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Abstract 

 

Motivation theories of obesity suggest that one of the brain mechanisms 

underlying pathological eating and weight gain is the dysregulation of 

dopaminergic circuits. While these dysregulations occur likely at the 

microscopic level, studies on gray matter volume reported macroscopic 

differences associated with obesity. One region suggested to play a key role 

in the pathophysiology of obesity is the nucleus accumbens (NAcc). We 

performed a meta-analysis of findings regarding NAcc volume and 

overweight/obesity. We additionally examined whether gray matter volume in 

the NAcc and other mesolimbic areas depends on the longitudinal trajectory 

of obesity, using the UK Biobank dataset. To this end, we analysed the data 

using a latent growth model, which identifies whether certain variables of 

interest (e.g. NAcc volume) is related to another variable's (BMI) initial values 

or longitudinal trajectories. Our meta-analysis showed that, overall, NAcc 

volume is positively related to BMI. However, further analyses revealed that 

the relationship between NAcc volume and BMI is dependent on age. For 

younger individuals such relationship is positive, while for older adults it is 

negative. This was corroborated by our analysis in the UK Biobank dataset, 

which includes older adults, where we found that higher BMI was associated 

with lower NAcc and thalamus volume. Overall, our study suggests that 

increased NAcc volume in young age might be a vulnerability factor for 

obesity, while in the older age decreased NAcc volume with increased BMI 

might be an effect of prolonged influences of neuroinflammation on the brain. 
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Introduction 

 

Obesity may result in part from an increased appetitive drive interacting with 

an obesogenic environment (Michaud et al., 2017). It has been suggested that 

a trait, uncontrolled eating, may result from the interaction of increased reward 

drive and reduced self-control. Neural correlates of the uncontrolled eating 

trait may be found in mesolimbic circuits in the brain (Vainik et al., 2019). 

 

The nucleus accumbens (NAcc) is a key node of the mesolimbic circuits 

(Haber and Behrens, 2014). The activation of these circuits signals rewards 

and sustains goal-directed behavior (Grace et al., 2007; Haber and Knutson, 

2010). Neuropsychiatric studies have suggested that altered functionality in 

these circuits can give rise to impulsive and compulsive symptoms (Brooks et 

al., 2017). In the same vein, some types of obesity could theoretically stem 

from dysfunctions in the NAcc and other mesolimbic areas (Volkow et al., 

2013).  

 

Several studies have examined the relationship between adiposity and gray 

matter volume in the NAcc and other mesolimbic areas. Results, however, are 

heterogeneous. Some works have found positive associations between BMI 

and NAcc volume (Coveleskie et al., 2015; Horstmann et al., 2011). By 

contrast, a recent study using the UK Biobank cohort has reported that, in 

men, percentage of body fat is negatively associated with the volume of the 

NAcc along with other reward-related regions (e.g., caudate, pallidum, 

thalamus and hippocampus) (Dekkers et al., 2019). In women, only the 
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pallidum shows negative associations with body fat (Dekkers et al., 2019). 

Null findings in the relationship between NAcc volume and BMI have also 

been reported. In fact, a coordinate-based meta-analysis on adiposity and 

gray matter volume in the whole brain did not find any differences in the NAcc 

(García-García et al., 2018). In the meta-analysis, the medial prefrontal cortex 

(extending to OFC) was the only reward-related region that showed (negative) 

correlations with adiposity (García-García et al., 2018).  

 

Conflicting findings might be related to two different mechanisms underlying 

the relationship between NAcc volume and excess weight. First, increased 

NAcc volume might be a vulnerability factor for the development of obesity. In 

fact, it has been shown that striatal activity in response to foods seems to 

predict longitudinal weight gain (Demos et al., 2012; Geha et al., 2013; Stice 

et al., 2008; but see Stice and Yokum, 2018). Although the specific 

mechanism linking NAcc volume to reward function is unknown, it is possible 

that increased NAcc volume reflects enhanced appetitive drive. Second, in 

addition to being a vulnerability factor for obesity, NAcc volume might also be 

affected by chronic excess weight. Overall, overweight and obesity are 

associated with metabolic and cardiovascular pathology (Bastien et al., 2014) 

and are related to grey matter atrophy (Raji et al., 2009). The accumulation of 

adiposity can trigger a set of adverse consequences, such as low-grade 

inflammation, insulin resistance and oxidative stress, which in turn which 

affect grey and white matter integrity (Tchernof and Després, 2013). In this 

context, a previous longitudinal study examined BMI trajectories over 42 years 

and cortical thickness. Relative to normal-weight subjects, participants with a 
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sustained history of obesity showed lower cortical thickness in the frontal pole, 

inferior frontal gyrus, inferior, middle and superior temporal gyri (Franz et al., 

2019). Similarly, longitudinal increases in BMI have shown inverse 

correlations with cortical thickness in the posterior cingulate and 

supramarginal gyrus (Shaw et al., 2018), but also positive associations with 

volume of the hippocampus (Bobb et al., 2014). The possibility that 

longitudinal weight changes are associated with neuroanatomical variations in 

the reward system, however, remains largely unexplored. 

 

Finally, a factor that could account for the low replicability of the findings is 

publication bias (Fusar-Poli et al., 2014). It has been suggested that findings 

implicating the ventral striatum might be overrepresented in the human 

neuroimaging literature (Behrens et al., 2013). Studies reporting significant 

effects in mesolimbic areas seem to have better chances of being published 

in peer-reviewed journals (Behrens et al., 2013; Ioannidis, 2011). At the same 

time, researchers might tend to underreport non-significant analyses 

(Ioannidis, 2011). These considerations warrant an objective overview of the 

relationship between NAcc volume and obesity and an examination of a 

possible publication bias.   

 

Here, we first provide an evaluation of the available evidence reporting 

macroscopic changes in brain dopaminergic regions in obesity. Using a meta-

analysis, we examined the consistency of results on obesity, possible 

publication bias and attempted to explain inconsistent findings in the literature. 

In the second part of the study, we examined whether BMI and BMI change 
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over time are linked with differences in the NAcc and other reward-related 

regions. We addressed this last question by applying latent growth models in 

the UK Biobank dataset. 

 

Methods 

 

Meta-analysis 

The literature search was conducted independently by IGG and FM, after 

which the results were cross-validated. We performed a literature search 

using Scopus database with two separate search terms: 1) obesity AND 

nucleus AND accumbens AND volume, and 2) obesity AND brain AND 

volume. Criteria for inclusion of studies were investigation of nucleus 

accumbens volume using MRI, inclusion of lean and obese individuals in the 

study, investigation of group differences in NAcc volume between lean and 

obese participants (grouped based on BMI) or correlations of NAcc volume 

and BMI or body fat percentage (BFP), and reporting of statistics necessary 

for further analysis. Whenever we detected sample overlap across studies, we 

included the study with the biggest sample size in the analysis. When studies 

reported separate results for left and right NAcc, we selected the association 

with the strongest effect size. To perform meta-analysis we used Meta-

essentials software (Suurmond et al., 2017), which allows the use of results 

from regression and partial correlation analyses to calculate an overall effect 

size for all the studies together. From published studies investigating linear 

regressions/correlations of NAcc volume with BMI/BFP we collected the 

following statistics: partial correlation coefficients, regression beta values, 
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standard errors of regression beta values, t-values, number of predictors in 

models, number of observations (sample size). For studies investigating 

group differences between lean and obese individuals we extracted t-values 

and converted them to correlation coefficients with the following equation: 

 𝑟 = !!

!!!!"
 , where r is the correlation coefficient and DF is the degrees of 

freedom. The obtained coefficients were then entered into the meta-analysis 

with a random effects model. We further investigated publication bias in the 

literature by means of a funnel plot and Egger test for funnel plot’s asymmetry 

(Egger et al., 1997; Egger and Smith, 1995). Lastly, due to the fact that 

included studies differed greatly with regard to the age range of participants, 

we performed a regression analysis between mean age and effect size 

(partial correlation) across studies.  

 

UK Biobank 

We included 4924 participants from the UK Biobank. The UK Biobank 

(https://www.ukbiobank.ac.uk/) is a large-scale open access dataset recruited 

across UK. A subset of 25,000 participants to date have had extensive brain 

MRI measurements, health variables and clinical information, among other 

data (Miller et al., 2016). Participants' ages range from 40 to 80 years and sex 

distribution is balanced. Participants in the imaging subset of the UK Biobank 

have undergone 3 visits: an initial assessment visit (2006-2010), a first repeat 

assessment visit (2012-2013) and a brain MRI imaging visit (started in 2014). 

In all the three visits participants provided information related to their general 

health, and researchers collected anthropometric measurements (i.e., body 

mass index or waist circumference). 
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We excluded subjects with psychiatric or neurological illness and 

cardiovascular problems (UK Biobank field IDs listed in the supplementary 

Table s1). Additionally, we excluded participants if their BMI was considered 

underweight (< 18.5 kg/m2, BMI field ID: 21001), since a very low BMI may be 

indicative of illness (Tchernof and Després, 2013).  

To account for the possible effect of metabolic factors, we examined if 

participants met any of the following criteria considered to increase metabolic 

burden (Alberti et al., 2009):	(a) high waist circumference (women: waist 

circumference >= 80; men: waist circumference >=94; calculated from ID: 48); 

(b) high blood pressure (systolic blood pressure >= 130 or diastolic blood 

pressure >= 85; extracted from ID: 4079/80); (c) past or current smoker (ID: 

20116) and (d) diabetes (ID: 2443). For each of these criteria, participants 

scored 1 if they met the criterion and 0 if they did not. This way, we created a 

composite score that summed all the criteria for metabolic burden, ranging 

from 0 to 4 (Alberti et al., 2009; Yates et al., 2012). Other metabolic risk 

factors, such as cholesterolemia and high triglycerides, are not well 

characterized in the UK Biobank dataset and were not included.  

Similarly, we created a composite score to reflect affective symptoms. This 

score consisted of a sum of scores for the possible presence of (a) 

depression (ID: 4598); (b) anxiety (ID: 1980) and (c) anhedonia (ID: 4631). 

This score ranged from 0 to 3. 

The inclusion/exclusion process is depicted in Figure 1. We conducted our 

research under the UK Biobank application number 35605. 
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Figure 1. Description of the inclusion/exclusion process of the study.  
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Regional brain volume 

We used the brain volume variables available in UK Biobank. We selected as 

regions of interest (ROI) the NAcc (field ID: 25023/24) and other regions that 

are part of the mesolimbic circuitry: amygdala (ID: 25021 and 25022), caudate 

(ID: 25013 and 25014), hippocampus (ID: 25019 and 25020), pallidum (ID: 

25017 and 25018), putamen (ID: 25015 and 25016), thalamus (ID: 25011 and 

25012) and orbitofrontal cortex (ID: 25846 and 25847). For all regions, we 

added the volumes from the left and right hemisphere and divided them by 

total brain volume (field ID 25010). 

 

Statistical analysis: latent growth models in the UK Biobank dataset 

Latent growth models can be used to describe how individuals differ in the 

longitudinal trajectory of variables of interest. In brief, latent growth models 

specify two variables: intercept and slope. The intercept depicts the initial 

point where each individual is located on the Y-axis. The slope represents 

their trajectory over time (Duncan and Duncan, 2009; Hertzog and 

Nesselroade, 2003). 

Latent growth models have been applied to the UK Biobank dataset to 

examine longitudinal changes in fluid intelligence (Kievit et al., 2018). The 

model presented here is heavily inspired by this previous work.  

We estimated the latent growth models using the Lavaan package in R 

(Rosseel, 2012). First, we built a basic model with the three available 

measurements of BMI. We estimated the latent variables’ intercept and slope 

from the repeated measurements of BMI. The intercept represents a constant 

across time for each individual, so the factor loading was fixed to 1. The slope 
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was constrained to the mean intervals between time points (that is 0 for the 

first time point, 3.4 years for the second and 7.5 for the third). We included the 

brain areas defined as ROIs as regressors of the intercept and slope, and we 

allowed the ROIs to co-vary between each other and with age. 

We assessed model fit with the chi-squared test, the root mean square error 

of approximation (RMSEA), the standardized root mean squared residuals 

(RMSR) and the comparative fit index (CFI). Goodness of fit was defined as: 

RMSEA (acceptable fit < 0.08, good fit < 0.05), CFI (acceptable fit 0.95 - 0.97, 

good fit > 0.97), SRMR (acceptable fit 0.05 - 0.10, good fit < 0.05) 

(Schermelleh-Engel et al., 2003). 

To evaluate if simpler models would offer a better fit, we compared this basic 

model with two alternative models: (a) a model with the intercept constrained, 

which assumes that one average score can represent all the time-points, and 

(b) a model with the slope constrained, which assumes that individual scores 

do not change over time. 

Finally, we built a fully adjusted model that controlled for the effects of 

metabolic risk and affective symptoms. We defined these two variables as 

regressors of the intercept and slope, and allowed them to co-vary between 

each other, with the brain ROIs and with age. We set the statistical threshold 

at p<0.005. 
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Results 

Meta-analysis 

We identified 17 samples within 14 studies eligible for the meta-analysis 

(Bernardes et al., 2018; Beyer et al., 2019; Coveleskie et al., 2015; Curran et 

al., 2013; de Groot et al., 2017; Dekkers et al., 2019; Hamer and Batty, 2019; 

Annette Horstmann et al., 2011; Kakoschke et al., 2019; Mole et al., 2016; 

Ottino-González et al., 2017; Perlaki et al., 2018; Rapuano et al., 2017; Widya 

et al., 2011). For detailed description of the studies see Table 1. Two studies 

used samples from the UK Biobank dataset (Dekkers et al., 2019; Hamer and 

Batty, 2019), hence we only included the study with the larger sample size in 

the meta-analysis (Dekkers et al., 2019). Two of the studies presented 

separate results for men and women, which were introduced into the meta-

analysis as four separate studies (Dekkers et al., 2019; Annette Horstmann et 

al., 2011). A study by Kakoschke et al., 2019, included adolescent and adult 

samples, which we also included as two separate studies in the meta-

analysis.  

 

The meta-analysis points to a significant positive association between BMI 

and NAcc volume (mean partial correlation value r=0.15, confidence intervals: 

0.04-0.27, Fig. 2).  Heterogeneity values in the investigated studies was 

I2=91.50%. Funnel plot and Egger test did not provide evidence for publication 

bias (t=1.12, p=0.283; Fig. 3). Investigation of the relationship between partial 

correlation values and age of participants for each study pointed to a 

significant association between the two variables (β=-0.60, p<0.001, Fig. 4). 

Here, lower age was related to a positive correlation between BMI and NAcc 

volume, while higher age showed an opposite pattern.  
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Table 1 Details of studies included in the meta-analysis 

 
*in a full sample, not in reduced sample used for NAcc analysis; ** including underweight; BMI – body mass index;  BFP – body fat 
percentage, TIV – total intracranial volume, TBV – total brain volume

Study n lean n obese + 
overweight total n n lean 

women 
n obese 
women 

total n 
women lean BMI obese BMI mean BMI Statistical test Covariates 

Age range/ 
mean age 

[years] 

Meas
ure 

Year 
published 

Widya et al. 86/140* 201/331* 287/471* 58* 150* 208* 23.2 +- 1.6* Overweight: 27.0 +- 1.4, 
obese: 32.8 +- 2.9*  Multiple 

regression 
Age, sex, smoking, 

hypertension, pravastatin use 70-82 BMI 2011 

Horstmann et al.   122   61   

Females: 26.15 
+- 6.64, males: 
27.24 +- 6.13 

Correlation 
analysis 

Age, total gray matter, total 
white matter 19-41 BMI 2011 

Curran et al.   839   514    
Correlation 

analysis - 

Mean age 
males: 
43.0 +- 
14.2, 

females: 
43.7 +- 

15.1 

BMI 2013 

Coveleskie et al. 31 19 50 31 19 50 22.32 +- 
1.85 31.83 +- 3.35  

Correlation 
analysis Age, TIV 18-40 BMI 2015 

Mole et al. 44 42 86 18 21 39 23.57 +- 
2.31 33.02 +- 3.26  

Correlation 
analysis 

Age, sex, National Adult 
Reading Test scores, TIV 

Mean age 
obese 
group: 

44.59 +- 
9.86, 

control 
group: 

39.23 +- 
12.54 

BMI 2016 

Rapuano et al.   78   36   19.3 +- 4.3 Multiple 
regression Age, sex, TBV 

9-12 / 
mean age: 
10.3 +- 0.8 

BMI 2017 

Ottino-Gonzales 
et al. 29 34 63 15 21 36 22.35 +- 

1.82 31.39 +- 5.02  
Multiple 

regression Age, sex, years of education 21-40 BMI 2017 

de Groot et al. 19 25 44       
Multiple 

regression Age, sex 12-16 BMI 2017 

Bernardes et al. 31 16 47 15 8 23 22.96 +- 
1.64 32.58 +- 2.86  One-way ANOVA Age, sex, hypertension, TIV 40-70 BMI 2018 

Perlaki et al. 35 13 51**   47   
0.38 +- 1.25 (z-

score) 
Multiple 

regression Age, sex, TIV 10-18 BMI 2018 

Beyer et al. 307 315 625**   281   25.7 +- 4.5 Multiple 
regression Age, sex 20-59 BMI 2019 

Dekkers et al.   12087   6381   26.6 +- 4.4 Multiple 
regression 

Age, ethnicity, TIV, Townsend 
deprivation index, assessment 
centre, smoking status, alcohol 
use, diabetes, cardiovascular 

disease 

Mean age: 
62 +- 7.3 BFP 2019 

Kakoschke et al.   127   64   25.69 +- 5.15 Partial correlation TIV 
Mean age: 
24.79 +- 

9.60 
BFP 2019 
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Fig. 2. Correlation coefficients and 95% confidence intervals for relationships 

between BMI/BFP and nucleus accumbens volume for each study included in 

the meta-analysis. Sizes of points are proportional to sample sizes. Summary 

diamond represents overall partial correlation for all studies. M – men, W – 

women, Y – adolescent sample, O – adult sample. 
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Fig. 3 Publication bias funnel plot. Dots represent each study included in the 

meta-analysis. Note that there are only 15 dots, while we included 16 

separate results (from 13 studies); this is due to the fact that in Horstmann et 

al. results for men and women were the same, so one of the dots represents 

two studies. 

 

.CC-BY-NC-ND 4.0 International licenseIt is made available under a 
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/773119doi: bioRxiv preprint first posted online Sep. 25, 2019; 

http://dx.doi.org/10.1101/773119
http://creativecommons.org/licenses/by-nc-nd/4.0/


	 16	

 

Fig. 4. Relationship between partial correlation and age in all studies included 

in the meta-analysis. Each study is represented by a dot. Grey line represents 

the best fit. M – men, W – women, Y – adolescent sample, O – adult sample 

 

Latent growth model in the UK Biobank dataset 

 

Table 2 presents an overview of the demographic and anthropometric 

characteristics of the participants. 
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Table 2. Demographic and anthropometric characteristics of the participants included 
in UK Biobank latent growth analysis (2593 women and 2394 men). 
 Minimum Maximum Mean Standard 

deviation 
Age at timepoint 
1 

40 70 55.62 7.37 

Age at timepoint 
2 

44 74 59.92 7.31 

Age at timepoint 
3 

46 80 63.24 7.38 

Body Mass Index 
at timepoint 1 

18.63 55.50 26.51 4.20 

Body Mass Index 
at timepoint 2 

18.58 54.74 26.55 4.21 

Body Mass Index 
at timepoint 3 

18.52 53.36 26.37 4.24 

 Percentage 
Sum of affective 
symptoms 
(depression, 
anxiety and 
anhedonia) 

Zero: 29.0% 
One: 31.6% 
Two: 21.8% 

Three: 17.6% 

Sum of metabolic 
symptoms (high 
waist 
circumference, 
hypertension, 
diabetes, current 
or past smoker) 

Zero: 21.7% 
One: 43.8% 
Two: 31.1% 
Three: 3.4% 
Four: 0.0% 

 

 

Basic model: Longitudinal changes in BMI 

Our minimally adjusted model depicted the association between longitudinal 

changes in BMI and the mesolimbic regions of interest. We included as 

covariates age and our brain regions of interest. The model provided a good 

fit (χ2(10)=56.14; RMSEA=0.031; SRMR=0.003; CFI=0.998). 

The mean and variance of the intercept were 36.44 and 16.50, respectively. 

The mean slope showed a non-significant positive trend (estimate=0.22; 

SE=0.09; p=0.016) suggesting that participants' weight remained relatively 

stable over time. The slope variance was positive (estimate=0.040; SE=0.006; 

beta=0.990; p<0.001). There was a negative effect of age on slope 
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(estimate=-0.004; SE=0.001; beta=-0.099; p<0.001), suggesting the existence 

of age differences in the slope. The intercept and the slope showed a 

negative covariance (estimate=-0.113; SE=0.027; beta=-0.15; p<0.001), 

suggesting that participants with a higher baseline BMI gained less weight. 

The intercept of BMI was significantly associated with the NAcc (estimate=-

0.19; SE=0.04; beta=-0.08; p<0.001) and the thalamus (estimate=-0.49; 

SE=0.01; beta=-0.09; p<0.001). No areas showed a significant association 

with the slope (Figure 5 A). 

 

Alternative (simpler) models 

There was a significant decrease in model fit both when constraining the 

intercept (χ2(11) = 5351.2, p=2.2e-16) and when constraining the slope 

(χ2(11) = 53.926; p=2.08e-13), indicating that these alternative models did not 

provide a better solution. 

 

Fully adjusted model (addition of metabolic risk and affective symptoms in the 

model) 

We built a fully adjusted model by adding metabolic risk score and affective 

symptoms score as covariates. The model provided a good fit (χ2(12)=54.96; 

RMSEA=0.030; SRMR=0.003; CFI=0.998). The associations between NAcc 

and thalamus and the intercept remained equivalent (NAcc: estimate= -0.12; 

SE=0.04; beta=-0.05; p=0.004; thalamus: estimate=-0.37; SE=0.09; beta=-

0.07; p<0.001) (Figure 5 B).  
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Figure 5. Latent growth models for BMI change across the 3 timepoints. A) 

Minimally-adjusted model; B) Fully-adjusted model. The values represent the 

estimate. Brain regions, age, metabolic risk and affective risk were allowed to 

co-vary between them (for simplicity, these associations are not represented). 

 

Examination of results by sex 

To explore the possibility that sex differences might be driving the results, we 

tested the fully adjusted model dividing the sample in men and women. The 
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models produced equivalent results in terms of effect size compared to the 

model that aggregates both sexes (data not shown for simplicity). 

 

Discussion 

 

In the present study we sought to determine whether obesity is associated 

with volumetric differences in the NAcc and other mesolimbic areas. To do so, 

we performed a meta-analysis on 15 independent samples, representing 

14671 participants with available measurements of adiposity (i.e., BMI or total 

body fat). We found that, overall, NAcc volume was positively related to 

obesity measures. The magnitude of the correlation was small (r=0.16). There 

was no evidence of publication bias across the studies, according to the 

funnel plot and Egger test. We additionally examined possible age effects on 

the meta-analytic results, since the studies had a broad age range (9 to 82 

years old). We found that the relationship was strongly dependent on age. 

Here, young participants showed a positive relationship between NAcc 

volume and obesity measures, while in older adults the relationship was 

negative. Next, using the UK Biobank dataset we tested whether longitudinal 

change in BMI was related to volumetric differences in the NAcc and in other 

mesolimbic regions. We included 4924 participants with available 

neuroimaging data that completed an evaluation of BMI across three time-

points, covering 7.5 years. We applied latent growth models and estimated 

two latent variables, representing individual variations in BMI (i.e., intercept) 

and BMI change over time (i.e., slope). Contrary to our expectations, none of 

the regions of interest showed associations with BMI change over time. 
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However, the NAcc and thalamus showed negative associations with BMI. 

Our findings align well with our meta-analytic results, since the age range of 

the participants in the UK Biobank is 40 to 80 years old, and replicate 

previous results from this dataset (Dekkers et al., 2019). 

The meta-analytic findings regarding an effect of age on the relationship 

between BMI/BFP and nucleus accumbens volume might help explain 

conflicting findings in the literature. First, increased NAcc volume in children 

and young adults with higher BMI might constitute a vulnerability factor for 

obesity. In fact, a study by Rapuano and colleagues (2017) showed that 

children with a higher risk for obesity as defined by an FTO gene 

polymorphism have greater fMRI responses to viewing food commercials in 

the NAcc (Rapuano et al., 2017). Additionally, in the same study, children at a 

higher risk for obesity showed larger NAcc volumes. This is in line with studies 

in children and adolescents showing positive relationships between BMI/BFP 

and NAcc volume (de Groot et al., 2017; Perlaki et al., 2018).  

 

On the other hand, a negative association between BMI/BFP and NAcc 

volume in older adults might be related to age-related increases in vascular 

pathology and inflammatory processes. Previous animal studies showed that 

diet-induced obesity influences structure and function of the NAcc (Gutiérrez-

Martos et al., 2018), but also other brain areas, through neuroinflammation 

(Beilharz et al., 2016; Lu et al., 2011; Tapia-González et al., 2011). Our 

findings are thus in line with a study in humans showing that total brain 

volume is negatively associated with inflammatory markers (Jefferson et al., 
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2007) and a study showing that, in older adults, high BMI is generally related 

to brain atrophy (Raji et al., 2009). 

 

Such an age-dependent relationship between NAcc volume and BMI might 

act as a confound in nuclear imaging studies on dopamine receptor density in 

obesity, due to partial volume effects: decreased NAcc volume in older adults 

with higher BMI might cause increased measurement error. It has been 

suggested that dopaminergic dysfunctions in mesolimbic pathways facilitate 

weight gain and obesity through alterations in reinforcement learning, 

motivation and self-regulation (Volkow et al., 2017). However, results in 

obesity are highly heterogeneous, with studies reporting reductions (Wang et 

al., 2001), null findings (Eisenstein et al., 2015) and increases (Gaiser et al., 

2016) in striatal D2/D3 receptor availability in obesity. A study by Dang and 

colleagues reported null associations between striatal D2/D3 receptor 

availability and BMI in individuals younger than 30 years old and positive 

associations in the midbrain, putamen and ventral striatum in participants 

older than 30 (Dang et al., 2016). It is possible that nucleus accumbens 

volume differences between age groups might bias D2/D3 receptors 

measurements. Hence, those differences might be important in explaining the 

age-dependent relationship between BMI and D2/D3 receptor availability 

found by Dang and colleagues. 

A history of consistently elevated adiposity increases morbidity and mortality. 

Specifically, as the number of years lived with obesity increases, there is 

higher incidence of all-cause, cardiovascular-related and cancer-related 

mortality (Abdullah et al., 2011b). The incidence of Type 2 diabetes also 
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increases by 12% to 14% for each 2 years of increment in the duration of 

obesity (Abdullah et al., 2011a; Hu et al., 2014). In this context, we further 

examined the possible association between longitudinal changes in BMI and 

higher brain vulnerability to the effects of adiposity. For this analysis, we used 

the UK Biobank cohort, which includes participants with an age range of 40 to 

80 years. In this well-powered sample, we did not find evidence that 

longitudinal changes in BMI are associated with mesolimbic volumetric 

differences. However, we found that the intercept of BMI (which represents 

mean BMI) was negatively associated with the volume of the NAcc and 

thalamus. These associations remained significant when accounting for 

vascular risk factors and affective symptoms in the analysis. This indicates 

that a high BMI is associated with lower NAcc and thalamus volume in older 

adults, possibly reflecting detrimental effects of adiposity on the brain. 

The main limitation of our meta-analysis is the fact that it includes only cross-

sectional measures. Ideally, to be able to confirm our interpretation of the 

results, a longitudinal study investigating the relationship between BMI/BFP 

and NAcc volume across the lifespan should be performed. Such studies, 

even though difficult to perform, become more feasible with the development 

of large cohorts. Although we hypothesized that inflammatory markers might 

mediate the relationship between obesity and brain vulnerability, we could not 

test this hypothesis since our data did not contain plasma inflammatory 

markers. We hope that future neuroimaging studies will address this issue. 
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Conclusions  

In the present study we have examined the relationship between obesity 

measurements and volumetric differences in the NAcc. Using meta-analysis, 

we found that obesity showed a small positive relationship with gray matter 

volume in the NAcc. We did not find evidence of publication bias. Moreover, a 

further analysis indicated that age was a moderator of this association. In 

younger participants the associations between obesity and NAcc volume are 

positive, while in older participants this relationship is null or negative. Next, in 

a population-based cohort of older adults we tested whether longitudinal 

changes in BMI are related to volumetric differences in the NAcc and other 

mesolimbic areas. Contrary to our expectations, none of the areas examined 

showed associations with change in BMI over time. However, the NAcc and 

the thalamus volumes showed negative correlations with individual BMI, 

supporting the meta-analysis results. We point to the possible implication of 

inflammatory factors, which might be especially relevant in individuals in their 

mid and older adulthood.  
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