimony
(Akaike, 1974). In a framework where a model predicts variance,
it is fairly clear how one would go about doing this. In our case,
however, the models predict the three fingerprint distributions,
which we evaluate on the basis of the Kullback-Leibler divergence
between the model and the observed fingerprint distributions,
rather than predicting values for each observation, from which
likelihood-based metrics might be calculated. This makes it diffi-
cult to select a plausible handicap with which to penalize the
model performance without adding further simulations.

A typical approach to assess the performance of different vari-
ants of a model is to directly compare their ability with fit the data
after learning, by seeing how well the target function is satisfied by
each trained variant. In our case, this is not possible because of the
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Figure 6. Loess-fits of the Kullback-Leibler scores (y-axis, log-transformed scale, lower values indicate better
performance) of the solutions in the Pareto front in each generation (x-axis), for the three rate conditions (line
colors), the three objective functions (rows), and three model variants (columns). The shading indicates the
optimization phases of the model, orange is the phase where only the � component of a subset of the parameters
was adjusted by the optimizer, white indicates that the � component of all parameters was adjusted by the
optimizer, purple indicates that the � component of all parameters was adjusted by the optimizer, and green
indicates that both � and � components of all parameters were adjusted. See the online article for the color
version of this figure.
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multiobjective nature of the problem. Recall that the model opti-
mization process results in a Kullback-Leibler score for each of the
target distributions for each solution and that these scores are not
mathematically comparable across the three objectives without
unduly favoring one objective above another. We therefore needed
to take a different approach to ascertain how well the different
model variants learned, and how well they ultimately performed
after training, that would not arithmetically collapse the Kullback-
Leibler scores. To assess learning over time, we adopt a metric in
terms of Pareto dominance. To assess final performance, we adopt
a regression approach.

Learning trajectories. To characterize the learning trajectory
of each run, we identified the Pareto front in each generation
cumulatively. This means that, for each generation, we looked for
solutions in that generation and all generations before it that were
Pareto optimal. We used loess-fitting (Cleveland & Devlin, 1988)
to identify the trend in the score for each objective function in each
rate condition. These loess-fits are shown in Figure 6, where we
can observe, very broadly speaking, that for all three model vari-
ants, the most progress is made in finding solutions that improve
the fit in the overlap duration objective. Much more restrained
progress is made on improving the fit of the syllable duration
objectives. The asynchronous model appears to perform moder-
ately better than the synchronous variant on the syllable duration
objectives, while the variant with the linearity constraint never
achieves scores as good as the other two variants, with the notable
exception of the syllable 1 duration objective, which performs
comparably to or slightly better than the other model variants.

Convergence. If the model is learning, the quality of the
Pareto front will improve with each generation. Conventionally,
convergence in the optimization multiobjective problems is as-
sessed with the hypervolume indicator (Zitzler, Brockhoff, &

Thiele, 2007), which calculates the volume of the dominated space
between a reference point and the Pareto front. The hypervolume
indicator for our optimization runs, normalized to have a value
between 0.0 and 1.0, is presented in the upper panels of Figure 7.
The value of the normalized indicator increases as the volume of
the dominated space increases. Convergence is evidenced by sta-
bilization of the indicator at a value close to 1.0.

Although simple to interpret and widely applied, the hypervol-
ume indicator has the disadvantage of arithmetically combining
the values of the objective functions into a single fit quality metric.
This is undesirable for our KL objective functions. We therefore
calculated a second indicator of model convergence, which as-
sesses the change in the composition of the Pareto front after each
generation.

When the model finds a new solution that is nondominated, this
solution joins the Pareto front. Sometimes, this solution falls
between two others, improving the coverage of the Pareto front,
but not improving the fitness of the Pareto front in general. Other
times, the solution dominates a solution or several solutions that
were in the Pareto front in the previous generation. These domi-
nated solutions are “relegated” from the Pareto front. Because we
are primarily interested in finding optimal parameters to fit the
observed data, and only secondarily interested in increasing
the size of the Pareto front, we want a metric that is sensitive to the
second type of new solution. Therefore, rather than counting new
solutions, we count the number of solutions that are relegated from
the Pareto front (cf. Martí, Garcia, Berlanga, & Molina, 2009).
When the optimizer has converged, no relegation events will be
observed. The lower panels of Figure 7 show loess fits of the
proportion of former Pareto front members that are relegated in
each generation.
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Figure 7. Upper panels: The normalized hypervolume indicator (y-axis) during the 5,000 generations of the
optimization run (x-axis), for the three model variants (columns). Stabilization of the normalized hypervolume
indicator at a value close to 1.0 indicates successful convergence. For the synchronous and asynchronous model
variants, colored lines indicate the speech rate condition being optimized. Lower panels: the proportion of former
front members relegated from the front in each generation. See the caption of Figure 6 for the meaning of the
shading. See the online article for the color version of this figure.
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Both the hypervolume indicator and the relegation count metrics
indicate stability after around 3,000 generations, leading us to
conclude that the optimizers are sufficiently converged by the end
of the 5,000 generations tested.

Statistically testing model variant performance. In order to
evaluate the performance of the different model variants, we need
to identify and statistically test differences in the KL scores
achieved by the Pareto front solutions of each of the model
variants. Simultaneously, we need to disregard variation in the KL
scores as a function of objective, because KL scores for the various
objectives are not directly arithmetically comparable because of
differences in the observed distributions, as previously discussed.
The same holds for comparing models fitting different rate condi-
tions, between which there are also differences in the variability of
the observed distributions.

Instead of averaging scores across objectives, linear regres-
sion with categorical predictors for model variant, rate condi-
tion and objective can be used to isolate the effect on the KL
score attributable to model variant, independent of rate condi-
tion and objective. This leads to a regression model with the
following structure (Wilkinson-Rogers notation, Wilkinson &
Rogers, 1973):

KL � model variant � rate condition � objective (7)

This is a model predicting KL with categorical predictors for
model variant, rate condition, and objective, and all interactions
between the levels of those categorical predictors.

The KL scores were bootstrap resampled to introduce variation
required to perform regression modeling. The bootstrapped distri-
butions of the KL scores are shown in the first three panels of
Figure 8. We took 2,000 samples with replacement of sets of syllable
1 duration, syllable 2 duration, and overlap duration values from the
observed dataset. For each of these samples, we calculated the KLs
between the resampled observed distributions and the model’s pre-
dicted distributions. The resulting bootstrapped KLs were then log
transformed and z-normalized. The log transformation was necessary
to de-skew the KLs, which obey a log distribution.

The regression model fitted the data quite well, achieving an
adjusted R2 value of 0.76. The fits of the regression model for the
main effect of model variant are shown in the fourth panel of
Figure 8, as black dots. The full table of model coefficients is
provided in the online supplemental materials.

Relative to the asynchronous model variant, the synchronous
model variant performed significantly worse (	 � 0.55, SE �
0.0083, t � 66���, d � 0.52).

As discussed earlier in this section, it is not possible to draw
meaningful conclusions from the significance of the main effects
of rate condition or objective; these were included to enable us to

|d | = 0.52 |d | = 0.14

overlap duration syllable 1 duration syllable 2 duration regression fits

sync. async. async.
linearity

constraint

sync. async. async.
linearity

constraint
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linearity

constraint

sync. async. async.
linearity

constraint

1

10

100
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KL

speaking rate fast medium slow

Figure 8. First three panels: the bootstrapped distributions (violins) of the KL scores (y-axis, smaller is better,
log scale) achieved by the 0 ranked agents (the Pareto front) for each model variant (x-axis, sync.: synchronous
model variant, async.: asynchronous model variant and async. linearity constraint: asynchronous model variant
with linearity constraint, see the text for full details) in each speaking rate condition (fill colors), in each objective
(panels). The colored dots indicate the model fits for the three-way interaction term in the regression model.
Fourth panel: the fits of the model variant term from the regression model (main effect shown as black dots, fits
of rate condition:model variant interaction in smaller colored dots). Ninety-five percent confidence intervals are
omitted because they are too small to be visible. Significant differences in the main effect are indicated. The main
effect of model variant is plain to see; the asynchronous model variant performs significantly better (achieves
lower KL scores) than the synchronous model variant. The asynchronous model variant without the linearity
constraint outperforms the asynchronous model variant with the linearity constraint. See the online article for the
color version of this figure.
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use the regression model to avoid arithmetically comparing KL
scores calculated with different observed distributions and there-
fore different scales.

Are predicted fingerprint durations plausible? It is also
informative to assess the performance of the model variants qual-
itatively, by directly examining their success in emulating the
target distributions. In Figure 9, we show the distributions result-
ing from combining the duration distributions predicted by each
member of the Pareto front of each run as solid violins. These are
compared against the target distributions measured from the cor-
pus (translucent violins with dashed edges).

For all three model variants, relatively good fits are achieved to
the syllable 2 duration distribution, with the asynchronous model
variant arguably mimicking the precise shape of the distribution
somewhat better than the synchronous model variant and the
asynchronous model variant with linearity constraint. In fitting the
syllable 1 duration distribution, the synchronous model variant
produces a bimodal distribution, rather than the unimodal distri-
bution in the observed data, and also fails to fit the central
tendency well. The asynchronous variant performs better, although
the distributions it predicts are slightly too narrow. The asynchro-
nous variant with linearity constraint predicts syllable 1 duration
distribution very well. In fitting the overlap duration distribution,
the asynchronous model variant performs best, fitting the central
tendency well but overestimating the spread of the distribution
somewhat. The asynchronous model variant with the linearity
constraint predicts a slightly wider unimodal distribution. The
synchronous model variant again predicts a bimodal distribution
where one mode matches the density peak of the observed distri-
bution.

It should be noted that the vast majority of simulation papers in
this domain report only central tendencies. The distributional fits
that we achieve seem acceptably good in (qualitative) comparison
with the few psychological modeling studies that we found that did
fit distributions (Wiecki & Frank, 2013, Figure 4; Engbert, Nuth-
mann, Richter, & Kliegl, 2005, Figure 10).

Summary of Strand 1

In Strand 1 of this study, we introduced EPONA, a new model
inspired by the DBS model, that was successful in predicting the
temporal structure of disyllabic word production. EPONA pro-
vides the first computationally explicit connectionist account of
speakers’ ability to modulate the speech production system to
achieve different speaking rate.

The methods that we used to train and evaluate the variants of
the model were also novel. We adopted a framework whereby the
model predicts distributions of three objectives, which were mea-
sured from the PiNCeR corpus of elicited speech (Rodd et al.,
2019): the duration of the first syllable, the duration of the inter-
syllable overlap, and the duration of the second syllable. We
assumed that the central tendency and the variability of these
distributions together reflect the characteristics of the underlying
cognitive system. This means that during the training process, the
models learned to resemble the underlying cognitive system.

Training proceeded using an evolutionary algorithm that opti-
mized the parameter values so as to minimize the Kullback-Leibler
divergence scores associated with each objective distribution. The
success of the evolutionary algorithm in learning parameter values
that fitted the objective distributions for each model variant is an
index of how well suited that model variant is as a model of the
formulation phase of speech production.

Alongside the asynchronous and synchronous model variants,
we introduced a third model variant that was fitted using a differ-
ent optimization regime. This allowed us to directly test the pre-
diction of a single gait system, where all three speaking rates are
linearly related in parameter space. This model is discussed further
in Strand 2.

The asynchronous model variant without the linearity constraint
performed best on the quantitative criteria we set and offered the
most plausible predicted fingerprint durations. We therefore per-
form further analyses for Strand 2 only on the asynchronous model
variant.
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Figure 9. The duration (x-axis) distributions (filled violins) predicted by three models variants (facets) at
the three rate conditions (colors) for each of the three target distributions (y-axis), compared against the
observed distributions (translucent violins with dashed edges). See the online article for the color version
of this figure.
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How Do Regimes Relate to Each Other? (Strand 2)

To explore how executive control might be exerted on the
EPONA model to achieve different speech rates, and thereby
assess whether different rates are achieved by shifting between
multiple qualitatively different “gaits” of speech production, we
need to compare the best parameter values identified by the opti-
mizer for each speaking rate condition. We can think of the
solutions as positions in a multidimensional space where each
parameter of the model is mapped to one dimension. In such a
space, the Euclidean distance between a pair of locations in pa-
rameter space represents the difference between solutions.

Note that we have assumed that only one regime exists for each
speaking rate, while of course several distinct configurations may
have emerged to account for the temporal structure of speech at a
given rate. We tested for this possibility by performing k-means
clustering on the parameter values associated with each speaking
rate. The clustering did not support multiple regimes in any of the
rates; see the online supplemental materials for full details.

How Are Regimes Arranged Relative to Each Other?

Method. Having identified the best solutions for each rate, we
consider how the regimes adopted for each rate relate to the
regimes adopted for the other rates. To do this, we perform
principal component analysis (PCA), which involves projecting
the 12 parameters on which the speaking rate regimes vary onto
principal components (PCs). The procedure loads as much vari-
ance as possible onto each component in turn, while ensuring that
each component is orthogonal to the preceding PCs. A full listing
of the parameters is provided in the online supplemental materials.
PC1 (the first PC) accounted for 30.0% of the variance, PC2
accounted for 11.6% of the variance, PC3 for 8.6% and PC4 for
5.3%. The loadings of the parameters onto the PCs are listed in the
online supplemental materials.

Results. Figure 10 shows the spread of solutions across the
rate conditions in the first and second principal components. Note
that because this is a projection of multiple dimensions into two,
much variation is not visible, and points that appear adjacent on the
PC1-PC2 plane depicted may be quite distant on other dimensions.
For this reason, it is not certain that medium and slow are closer

together than medium and fast, or slow and fast, although it
appears so on the PC1-PC2 plane. The optima associated with the
three rates (fast in red, medium in green, and slow in blue tones)
occupy broadly different areas of the PC1-PC2 plane. On this
plane, the clusters of solutions of the three conditions are well
separated, and the spread of the solutions in the three conditions is
broadly comparable.

The spatial organization of the rate conditions on the PC1-PC2
plane is clearly not axial in nature, ruling out the single gait
account. This is in line with the observation in Strand 1 that an
asynchronous model variant constrained to only consider linear
arrangements of the rates in parameter space performed worse than
the asynchronous variant without this constraint. Instead, the gaits
are arranged as a triangle, supporting a multiple gait interpretation.
Decelerating from the medium speaking rate to the slow speaking
rate involves increasing PC2 while slightly decreasing PC1. Ac-
celerating from the medium speaking rate to the fast rate involves
increasing both PC1 and PC2.

Which Regimes Belong to Which Gaits?

Extrapolating fingerprint durations between rate centers.
The previous finding suggests that there is more than a single gait
adopted by speakers to control their speaking rate. The parameter
optimization analysis cannot, however, allow us to assess which, if
any, of the three regimes belong to the same “gait.” To assess that,
we conducted a further exploratory analysis.

We calculated the mean position of each speaking rate regime in
parameter space. These means form the “reference” points. Be-
tween each pair of reference points, we interpolated five equally
spaced points along a straight line (axis) through parameter space.
Additionally, we extrapolated two extra points on each of these
axes beyond the reference points. We therefore have axes from fast
to slow, from fast to medium, and from medium to slow, that
intersect at the reference points. The arrangement is illustrated the
upper panel of Figure 11.

We then took the parameter values associated with the location
of each point, and constructed and ran new instances of the
asynchronous model with these parameter settings, to predict the
distributions of the three “fingerprint” durations. Just as in
the optimization procedure, the parameters were noisified, and 50
runs were conducted (see Figure 5 and accompanying text for
more details). These durations, along with the word duration are
indicated in the raincloud plots in panel C of Figure 11, and
normalized in panels D and E.

Previously, we identified five possible mappings of the speaking
rate regimes onto one to three gaits (single gait, three gaits, slow
is distinct while fast and medium are mapped to the same gait, fast
is distinct, medium is distinct). These possible mappings are de-
picted diagramatically in panel B of Figure 11. We directly
modeled and compared the plausibility of these five hypothet-
ical mappings. If a pair of speaking rate regimes belong to the
same gait, we would expect the fingerprint distributions of the
interpolated points between them to follow a linear trend, and
that all the interpolated points would result in plausible finger-
print distributions. If, however, the regimes belong to different
gaits, we would expect to see a nonlinearity at some point along
the axis, indicating a shift from areas of parameter space
associated with one gait to areas of parameter space associated
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Figure 10. The Pareto optimal solutions identified for the fast (red),
medium (green), and slow (blue) rate conditions, plotted for PC1 (x-axis)
and PC2 (y-axis). See the online article for the color version of this figure.
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with the other gait, possibly with an area of “unproductive”
parameter space in between where nonplausible fingerprint
distributions are predicted.

We tested the presence of linearity in the axes through statistical
modeling of the simulated durations depicted in the lowers panel
of Figure 11. We conducted both Bayesian (MCMC sampling) and
non-Bayesian analyses using linear regression models and gener-
alized additive models (GAMs, Wood, 2017). Both types of
model were multivariate, in that they fitted the simulated du-
rations of the three axes simultaneously in a single model. The
results of the two approaches were comparable. For brevity,

only the Bayesian analysis is reported here. The GAM analysis
is reported in the online supplemental materials.

Bayesian linear switchpoint regression. For each axis of the
extrapolated fingerprint duration data, we regressed the normalized
fingerprint durations by the number of the step along the axis. The
Bayesian models allow us to identify the locations in parameter
space of the switchpoints along the axes, and additionally ex-
ploited variation in the distribution along the length of the axes.

Axes could be modeled with either a “uniform” linear fit, or a
“switching” fit that permitted nonlinearity. The uniform fit pre-
dicted normalized duration (both � and �) by the step number,
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Figure 11. Panel A: The extrapolated axes projected onto the PC1 (x-axis)–PC2 (y-axis) plane through
parameter space. Each black point indicates a location at which the model was run and fingerprint distributions
were calculated. Behind, the optimal solutions identified by the optimization procedure are shown (see Figure
10 for details). Panel B: The hypothetical mappings of rates to gaits, represented diagramatically, enclosing lines
indicate rates achieved by the same gait. Panel C: The distributions of the durations (y-axis), of the overlap,
syllable 1 and syllable 2 (colors), shown as rainclouds at each step (x-axis) of the three axes (panels). Black
points indicate the median values. Shading indicates the reference points where the axes intersect. Panel D:
Example fit of the Bayesian linear switchpoint models for the “fast is special” mapping for the three axes
(columns) and fingerprint component distributions (rows, colors). Panel E: Point estimates and standard errors
of the quality of fit of the Bayesian linear switchpoint regression models for each mapping, quantified by an
information criterion calculated by leave-one-out cross-validation. For each mapping, the models other than the
best performing are plotted more lightly. See the online article for the color version of this figure.T
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with distinct slope and intercept parameters for each Component �
Axis combination for � and �. The switching fit split the axis into
two halves at a fixed switchpoint, and fitted a separate regression
with separate parameters for each half. For each axis, different
fixed switchpoints were tested, namely between Steps 4 and 5;
between Steps 5 and 6; between Steps 6 and 7; or between Steps
7 and 8. This means that different numbers of models were
required for each mapping, ranging from 1 model for the “no gaits”
mapping, to 64 models for the three “distinct gaits” mapping (43).
A student t distribution was used as the likelihood. This has
heavier tails than a normal distribution, meaning that it is a form
of robust regression and can better accommodate heteroskedastic-
ity. For all slope and intercept parameters, mild N(0, 1) priors were
applied, which makes the assumption that most effects are smaller
than Cohen’s d � 1 and nearly all effects are smaller than Cohen’s
d � 2. The fit resulting from the model fitting the “fast is special”
mapping is depicted in panel E of Figure 11, by way of example.

For each model, eight chains of 8,000 samples (of which 4,000
warm up) were sampled by NUTS in RStan (Stan Development
Team, 2018, Version 2.18.2). No convergence issues, assessed by
the Gelman-Rubin diagnostic R̂, effective number of samples, and
visual inspection of traceplots were noted for any of the models.
Full details of the Bayesian linear switchpoint analysis are avail-
able in the online supplemental materials.

Results. Panel E of Figure 11 presents the model comparison
results of both the Bayesian linear switchpoint models. We com-
pare models on information criteria, which aim to quantify the
explanatory power of the models in terms of the amount of
information lost, while at the same time penalizing model com-
plexity to avoid over fitting. Specifically, we calculate an infor-
mation criterion by leave-one-out cross-validation (the LOOIC,
Vehtari, Gelman, & Gabry, 2017).

The “one-gait” mapping performs notably worse than the other
models, achieving higher LOOIC values. That this model performs
worst is a useful sanity check, because the earlier findings of worse
performance in the linearly constrained model variant, and the
triangular arrangement of the rates in parameter space for the
unconstrained model variant should have ruled this possibility out.
Next comes the “medium is special” mapping. This mapping
predicted a distinct gait for medium speech, and a fall-back gait
engaged to produce other speaking rates. Such a configuration
might emerge as a consequence of speakers producing speech
almost always around a specific habitual rate, which would be-
come more practiced. The remaining mappings perform the best.
The LOOIC estimation for the Bayesian linear switchpoint models
additionally allows us to quantify the uncertainty about the point
estimates of model fit. In panel E of Figure 11, lines extending
from the points indicate the standard error around the LOOIC
estimate. For the three best performing mappings, the standard
error ranges around the point estimates are extensively overlap-
ping, meaning that we cannot with confidence claim support for
any of the three mappings ahead of the other two.

Summary of Strand 2

In Strand 2 of this study, we explored how cognitive control
might be exerted on the parameters of EPONA to model speech
produced at different rates. Different settings of the model param-
eters can be conflated with different regimes of the cognitive

system underlying natural speech production. We examined how
the regimes related to each other, hypothesizing that there might be
“gaits” in the speech production system that speakers switch
between to achieve different speaking rates. Five hypothetical
mappings of rate regimes onto gaits were considered.

We found evidence that different speaking rates were achieved
by distinct parameter values, and that these were arranged in a
triangle in parameter space, rather than along a straight line. The
triangular arrangement rules out a mapping whereby a single gait
is quantitatively modulated to achieve different speaking rates.
With the aim of distinguishing between the remaining mappings,
we conducted further statistical modeling. This modeling ruled out
one further account, namely the medium-is-special mapping, but
did not allow us to distinguish between the three remaining map-
pings. It therefore remains an open question whether slow and
medium speech is achieved by one gait and fast by another (the
“fast is special” account), whether slow speech is achieved by one
gait and fast and medium by another (the “slow is special” ac-
count), or whether all three rates are achieved by qualitatively
distinct gaits (the “three gait” account). Nevertheless, the findings
of Strand 2 provide strong evidence for a model of speech pro-
duction control whereby speakers shift between different gaits to
achieve different speaking rates.

General Discussion

This study had two aims. In Strand 1, we sought to establish
EPONA, a new model inspired by the DBS model that would
predict the duration of syllables and the duration of the overlap
between them, and thereby characterize the configuration of the
speech production system at different speaking rates. Subordinate
to this aim, we sought to explore how the temporal properties of a
word could best be encoded in the frame node.

In Strand 2, we explored how cognitive control might be exerted
on the parameters of EPONA to model speech produced at differ-
ent rates. Different settings of the model parameters can be seen as
corresponding to different regimes of the cognitive system under-
lying natural speech production. We sought to examine how the
regimes relate to each other, hypothesizing that there might be
“gaits” in the speech production system that speakers switch
between to achieve different speaking rates.

Computational Model (Strand 1)

The evolutionary algorithm learned distinct parameter settings
for each speaking rate for the three model variants, though the
quality of the predictions made by the trained models varied.
Linear regression analyses revealed significant differences in per-
formance between the model variants, and effect size analysis
allowed us to quantify the extent of the performance differences,
demonstrating a distinct performance advantage for the asynchro-
nous model variant ahead of the control and synchronous model
variants.

A salient difference between the model variants is that the
control and synchronous models exhibit bimodal distributions in
their fitting of the overlap duration and syllable 1 duration (see
Figure 9). In contrast, the asynchronous variant predicts unimodal
distributions for these objectives. It is noteworthy that the modeled
syllable 1 duration and overlap duration distributions resemble
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each other in their overall shape. In examining the duration dis-
tributions independently for a sample of the front members (a
figure showing these is included the online supplemental materi-
als), it was plain that the bimodality of the combined distribution
arises because some solutions predict distributions that contribute
to the first “bump” of the bimodal distribution, and others predict
distributions that contribute to the second. This result suggests that
the control and synchronous model variants were not successful in
finding a parameter set that solved both the serial order problem
and fitted the distributions of the objectives adequately.

The observed distributions for overlap duration for all three
speaking rate conditions exhibited notably less spread than the
observed distributions for the two syllable duration targets. None
of the model variants were particularly good at predicting the
spread of the overlap, instead showing excessive spread.

Although the fits achieved by the model are satisfactory for the
purposes of our Strand 2 investigation, some aspects of EPONA
could potentially be revised to broaden its utility. First, the model
at present is only capable of producing disyllabic words. Extending
the model to produce a variety of word lengths would be relatively
trivial, and would potentially allow us to explore questions regard-
ing the extent of the gestural score, that is, are whole syllables
encoded, or instead smaller segmental or demi-syllabic level
chunks; or larger chunks at the level of phonological words or
entire intonational phrases? Second, the current implementation of
EPONA produces one word at a time, and cannot capture the
interactions between previous and upcoming words, and between
target words and competitors in the lexicon, although there is no
reason why this could not be implemented as a network of inter-
connected EPONA “columns.” How that might work is discussed
further later.

The EPONA model follows many speech production models of
the 20th century by implementing a strict separation between the
formulation and execution phases (e.g., Dell & O’Seaghdha, 1992;
Levelt, 1989; Levelt et al., 1999; Stemberger, 1985). The execu-
tion phase of the model is also in its conception ballistic, meaning
that once activation arrives at the formulation-execution frontier
and speech articulation begins, the gestural score will be played
out without regard to what happens in the formulation phase after
the onset of production.

Recent work has demonstrated that formulation and execution
processes are not entirely discrete. Lexical competitors have been
found to influence the details of articulation of target words (e.g.,
Goldrick & Blumstein, 2006; McMillan & Corley, 2010), while
the articulation of slip errors has been found to differ from canon-
ical productions of the same form (e.g., “pig” erroneously pro-
duced as [big] differs from canonical “big” in voice onset time;
Goldrick, Keshet, Gustafson, Heller, & Needle, 2016). Relatedly,
contextual predictability and frequency predict the extent to which
words are reduced by shortening the word duration and eliding
segments (e.g., Bell, Brenier, Gregory, Girand, & Jurafsky, 2009;
Pluymaekers, Ernestus, & Baayen, 2005). That errors and contex-
tual priorities that arise during formulation propagate into the
domain of execution has been taken as evidence in favor of
cascading activation, that is, partially active “competitor” units
from the formulation phase activate the corresponding articulatory
plans.

A fully ballistic, cascading system would require no control on
the execution phase over and above the control exerted on the

formulation phase. This is of course attractive, but implausible; at
the very least, a mechanism is required to allow the interruption of
erroneous productions (Levelt, 1983). Alternatively, it is possible
that the dynamics of the planning system after the onset of artic-
ulation also influence ongoing articulation. Fink, Oppenheim, and
Goldrick (2018) set out to test the assumption of a ballistic exe-
cution component, measuring response latency and word duration
in sequential picture naming tasks designed to introduce semantic
interference. If the production system is ballistic, effects of seman-
tic interference on response latency (an index of planning) and
word duration (an index of articulation) should be positively
correlated since variation in both metrics arises from the same
process. A ballistic process cannot, however, account for effects of
semantic context on duration over and above the effects correlated
with the effects on latency. Fink et al. (2018) found consistent
coupling of articulation and planning, compatible with the ballistic
account, but also some evidence of interaction effects, suggesting
that ongoing planning can exert moderate influence on execution
after the onset of articulation.

Although EPONA as presented here does not explicitly model
for cascading activation and has no mechanism to predict the
articulatory outcome of simultaneous activation of multiple artic-
ulatory plans, it contains no features that are incompatible with the
cascade concept. Similarly, the model could be considered non-
ballistic, in that sustained activation of the syllable gestural score
is required to cause articulation of the required syllable. A more
elaborate model of the execution phase might predict the articu-
latory outcomes of simultaneous activation of competitors (for
instance, in the voice onset time of stops, as investigated by
Goldrick et al., 2016), and of changes in the activation dynamics
of the output nodes of the formulation network after word onset.

We followed Dell et al. (1997) in favoring a simple and inter-
pretable model that explains the underlying psychological pro-
cesses of speech production at a functional level, rather than
striving for any semblance of neurobiological plausibility. The
predefined activation patterns that the frame node produces on
each of the ports are crucial to ensuring the correct ordering of
syllable units is achieved, and have a large influence on the timing
of syllable production. In general, the requirements to (a) prime
upcoming units, (b) activate them at the correct time, and (c)
deactivate them once they have been produced is referred to as the
serial order problem. Dell, Burger, and Svec’s (1997) approach to
resolving the serial order problem using predefined activation
patterns is functional and minimal.

It is, however, also possible to achieve correct serial ordering
using only components from the standard connectionist toolbox. In
this respect, a promising approach is competitive queueing (Gross-
berg, 1978; Houghton, 1990), which employs a two-layer subnet-
work to maintain serial order. The first layer is a planning layer,
where all nodes for all the elements in a sequence become active
in parallel, with their relative activation encoding the order of
realization (a primacy gradient). The nodes of the planning layer
project onto the same number of nodes in the second, competitive
choice layer, where inhibitory connections ensure that only the
activation of the most active node at any given time is transmitted
to the output nodes, and a switch-off mechanism ensures that
successfully produced items are inhibited, allowing subsequent
items to be produced (see Hurlstone et al., 2014, for an extensive
review). It would be fruitful to evaluate a model that employed
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competitive queueing in the frame node. This would remove the
need for the implausible stepped activation patterns in the frame
node.

The activation function (that is, the function that computes the
activation of a node from the activation arriving at it through
connections, also known as a transfer function) in the model is
strictly linear. Sigmoid activation functions such as tanh (Harm &
Seidenberg, 1999) or soft-max (Chang, 2002; Chang, Dell, &
Bock, 2006) are employed in several more recent models where
competition between nodes at the same level is modeled. It is,
however, unlikely that a different choice of activation function
would have made a large difference to the outcomes of this study,
because our model does not simulate between-node competition.
In a model with competitive queuing, a nonlinear activation func-
tion might prove advantageous.

How Do Regimes Relate to Each Other? (Strand 2)

Because the asynchronous model variant performed signifi-
cantly better than either the control or synchronous model variants,
we performed analyses in parameter space only for this variant.
The following discussion refers therefore to the asynchronous
model variant only.

The speaking rate regimes identified in this investigation can be
compared along two dimensions; first, in terms of the parameter
values that the model engages to achieve each targeted speaking
rate (comparison in parameter space), and second in terms of the
predicted fingerprint durations (comparison in prediction space).

Which, if any, gaits are present? To distinguish between
single-gait and multiple-gait scenarios, we examined the arrange-
ment of the regimes in parameter space. We predicted that in the
single-gait scenario, the three regimes would be arranged sequen-
tially along an axis in parameter space. In a multiple gait scenario,
the three regimes would be arranged in a triangle in parameter
space. The arrangement of the optima on the PC1-PC2 plane was
clearly nonaxial (see Figure 10). Our results therefore indicate that
cognitive regimes adopted to achieve different speaking rates are
arranged in a manner that is incompatible with a single-gait sys-
tem.

It could however, still be the case that, although the optimization
routine had settled on a nonlinear arrangement of rates, a linear
arrangement could have been able to fit the data adequately. A
further asynchronous model variant was fitted to test this, where
the arrangement of the rates in parameter space was constrained to
be linear or axial. This model fitted the data less well than the
unconstrained model, reinforcing our conclusion that multiple
gaits are present.

Having established that the single gait configuration was un-
likely given the data, we moved on to comparing the regimes in
prediction space. Aside from all rates being produced by one gait,
there are four further possible mappings of rates onto gaits: three
gaits; slow is distinct while fast and medium are mapped to the
same gait; fast is distinct; medium is distinct.

The plausibility of these mappings could be teased apart by
examining the extent of nonlinearity in the predicted distributions
of models fitted with parameter values taken from the spaces
between the centers identified in the evolutionary optimization. We
performed statistical fitting to test for (non)linearity along the axes
linking the center points of each rate, and compared the quality of

fit of models instantiating the five possible mappings. We used
Bayesian linear switchpoint models, which are able to fit variation
in the spread of the distribution, and allowed us to quantify
certainty at all stages of modeling, including model comparison.

This statistical modeling allowed us to directly test the plausi-
bility of the five mappings. The one-gait mapping was rejected,
consistent with the triangular arrangement of the rates in parameter
space and the rejection of the model variant with the linearity
constraint in the optimization paradigm. Support for the “medium
is special” mapping was limited. Although the “three-gaits” map-
ping had numerically the best fit, the statistical modeling was
unable to distinguish between this mapping and the “fast is spe-
cial” and “slow is special” accounts. This means that all three
mappings are plausible models of the cognitive reality, given the
present dataset and modeling approach. While we believe that the
statistical modeling is sufficiently sensitive to evaluate the plausi-
bility of the mappings, it is of course dependent on the data
provided by the simulations. These data may be insufficient in two
ways. First, they consist only of predicted distributions of the three
fingerprint durations, which may not be rich enough a representa-
tion of the acoustic reality to highlight subtle differences in lin-
earity between the speaking rates. Second, the variability that was
valuable in the parameter optimization paradigm for the recon-
struction of the distributions to be compared with the observed
distributions may have proved counterproductive for the statistical
modeling we conducted.

Further experimental work is required to clarify the nature of the
mapping of speaking rates to gaits, possibly testing more than three
speaking rates in a denser sampling.

The consequences of the presence of gaits for models of
speech production and perception. Our concept of different
“gaits,” each encompassing qualitatively similar regimes in the
formulation component of the speech production system, repre-
sents a theoretical step forward that makes predictions that may be
fruitfully explored in future modeling and empirical work, building
on the conception of gaitedness at the execution level.

Although this study concerned speaking rate variation and dem-
onstrated the presence of cognitive gaits to achieve different
speaking rates, it is plausible to think of shifting between qualita-
tively different parameter regimes as a more general mechanism to
deliberately modulate the acoustic and temporal properties of
speech to suit various communicative situations (Lindblom, 1990;
Lindblom, Brownlee, Davis, & Moon, 1992).

Natural speech produced by any one speaker varies in many
more ways than along a single dimension of speaking rate, in effect
adopting what has often been called different registers or speaking
styles (Hirschberg, 2000). It has been observed that speakers
transform the acoustics of their speech to enhance its intelligibility
for their interlocutor, or in response to the reverberance or back-
ground noise of their environment (Cooke et al., 2014). Prepared
speech, such as reading aloud, varies from spontaneous speech
(e.g., Furui, 2003). Typically, these speaking styles have been
thought of (or at least treated as) categorically distinct, driven
perhaps by the methodologies used to elicit the speech during
experiments and corpus gathering, or to categorize the situations in
which the speech arose in generalist corpora (Hirschberg, 2000).

Although acoustic differences emerge between speech catego-
rized according to these situational categories, knowing that such
differences exist says little about how speakers modulate the

T
hi

s
do

cu
m

en
t

is
co

py
ri

gh
te

d
by

th
e

A
m

er
ic

an
Ps

yc
ho

lo
gi

ca
l

A
ss

oc
ia

tio
n

or
on

e
of

its
al

lie
d

pu
bl

is
he

rs
.

T
hi

s
ar

tic
le

is
in

te
nd

ed
so

le
ly

fo
r

th
e

pe
rs

on
al

us
e

of
th

e
in

di
vi

du
al

us
er

an
d

is
no

t
to

be
di

ss
em

in
at

ed
br

oa
dl

y.

299SIMULATING SPEAKING RATE CONTROL



speech formulation and execution mechanisms to achieve that
variation. This is because it remains unknown to what extent the
speech planning system engages categorically distinct regimes to
achieve different speaking styles, and whether these researcher-
imposed situational labels bear any resemblance to the underlying
cognitive categories.

If different speaking styles are achieved by switching between
qualitatively different gaits of the speech planning system, we
would expect there to be observable clustering in the acoustic
characteristics of speech across the range of speech variability,
reflecting the categorical shifts between cognitive gaits. Two re-
cent findings suggest that speaking style variation may be at least
to some extent categorical. The first concerns reduced pronuncia-
tion variants, that is, pronunciations of words where acoustic cues,
segments, and sometimes entire syllables are omitted, generally
when words are highly predictable and in informal spontaneous
speaking situations (e.g., Ernestus, Hanique, & Verboom, 2015;
Ernestus & Warner, 2011), for example the realization of Ameri-
can English “yesterday,” the canonical form of which is /jεst�ɾei/,
as [jεʃei]. Reduction of this type is one of the ways in which
acoustic differences between speaking styles surface and can be
quantified. Hanique, Ernestus, and Schuppler (2013) found evi-
dence that both categorical and gradient processes were simulta-
neously responsible for an instance of schwa deletion in Dutch.

The second concerns the retrieval of speaking style labels
through machine-learning techniques. Bentum, Ernestus, ten
Bosch, and van den Bosch (2019) employed a language modeling
and dimensionality reduction approach to characterize word choice
and co-occurrence across the speaking styles in the orthographic
transcriptions of a corpus of Dutch speech containing many dif-
ferent speaking styles (Oostdijk, 2000). Many of the speaking
styles labeled in the corpus emerged as distinct clusters, while
other groups of speaking styles merged to form a single cluster.
Again, this hints that, underlyingly, speaking styles differ categor-
ically from each other on various dimensions.

The finding of gaitedness in speech production has conse-
quences for models of speech perception. If the speech produced
by speakers varies qualitatively between gaits, then listeners might
also be expected to adopt different processing strategies to make
the most of the cues available in the speech signal associated with

a specific gait. If that were the case, we might expect to see gaits
in speech perception to mirror those in speech production.

Extending EPONA to a network model. This research has
not addressed how gaits could be manifested in the structure of
the lexicon, instead focusing on exploring the parameter set-
tings in a single column of the EPONA model that must be
altered to achieve different speaking rates. In this section, we
explore how the EPONA model could be extended to form a
network model of the lexicon. An EPONA network model
would facilitate exploration of how gait selection would work
as a mechanism to control speech rate in multiword, continuous
speech.

A network view of EPONA, as illustrated in Figure 12
isolates the different parameter settings associated with each
gait in a “variant” frame node for the relevant word shape,
which is in turn connected to “variant” structure nodes encoding
different temporal realizations of the relevant structure. Each
word in the lexicon is connected to all frame nodes suitable to
produce that wordshape.

We postulate exhaustive excitatory and inhibitory connec-
tions between related variants of different frame nodes, and
inhibitory connections between variants of the same frame
node. This interconnection causes priming activation and sup-
pression that tends to ensure that adjacent words are produced
at with the same speaking style. We will call these connections
between the frame nodes the “reinforcement route,” consistent
with the segmental and metrical routes.

In the reinforcement route, networks or families of related
frame nodes, depicted in Figure 12 as different colors of nodes,
are connected together by heavily weighted connections. Al-
though three families of frame nodes are depicted in Figure 12
for each word form, it is clear that different word shapes will
have differing number of frame node variants, reflecting dif-
ferent possibilities for categorical reduction. Some frame node
variants will therefore belong to multiple interconnected net-
works of related frame nodes. A gait in the EPONA model is
then the reinforcement network of strongly interconnected
frame node variants, which tend to prime each other, and whose
priming activation tends to suppress the frame node variants
belonging to other gaits. The weightings of the connections in

Figure 12. A sketch of an EPONA network containing the nodes necessary to produce the Dutch disyllabic
words navel ['na�.vəl] “navel” and snavel ['sna�.vəl] “beak,” adding the reinforcement route and multiple frame
and structure nodes to capture gaited behavior. See the text for details. See the online article for the color version
of this figure.
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the reinforcement networks are learnt by associative learning,
such that frame nodes that co-occur in time develop strong
excitatory connections, and those that do not co-occur develop
inhibitory connections.

These gait reinforcement networks are also the site of influ-
ence from higher processes that modulate the selection of
production variants. For instance, if the speaker is in a conver-
sational situation that invites slow, canonical production, then
they will engage executive control functions to inhibit gait
networks that contain frame nodes for fast, highly reduced
variants. Other, less explicit, contextual factors could be
thought to have a similar mechanism. For instance, a “prosodic
moderator” might excite gait networks containing lengthened
productions preceding prosodic phrase boundaries, or during
the preparation of words that should be marked as extra prom-
inent (Wightman, Shattuck-Hufnagel, Ostendorf, & Price,
1992).

The excitatory connections within gait networks and inhibi-
tory connections between them have the property of introducing
inertia into the system: The default behavior is always to
continue speaking in the same gait. This means that switching
gait should be effortful, because it requires invocation of ex-
ecutive control to suppress activation in competing gait rein-
forcement networks and to boost activation in the target gait
reinforcement network. The effectiveness and the speed of the
switch should also be related.

If executive control is invoked to moderate the activation in
competing and target gait networks, it might be possible to
detect correlations between the various components of execu-
tive control ability (Miyake et al., 2000) and individual differ-
ences between speakers in their success at modulating their
speaking rate. Relatedly, the modeling techniques developed for
this study could also be used to explore individual differences
between speakers in the cognitive regimes that they invoke to
produce different speaking rates.

The gait for formulation that we have described in this article
resemble locomotive gaits in that they are qualitatively distinct
configurations that can be invoked to adjust the speed of a
behavior. However, they do not capture a striking feature of
locomotive gaits, namely that gaits are selected based on their
biomechanical efficiency to achieve the required movement
speed (Hoyt & Taylor, 1981). How the biomechanical effort
differences inherent to locomotion gaits might be mirrored in
analogous speaking gaits is clear for the execution component,
where movement distance and precision are obvious candidates.
In a network view of the EPONA model, effortfullness would
be the sum of two components: the degree of executive control
engagement needed to maintain the target gait, and the diffi-
culty of performing conceptual retrieval and phrase level plan-
ning fast enough to keep up with the formulation and execution
components.

Conclusion

We proposed that to achieve different speaking rates, the
speech planning system adopts different configurations, or re-
gimes. Because speakers are able to voluntarily adjust their
speaking rate, they must have a control mechanism that enables
them to shift from regime to regime. Describing the way in

which these regimes are arranged relative to each other in
parameter space is highly informative for understanding the
nature of the control mechanism that is engaged to shift be-
tween regimes, and how control might be exerted on speech
production in general. We hypothesized that speech rate control
might be achieved by shifting between different, qualitatively
distinct “gaits” of the speech production mechanism. Alterna-
tively, different speaking rates might be achieved by continuous
adjustment within a single rate.

We set ourselves the task of distinguishing these hypotheses.
We developed EPONA, a model inspired by the influential DBS
model (Dell et al., 1997), to predict the distributions of syllable
and syllable-overlap durations that characterize speech produc-
tion in a specific speaking rate regime. By optimizing the
parameters of this model to fit each of three rate conditions
independently, we identified optimal parameter settings for
each speaking rate, which we conflate with the dimensions of
the regime-space of the underlying cognitive system. By exam-
ining the arrangement of the parameter optima of the model, we
could infer the arrangement of the underlying cognitive system.
The model optima resembled a triangle (see Figure 10), reject-
ing the idea that the regimes of the speech production system all
belong to a single qualitatively consistent gait. By fitting further
models where linearity in parameter space was enforced, we
provided further evidence ruling out a single-gait account.
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