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Abstract 28 

White matter abnormalities are well-established in adult patients with psychosis. Yet less is 29 

known about changes in early onset psychosis (EOP) during adolescence, especially whether 30 

antipsychotic medication might impact white matter microstructure in this sensitive phase. Here, 31 

we utilized Magnetic Resonance Imaging (MRI) in unmedicated and medicated adolescent 32 

EOP patients in comparison to healthy controls to examine the impact of antipsychotic 33 

medication status on indices of white matter microstructure. Twenty-two EOP patients (11 34 

unmedicated) and 33 healthy controls, aged between 12-18 years, underwent 3T diffusion-35 

weighted MRI. Using Tract-based Spatial Statistics, we calculate case-control differences in 36 

scalar diffusion measures, e.g. fractional anisotropy (FA), and investigated their association 37 

with antipsychotic medication. We replicated previous results from studies in EOP patients 38 

showing significantly decreased mean FA including the left genu of the corpus callosum, the 39 

left anterior corona radiata and the right superior longitudinal fasciculus in patients relative to 40 

healthy controls. Mean FA in the left anterior corona radiata was significantly associated with 41 

antipsychotic medication status, showing higher FA values in medicated compared to 42 

unmedicated EOP patients. Increased regional FA values might be a first hint towards an early 43 

effect of antipsychotic medication on white matter microstructure in adolescent EOP patients. 44 

 45 
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Introduction 55 

A variety of hypotheses has been proposed to explain the etiology of psychotic disorders, 56 

including aberrant dopamine neurotransmission 1, altered neurodevelopmental trajectories 2, 57 

and active neuroinflammation 3. Such theories are not mutually exclusive and are more likely 58 

complementary. Patients with early onset psychosis (EOP), with defined age of onset before 59 

18 years, provide an unprecedented opportunity to specifically investigate the perspective of 60 

aberrant neurodevelopment.  61 

The application of diffusion weighted imaging (DWI) can relate white matter organization to 62 

disease. DWI maps the Brownian movement of water molecules in the brain in vivo, and as 63 

axon membranes and myelin provide natural barriers for water diffusion, DWI can be used to 64 

infer local tissue properties 4. The most commonly used scalar measure is fractional anisotropy 65 

(FA), which characterizes the degree of diffusion directionality. For an in-depth evaluation of 66 

FA, the relative contribution of axial diffusion (AD) along the primary axis, and radial diffusion 67 

(RD) perpendicular to it, can be informative. RD has been associated with changes in myelin 68 
5, and a disruption of myelin sheaths may be reflected in an increased RD. Conversely, AD 69 

has been linked to axonal integrity and axonal damage may be characterized by decreased 70 

AD 4.  71 

Using DWI, a number of studies show widespread FA reductions in many different brain 72 

regions with low spatial overlap such as corpus callosum, cingulum, superior longitudinal 73 

fasciculus, inferior longitudinal fasciculus and fronto-occipital fasciculus in EOP patients 74 

compared to healthy controls 6-10. Scalar DWI measures beyond FA are rarely analyzed in EOP 75 

populations. However, Lagopoulos and colleagues report on increased RD values, indicative 76 

of potential demyelinating processes underlying the observed white matter abnormalities 10.  77 

The low degree of regional specificity of whiter matter changes seems to be attributed to a 78 

number of factors including differences in image acquisition, different analysis approaches 79 

(ROI vs voxel-wise), small sample sizes, low prevalence of EOP (estimated prevalence of 17.6 80 

in 10,000 at age of 18 years, 11) and differing sample characteristics such as age of onset. 81 

Further, antipsychotic medication status might also affect the pattern of white matter 82 

microstructure in EOP.  83 

Studies investigating white matter microstructure in EOP mainly focus on case-control 84 

differences, either reporting antipsychotic effects as secondary findings or using antipsychotic 85 

medication status as a covariate of no interest. So far, studies in EOP patients do not indicate 86 

an impact of either current 12-14 or cumulative antipsychotic exposure 6,13,15 on scalar DWI 87 

measures. The absence of an antipsychotic medication effect could reflect small sample sizes 88 
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and young patients with shorter medication histories. The apparent limitations of the 89 

adolescent study population also hold potential advantages: EOP patients are less affected by 90 

chronic exposure to antipsychotic medication in comparison to their adult counterparts, which 91 

allows for dissecting medication-mediated from disease-related effects on brain structure. 92 

Furthermore, according to the World Health Organization guideline for pharmacological 93 

interventions in adolescents with psychotic disorders (2015), antipsychotic medication use is 94 

significantly less recommended in comparison to adult patients with psychosis 16. This partly 95 

translates to a clinical practice of a higher reluctance in starting antipsychotic treatment early 96 

in the course of psychosis in children and adolescents, leading to a higher percentage of 97 

antipsychotic-naïve EOP patients relative to adult first episode patients with psychosis. Thus, 98 

EOP patients represent an ideal population to investigate the impact of antipsychotic 99 

medication on white matter structure early in disease progression.  100 

Here, we use a thoroughly clinically characterized adolescent EOP sample to (1) investigate 101 

white matter microstructure in comparison to healthy controls, and (2) explore the association 102 

between second-generation antipsychotic medication and white matter microstructure in 103 

medicated compared to currently unmedicated/antipsychotic-naïve EOP patients. We utilize 104 

DWI and, by using Tract-Based Spatial Statistics (TBSS), we calculate FA and its scalar sub-105 

measures, RD and AD, and investigate their association with antipsychotic medication and 106 

other clinical measures (e.g. Positive and Negative Syndrome Scale, etc.). Based on the 107 

existing literature, we hypothesized that EOP patients show widespread reduced FA attended 108 

by increased RD and unchanged AD compared to healthy controls, mainly in the corpus 109 

callosum and superior/inferior longitudinal fasciculus. As there are no established effects of 110 

antipsychotic medication on white matter structure in EOP patients, our post hoc analysis is 111 

exploratory by nature.  112 

 113 
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Results 119 

Demographic and clinical data 120 

As presented in Table 1, EOP patients did not differ significantly from controls in general 121 

demographic variables such as age, handedness and IQ. However, there was a significant 122 

case-control difference in clinical measures such as CGAS and MFQ, reflecting the clinical 123 

diagnosis. EOP patients showed higher impairment of general functioning evaluated with 124 

CGAS and exhibited significantly more depressive symptoms using MFQ, relative to their 125 

healthy counterparts. Furthermore, patients report significantly more cannabis use than 126 

controls.  127 

Within the patient group (Table 2), patients on antipsychotic medication were significantly older 128 

than unmedicated patients (t = -4.186, p = 0.0006). In line with antipsychotic medication status, 129 

duration of untreated psychosis (DUP) was significantly longer in the unmedicated EOP 130 

subgroup in comparison to the medicated group. Further demographic and clinical variables 131 

did not differ significantly between the patient subgroups.   132 

TBSS analyses 133 

Voxel-wise statistical analysis of case-control differences revealed decreases in mean FA 134 

including the left genu of the corpus callosum, the left anterior corona radiata (ACR), and the 135 

right superior longitudinal fasciculus (SLF) in EOP patients compared to healthy controls (see 136 

Figure 1 and Table 3). There was no increase in mean FA for the opposing contrast.  137 

Applying the TBSS pipeline to diffusion-derived data other than FA, namely RD and AD, did 138 

not yield significant case-control differences for RD, but decreases in mean AD overlapping 139 

with FA findings in EOP patients in comparison to healthy controls. In detail, mean AD shows 140 

significantly decreases in the left ACR (see supplementary Table S2), in addition to decreases 141 

in the right posterior limb of the internal capsule (PLIC) and right superior fronto-occipital 142 

fasciculus (SFOF).   143 

Extracted mean values of all scalar diffusion measures for all significant clusters stratified by 144 

group are displayed in supplementary Figure S1 for descriptive purposes only. In the interest 145 

of transparency, TBSS case-control differences in mean FA and mean AD (patients < controls) 146 

at a cluster-forming threshold of p ≤ 0.05 are also presented (see supplementary Figure S2). 147 

Linear regression analyses 148 

To evaluate the potential influence of duration of illness and antipsychotic treatment on regional 149 

mean FA and mean AD values within significant TBSS clusters, in patients, linear regression 150 
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analyses were performed. While duration of illness was not significantly associated with mean 151 

FA in any of the clusters, we found a significant negative association with mean AD in the left 152 

ACR (t = -2.364, p = 0.029). For latter association, however, the regression equation was not 153 

significant (p = 0.085) and the overall explanatory power of the model was low (R2 = 0.147), 154 

rendering this finding most likely spurious (see supplementary Table S1).  155 

Exposure to antipsychotic medication was significantly associated with mean FA values in the 156 

left ACR (t = 2.991, p = 0.008), showing higher mean FA in medicated relative to the 157 

unmedicated patients (Figure 2). There was no association between antipsychotic medication 158 

and mean FA or mean AD in the other significant TBSS clusters (see supplementary Table 159 

S1). Cohen’s d effect size values suggest a high (d = 1.48) and a low (d = -0.08) standardized 160 

difference in mean FA of the left ACR in unmedicated and medicated EOP patients relative to 161 

healthy controls, respectively (Figure 3). Based on visual inspection, higher mean FA in 162 

medicated patients seems driven by an increase in AD and a decrease in RD (Figure 2). 163 

However, mean AD and RD did not differ significantly between medicated and unmedicated 164 

patients (Welch Two Sample t-test, AD: t = 0.183, p = 0.857; RD: t = 1.887, p = 0.079). 165 

Association with clinical measures  166 

We found no association between current antipsychotic medication evaluated as 167 

chlorpromazine equivalent at scan day (CPZ, Spearman ρ = 0.13, n = 11, p = 0.695) or 168 

cumulative CPZ (Pearson ρ = -0.15, n = 11, p = 0.665) with regional mean FA values in the 169 

left ACR.  170 

In addition, we also found no significant correlations, which survived correction for multiple 171 

comparisons (FA cluster: Bonferroni, a = 0.003; AD cluster: Bonferroni, a = 0.004), between 172 

neither extracted mean FA nor mean AD values of all significant TBSS clusters and clinical 173 

measures such as PANSS (neither positive nor negative), CGAS and MFQ scores.  174 

 175 

 176 
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Discussion  178 

Our case-control results replicate prominent brain regions with known white matter 179 

abnormalities implicated in EOP, namely corpus callosum 6, right SLF 14,17,18 and the left ACR 180 
9,10. Intriguingly, lower FA in these regions seems to occur early in the disease process 10,18,19. 181 

For instance, Lagopoulos and colleagues found a decrease in FA in the left ACR in both 182 

patients with established psychiatric disorder and patients exhibiting sub-syndromal symptoms, 183 

aged 14-30 years. Based on these findings, the authors proposed that abnormalities in the left 184 

ACR are a putative precursor to the development of a psychiatric condition 10.  185 

However, the ACR is a highly heterogeneous structure with three long-range association fiber 186 

tracts traversing through it 10: anterior thalamic radiation (ATR), inferior fronto-occipital 187 

fasciculus (IFOF) and uncinate fasciculus (UF). All three association fibers form connections 188 

to the frontal lobe and have been implicated in the pathophysiology of psychiatric disorders 189 
10,20-22. In the current study, the left ACR peak voxel shows a 16% probability of IFOF 190 

involvement based on the JHU White-Matter Tractography Atlas. The IFOF connects the 191 

occipital and temporal lobes with the orbitofrontal cortex as part of the ventral visual and 192 

language stream. In particular, the left IFOF seems to subserve language semantics 23. Already 193 

in 1996, Aloia and colleagues proposed that the disruption of semantic networks have potential 194 

implications for the origin of “thought disorder” in schizophrenia 24. Adding to this hypothesis, 195 

patients with 22q11.2 deletion syndrome, who are genetically at high risk for developing 196 

schizophrenia, showed lower FA values in left IFOF 25. Furthermore, DeRosse and colleagues 197 

found that lower FA proximal to the SLF and corticospinal tract bilaterally, and left IFOF and 198 

left inferior longitudinal fasciculus (ILF), were associated with higher levels of psychotic-like 199 

experiences in otherwise healthy volunteers 26. In early-onset schizophrenia (EOS) patients, 200 

lower FA in the left IFOF and the left ILF predicted worse neurocognitive performance 9. The 201 

authors also detected a shared decrease in FA in the left IFOF among patients with clinical 202 

high risk for schizophrenia and patients with established EOS, in comparison to healthy 203 

controls. Together, these findings suggest that white matter abnormalities in the left ACR, 204 

putatively in the left IFOF, may represent a potential candidate for understanding the etiology 205 

of psychosis.  206 

This assumption seems further supported by effects of antipsychotic medication on diffusion 207 

metrics in the left ACR. We found that FA values in the left ACR were significantly predicted 208 

by antipsychotic medication status, with higher FA values in medicated relative to unmedicated 209 

EOP patients. No such association was found with the other brain regions showing significantly 210 

decreased FA values. Besides the high Cohen’s d effect size estimate (Figure 2), we found no 211 

significant association of regional FA with either current or cumulative antipsychotic exposure. 212 
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This lack of significant associations is, however, in line with previous studies in EOP patients 213 
6,12-15 and likely due to the fairly short medication history in EOP patients compared to their 214 

adult-onset counterparts or limited sample size. Hence, the presence of antipsychotic 215 

medication rather than the actual dose might induce the observed changes in white matter 216 

microstructure.  217 

In medicated patients, increased FA values seem to be driven by an increase in AD and a 218 

decrease in RD, relative to their unmedicated counterparts (Figure 2). Thus, FA might be 219 

enhanced by antipsychotic medication as a result of both facilitated parallel diffusivity (AD, 220 

potentially mediated by an increase in axon numbers, and restricted perpendicular diffusivity 221 

(RD), indicative of changes in myelin.  222 

Converging evidence from multiple studies suggests oligodendroglial dysfunction, with 223 

subsequent abnormalities in myelin maintenance and repair, to underpin white matter 224 

abnormalities observed in psychotic patients 27. In the framework of schizophrenia, it has been 225 

proposed that myelin dysfunction, especially in frontal regions, contributes to psychotic 226 

symptoms 13,27. Based on findings from cell culture studies using aripiprazole 28 and rodent 227 

work using quetiapine 29,30, second-generation antipsychotic medication may promote 228 

oligodendrocyte recovery and myelin repair leading to reduced white matter abnormalities and, 229 

subsequently, reduced psychotic symptoms. A recent study in patients with schizophrenia also 230 

reports on promyelinating effects of antipsychotics 31. Tishler and colleagues found an increase 231 

in intracortical myelin predominantly mediated by risperidone and other second-generation 232 

antipsychotics in adult patients with schizophrenia compared to healthy controls within the first 233 

year of treatment. In the current study, given that medicated EOP patients received either 234 

aripiprazole, quetiapine or risperidone, one might speculate that early medication with second-235 

generation antipsychotics might affect white matter microstructure by remediating 236 

oligodendroglial dysfunction, leading to an increase in FA detected by DWI.  237 

Even though FA is highly sensitive to microstructural changes in general, it lacks 238 

neurobiological specificity to the exact type of change 4. For instance, a decrease in FA can 239 

reflect alternations in fiber organization, including packing density and fiber crossing, and 240 

myelin loss or myelin remodeling 32. We found a widespread decrease of AD on a whole brain 241 

level, indicative of axonal damage, but no changes were found in RD, relative to healthy 242 

controls. This finding is not in line with previous work from Lagopoulos and colleagues, who 243 

found a decrease in FA in the left ACR associated with increases in RD and no changes in AD 244 
10.  245 

Although there are likely several reasons for these conflicting findings, neuroinflammatory 246 

processes might pose particular difficulties in interpreting DWI signals in psychotic populations 247 
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33. For instance, in an animal model of cuprizone-induced demyelination of corpus callosum, 248 

regions with extensive axonal edema and prominent cellular inflammation showed no change 249 

in RD, while AD values were diminished at the beginning of demyelination 34. Given the 250 

neuroinflammation hypothesis of schizophrenia 3, it seems likely that the disease progression 251 

encompasses a dynamic evolution of inflammation, axonal injury, and myelin degeneration. In 252 

the current study, one might speculate that EOP patients are on the verge of undergoing 253 

demyelination processes, reflected by widespread decreases in AD. However, the timing of 254 

neuroinflammation in psychotic disorders relative to tissue injury is unclear, leading to a 255 

heightened risk of misinterpreting changes in DWI measures. According to a recent review of 256 

Winklewski and colleagues, in cases of neuroinflammation linked to tissue damage, DWI 257 

seems to underestimate the extent of demyelination (undervalued RD), and overestimate the 258 

extent of axonal injury (overvalued AD) 35. This pattern seems replicated in our study, with 259 

significant changes in AD and no changes in RD. As the consistency of DWI metrics seems 260 

affected by brain edema and inflammatory response, future studies can benefit from using 261 

tools such as free water imaging which provide the opportunity to separate the contribution of 262 

extracellular water from the diffusion of water molecules inside the fiber tracts, leading to a 263 

higher specificity in detecting structural changes 36.  264 

Deviations in scalar DWI measures in the current study relative to previous studies could also 265 

be due to ongoing white matter maturation processes in our adolescent EOP sample. In 266 

healthy individuals, age-related increases in FA during childhood, adolescence and early 267 

adulthood have been consistently reported 37-40. This increase in FA seems primarily driven by 268 

a reduction in RD, while AD remains fairly stable or decreases slightly 41,42. Findings for AD 269 

changes during the transition to adulthood are less consistent 37-40. Thus, the AD difference 270 

found in the current study could also be attributed to developmental processes, which may 271 

fade as adolescents mature into adulthood.  272 

However, it should be noted that the neurodevelopmental trajectories of white matter structure 273 

relative to disease progression in EOP patients are unclear. So far, three different studies 274 

yielded inconclusive results, postulating either diverging 13, converging 43, or parallel 44 275 

trajectories relative to healthy controls. In the current study, we did not find any predictive value 276 

of duration of illness for regional FA. This is in line with previous findings from Kumra and 277 

colleagues, who speculated that the decrease in FA in EOP patients compared to healthy 278 

controls reflects developmental abnormalities rather than secondary effects of the disease 279 

progression 13. In addition, Epstein and Kumra found lower FA in the inferior longitudinal 280 

fasciculus, IFOF and corticospinal tract, but no significant group differences in longitudinal 281 

changes in FA 44. Thus, the observed changes in the current study might persist but do not 282 
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affect the overall white matter maturation trajectories. However, the cross-sectional nature of 283 

the current study precludes the assessment of developmental effects over time. 284 

The results of the current study should be considered in the context of several limitations. 285 

Unmedicated EOP patients were significantly younger than those receiving medication. 286 

Although the analysis was corrected for age, we cannot exclude that the age of the patients 287 

contributes to the observed antipsychotic-medication related changes in white matter structure. 288 

It is possible that time-of-measurement effects, with older patients having higher FA values 289 

than younger patients due to more advanced white matter maturation, could confound our 290 

results. However, while we acknowledge this possibility, we consider this unlikely to be the 291 

driving mechanism for the following reason: we would expect differences in FA values in other 292 

regions showing a similar maturation trajectory, such as the SLF 41, if our results were mainly 293 

driven by age differences. This was not the case, as we found no significant difference in mean 294 

FA values of the SLF between medicated and unmedicated patients (t = -0.56934, p-value = 295 

0.576). We further stress that we did not find any associations between regional FA variation 296 

and clinical measures such a PANSS scores, which is likely due to the relatively small sample 297 

size.  298 

In summary, the present study is the first to link antipsychotic medication status to altered 299 

regional FA in the left ACR in patients with EOP. Understanding the significance of white matter 300 

abnormalities in the left ACR in adolescents with EOP and the putatively remediating effect of 301 

antipsychotic medication, may help to phenotype the disease and to develop new 302 

pharmacological regimes to subsequently improve functional outcome. Assuming that 303 

antipsychotic medication reverses the hypothesized myelin dysfunction in psychosis, early 304 

interventions with antipsychotic medication, already in individuals at risk of developing 305 

psychosis, could provide the opportunity to normalize white matter maturation. Although 306 

exciting, further work is needed to draw firm conclusions about the beneficial effects of 307 

antipsychotic medication early in the disease process. Building on our first results, longitudinal 308 

studies with larger samples sizes using high resolution DWI in combination with clinical, genetic 309 

and neurocognitive measures are warranted to delineate heritability, affected brain regions, 310 

antipsychotic medication effects, and directions of FA changes over time. 311 
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Methods 312 

Participants  313 

The study sample was drawn from the ongoing longitudinal Youth-Thematic-Organized-314 

Psychosis (Youth-TOP) research study, which is a subdivision of the TOP research 315 

group/NORMENT and KG Jebsen center of psychosis research in Oslo, Norway. EOP patients, 316 

aged between 12-18 years, were recruited from in- and outpatient clinics in the Oslo region. 317 

Healthy controls were randomly selected from the Norwegian National Registry in the same 318 

catchment area. All participants and their respective parents/guardians provided written 319 

informed consent. The study was approved by the Regional Committee for Medical Research 320 

Ethics (REK-Sør) and the Norwegian Data Inspectorate and was conducted in accordance 321 

with the Declaration of Helsinki.  322 

For study inclusion, participants were required to have an intelligence quotient (IQ) > 70, a 323 

good command of the Norwegian language, no previous moderate to severe head injuries, no 324 

diagnosis of substance-induced psychotic disorder, and no organic brain disease. IQ was 325 

measured by the Wechsler Abbreviated Scale of Intelligence 45. Diagnosis was established 326 

according to the Diagnostic and Statistical Manual of Mental Disorder- IV criteria using the 327 

Norwegian version of the Kiddie-Schedule for Affective Disorders and Schizophrenia for 328 

School Aged Children (6-18 years): Present and Lifetime Version (K-SADS-PL46). The clinical 329 

characterization was conducted by trained psychologists or psychiatrists. 330 

A total of 67 participants (27 patients/40 controls) satisfied the above-mentioned criteria and 331 

underwent MRI examination. All MRI scans were visually inspected by a trained 332 

neuroradiologist to rule out any pathological changes. Out of the initial sample, seven control 333 

participants and five patients were excluded due to (i) clinical/radiological reasons (five 334 

patients/ three controls), or (ii) strong motion artefacts in the diffusion imaging data (four 335 

controls), resulting in a final sample of 55 participants (22 patients/ 33 controls) being entered 336 

in the statistical analysis. 337 

Sample demographics and clinical characteristics separated by antipsychotic medication 338 

status of EOP patients are reported in Table 1 and Table 2, respectively. 339 

Clinical measures 340 

Presence and severity of psychopathological symptoms of EOP patients were assessed using 341 

the Positive and Negative Syndrome Scale (PANSS47). Children Global Assessment Scale 342 

(CGAS48) and Mood and Feelings Questionnaire (MFQ, long version 49) were evaluated in all 343 

participants to measure general functioning level and to screen for depressive symptoms, 344 
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respectively. Recreational drug use was assessed within the structured K-SADS interview and 345 

scored with 0 or 1 for absent or present. For EOP patients, current and lifetime cumulative use 346 

of medication was recorded and converted into chlorpromazine equivalents (CPZ), using 347 

formulas published elsewhere 50. While 11 EOP patients were off any antipsychotic medication 348 

at scan, yielding a lack of current CPZ values, 3 patients had received pharmacological 349 

treatment prior to inclusion, resulting in a low cumulative CPZ dosage for this subgroup (see 350 

Table 2). 351 

MRI data acquisition 352 

MR images were acquired on a 3-Tesla General Electric Signa HDxt scanner equipped with 353 

an 8-channel head coil at the Oslo University Hospital, Norway. The diffusion imaging data 354 

was acquired using a 2D spin-echo whole-brain echo-planar imaging sequence with the 355 

following parameters: slice thickness = 2.5 mm, repetition time = 15 s, echo time = 85 ms, flip 356 

angle = 90°, acquisition matrix = 96 x 96, in-plane resolution = 1.875 x 1.875 mm. A total of 32 357 

volumes with different gradient directions (b = 1000 s/mm2), including two b0-volumes with 358 

reversed phase-encode (blip up/down), were acquired.  359 

Diffusion data analysis 360 

Diffusion data were analyzed with FSL version 5.0.9 using the FMRIB’s software library 361 

(https://fsl.fmrib.ox.ac.uk/fsl/fslwiki). Before creating voxel wise maps of diffusion parameters, 362 

the following steps of the standard processing pipeline were used: (i) topup to correct for 363 

susceptibility-induced distortions 51,52, (ii) eddy current correction to correct for gradient-coil 364 

distortions and head motion 53, (iii) removal of non-brain tissue using the Brain Extraction Tool 365 

(bet) 54, and (iv) local fitting of the diffusion tensor at each voxel using dtifit (FMRIB’s Diffusion 366 

Toolbox (FDT) 55). Dtifit yielded in voxel wise participant-specific maps of FA, mean diffusion 367 

(MD), and axial diffusivity (AD, derived from eigenvector l1). Based on the outputted 368 

eigenvectors l2 and l3, radial diffusivity (RD) was computed ((l2+l3)/2)). Next, voxel wise 369 

statistical analysis of the FA data was carried out using TBSS 56. First, all FA images were 370 

nonlinearly aligned to the most representative FA image out of all images and transformed into 371 

1x1x1 mm3 MNI152 standard space by means of affine registration. Secondly, TBSS projects 372 

all participant’s FA data onto a mean FA tract skeleton (threshold FA > 0.25), before applying 373 

voxel wise cross-participant statistics. After TBSS for FA was completed, results were used to 374 

generate skeletonized RD and AD data for additional voxel-wise group comparisons using the 375 

TBSS non-FA pipeline. 376 

 377 

.CC-BY-NC-ND 4.0 International licenseIt is made available under a 
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/721225doi: bioRxiv preprint first posted online Aug. 2, 2019; 

http://dx.doi.org/10.1101/721225
http://creativecommons.org/licenses/by-nc-nd/4.0/


13 
 

Statistical analyses 378 

For contrasting case-control differences, we run voxel-wise statistics, co-varied for age and 379 

gender, using a nonparametric permutation-based approach (Randomise, implemented in FSL, 380 

5000 permutations). All variables were demeaned. The statistical threshold was set at p ≤ 0.01, 381 

after family-wise error correction for multiple comparisons using threshold-free cluster 382 

enhancement. We chose a highly conservative threshold for FA to minimize type I errors and 383 

to better account for the exploratory nature of the study concerning the impact of antipsychotic 384 

medication status. For RD and AD, the same statistical model was used. 385 

Regions identified with TBSS (FA) and TBSS non-FA (RD or AD were subsequently used as 386 

masks to extract mean FA, RD and AD values for plotting and further analysis. We refrained 387 

from using MD values, as a measure of overall diffusivity within a voxel, in further analysis due 388 

to its lack of specificity 4. As scalar diffusion measures largely vary in their value ranges, 389 

extracted mean values were z-standardized for plotting purposes using the following formula: 390 

z = (participant’s value – group mean) / standard deviation. 391 

A linear regression model was performed to examine whether patients’ mean values of 392 

significant TBSS and TBSS non-FA clusters were associated with duration of illness and 393 

antipsychotic medication status as categorical variable (coded as yes (1)/no (0)). The effect 394 

size was reported as Cohen's d 57. 395 

If there is an association between patients’ regional mean values and antipsychotic medication, 396 

follow-up correlation analysis with current and cumulative CPZ were performed using 397 

Spearman's rank correlation rho for non-normal data.  398 

Further analysis of regional mean values and its association with clinical measures (PANSS, 399 

CGAS, MFQ) were performed using Pearson's product moment correlation coefficient.  400 

Statistical tests were conducted in R, version 3.5.2 (www.r-project.org). 401 

 402 

 403 

 404 

 405 

 406 
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Figures 605 

 606 

Figure 1| Lower fractional anisotropy (FA) in early onset psychosis (EOP) patients in 607 

comparison to healthy controls. Displayed are significant FWE-corrected TBSS results (red-608 

yellow, p ≤ 0.01), contrasting EOP patients against healthy controls, overlaid on the study-specific mean 609 
FA skeleton in green and the mean FA image. Results shown underwent threshold-free cluster 610 
enhancement and are corrected for age and sex. CC = corpus callosum, ACR = anterior corona radiata, 611 
SLF = superior longitudinal fasciculus, R = right, L = left.  612 
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 619 

Figure 2| Extracted scalar diffusion values of the left anterior corona radiata (ACR) 620 

cluster stratified by antipsychotic use, in comparison to the healthy controls (HC). Data 621 

is z-standardized and presented as boxplots for the different scalar diffusion measures overlaid with raw 622 
data points. HC are depicted in white, EOP patients on antipsychotic medication in dark grey and EOP 623 
patients off antipsychotic medication in light grey. EOP = Early onset psychosis, AP = Antipsychotic use 624 
(on = yes, off = no), AD = axial diffusion, FA = fractional anisotropy, RD = radial diffusion. Significant 625 
differences in scalar measures between patient subgroups, based on linear regression models, are 626 
indicated with a star. 627 
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 634 

Figure 3| Effect size of antipsychotic medication effect on fractional anisotropy (FA) in 635 

left anterior corona radiata (ACR). Effect size is presented as Cohen's d with 95% confidence 636 

interval (CI) to show the standardized difference of antipsychotic medication status (AP) of early onset 637 
psychosis (EOP) patients relative to healthy controls (HC, N = 28). EOP patients on AP (N = 8) are 638 
depicted in dark grey and EOP patients off AP (N = 11) are depicted in light grey. Results are controlled 639 
for age, sex and BMI.  640 
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Tables 652 

Table 1| General sample characteristics. 653 

 EOP patients overall 
N = 22 

Healthy controls 
N = 33 

Statistics 
group-level 

Sex (m/f) 7/15 13/20 X2 = 0.33, p = 0.775 

Age at MRI (y) 16.69 ± 1.13 16.08 ± 1.43 t = 1.76, p = 0.085 

Range 14.53 – 18.25 12.67 – 18.15  

Handedness (r/l) 18/2 30/2 FET, p = 0.634 

Missing N (%) 2 (9.1) 1 (3)  

Parental Education (y)    

Mother 15.05 ± 1.94 16.13 ± 2.09 t = - 1.94, p = 0.058 

Range 11 – 19 12 – 22  

Missing N (%) 0 2 (6.1)  

Father 14.67 ± 2.87 15.57 ± 2.39 t = - 1.18, p = 0.245 

 
Range 10 – 23 11 – 20  

Missing N (%) 1 (4.5) 3 (9.1)  

IQ 102.74 ± 11.82 101.81 ± 11.32 t = 0.27, p = 0.785 

Range 83 – 132 70 – 116  

Missing N (%) 3 (13.63) 1 (3)  

CGAS 44.95 ± 8.57 89.15 ± 6.56 MWU test, p < 0.001 

Range 32 – 59 75 – 98  

MFQ 29.05 ± 12.79 6.19 ± 6.5 MWU test, p < 0.001 

Range 5 – 52 0 – 31  

Missing N (%) 1 (4.5) 1 (3)  

BMI (kg/m2) 21.65 ± 5.6 20.81 ± 2.6 MWU test, p = 0.704 

Range 15.4 ± 35.4 16.7 ± 26.0  

Missing N (%) 3 (13.63) 5 (15.15)  

Cannabis (yes/no) 7/15 1/32 FET, p = 0.005 

All values in mean ± standard deviation, N = Number of participants, m = male, f = female, y = years, r 654 
= right, l = left, IQ = Intelligence Quotient, BMI = Body Mass Index, CGAS = Children’s Global 655 
Assessment Scale, MFQ = Mood and Feelings Questionnaire, MWU = Mann-Whitney-U, FET = Fisher’s 656 
Exact Test 657 
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Table 2| Patient clinical characteristics stratified by antipsychotic medication status 658 

 EOP patients 

Off AP at scan 

N = 11 

EOP patients 

On AP at scan 

N = 11 

Statistics 

patient-level 

Sex (m/f) 5/6 2/9 FET, p = 0.361 

Age Scan (y) 15.94 ± 1.49 17.44 ± 0.65 t = - 4.19, p = 0.0006 
Range 14.53 – 17.25 16.53 – 18.25  

BMI (kg/m2) 20.53 ± 4.32 23.2 ± 7.02 MWU test, p = 0.492 

Range 15.4 – 28.7 16.3 – 35.4  

Missing N (%) 0 3 (27.3)  

CGAS 46 ± 8 43.91 ± 9.38 t = 0.56, p = 0.580 

Range 34 – 59 32 – 58  

MFQ 30.82 ± 12.6 27.1 ± 13.39 t = 0.65, p = 0.521 

Range 5 – 52 8 – 49  
Missing N (%) 0 1 (9.1)  

PANSS    

positive 19.09 ± 3.83 17.18 ± 3.84 t = 1.17, p = 0.257 

Range 12 – 25 13 – 26  

negative 22.09 ± 7.13 18.27 ± 6.96 t = 1.27, p = 0.218 

Range 9 – 32 7 – 32  

general 38.73 ± 8.44 36.27 ± 7.89 t = 0.70, p = 0.489 
Range 28 – 54 24 – 52  

Age of Onset (y) 14.39 ± 1.92 14.83 ± 2.07 t = - 0.51, p = 0.614 

Range 10 – 16 12 – 17.6  

DUP (w) 67.36 ± 68.33 24.73 ± 35.58 MWU test, p = 0.003 

Range 14 – 227 3 – 125  

DUI (y) 1.54 ± 1.44 2.61 ± 2.17 MWU test, p = 0.401 

Range 0.47 – 4.53 0.33 – 5.97  

Diagnosis     

SCZ 7 7  

SCA 1 0  

NOS 3 4  

Antipsychotics    

Aripiprazole  5  

Risperidone  3  

Quetiapine  3  

CPZ    

current  272.3 ± 140.83  

Range  151.52 – 559.44  
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cumulative 

(AP-naïve, N = 9) 

0.08 ± 0.28 21.6 ± 19.13  

Range 0 – 0.92 1.69 – 59.28  

Cannabis use (yes/no) 3/8 4/7 FET, p = 1 

*All values in mean ± standard deviation, AP = antipsychotics, N = number of participants, m = male, f 659 
= female, y = years, r = right, l = left, IQ = Intelligence Quotient, BMI = Body Mass Index, CGAS = 660 
Children’s Global Assessment Scale, MFQ = Mood and Feelings Questionnaire, PANSS = Positive and 661 
Negative Symptom Scale, DUP = Duration of Untreated Psychosis, DUI = Duration of illness, SCZ = 662 
schizophrenia, SCA = schizoaffective, NOS = psychosis, not other specified, CPZ = chlorpromazine 663 
equivalent, MWU = Mann-Whitney-U, FET = Fisher’s Exact Test.  664 

 665 

Table 3| White matter cluster of reduced fractional anisotropy in early onset psychosis 666 

patients relative to healthy controls. 667 

  MNI coordinates in mm  

CIuster Region*1 Side Voxels X Y Z t-values 
4 Genu of corpus callosum L 150 -14 35 6 3.35 

3 Anterior corona radiata*2  L 46 -26 13 14 3.69 

2 Superior longitudinal 

fasciculus 

R 12 29 -37 35 4.81 

1 Anterior corona radiata (16% 

Inferior fronto-occipital 

fasciculus) *3 

L 9 -26 24 16 4.05 

*1 Johns Hopkins University International Consortium for Brain Mapping (JHU ICBM)-DTI-81 white 668 
matter atlas and JHU white matter tractography atlas (in brackets) were utilized to label significant 669 
clusters with specific tract names 670 

*2 6% uncinate fasciculus/ 5% inferior fronto-occipital fasciculus according to JHU White-Matter 671 
Tractography Atlas 672 

*3 11% anterior thalamic radiation, 8% uncinate fasciculus according to JHU White-Matter Tractography 673 
Atlas 674 
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