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Abstract: The cohomology of an arithmetic congruence subgroup of a connected reductive algebraic group
defined over a number field is captured in the automorphic cohomology of that group. The residual Eisenstein
cohomology is by definition the part of the automorphic cohomology represented by square-integrable
residues of Eisenstein series. The existence of residual Eisenstein cohomology classes depends on a subtle
combination of geometric conditions (coming from cohomological reasons) and arithmetic conditions in
terms of analytic properties of automorphic L-functions (coming from the study of poles of Eisenstein series).
Hence, there are almost no unconditional results in the literature regarding the very existence of non-trivial
residual Eisenstein cohomology classes. In this paper, we show the existence of certain non-trivial residual
cohomology classes in the case of the split symplectic, and odd and even special orthogonal groups of rank
two, as well as the exceptional group of type G,, defined over a totally real number field. The construction
of cuspidal automorphic representations of GL, with prescribed local and global properties is decisive in
this context.
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1 Introduction

1.1 Prelude — The residual spectrum through a cohomological lens

Let G be a connected algebraic group defined over an algebraic number field k. For simplicity of exposition,
we assume in this subsection that G is semisimple. Let G, be the group of real points of the algebraic Q-group
Resj/q G obtained from G by restriction of scalars. Let I' ¢ G(k) be a torsion-free arithmetic subgroup of G,
viewed as a discrete subgroup of the real Lie group G, via the diagonal embedding.!

1 The group G, is isomorphic to the product of the Lie groups G, = G" (k,), where, given an archimedean place v € V, of k,
ty : k — k, denotes the corresponding embedding of k into the completion with respect to v.

*Corresponding author: Neven Grbac, Faculty of Engineering, Juraj Dobrila University of Pula, Zagrebacka 30, HR-52100 Pula,
Croatia, e-mail: neven.grbac@unipu.hr

Joachim Schwermer, Faculty of Mathematics, University of Vienna, Oskar-Morgenstern-Platz 1, A-1090 Vienna, Austria; and
Max Planck Institute for Mathematics, Vivatsgasse 7, 53111 Bonn, Germany, e-mail: joachim.schwermer@univie.ac.at



1226 —— N.Grbacand ). Schwermer, Construction of square-integrable classes DE GRUYTER

Let L2(I'\G,) be the space of square-integrable functions (modulo the center) on I'\ G, viewed as usual
as a unitary G,,-module via right-translations. The theory of Eisenstein series plays a fundamental role in
the description of the spectral decomposition of L%(I'\G,). This space is the direct sum of the discrete spec-
trum LéiS(F\GOO), i.e., the span of the irreducible closed Gu,-submodules of L?(I'\G,), and the continuous
spectrum Lgt(F\Gm). The former space contains as a G,-invariant subspace the space LEUSP(F\GOO) of cusp-
idal automorphic forms, the so-called cuspidal spectrum. The orthogonal complement in Léis(F\Gm) is the
residual spectrum, to be denoted L2 (I'\Go,), thus, there is a direct sum decomposition

L3s(T\Geo) = L25p(T\Goo) ® Lis (TN Goo)-

The discrete spectrum is a countable Hilbert direct sum of irreducible G,,-modules with finite multiplicities.
By the work of Langlands each of the constituents of the residual spectrum eres(l"\GOO) can be structurally
described in terms of residues of Eisenstein series attached to irreducible representations occurring in the
discrete spectra of the Levi components of proper parabolic k-subgroups of G.

Given a rational finite-dimensional representation (17, E) of G, our object of concern is the cohomology
of I with values in E, to be given in terms of relative Lie algebra cohomology as

H*(T, E) = H" (800, Koo; C*(I'\Goo) ®c E),

where C*®(I'\ G,) denotes the space of C*®-functions on I'\ G,.2 This cohomology space contains as a natural
subspace the so-called square integrable cohomology H. (T, E) to be defined as the image of the homomor-
phism

*

(sq)

jais * H (8oos Koos Li* (T\Goo) ® E) = H* (geo, Koos CP(MN\Goo) ® E)

induced in cohomology by the natural inclusion of the space of C*-vectors in the discrete spectrum of I'\Go,
into C*®°(I'\Go). In general, the homomorphism jg4;s is not injective whereas the homomorphism induced by
the inclusion of the space of C®°-vectors in the cuspidal spectrum into C*®(I'\G,) is injective [see Section 3];
its image is called the cuspidal cohomology of T

We are interested in the contribution of the residual spectrum of I'\G., to the cohomology groups
H(*Sq)(l“, E) c H*(T, E), that is, we aim at
« constructing non-trivial elements in eres(l“\ Goo) via residues of Eisenstein series and, by using these,
o constructing non-trivial cohomology classes in H* (goo, Koo ere’;m (M Gw) ® E), and finally
« showing that the classes so constructed are carried over to non-trivial classes under the map

jres : H" (9oo» Koos Lizs® (T\Goo) ® E) = H* (goos Keo3 C¥(M\Geo) @ E)

whose image is contained in the square integrable cohomology H (*Sq)(l‘, E).

The general specification of the residual spectrum via residues of Eisenstein series, which in turn depends
in a recursive way on the description of the cuspidal spectra of groups of lower rank, is dealt with in [43] and
in the context of adele groups in [48]. Besides the work [47] on the detailed description of the residual spec-
trum for GLy, there are only complete results for the groups G, by Zampera [71] resp. Kim [34], the symplectic
group Sp, by Kim [33] resp. Konno [37] and the special orthogonal group SOs by Kim [35]. However, these lat-
ter results account which residues of Eisenstein series can possibly occur in the residual spectrum, depending
essentially on the analytic properties of certain Euler products attached to the cuspidal automorphic forms
which are used to exhibit the Eisenstein series in question. Thus, our main focus is on the explicit construc-
tion of residues of suitable Eisenstein series subject to the condition that these residues give rise to non-trivial
classes in H*(geo, Koo; ere’f;x’ (T\Gs) ® E). The quest for residues of Eisenstein series which are cohomologi-
cally relevant puts additional constraints on the cuspidal data used for the Eisenstein series involved. Our
main results concern constructions of such non-trivial classes in the cases of the split k-groups Sp, /k, SOs /k,

2 For a differentiable Go,-module F we usually put H*(geo, Koo, F) = H* (gc0> Koos Fko, ), Where Fr_ . denotes the space of all
K -finite vectors in F, K, a maximal compact subgroup in G.
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and SO,/ k of k-rank two and the exceptional group G, /k, k a totally real number field. These results rely essen-
tially on various explicit constructions of cuspidal automorphic representations of GL,/k with prescribed
local and global properties, the latter ones expressed in terms of a specific automorphic L-function.

This work has to be carried through in the framework of adele groups. Thus, in the next subsection, we
set up the framework and describe our results in a more precise way.

1.2 Adele groups and automorphic cohomology

The cohomology of an arithmetic subgroup I' of a connected reductive algebraic group G defined over an
algebraic number field k can be interpreted in terms of the automorphic spectrum of I'. There is a sum decom-
position of the cohomology into the cuspidal cohomology (i.e. classes represented by cuspidal automorphic
forms) and the so-called Eisenstein cohomology constructed as the span of appropriate residues or derivatives
of Eisenstein series. These are attached to cuspidal automorphic forms 77 on the Levi components of proper
parabolic k-subgroups of G. Taking into account the cuspidal support of each of these Eisenstein series results
in an even finer decomposition of the Eisenstein cohomology. More precisely [16, Theorem 1.4 resp. 2.3], the
automorphic cohomology H* (G, E) with a coefficient system originating in an irreducible finite-dimensional
algebraic representation of G has a direct sum decomposition3

H'G,E)= P & H* (s, Koo Ar,ip1,¢ 8c E),
{P}GC’ ¢€¢)E’(p)

where C denotes the set of classes of associate parabolic k-subgroups of G, and the second sum ranges over
the set @ p} of classes of associate irreducible cuspidal automorphic representations of the Levi components
of elements of {P}. The summand that is indexed by the full group {G} accounts for the cuspidal cohomology
of G with coefficients in E, to be denoted H¢,,(G, E). The Eisenstein cohomology H; (G, E) ranging over the
summands indexed by {P} € C, {P} # {G} exhibits a natural complement to the cuspidal cohomology.

The square integrable cohomology H ("Sq) (G, E) is a natural subspace of H* (G, E). Since cuspidal automor-
phic forms are all square-integrable, we have for the summand indexed by {P} = {G} that

H:usp(G’ E)= H(*sq)(mG, Koo;-AE,{G} ®FE).

The remaining part of the square-integrable cohomology is inside the Eisenstein cohomology, and we may
write
Hio 0GB = B P Hiyme, Keos Ar,p,¢ © E)

{P}e@ d)Gd)E,{p)
{P}#{G}

with L (p},¢ just being the (possibly trivial) subspace of square-integrable forms in Ag, p}, 4, the summands
on the right-hand side are the images of the map induced in cohomology by the inclusions L (p}, ¢ — AE, (P}, -

1.3 Residual Eisenstein cohomology classes

Our goal in this paper is, in the case of a given group G of low k-rank, to carry through a construction of
non-trivial cohomology classes in H (*sq)(G, E) which are represented by residues of Eisenstein series whose
cuspidal support is a class of maximal proper parabolic k-subgroups {P} of G. Thereby, we exhibit explicit
examples of non-trivial classes in some of the summands H(*Sq)(m(;, Keos Ag,ipy,p ® E) in H (*Sq)(G, E). Given
a totally real algebraic number field k, the results obtained concern the split classical k-groups Sp,/k, SOs /k,
and SO/ k of k-rank two and the exceptional group G, /k.

As a result of previous work [24, 25, 56], given a class {P} of associate maximal parabolic k-subgroups

of G, one can describe in detail which types (in the sense of [53]) of Eisenstein cohomology classes occur

3 We refer to Section 3 for details and unexplained notation.



1228 —— N.Grbacand). Schwermer, Construction of square-integrable classes DE GRUYTER

in H*(mg, Keo; AE,(p},¢ ®c E) and how their actual construction is related to the analytic properties of certain
Euler products (or automorphic L-functions) attached to the cuspidal automorphic representations 71 one
starts with. Furthermore, one can determine in which way residues of the Eisenstein series in question may
possibly give rise to non-trivial classes in the cohomology of I'. The very existence of these residual Eisenstein
cohomology classes is subject to a quite restrictive set of conditions, a subtle combination of arithmetic and
geometric conditions. The former assure that the Eisenstein series in question has a pole, and the latter are
the necessary conditions for the cohomology class so obtained to be non-vanishing. We refer, for example,
to the results concerning the symplectic group of k-rank n in [24]. In particular, a non-vanishing condition
on the central value of a certain Euler product attached to 77 plays an important role in this discussion. These
L-functions naturally appear in the constant terms of the Eisenstein series under consideration.

In view of this general situation there are only very few scattered results concerning the actual existence
of residual Eisenstein cohomology classes, e.g., [15, 29, 49], the other ones are all conditional, subject to
conditions on the (non)-vanishing of an automorphic L-function or the existence of a residue of an Eisenstein
series, see [22, 24,27, 51, 54]. The only case in which the existence of non-trivial residues of Eisenstein series
is unconditional, is the case of the general linear group [47] and its inner forms [2, 3]. In the case of GL,, the
actual existence of non-trivial residual cohomology classes supported in a maximal parabolic subgroup was
treated in [16], see also [28]. In the case of the inner form GL, (D), D a quaternion division algebra, of GL,/k,
the existence of residual cohomology classes was studied in [23], and for k = Q in [26].

Our construction of non-trivial residual Eisenstein cohomology classes for the groups G/k, k a totally
real number field, we deal with, relies on three different results regarding the actual existence of cuspidal
automorphic representations 1 = ®",€V m, of GL,(Ay) with, on one hand, very specific local components
and, on the other hand, a prescribed analytic behavior of a specific automorphic L-functions attached to .
We refer to Section 6 for details.

Firstly, using a result of D. Trotabas [65] regarding the non-vanishing of L-functions attached to Hilbert
modular forms at the central value we derive the following:

Proposition 1.1. Given an irreducible finite-dimensional algebraic representation (n, E) of the real Lie group
G = Hvevm G, with G, = GL,(R) of even highest weight u, there exists an irreducible cuspidal automorphic
representation 1 of GL,(Ay) whose central character w is trivial, whose archimedean components m, in
Moo = Qyev,, v are discrete series representations of GL2(R) compatible with u, and whose corresponding
L-function L(s, i1, p2) does not vanish at s = % Such a representation i of GL, (A ) contributes non-trivially to

the cuspidal cohomology H¢,s,(GLa, E) in degree [k : Q].

The other two results regard the existence of specific monomial cuspidal representations of GL; (A ) tailored
by the needs of the actual construction of residual Eisenstein cohomology classes. Here is one of them (see
Section 6):

Proposition 1.2. Suppose that the highest weight u of (n, E) is odd, then there exists an irreducible monomial
cuspidal automorphic representation 1t of GL, (A ) which is selfdual with a non-trivial central character w, and
whose archimedean components 1, in Moo = X),¢ v, v are discrete series representations of GL, (R) compatible
with u. Such a representation r of GL,(A ) contributes non-trivially to the cuspidal cohomology Hiysp(GLo, E)
in degree [k : Q].

As an example we now describe in the case G = G, one result pertaining to the actual construction of non-
trivial cohomology classes in H. (G, E) which are represented by residues of Eisenstein series.

*

(sq)

1.4 The case G,

Given a totally real algebraic number field k of degree d, let G be the k-split algebraic k-group of type G;;
the k-rank of G is two. We fix a minimal parabolic k-subgroup Py with Levi decomposition Py = LoNp. Let @,
@7, A denote the corresponding sets of roots, positive roots, simple roots, respectively. We write A = {a1, a>},
where a resp. a, denotes the short resp. long root; the half-sum of the positive roots is pp, = 5a1 + 3as.
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For r =1, 2, the maximal proper standard parabolic k-subgroup Pa\jq,} corresponding to the subset
A\ {a;} of A is denoted by P,, and its Levi decomposition by P, = L,N,, where L, is the Levi subgroup
containing Lo, and N, the unipotent radical. In both cases we have L, = GL,. Observe that the parabolic
subgroups P, are self-associate.

Given the irreducible finite-dimensional representation (17, E) of the group G, = Resy/q(G2)(R) in a com-
plex vector space, its highest weight can be written as A = (A),,, v € Vi, where 1, denotes the embedding
k — R which corresponds to an archimedean place v € V,, of k. For the sake of simplicity we assume that
A,, = A,, for all archimedean places v, v' € V. Recall that this representation originates from an algebraic
representation of the algebraic k-group G. We write

A= C1A1 + C2A2,

with c1, c; non-negative integers, where A;, i = 1, 2, denote the fundamental dominant weights.

The following result concerns the square integrable cohomology H, (*Sq)(111(;2 » Koos AE,(p,},0 ® E).

Theorem 1.3. Suppose that the highest weight A of the representation (1, E) of G is of the form A = ¢, A1, that
is, c; = 0. Then there exists a selfdual unitary cuspidal automorphic representation m of L,(A) such that the
Eisenstein series E(f, s) attached to m has a pole at s = %ﬁpz and the corresponding residue Ressz% E(f, s)
gives rise to a non-trivial class in H*(mg,, Koo; LE,(p,},¢ ® E), where ¢ is the associate class represented
byne® e{3Ppy,Hpy ()

In degree q = 3d, the map in cohomology induced by the inclusion Lg,py,¢ — Ak, p},¢ 1S injective so that
the residual Eisenstein cohomology space H, (*Sq) (mgG, , Keo3 AE,(p,},¢ ® E) does not vanish.

Remark 1.4. By means of the global theta lifting related to the dual reductive pair (Hq, SL,), where Hg
denotes a suitable orthogonal group containing G, as a subgroup, one finds in [45] a construction of cusp-
idal automorphic representations which give rise to non-vanishing cohomology classes in H¢s,(G, E). The
archimedean components of these representations are non-tempered and correspond to the irreducible uni-
tary representations A, (y1) for a suitable character y1. The classes so obtained are shadows of the residual

cohomology classes constructed above.

Notation and conventions

Let k be an algebraic number field, i.e., an arbitrary finite extension k/Q of the field Q of rational numbers,
and let Oy denote its ring of integers. The set of places of k will be denoted by Vi, and Ve, i (resp. Vy ) refers
to the subsets of archimedean (resp. non-archimedean) places of k. Given a place v € Vj, the completion of k
with respect to v is denoted k, . For a finite place v € Vy we write Oy, for the valuation ring in k,. If the field
k is fixed, we write V = Vy, etc.

We denote by A = Ay (resp. I = Iy) the ring of adeles (resp. the group of ideles) of k. There is the usual
decomposition of A (resp. I) into the archimedean and the finite part A = A, x Ay (resp. I = I, x If).

2 Preliminaries

2.1 The group G

Let G be a connected reductive linear algebraic group over an algebraic number field k. Fix a minimal
parabolic subgroup Py of G defined over k and a Levi subgroup Lo of Py defined over k. One has the Levi
decomposition Py = LoNy with unipotent radical Ny. By definition, a standard parabolic k-subgroup P of G
is a parabolic subgroup P of G defined over k that contains Py. Analogously, a standard Levi subgroup L of G
is a Levi subgroup of any standard parabolic k-subgroup P of G such that L contains L. A given standard
parabolic k-subgroup P of G has a unique standard Levi subgroup L. We denote by P = LN the corresponding
Levi decomposition of P over k.
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By definition, the adele group G(A) of the group G is the restricted product G(A) = ]'[f,ev G(ky) with
respect to the maximal compact subgroups G(Ok,,) ¢ G(ky), for almost all v € V. Let G, denote the group
Riyq(G)(R) of real points of the algebraic Q-group Ry/q(G) obtained from the k-group G by the restriction
of scalars from k to Q. Then the locally compact group G(A) is the direct product of the group G, and the
restricted product ]_[(,E vy G(ky) =: G(Af). We fix a maximal compact subgroup K of G(A) subject to the follow-
ing condition. Since it is of the form K =[], Ky, where K, is a maximal compact subgroup of G(k,),v € V,
we suppose (as we may) that K, = G(Oy,,) for almost all finite places v € V. We write Ko, = [[,c v, Kvand we
write Ky =[]y, Kv.

We may assume that the group K is in good position relative to Py, that is, K satisfies the following
requirements:

e G(A) = Py(A)K,
o given a standard parabolic k-subgroup P = LN of G one has the decomposition

P(A)nK = (L(A) nK)(N(A) N K),

and L(A) n K is a maximal compact subgroup of L(A).

2.2 Parabolics, Levi subgroups and characters

Let P be a standard parabolic k-subgroup of G. Fix the Levi decomposition P = LN, where L is the unique
standard Levi subgroup of P. We denote by X*(L) the group of k-rational characters of L. Since L is a con-
nected group, X*(L) is a free Z-module of finite rank r. We put apc = X*(L) ®z C. Analogously we put
ap,c = X«(Ar) ®z C, where X, (A1) denotes the group of k-rational cocharacters of the maximal k-split torus
Aj in the center of L. The complex vector spaces ap,¢c and ap,¢ are in a natural way in duality with one another.
These spaces come equipped with a Q-structure, given by ap g = X*(L) ®z Q and ap g = X.(Ar) ®z Q. Then
one has apq ®q C = ap,¢ resp. ap,q ®q C = ap,c. We also have to consider the real spaces apr = X*(L) ® R
resp. apr = X« (Ar) ® R.

Given a placev € V, a k-rational character y € X*(L) defines an algebraic character y, : L(k,) — k. Then
the assignment y = (y,) — [, Ixv(yv)l, defines a continuous homomorphism L(A) — C*, to be denoted |x].
The group

L' = ﬂ ker |x|
XxeX*(L)

is a normal subgroup of L(A). We denote the group of continuous homomorphisms of L(A) into C* which
are trivial on L! by Xp. Let Xg be the subgroup of Xp which consists of those continuous homomorphisms of
L(A)/L' into C* which are trivial on the center Z; of G. This group plays a decisive role [as parameter space]
in the final construction of Eisenstein series.

The group Xp can also be described in the following way: Given an element A € Xp, there exist characters
X1s---sXr € X*(L) and complex numbers s, ..., s, € Csuch that for all I € L(A), A(I) = [y1[())%* --- [x, (D5
This result gives rise to an isomorphism of groups

K: Elp,([; = Xp.

As in [48, p. 7] we put ReXp := k(apr). This can be seen to be the group of continuous homomorphisms of
L(A)/L' into C* with values in (R*)*.

Given the minimal parabolic k-subgroup Py of G with Levi subgroup L, defined over k, let Ty be the
maximal split torus in the center of Ly. We denote by ®(G, Ty) the set of k-roots of G with respect to Ty. Given
aroot a € ®(G, Ty), there is a corresponding coroot, denoted &, which is a one-parameter subgroup of Ty.
Note that the choice of the minimal parabolic subgroup P, determines in ®(G, Ty) a set of positive roots, to
be denoted ®* (G, Tp). We denote by A the set of simple roots in @(G, To).

Letresy;r : X*(Lo) — X*(To) be the natural restriction map from Ly to To. Then, using the natural duality
(-, ) with values in Z between rational characters of a split torus and one-parameter subgroups, we can
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define for every y € X*(Lo) and every coroot & the pairing (x, &) := (resy;rx, @). By R-linear extension this
pairing is also defined for all A € Re Xp, = ap,,r. In the same way, by C-linear extension, (A, &) is defined for
all A € ap, ¢ = X1, and all coroots a.

Using the isomorphisms ap, r = X*(Lo) ®z R = X*(Tp) ®z R, we may (and will) interpret roots as ele-
ments of ap, r = Re Xp,. In fact, roots are already contained in the underlying Q-structure X*(Lo) ®z Q.

Now we compare in this context the standard parabolic k-subgroup P = LN as above with Py = LoNp.
The intersection Py N L is a minimal parabolic subgroup of L. We denote by ®(L, Ty) the set of roots of L with
respect to Tp, and we define Aé := Ao N D(L, Ty).

The maximal split torus T; in the center of L is contained in Ty. The set ®(G, T;) of “roots” of G with
respect to Ty, is in general not a root system. However, we can identify this set with a subset of apr = Re Xp.
Moreover, this set generates this latter space. Now consider the restriction map

@(G, To) — @(G, Tr) U {0};

it is trivial on ®(L, Ty). The set of non-trivial restrictions of elements in Ag under this map is denoted by A;.
Observe that Ay generates apr as well.

Via the restriction from L to Lo, we identify ap g with a subspace of the vectorspace ap,,r. If ELIIZO’]R denotes
the subspace of ap,, g which is generated by ®(L, Ty), then we have a direct sum decomposition

apo,m = ap,]R @ ﬁgo’m. (2.1)

In view of the identification ap, r = Re Xp,, we identify the elements of ago,m with the set of those elements
in Re Xp, which are trivial on the center of L(A). This latter set is denoted by Re Xﬁo.

Given a pair P ¢ P’ of standard parabolic k-subgroups of G, there is a generalization of the decomposi-
tion (2.1). Fix the Levi decompositions P = LN resp. P' = L'N’, where L resp. L' is the unique standard Levi
subgroup of P resp. P'. We define ®(L’, T) as the set of “roots” of L’ with respect to Ty; this is a subset
of (G, Tr). Then we have as above the direct sum decomposition

~ -~ ~p!
apr = ap/ R ®app,

where aﬁ’m is the real subspace generated by ®(L', T1). We may identify the elements in the space &}I;:]R with
the elements in Re Xp which are trivial on the center of L’ (A). The set of these elements is denoted by Re X}};'.
For a given standard parabolic subgroup P = LN of G one has the Iwasawa decomposition

G(A) = L(A)N(A)K.

Then we can define the standard height function Hp : G(A) — apr on G(A) by [x|(1) = e%-Hr(0) for any char-
acter y € X*(L) c apr, where g = Ink, € L(A),n € N(A), k € K, is the Iwasawa decomposition of g € G(A).
The definition does not depend on the choice of the Iwasawa decomposition.

2.3 Weyl group

Given the minimal parabolic k-subgroup Py of the connected reductive k-group G with Levi subgroup Lg
defined over k, let Ty be the maximal split torus in the center of Ly. The Weyl group of G is defined to be

W := N (To(k)/Z6k)(To(k)).

The simple reflection in W which corresponds to a simple root a is denoted by w,. Given w € W, the length
£(w) of w is defined to be the smallest number s such that w can be written as a product of s simple refections.

Let P be a standard parabolic k-subgroup of G. Fix the Levi decomposition P = LN, where L is the unique
standard Levi subgroup of P. Let Wp be the Weyl group of L. There exists in any right coset of Wp in W a unique
element w of smallest length in the coset Wpw, cf. [6, 3.9]. Thus, the projection W — Wp \ W has a canonical
splitting. Let W? be its image, to be called the set of minimal coset representatives.
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2.4 Notation

We denote by M the connected component of the intersection of the kernels of all k-rational characters of G,
and by mg the Lie algebra of the Lie group Ry/q(M¢)(R). Note that the maximal k-split torus A¢ in the center
of G reduces to the identity if G is a semisimple group. In such a case, mg = Lie(G,). Given a k-parabolic
subgroup P, we denote by Ap the maximal k-split torus in the center of the Levi subgroup Lp. We write Ap
for the group of real points Ry;q(Ap)(R) and Ag’m for its connected component of the identity.

3 Automorphic cohomology

3.1 The cohomology group

Let A denote the maximal k-split torus in the center Z; of G. We write Ag,, for the group of real points
Rijq(Ag)(R). Let (1, E) be an irreducible finite-dimensional algebraic representation of G, in a complex
vector space E. We assume that this representation originates from an algebraic representation of the alge-
braic k-group G. We suppose that A(();,oo acts by a character on E, to be denoted by y 1. Let Jg ¢ Z(goo,c) be
the annihilator of the dual representation of E in the center of the universal enveloping algebra U(geo,c) of
the complexified Lie algebra of G,.

We denote by Vi = Cfl“ing(G(k)\G(A)) the space of smooth complex-valued functions f of uniform moder-
ate growth on G(k)\G(A ), thatis, f € V¢ is K-finite, and f resp. its derivatives have uniformly moderate growth
(cf. [48,1.2.3]). Let Ag ¢ Vg be the subspace of functions f € Vi which are annihilated by a power of Jg. The
space Ag ®c E is naturally equipped with a (mg, Koo; G(Af))-module structure. We define the automorphic
cohomology of G with coefficients in E by

H*(G,E) := H*(m¢, Keo; A ®c E).

We keep in mind that these cohomology groups have an interpretation as the inductive limit of the de Rham
cohomology groups H*(X¢, E) of the orbit space X¢ := G(k) \ G(A)/K C with coefficients in the local system
given by the representation (17, E), where C ranges over the open compact subgroups of G(Ay).

Two parabolic k-subgroups P and P’ of G are said to be associate if their Levi subgroups are conjugate
by an element in G(k). This notion induces an equivalence relation on the set P(G) of parabolic k-subgroups
of G. Given P € P(G), we denote its equivalence class by {P}, to be called the associate class of P. Let € be the
set of classes of associate parabolic k-subgroups of G.

Given a class {P} € C, we denote by A p; the subspace of elements in Ag which are negligible along Q
for every parabolic k-subgroup Q in G, Q ¢ {P}. The spaces Ag,(p}, {P} € C, form a direct sum, and one has
a decomposition Ag = @{P}ee Ag,py as a direct sum of (mg, Ke; G(Af))-modules. This was first proved in
[42], see [5, Theorem 2.4], for a variant of the original proof. This direct sum decomposition induces a direct
sum decomposition

H*(G,E) = €P H*(mg, Keos AL, (p) ® E)
{P}eC
in cohomology. The summand in this decomposition of the cohomology H* (G, E) that is indexed by the full
group {G} will be called the cuspidal cohomology of G with coefficients in E, to be denoted Hiysp(G, E). We
call the direct sum over the classes {P} € C, {P} # {G}, the Eisenstein cohomology of G with coefficients in E,
denoted Hp, (G, E).

3.2 Decomposition along the cuspidal support

Given a class {P} € C, let ¢ = {¢pq}qeip} be a class of associate irreducible cuspidal automorphic representa-
tions of the Levi subgroups of elements of {P} as defined in [16, Section 1.2]. Observe that the elements of the
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associate class are not necessarily unitary. The set of all such collections ¢ = {¢g}qgc(p; compatible with E is
denoted by @, (p;. Given any ¢ € O, (p;, we let

AB,pl¢ = {f € Agpy i fo € P LipaLa(k) \ Lo(A))y, ® s<ag>}
nedq
be the space of functions of uniform moderate growth whose constant term along each Q € {P} belongs to the
isotypic components attached to the elements 77 € ¢ . Finally, we have the following:

Theorem 3.1. The automorphic cohomology H* (G, E) has a direct sum decomposition

H'G,E)= (P P H*me, Keo; AL,ip).¢ ®c E),
{P}e@ ¢€¢)E’(p)
where, given {P} € C, the second sum ranges over the set ®g p, of classes of associate irreducible cuspidal
automorphic representations of the Levi components of elements of {P}.

For a proof of this result we refer to [16, Theorem 1.4 resp. 2.3], or [48, Theorem in III, 2.6], where a different
approach to the decomposition of the space of automorphic forms along the cuspidal support is given.

3.3 Square-integrable cohomology

Let L be the subspace consisting of all square-integrable automorphic forms in Ag. Note that it is an
(mg, Koo; G(Af))-submodule and the inclusion Lg < Af gives rise to a map

H*(mg, Koo; LE®E) » H*(mg, Keo; Ap ® E)

in cohomology. It is the image of this map that we call the square-integrable (automorphic) cohomology and
denote by H )(G E). According to the decomposition of A over associate classes of parabolic k-subgroups
and along the cuspidal support, we obtain a decomposition

Lg= @ LE,p)

{PeC

=P P Lewg

{P}e@ (I)E(DE,{p)

where (g (py, resp. Lg,py,¢ is just the (possibly trivial) subspace of square-integrable forms in Ag,p},
resp. Ag,(p}, 4. Then the square-integrable cohomology decomposes accordingly into

H{ (G, E) = (P H{sy(m6, Koo Ak, p) ® E)
{PteC

P Hiyme, Koos Ar,ip1, ® E),
{P}eC ll)GQJE,{p)
where the summands on the right-hand side are the images of the map induced in cohomology by the inclu-
sions LE,{P} — AE’{p} and LE,{P},d) — AE,{P},gb-
Since cuspidal automorphic forms are all square-integrable, we have for the summand indexed by
{P} = {G} that L (¢} = AE,(c} and hence H, Cusp(G E) = (sq)(mg, Koo; A, {6} ® E). The remaining part of the
square-integrable cohomology is inside the Eisenstein cohomology and we write

Hpjs (s (G, B) = @ @ H i) (Mg, Koos Ag,ipy,¢ ® E).
{P}GG ¢eDp p

{P}#{G}
This Eisenstein part of the square-integrable cohomology is often called the residual Eisenstein cohomology,
even though there could be residues of Eisenstein series that are not square-integrable automorphic forms.
Our goal in this paper is to construct explicitly examples of non-trivial cohomology classes in some of
the summands H;, y(mG, Koo3 AE,ip},¢ ® E) in the residual Eisenstein cohomology for low-rank groups G and

(sq)
a class of maximal proper parabolic k-subgroups {P}.
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4 Eisenstein series of relative rank one

Given an associate class {P} of maximal proper parabolic k-subgroups of G and a class ¢ = {¢q}qeip} € DE,(p}
of associate irreducible cuspidal automorphic representations of the Levi subgroups of elements of {P} as
defined in [16, Section 1.2], we would like to study the space £ E,(P},¢ in some detail, i.e., to determine its
possible constituents. Let ¢ be represented by a cuspidal automorphic representation 71 ® e‘AHr() of L(A),
where 7 is a unitary cuspidal automorphic representation of L(A) and A € Re X}‘;’ whose real part belongs to a
suitable positive cone. The space L (p}, 4 is spanned by the residues of Eisenstein series attached to m at the
value of its complex parameter v = A, as these residues are always square-integrable.

4.1 Eisenstein series

Let P be a standard maximal parabolic k-subgroup of G with Levi decomposition P = LN, where L is the
unique standard Levi subgroup of P. Then Xg is a one-dimensional complex vector space. The subset A; of
®(G, Ty) consists of a unique reduced root a; it is obtained as a non-trivial restriction of an element in Ay.

Let pp be the half-sum of k-roots which generate the unipotent radical N. As a suitable basis for ap,¢c = C
we choose

pr = {pp, @ 'pp,

as in the work of Shahidi [59]. We always identify accordingly s € C with vs =pp® s € dpc.

Let 71 be a unitary cuspidal automorphic representation of L(A).* We denote by V, the space of smooth
K-finite functions in the mr-isotypic component of the space of cuspidal automorphic forms on L(k)\L(A).?

We consider the space W of right K-finite smooth functions f : N(A)L(k)\G(A) — C such that for every
g € G(A) the function fg(I) = f(Ig) on L(k)\L(A) belongs to the subspace V of the space of cuspidal auto-
morphic forms on L(A), see, e.g., [16, Section 1.3]. Then, for f € W, and v € Xg, and for each g € G(A), one
defines (at least formally) the Eisenstein series as

Ef(hivi =) eVrriDfye = N fiye),
YEP(\G(k) Y€P(\G(k)

where f,(g) = f(g)eV*Pr-Hr(®) This Eisenstein series converges absolutely and locally uniformly in g for
allv e Xg whose real part belongs to the positive cone

{ve Xg : (Rev, &) > {pp, &) for all a € ®*(G, T1)}.

The assignment s — Eg(f, Vs)(g) defines a map that is holomorphic in the region of absolute convergence of
the defining series and has a meromorphic continuation to all of ap,c. If v € Xg is purely imaginary, then the
Eisenstein series is holomorphic. Because of our normalization its singularities all lie on the real axis; more
precisely, it has a finite number of simple poles in the real interval

{ve ReXg 10 < (v, &) < {pp, a)}.

All the remaining poles lie in the region {v ¢ Xg : (Rev, @) < 0}. Given a specific reductive k-group G and
a maximal parabolic k-subgroup P c G, these intervals can be made explicit in terms of the complex param-
eter s € C with reference to the coordinate pp.¢

4 Throughout the paper we mean by a cuspidal automorphic representation of H(A ), where H is a reductive linear group defined
over k, an irreducible (§, Koo ; H(Af))-module realized on a subspace of the space of cuspidal automorphic forms on H(k)\H(A)
(see [48, Section 1.2.17]).

5 When computing the Eisenstein cohomology, one considers only the real poles of the Eisenstein series. Hence, we make the
following convention. We assume that 77 is normalized in such a way that the differential of the restriction of the central character
of  to Ag, o 18 trivial. This assumption is just a convenient choice of coordinates, which makes the poles of the Eisenstein series
attached to 7 real. As explained in [16, Section 1.3], it can be achieved by replacing 7 by an appropriate twist. The twist just
moves the poles of the Eisenstein series along the imaginary axis.

6 The reference for these facts concerning Eisenstein series is [48, Section IV.1].
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The space Ag,p; introduced in Section 2 has a two-step filtration defined in [14, Section 6]. However,
we use a slight modification as in [16, Section 5.2] and [21]. According to the decomposition of Ag p; along
the cuspidal support as in Section 2, it suffices to give the filtration of the spaces Ag,p,¢, where ¢ is the
associate class of 7 ® eHr(-))_ Then, the filtration is given by Lg (p},¢ € Ag,(p},4, Where L (p}, ¢ is the sub-
space of Ag,p},¢ consisting of square integrable automorphic forms. The space Lk p},¢ is spanned by the
residues at vg = A of the Eisenstein series attached to a function f such that for every g € G(A) the func-
tions f; on L(k)\L(A) defined above belong to the n-isotypic subspace of the space of cuspidal automor-
phic forms on L(A). Those residues are square-integrable automorphic forms by the Langlands criterion
[48, Section 1.4.11]. The quotient Ag,p},¢/LE,(p},¢ is spanned by the principal value of the derivatives of
such Eisenstein series at vg = A.

We also consider a subspace of Lk, py,¢, to be denoted Lk, (py,¢,v,, Spanned by the residues at poles
vs = A of the Eisenstein series Eg (f, vs)(g) attached as above to a fixed (irreducible) realization V of a unitary
cuspidal automorphic representation  of L(A).

4.2 Intertwining operators

If the parabolic k-subgroup P in G is self-associate, the poles of the Eisenstein series coincide with the poles
of its constant term Eg(f, vs)p along P (see [48, Section I1.1.7]). The constant term along P is given by, using
the notation f; := f,_,

E3(f, vo)p(8) = f5(8) + M(vs, 1, wo)fs(8),

where wg € W is the unique non-trivial Weyl group element such that wo(Ap \ {a}) c Ag, while wy(a) is a neg-
ative root, and M(vs, 1, wg) is the standard intertwining operator defined as the analytic continuation from
the domain of convergence of the integral

M(vs, 71, wo)fi(g) = j fo(Wy'ng) dn, (4.1)
N(A)

where Wy is the representative for wg in G(k) N K chosen as in [58]. Away from the poles it intertwines the
induced representation

I(vs, m) = Indjy) (1 ® eVs- ()

={f;=f- e(vs+Pp,Hp(-)) 1 f € Wy}

and I(v_g, wo (1)), where the action of wg on 7 is given by wq(m)(1) = n(v"vall\?vo) for I € L(A). Observe that
in our notation Indg((g)) includes the normalization by pp, and thus pp does not appear in the first line but
appears in the second line of the above equation.

The poles of the constant term Eg (f, vs)p(g) of the Eisenstein series coincide with the poles of the integral
M(vs, m, wo)fs(8).

Let 7 = R, m, be the decomposition into a restricted tensor product, where 7, is a unitary irreducible
representation of L(ky), v € V. At almost all non-archimedean places v € Vy, rr, is unramified, and we denote
by f; , the unique K,-invariant vector in I(vs, 71,) normalized by the condition f; ,(e) = 1, where e is the iden-
tity in G(k,). Let S be the finite set of places v € V of k which contains all archimedean places and such that
for v ¢ S we have G(k,) is unramified and 71, is unramified. For v ¢ S, by [41, Section 5], the standard local
intertwining operator M(vs, m,, wo), defined as the analytic continuation of the local analogue of the integral
in (4.1), actson fg , as

M(vs, my, wo)fs,, = 1(Vs, Ty, Wo)f s

where r(vg, T, Wo) is the local normalizing factor given as a certain ratio of local L-functions, and fﬁs,v is the
normalized K, -invariant vector in I(v_s, wo(71y)). Given a place v ¢ S, we write

M(VS5 mn, WO) = r(VS’ m, WO)N(VSa I, WO):

where N(vs, 71, wg) is called the normalized intertwining operator.
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If fs =, fs,v is decomposable, let T(f) be the finite set of places which contains all archimedean
places V, and such that fs, = f; , for all v € V¢ \ T(f). Then the global standard intertwining operator
acts on fs as

M5, 7, wofs = r5(s, 1, wo)| (Y Mvs, 7, wolfs )@ (R Neve, ms wofsw ) © (&) Fro )]s

veS veT(H\S veT(f)

where
rS(vs, 1, wo) = [ | r(vs, 1y, wo) (4.2)
veS

is a certain ratio of partial L-functions attached to 7.

4.3 The case of a quasi-split group

We now suppose that the k-group G is quasi-split. In [61], the local normalizing factors r(vs, 7T,, wo) are
defined at all places for a globally 1-generic representation n. Let N(vs, m,, wo) be the local normalized
intertwining operator defined by

M(vs, my, wo) = r(vs, Ty, Wo)N(Vs, 7Ty, Wo).

It intertwines the induced representations I(vs, mr,) and I(v_s, wo(7ty)). Note that at a place v € Vy where m,
is unramified N(vs, 11y, wo) maps f; ,, to fis,v. Hence,

M(vs, 1, wo)fs = r(vs, m, WO)[ Q) N(vs, 7y, WO)fs,v] ®[ X fis,v],

veT(f) veT(f)

where
r(vs, 1, wo) = [ | r(vs, 7y, wo)
veV
is the global normalizing factor given as a certain ratio of automorphic L-functions attached to 7.
Given a fixed connected reductive algebraic k-group, a maximal parabolic k-subgroup P ¢ G with Levi
decomposition P = LN, and a unitary cuspidal automorphic representation of L(A), this ratio can be made
explicit under the assumption that 7 is global generic with respect to some i; see the examples below.

4.4 L-functions

Given a connected algebraic group H defined over k, we denote its L-group by " H. It is the semidirect product
of a complex group LH° and the absolute Weil group W(k/k), where k denotes the algebraic closure of k.
For every place v € V of k let “H, denote the L-group of H viewed as a group over k,. There is a natural
homomorphism, : LH, — LH. Let r be a finite-dimensional complex representation of L H. Given v € V, there
is the representation r, := r o 1, of “H,.

Let m = ®1’, m, be an irreducible unitary representation of G(A), G a connected reductive group defined
over k. Given a place v € V so that G(k,) and m, are both unramified at v, there is the local Langlands
L-function L(s, m,, r,) attached to 7, and r, with complex parameter s, see [41]. Let S be a finite set of places
containing V., so that for every v ¢ S the group G(k,) and m, are both unramified at v. Then one can define
the global partial L-function by the infinite product

L3(s, 7, 1) := [ [ L(s, 1y, 1v);
V¢S

it is absolutely convergent for Re(s) sufficiently large and can be analytically continued.
Given a parabolic k-subgroup P = LpNp of G, we denote the Lie algebra of the unipotent radical “Np of
the L-group P by Lnp. The L-group of Lp acts on Lnp by the adjoint action. If B ranges through the set of
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dual roots for which X j € Lnp holds, then the numbers (Gp, B) take a string of integers from 1 to a positive
integer m. For a given j, 1 < j < m, we define

Vji={Xpelnp: (@p, B) = j}-

For each j the adjoint action of the L-group of Lp on Lnp leaves the space V; stable; the corresponding repre-
sentation on V; obtained by restriction is denoted by r;. This representation is irreducible.

Then the ratio of partial L-functions occurring in the formula (4.2) has the following form:
" LS(js, m, 1)
rS(vs, 71, wo) = H ﬁ

j=1 (s+1,m, r])

Given G and a maximal parabolic subgroup P of G, the representations rj, j = 1, ..., m, and the types of
the corresponding partial L-functions L5(s, , rj) are determined by Langlands in [41], see also [59]. Later on
we will give explicit examples.

5 Construction of Eisenstein cohomology classes

Given an associate class {P} € C, represented by P = LN, of maximal parabolic k-subgroups in G and a class
¢ = {pqlqeipy of associate irreducible cuspidal automorphic representations of the Levi subgroups of ele-
ments of {P}, we now analyze the actual construction of cohomology classes in the corresponding summand

H*(mg, Keo; A, (p},¢ ®c E)

in the direct sum decomposition of the automorphic cohomology of G. Since all our examples in the rest of
the paper are split groups, from this point on we always assume that G is split over k. Suppose ¢ € ®g (p} is
represented by 7 ® eHr(")) ¢ ¢pp, where 7 is an irreducible unitary cuspidal automorphic representation
of the Levi subgroup L(A) and A € Re Xg. Let 7 be realized on the subspace V, of the space of cuspidal
forms on L(A). By carrying through the construction of residues or derivatives of Eisenstein series attached
to (11, V) (as in [46], Section 3), the corresponding contribution to H*(mg, Koo, AE,p},¢ ®c E) is embodied
in the cohomology

. G(A) - 1(0,Keo) G
H*(mg, Koo3 Indpy hInd 07 (Ve ® E® S(ap0))),

where S (&ﬁc) is the symmetric algebra of &g’c with the (mg, Ko)-module structure as defined in [14, p. 218]
(see also [46, Section 3.1]).
Using Frobenius reciprocity, the study of this space is reduced to an analysis of the G(Af)-module

Ind5 &)

panH* (L Koo N Loo; Ve ® H* (0, E) ® S(ap ). (5.1)

Following Kostant [38, Theorem 5.13], the Lie algebra cohomology H* (n, E) of n with coefficients in the
irreducible representation (1, E) of G is given as an ([, Koo N Lo, )-module as the sum

H*(n,E)= (P Fy,
wewP
where the sum ranges over w in the set W’ of the minimal coset representatives for the right cosets of W
modulo the Weyl group Wp of the Levi factor L of P, and F,,, denotes the irreducible finite-dimensional
(I, Koo N Loo)-module of highest weight

Hw = W(A +ppy) — pp,,

where A € ap, ¢ is the highest weight of (17, E). The weights p, are all dominant and distinct and, given a fixed
degree g, only the weights u,, with length ¢(w) = g occur in the decomposition of H4(n, E) into irreducibles.
Asin [53, Section 3.2], see also [55], we call a cohomology class in (5.1) which gives rise to a non-trivial class
in

H*(I, Ko N Loo; Vo, ® Fy,,)
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a class of type (77, w), w € WP. If the infinitesimal character x, of the archimedean component 7, of 77 does
not coincide with the infinitesimal character of the representation contragredient to F), , the cohomology
space H*(l, Koo N Loo; Vi, ® Fy,,,) vanishes, that is, there are no classes of type (7, w).

Moreover, if the module F,, is not isomorphic to its complex conjugate contragredient F;W, then
H*(I, Koo N Leo; Vi, ® Fy,,) = (0), since this condition implies that the complex contragredient of F,, and V
have distinct infinitesimal character. Following [4, Section 1], F, e l?;w is equivalent to the condition that
-wy, L(VW|5£O,R) is distinct from Vw|a§0,1a’ where w1 is the longest element in the Weyl group Wp of the Levi
component L. We recall that the transformation —w; ; maps the highest weight of an irreducible [¢-module
into that of the contragredient one.

Suppose there is a non-trivial cohomology class of type (1, w), w € W”. In order to understand the coho-
mological contribution of the corresponding Eisenstein series Eg (f, vs) or aresidue of such in the cohomology
space H*(g, Koo; Ag,p},¢ ®c E), following [53, Corollary 3.5], we have to analyze the analytic behavior of
ES(f, vs) at the point

A[W] = —W(A + pPO)'&p,IR'

This evaluation point is real and uniquely determined by the datum (77, w). It only depends on w and the
highest weight A € ap, c. As a consequence of the description of the space Ag,p} ¢ of automorphic forms
in [16, Section 1.3], only the points Ajy; with (A, @) > O matter in our analysis. In other words, it suffices
to consider only the evaluation points Ay such that in the basis pp of apc we have Ajy) =As, = pp® Sy
with sy, > 0.

In the following, under the assumption that H*(l, Koo N Leo; Vi, ® Fy,,) is non-trivial for a given {P} € C,
and a pair (71, w), we make explicit the two necessary conditions this assumption implies by the discussion
above, namely

_WI,L(ﬂwlago’]R) = Hw|a£0,m’

and the infinitesimal character y_ of 7, is of the form

X = _W(A + pPo)l

<P .
%py,R

6 Construction of specific cuspidal automorphic representations
of GL, (Ak)

6.1 Existence

One can use the Langlands functoriality principle to construct specific cuspidal automorphic representations
for the general linear group GL, (or variants thereof) over a given totally real algebraic number field k such
that these representations give rise to non-vanishing classes in the cuspidal cohomology

H:usp(GLZ’ E) = H:Sq)(mGLZ’ Koo;AE,{GLz} ® E)

with a suitable coefficient system E. This result can be extended to cases of the group GL, defined over an
extension k' of k, where the base change lift is well understood, for example, an extension k'/k of cyclic
prime degree. This non-vanishing result relies on the fact that there always exist cuspidal automorphic rep-
resentations of GL, (A ;) whose archimedean components are discrete series representations of GL,(R) and
which is special at a given finite number of places v € Vy, i.e., its local component at v € Vf is the Steinberg
representation. Then the base change lift is compatible with cohomology. This result is obtained by inserting
so-called pseudo-coefficients in the Selberg trace formula, see [40, 2.5].

Another approach dates back to work of Chevalley [9] and Weil [70]; it is used in combination with
automorphic induction by Clozel in [10].

These general results are not sufficient for our purpose. It is decisive to exhibit cuspidal automorphic
representations of GL, (A ) which are cohomological, have specific prescribed local and global behavior, the
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latter encoded in its automorphic L-function. In view of this task it is necessary to recall some facts which are
part of the classification of irreducible admissible (gl, (RR), O(2))-modules (cf. [30] or [7, Chapter 2]).

6.2 Discrete series representations

Given an integer m > 2, we denote by D,, the discrete series representation of GL, (RR) of lowest O(2)-type m,
i.e., the square-integrable representation D,, is characterized by the fact that the restriction to the maximal
compact subgroup O(2) of GL,(IR) decomposes as an algebraic sum of the form

Duloy= € V(),  Z(m)={leZ:1=mmod 2, >m}
rex(m)
where V(r), r > 2, is the irreducible two-dimensional representation of O(2) fully induced by the character
ko — €' of the subgroup SO(2) of rotations kg, 6 € [0, 277] in O(2) of index two.
The discrete series representation D,, naturally appears as the unique irreducible subrepresentation

-1

of the representation I(m) induced from the character |- |mT_1signm ®|-|""T of the maximal split torus
in GL,(R). The quotient is irreducible and finite-dimensional. More precisely, in terms of the underlying
(g1, (R), O(2))-modules, one has a short exact sequence

0— Dy — I(m) - Fp2 — 0,

where (ok, Fx), k > 0, denotes the irreducible finite-dimensional representation of GL;(RR) of highest weight
Mk = k- w (w denotes the fundamental dominant weight of GL,(R)), thus, dim Fy = k + 1. Consequently,
the infinitesimal characters of the representations D, and F,,_, match. With regard to relative Lie alge-
bra cohomology one has HY(mgp,(r), O(2); Dy ® Fm—2) = C if g = 1, otherwise it vanishes. In general, given
a finite-dimensional representation (o, Fx), k > 0, of GL,(R) of highest weight py, the relative Lie algebra
cohomology

H* (mgL,(r)> 0(2); D ® Fi)

vanishes if k # m — 2 since the infinitesimal character yp,, differs from the one of the contragredient repre-
sentation of (o, Fy).

Finally, one observes that in this labelling of the discrete series representations of GL,(RR) the Harish-
Chandra parameter of D, m > 2,ism — 1.

6.3 Aresult of Trotabas

Let k be a totally real algebraic number field of degree [k : Q] = d, and let q ¢ Ok be a prime ideal in its
ring of integers. Let 7 = 7o, ® 71y be an irreducible unitary cuspidal automorphic representation of GL;(A)
with trivial central character w,. Given a d-tuple x = (kq, ..., kq) of even non-zero integers ki, ..., kg, we
denote by D(x, q) the set of irreducible cuspidal automorphic representations of GL, (A ) (up to infinitesimal
equivalence) so that

d
ﬂOO = ®Dk,"
i=1

where Dy, denotes as above the discrete series representation of GL,(RR) of lowest O(2)-type k; and so that
7t corresponds to a cuspidal Hilbert modular form of conductor gq. Given k and g, the set D(k, q) has finite
cardinality.” We observe that for any «, there exists ¢ such that D(k, q) is non-empty.

In the classical setting these are cuspidal automorphic representations associated to cuspidal Hilbert
modular forms of weight x, trivial Nebentypus and level q.

The following result in due to Trotabas [65].

7 We note that the labelling of the discrete series representation in [65] is via the corresponding Harish-Chandra parameter, thus
it differs from the one used in this paper.
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Theorem 6.1. Given a d-tuple x of even non-zero integers, the following estimate for q ranging over the prime
ideals in Oy, k a totally real algebraic number field, is true:
. meDk,q) L(3,m,p2) #0H 1
liminf >,
N(g)—00 ID(x, q)l 4

where L(s, i, p2) = L(s, m) is the principal L-function.

We can derive the following result regarding the existence of cuspidal automorphic representations of
GL, (A k) which provide non-trivial cohomology classes in the cuspidal cohomology

H{ysp(GLa, E) := H* (Mg, , Koo; AE,(6L,} ® E) = Hggy (MGL, » Koos AE,(GLy) ® E).

Recall that (7, E) is an irreducible finite-dimensional algebraic representation of GL; ., in a complex vec-
tor space E. We assume that this representation originates from an algebraic representation of the algebraic
k-group GL;. Its highest weight can be written as yu = (u),,, v € Voo, where , denotes the embedding k - R
which corresponds to v € V. Each of the weights (y),, is of the form k,w,, k, € Z, k, > 0, where w, denotes
the fundamental dominant weight of the group G, = GL,(R), v € V. A weight u is called even if all integers
ky, Vv € Vo, are even.

Given a highest weight y = (u),,, v € Vo, we say that a family {Dy, }, ky € Z, k, > 2, of discrete series
representations of GL,(R), parametrized by v € V,, is compatible with p if (u4),, = (ky, - 2)w, forall v € V.

Proposition 6.2. Given an irreducible finite-dimensional algebraic representation (1, E) of the real Lie group
Geo = [lyev,, Gv with Gy = GLy(R) of even highest weight p, there exists an irreducible cuspidal automor-
phic representation m of GL,(Ay) whose central character w is trivial, whose archimedean components m,
N Moo = Qyev,, Mvs are discrete series representations of GL,(R) compatible with p, and whose corresponding
L-function L(s, i1, p2) does not vanish at s = % Such a representation i of GL, (A ) contributes non-trivially to
the cuspidal cohomology Hyp(GLo, E) in degree [k : Q].

6.4 Monomial representations

We study now the existence of monomial cuspidal automorphic representations with a given cohomologi-
cal archimedean components. By definition, a unitary cuspidal automorphic representation 7 of GL,(A) is
monomial if there exists a non-trivial Hecke character § of the group of ideles Iy such that

n®d=m.

Comparing the central characters, it follows that § is quadratic.

Monomial representations arise by automorphic induction from a Hecke character of a quadratic exten-
sion of k. Let K/k be a quadratic extension of number fields. For a unitary Hecke character 6 of the group of
ideles Ik of K, let 71(8) be the automorphic induction of 6 to GL;(A). It is defined by 71(8) = ®/,71(6),, where
« if v splits in K, then 71(0), is the principal series representation of GL,(k,) induced from the character

0y, ® Oy, of the torus, where w; and w, are the two places of K above v,

o ifvdoesnot splitin K, then 71(6), is the local automorphic induction of 6,, to a representation of GL (k),

where w is the unique place of K lying above v.

The following theorem is contained in Arthur—Clozel [1, Section 3.6] (see also [30] and [39]).

Theorem 6.3. Let K/k be a quadratic extension of a number field k, c the unique non-trivial element of the
Galois group Gal(K/k), and 6 = 6k« the quadratic character of I attached to the extension K/k by class field
theory. Let 6 be a unitary Hecke character of Ig. Then the automorphic induction n(6) of 6 is an automorphic
representation of GL, (A k) and

m1(0)® 6 = n1(0),

in particular, (0) is monomial. Moreover, r1(0) is cuspidal if and only if 6 + 0, i.e., 0 does not factor through the
norm map Ng;i from K to k. Conversely, for any monomial cuspidal automorphic representation i of GL (A )
such that t ® 8k/i = 7, there exists a unitary Hecke character 6 of Ik such that = r1(6).
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We are now in a position to show the existence of monomial representations with a given discrete series
representations at all archimedean places. These are required to show the existence of non-trivial cohomology
classes in the square-integrable cohomology in some of the cases. We retain the notation of the previous
subsection. In particular, k is a totally real number field of degree [k : Q] = d.

Proposition 6.4. Given an irreducible finite-dimensional algebraic representation (1, E) of the real Lie group
Goo = Hvevm Gy with G, = GL,(R) of highest weight u = (kw,)s,, where k € Z, k > 0, there exists an irreducible
cuspidal automorphic representation m of GL, (A x) which is monomial and whose archimedean components 1,
n Moo = Qyey,, Mv are discrete series representations of GL>(R) compatible with u. Such a representation n
of GL, (A ) contributes non-trivially to the cuspidal cohomology H{ysp(GLo, E) in degree [k : Q].

Proof. According to Theorem 6.3, to construct a monomial cuspidal automorphic representation of GL, (A ),
it is sufficient to find a unitary Hecke character 6 of the group of ideles Ix of a quadratic extension K/k such
that 77(0) has the required properties. More precisely, 8 should not factor though the norm map N/, and all
the archimedean components of 8 should give by local automorphic induction 7(8), compatible with kw,,
thatis, 71(6), = Dy,>. The latter requirement implies that K/k is necessarily an imaginary quadratic extension,
since the discrete series Dy, can be obtained only if all archimedean places of k do not split in K.

The discrete series Dy;2 of GL,(IR) corresponds, via the local Langlands correspondence, to the two-
dimensional irreducible representation of the Weil group Wg obtained by induction from the character of
W¢ = C* given by the assignment

z k+1
Z ( ) , zeC*,

|zl

where |z| = Vz - z. Hence, Dy, is the local automorphic induction of that character, and we must construct
a unitary Hecke character 6 of I with that character as the archimedean component at all archimedean
places. The condition that 8 does not factor through the norm map Nk, immediately follows, because it is
equivalent to the condition 6 # 8¢, where c is the unique non-trivial element of the Galois group Gal(K/k),
and this is obvious for the archimedean components.

The existence of a unitary Hecke character 6, of Ix with all the archimedean components given by the
assignment

Z i, zeC",
|z

is well known. See [10, p. 479], and also [70]. Hence, if we let 6 = 6’5*1, it is a unitary Hecke character of Iy
with all the required properties. O

However, in some cases the previous result is not sufficient. We need to show the existence of a unitary cus-
pidal automorphic representation 7 of GL,(A ) such that the symmetric square L-function L(s, 7, Sym? p,)
has a simple pole at s = 1. From the formula

L(s,m®m, ps ® py) = L(s, 1, A*p2)L(s, 7, Sym? p3) = L(s, wx)L(s, 71, Sym? p3),

where w; is the central character of 7, it follows that this happens if and only if 7 is selfdual with w,
non-trivial. Since the contragredient 77 = 7 ® wy, such 7 is necessarily monomial with 7 ® w, = 7. We now
show the existence of such monomial representations 7 with a prescribed cohomological archimedean
components.

Proposition 6.5. Given an irreducible finite-dimensional algebraic representation (n, E) of the real Lie group
Goo = ]'[vevm G, with G, = GL,(R) of highest weight u = (kw)y,, where k € Zso, k odd, there exists an irre-
ducible cuspidal automorphic representation 1 of GL, (A ) which is selfdual with a non-trivial central character
wy and whose archimedean components 1, in 7y, = ®vst 1, are discrete series representations of GL,(RR)
compatible with u. Such a representation m of GL,(Ay) contributes non-trivially to the cuspidal cohomology
Htysp(GLa, E) in degree [k : Q].

Proof. As already mentioned before the statement of the theorem, 7 with the required properties is necessar-
ily monomial. Hence, by Theorem 6.3, it is an automorphic induction 77(8) from a character 6 of a quadratic
extension K/k which does not factor through the norm. Since the goal is to construct a selfdual monomial
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representation 71 with non-trivial central character, so that 7 ® w, = 71, we actually need a character 6 such
that the central character of 77(0) is the same as the character §k/ associated to the extension K/k by class
field theory. Moreover, at archimedean places 6 should be such that 71(6), = Dy, in particular, K/k should
be an imaginary extension.

Given an imaginary quadratic extension K/k, we first construct a character 6y of I such that its
archimedean components are given by the assignment

Z - i, zeC*,
|z|

and the restriction of 8 to Iy equals the character 6k associated to K/k by class field theory. This is more
subtle then in the previous proposition, but can be arranged by [13, Lemma 3.5].

Let6 = 6’5*1. Then the archimedean components of 6 are given by the assignment

k+1

z

Z (—) , zeC*,
|zl

so that 71(0), = Dy, at all archimedean places v, as required. In particular, looking at the archimedean

places, clearly 0 does not factor through the norm. Moreover, by [8, Section 29.2], the central character of

the automorphic induction is given by the formula

Wne) = 5K/k . Blh.

Since

k+1 k+1
gl]Ik = (eolﬂk) = 61(7k’

and k is odd, we obtain that w(g) = 6x/x. Hence, by Theorem 6.3, () ® wxs) = n(0), that s, 71(0) is selfdual
with non-trivial central character. O

Remark 6.6. Note that for k even in the previous proposition, the representation 7 with the required prop-
erties does not exist. This is due to the fact that such 7 is necessarily a monomial representation, that is,
obtained by automorphic induction from a character 8 of I, where K/k is the quadratic extension associ-
ated to w, by class field theory. However, the archimedean components of such 7 are supposed to be discrete
series representations Dy, so that K/k is imaginary extension and thus archimedean components of w, are
non-trivial. On the other hand, if k is even, then Dy, , has trivial central character, which is a contradiction.

7 The group G,

7.1 Roots, weights and parabolic subgroups of G,

Given an algebraic number field k, there is a uniquely determined Cayley algebra defined over k with divisors
of zero; it is called the split Cayley algebra C over k ([52, Lemma 3.16]). The norm form of C is non-degenerate.
Let G be the group of automorphisms of C. The Lie algebra of G, by definition, the derivation algebra of C is
a central simple Lie algebra of dimension 14; its type is G,. The group G is a simple algebraic group defined
over k; it is split over k. The k-rank of G is two.

We fix a minimal parabolic k-subgroup Py with Levi decomposition Py = LoNy. Let @, ®*, A denote
the corresponding sets of roots, positive roots, simple roots, respectively. The set ®* can be described as
Ot ={ay, ar, a; + a2, 201 + a2, 301 + &2, 31 + 24>}, where a; resp. a, denotes the short resp. long root;
one has A = {a1, a,}. The half-sum of the positive roots is pp, = 5a1 + 3a5.

The fundamental dominant weights are A; = 2a; + a; and A, = 3a; + 2a;. One observes that pp, can
also be written as A1 + A».

For r = 1, 2, the maximal proper standard parabolic k-subgroup Pa\ia,; corresponding to the subset
A\ {a,} of A is denoted in short by P,, and its Levi decomposition by P, = L,N,, where L, is the Levi factor
containing Lo, and N, the unipotent radical. The characters of Ly in N, are exactly those positive roots which
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contain at least one simple root not in A \ {a,}. In both cases we have L, = GL,. Observe that the parabolic
subgroups P, are self-associate, i.e. P, itself is the only standard parabolic subgroup which is associate to P,
(see Section 3.1). However, P, is conjugate to its opposite parabolic subgroup P;*® by a representative of the
unique non-trivial Weyl group element wy € W with the property that wo(A \ {a,}) c A.

If P, = L,N,, r = 1, 2, is one of the two maximal proper standard parabolic k-subgroups of G, we identify
the roots of Ap, in N, with a subset of ®*. Then the unique reduced root of Ap, in N, can be identified with the
element a, € Ainthe set of simple roots. Let pp, be the half-sum of k-roots which generate N, (or, equivalently,
of positive roots which are not the positive roots of L,). Following the work of Shahidi [59], we choose as
a suitable basis for ap, ¢ = C the element

pp, = {pp,, &) 'pp,.

We obtain, as already observed in [45],
2 _ 2
= Epp1 =2a1 + a2, pPp,= §pp2 =3a;1 +2a;.

We always identify accordingly s € C with vs = pp, ® s € ap, ¢. Note that pp, coincides with the first funda-
mental weight A1, and pp, coincides with the second fundamental weight A,.

ﬁpl

7.2 Classes of type (m, w), w € WP

Given a maximal parabolic k-subgroup P,, r = 1, 2, of G,, we are going to analyze which types (77, w), w € W*r
occur. First, this amounts to determine the Lie algebra cohomology H*(n;, E) of n, := np, with coefficients in
the irreducible representation (1, E) of G,. As explained in Section 5 it is given as an ([;, Koo N Ly, )-module
as the sum
H'(n,E)= P Fy,
weWPr

where the sum ranges over w in the set W?r of the minimal coset representatives for the left cosets of W
modulo the Weyl group Wp, of the Levi factor L, of P,, and F,, denotes the irreducible finite-dimensional
(I, Koo NLy,o0)-module of highest weight p,, = w(A+pp,)—pp,, where A € ap, ¢ is the highest weight of (7, E).

As already determined in [45, 6.2], the set W, r = 1, 2, of representatives for the right cosets Wp, - w
in W characterized by the condition that the minimum of the length function ¢ on Wp, - w is attained
on WP n Wp, - w, and only on that element. Let w, denote the simple reflection corresponding to a,. One has

WP = {1, wi, wiwa, wiwawy, wiwawiwa, wp,},
WP2 = {1, wa, waw1, wawiwa, wawiwawy, wp,},
where wp, denotes the uniquely determined longest element (of length 5) in wehr,

It is useful to parametrize the maximal k-split torus Ly in two convenient ways, the first one will be
adjusted to the short root a;, the second one to the long root a,. We define (asin [71]) t : k* x k* — Lo by the
assignment (a, b) — t(a, b) such that a;(t(a, b)) = ab™!, a>(t(a, b)) = a~*b?. The other positive roots take
the following values on t(a, b) in this parametrization:

(a1 + az)(t(a, b)) = b, (Qay + az)(t(a, b)) = a,
(3ay + ay)(t(a, b)) = a’b™t, (3ay +2ay)(t(a, b)) = ab.

The second parametrization, denoted by t’ : k* x k* — Lo, is given by the assignment (a, b) — t'(a, b)
such that a;(t'(a, b)) = b, ay(t'(a, b)) = ab~!. In this parametrization the other positive roots take the fol-
lowing values on t'(a, b):

(a1 + ax)(t'(a, b)) = a, (a1 + a)(t'(a, b)) = ab,
(Bay + az)(t'(a, b)) = ab®, (3ai +2ay)(t'(a, b)) = a®h.

As already indicated in [45, 7.4, 7.5], the elements of length 3 in WP are the ones which matter for
a possible existence of residues of Eisenstein series (see also below).
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Proposition 7.1. Let A = c1A1 + c2\y be the highest weight of the algebraic representation (n, E), where
C1,Cy € Z, 1, C3 > 0. For the element wiw,wy € WPt of length 3 the highest weight

Hwywow, = WiWaW1(A + pp,) = pp,
of the (11, Koo N L1,00)-module Futy vy is given by
(2c2 + c1 + 2w,
where w1 denotes the fundamental dominant weight for L.

Proof. For the sake of notational brevity we write in this computation v; := wyw,w;. First, for the action of v4,
we have the general formula (see also [48, Appendix III, p. 299]), vi(xA> + yA1) = 2x + ¥)Ay + (=3x = 2y) A4,
X,y € Z. Thus, using the identity pp, = A1 + A, we obtain

Wy, =Vi(A+pp,) —pp, = (2c2 + €1 + 2)Ay + (-3¢2 — 2¢1 — 6)A1.

Now we use the second parametrization ¢’ : k* x k* — Lo which is adjusted to the long root a,, the unique
simple root of L. The fundamental dominant weight for L; in this parametrization is given by

1
wi(t'(a, b)) = Sax(t'(a, b)) = a*b 2.
As alluded to above, A1 = 2a; + a> and A, = 3a; + 2a,. Hence it follows that

-c1-6

W, ('@, b)) = (@2 b™3)22+1*2 . (qh) T,

Thus, the highest weight of the L;-module in question is (2¢, + ¢1 + 2)w;. O

Proposition 7.2. Let A = c1/A1 + c2\, be the highest weight of the algebraic representation (1, E), where
C1,Cy € Z,C1, C2 > 0. For the element wyw,w, € WF2 of length 3 the highest weight

Hw,wiw, = Wawiwa(A +pp,) = pp,
of the (I, Koo N L,00)-module Fuwzwlwz is given by
3¢y +2¢1 + Bwo,
where w; denotes the fundamental dominant weight for Lp, .
Proof. With regard to the action of v, := wowyw, in WP2 we have
Vo(xAy +yAq) = (=2x —y)Ay + Bx + 2y)A;.

Thus, we obtain
Uy, =V2(A+pp,) —pp, = (=2C2 — €1 —4)Ay + (3C2 + 2¢1 + 4)Aq.

We use the parametrization t : k* x k* — Lo which is adapted to the short root a;. The fundamental dominant
weight for L, in this parametrization is given by

1
w(t(a, b)) = S (t(a, b)) = a*b 2.
In terms of this parametrization we see

Hvz(t(a: b)) — (ab)—2cz—01—4 . a3cz+2c1+4 — acz+c1 .b—ZCZ—cl—A.

Co—4 _ (ca+C1)+(=2cr—c1-4)
- 2

Using the identity =3 , We can write

—c2—4

My, (t(a, b)) = (ab) ™ - (a2 b~ 7)3C2+201+4,

Thus, the highest weight of the L,-module in question is (3¢, + 2¢; + 4)w>. O
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In turn we also have to determine, in terms of the complex parameter s € C corresponding to vs =pp,®s € ap, ¢,
r = 1, 2, the point of evaluation for an Eisenstein series which is attached to a cuspidal cohomology class of L,
of type (11, w), w € WP, (w) = 3. This point is given by ~w(A + pp,) € ap, ¢, obtained by restriction to ap, c.
If (1, E) is the trivial representation this computation was done in [45, 6.2].

Proposition 7.3. The point of evaluation for an Eisenstein series which is attached to a cuspidal cohomology
class of L, of type (i, w), w € WPr, e(w) = 3 is given
(1) inthe case Py by

c1+1_
“WIWa W1 (A4 PP i, e =~ PPy
(2) in the case P, by
cr+1_
“WaW1W2 (A + Ppo)iap, ¢ =~ PPa-

Proof. In the case of the maximal parabolic P; we obtain
—W1W2W1(A +pP0)(t,(a, b)) _ (azb)—ZCz—cl—B . (ab)3cz+2c1+5 — a—cz—l . bc2+c1+2.

Recall that ab = A1(t'(a, b)) and A; = pp,. By rearranging the last formula, we get

—wiwawi(A+ pp)(E (@, b)) = (ab) 5 @ Fed pFrend,

It follows that the restriction of —~w;w,w1 (A + pp,) to dp, ¢ is given by < 15p,.

In the case of the maximal parabolic P, we obtain

)262+C1+3 . q—3C2-2c1-5 —C—C1-2 b2C2+C1+3

-wowi1w2 (A + pp,)(t(a, b)) = (ab a =a

Recall that ab = A, (t(a, b)) and A, = pp,. By rearranging the last formula, we get

co+1 3c 5 3c) 5
~wowiwa (A +pp,)(t(a, b)) = (ab)™= -a” 7 7972 pT T,

It follows that the restriction of ~-w,w1w, (A + pp,) to ap, ¢ is given by C22+ L pp,. O

7.3 Residues of Eisenstein series

In our discussion of possible residues of the Eisenstein series attached to cohomological cuspidal automor-
phic representations of the Levi components of the maximal parabolic k-subgroups of the group G, we follow
the general outline of Section 4. Firstly, given a maximal parabolic k-subgroup P,, r = 1, 2, of G,, we are going
to describe the adjoint action of the dual group GL,(C) of the Levi component L,, r = 1, 2, on In,.

Let p, denote the two-dimensional standard representation of GL,(C). Then the exterior square A%p, is
the one-dimensional representation of GL,(C) given by det p,. Let Sym> p, denote the 3rd symmetric power
representation of p,. Then the four-dimensional representation r° = Sym? p, ® (A2p,)~! is called the adjoint
cube representation. As determined in [41] resp. [60, p. 268], the adjoint action of the L-group GL;(C) of L
on 'ny decomposes as ri @r; =r° @ A?p> whereas the adjoint action of the L-group GL,(C) of L, on Ly,
decomposesasr @1, ®13 = P2 ®A2py & [p2 ® A2pa].

Thus we obtain for the global normalizing factor in question in the case P; the expression

L5(s, 7, 1°) L5(2s, m, A2p3)
LS(s+1,m,1°) LSQ2s+1,m, A2p;)’

rS(vs, M, wo) =

In the case of the maximal parabolic k-subgroup P, we obtain the expression

L3(s, 71, p2) L5(2s, 71, A2p;) L5(3s, 7, py ® A2p;)
LS(s+1,m,p2) LSQ2s+1,m,A%py) LS(3s+1,m,p ® A2py)’

rS(VS’ mn, WO) =

Here L(s, m, A’p>) = L(s, wy) is the Hecke L-function attached to the central character w,, and
L(s, 7, p2 ® A*p2) = L(S, T ® Wr, p2)

the principal L-function attached to i twisted by its central character w.
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Proposition 7.4. Let P be a maximal parabolic k-subgroup with Levi decomposition P = LpNp, i.e., Lp = GL;.
Let ¢ be an associate class of cuspidal automorphic representations represented by m® eHP()) of Lp(A),
where 1t is a unitary cuspidal automorphic representation of Lp(A) and A in the closure of the positive Weyl
chamber associated to P. Let L py,¢ C Ag,p},¢ denote the subspace of the space of automorphic forms sup-
ported in ¢ which consists of all square-integrable automorphic forms supported in ¢, i.e., spanned by the
residues of the Eisenstein series attached to i at possible poles at A.

The space L, p}, is trivial except possibly if the cuspidal automorphic representation rt is selfdual, that is,
wo(m) = .

Proof. The maximal parabolic subgroup P is self-associate, thus, by [48, Section IV 3.12], the Eisenstein
series Eg(f, vs) attached to f € W is holomorphic in the region Re(s) > 0 unless wo () = 1. Consequently,
the space L, (py, ¢ is trivial except possibly if 7 is selfdual. O

Theorem 7.5 (The case P = Py). Let ¢ be an associate class of cuspidal automorphic representations repre-
sented by m® eMHr () of 1 (A), where 1 is a unitary selfdual cuspidal automorphic representation of L1(A)
and A in the closure of the positive Weyl chamber associated to P1. Then the space L, p,}, ¢ 1S non-trivial if and
only if one of the following two batches of assertions hold:
(1) @) A=3ipp ie,s=3,

(b) the central character w, of m is trivial,

(c) the L-function L(s, i, r°) attached to m does not vanish at s = %,
(2) @) A=pp,ie,s=1,

(b) the L-function L(s, i, r°) attached to i has a pole at s = 1.

Theorem 7.6 (the case P = P,). Let ¢ be an associate class of cuspidal automorphic representations repre-
sented by 1 ® eMHP()) of L, (A), where m is a unitary selfdual cuspidal automorphic representation of L,(A)
and A in the closure of the positive Weyl chamber associated to P,. Then the space L, p,},¢ is non-trivial if and
only if the following assertions hold:

(@ A=3pp,, ie,s=1,

(b) the central character w, of mis trivial,

(c) the principal L-function L(s, 1, p,) attached to  does not vanish at s = %

Proof. The line of arguments in the proofs of the two theorems are similar. Given a cohomological unitary
cuspidal automorphic representations m of L,(A), and given f € W,, we have to determine the possible poles
of the corresponding Eisenstein series Egy (f, vs) in the region Re(s) > 0.

The infinite component of 77 is a discrete series representation. By the Ramanujan conjecture, as proved
in [12], the non-archimedean components 7, of 7 are tempered representations. Then, by [63, Theorems 5.3
and 5.4.], the local normalized intertwining operator N(vs, 71,, wo) is holomorphic for Re(s) > 0, and, using
[57, Proposition 3.1], the operator is non-zero. Thus the possible poles of the standard intertwining operator
M(vg, m, wp) for s > 0 coincide with the poles of the global normalizing factor r(vg, 7, wp).

The L-function L(s, 71, p,) converges absolutely for Re(s) > 1 by, for example, [32], and L(s, 7, p,) is non-
zero in the region given by Re(s) > 1, [31]. As proved in [18], L(s, 71, p») is holomorphic for Re(s) = 1, and in
fact entire. It is known, for example, by [64] that the Hecke L-function L(s, w) is entire if w, is non-trivial,
while it has simple poles at s = 0 and s = 1 and is holomorphic elsewhere if w; is trivial.

In the case of P,, it follows that the global normalizing factor r(vs, 71, wg) does not have a pole at all
half-integral arguments s with Re(s) > 1. However, the factor L(2s, w,) hasa poleat s = % ifand only if w, is
trivial. This pole can be possibly compensated for by a zero of the first factor in the expression for r(vs, 7, wo).
Note that in the case P, the third factor originating with L(3s, 7 ® w) is entire. This proves the second
theorem.

In the case P, we also require the analytic properties of the L-function L(s, 7, r°). It is known from [36]
that this L-function is entire if 77 is not monomial, while if 77 is monomial it may possibly have simple poles only
ats = 0 and s = 1. This shows part (2) of the first theorem. For part (1) of the first theorem, we argue as above
for the second theorem, with the non-vanishing of L(s, r, r°) at s = % playing the role of the non-vanishing
of L(s, 7, py) ats = 1. O
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Now we are in a position to construct square-integrable cohomology classes which are represented by
residues of Eisenstein series supported in the associate class of the maximal parabolic subgroup P = P;.
However, in the other case, that is, P = P;, we cannot show the existence of such classes. First of all, the
representation spanned by residues at a possible pole of the Eisenstein series at A = pp,, i.e., s = 1, would
have the Langlands quotient J(v1, Dy,) as the archimedean components, where D, is a discrete series rep-
resentation of GL, (RR) of certain lowest O(2)-type m. However, as shown in the Appendix, such Langlands
quotient is not cohomological and thus there is no contribution to cohomology coming from these residues.
On the other hand, the Langlands quotient that would appear as the archimedean component of the rep-
resentation spanned by the residues at A = %ﬁpl, ie., s= %, is cohomological. However, we cannot prove
the existence of a unitary cuspidal automorphic representation 7 of GL,(A) such that the Eisenstein series
attached to 7 has a pole at s = % The problem is in the subtle non-vanishing condition for the adjoint cube
L-function L(s, , r°) at s = % within the class of unitary cuspidal automorphic representations  with trivial
central character.

7.4 Existence of residual Eisenstein cohomology classes

Let k be a totally real algebraic number field of degree d = [k : Q]. We consider the summand

@ H{s) (8005 Koo3 AE,(p,3,¢ ® E)
PEDE pyy

in the square-integrable cohomology H(*sq)(G, E) of G corresponding to the associate class {P,} of maximal
parabolic k-subgroups in G represented by P>.

Given the irreducible finite-dimensional representation (17, E) of the group G, = Resy;q(G2)(R) in a com-
plex vector space, its highest weight can be written as A = (A),,, v € V, where 1, denotes the embedding
k — R which corresponds to v € V. For the sake of simplicity we assume that A,, = A, , for all archimedean
places v, v € V. Recall that this representation originates from an algebraic representation of the algebraic
k-group G. We write A = c1 A1 + c2 A5, €1, C; non-negative integers, where A;, i = 1, 2, denote the fundamen-
tal dominant weights.

Theorem 7.7. Suppose that the highest weight A of the representation (1, E) of G is of the form A = ¢, A1, that
is, c; = 0. Then there exists a selfdual unitary cuspidal automorphic representation m of L,(A) such that for
¢ € D, (p,) represented by m ® ez He () e have

H* (900> Koo; LE,(p,},¢ ® E) # 0.

Moreover, the residual Eisenstein cohomology space H(*s q)(goo, Keos AE,(p,1,¢ ® E) does not vanish. In degree
q = 3d, these classes represented by residues of Eisenstein series contribute to the total cohomology group
H*(goo0» Keo3 AE,{p,} ® E) € Hp, (G, E).

Proof. First, we make sure that there exist suitable non-trivial cohomology classes of type (m, w) with
w = WoWwi W, that is, we have to analyze the space

H*(I2, Koo N L2 00 Vi, ® F)-

By Proposition 7.2, the highest weight of the (I, Ko N L2,00)-module Fity i,y is given by (3¢, + 2¢1 + 4w,
where w; denotes the fundamental dominant weight for L,. Under the assumption on the highest weight A
of (1, E) the weight py,w,w, takes the form (2¢; + 4)w,. Since the integral coefficient (2¢; + 4) is even, there
exists, using Proposition 6.2, an irreducible cuspidal automorphic representation 77 of GL, (A x) whose central
character wy, is trivial, whose archimedean components 7, in 7o = Q)¢ v, Ty are discrete series represen-
tations of GL,(R) compatible with (2¢; + 4)w», and whose corresponding L-function L(s, 7, p,) does not
vanish at s = % Note that the corresponding class in H*(l3, Koo N L2,005 Vi, ® F Yoywyw ) is non-trivial.
Second, given such a cohomology class of type (71, wowiw;) as just constructed, we consider the cor-
responding Eisenstein series Egz (f, vs). By Section 7.3, in general, the evaluation point of interest for us
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is
cr+1_
“WaW1W2 (A + Ppo)iay, ¢ =~ PPa-
Since by our assumption ¢, = 0, this amounts to consider the point %f) p,. As a consequence of Theorem 7.6,

the Eisenstein series Egz (f, vs) in question has a simple pole at sg := % The map
f- e{Vsotppy Hpy ()Y (s- SO)Egz (f, VS)lS:So

is an intertwining of the induced representation I(vs,, 71) and the space of automorphic forms on G(k)\G(A).
It is non-trivial and consists of square integrable automorphic forms. Recall that the poles of the Eisenstein
series coincide with the poles of the intertwining operator which accounts for the second summand in the
constant term of Eg (f, vs) along P, given by, using the notation fs := f,,

ES(f, vs)p(8) = f5(8) + M(vs, 7, wo)fs(8),

where wq € W is the unique non-trivial Weyl group element such that wo(A \ {a1}) c A, while wo(a1) is a neg-
ative root. One sees that wq equals wp,, the longest element in WP2, Note that the archimedean components
Ty in 7l = @Q),cy,, v are discrete series representations, thus, tempered representations. By the very con-
struction of the Langlands quotients within the classification of irreducible representations of real groups
(see [44]) it follows that the image of the local operator M(v1,2, 7y, Wo) coincides® with the unique irreducible
Langlands quotient of the representation I(v1/2, y). This unique irreducible quotient is usually denoted
by J(v1/2, my). By construction 71y, v € Vi, is compatible with the weight (2c1 + 4)w,, hence J(v1,2, @) is
arepresentation of the real Lie group G, with non-vanishing relative Lie algebra cohomology. More precisely,
using the notation in the Appendix, it is (up to infinitesimal equivalence) of the form A, (x1) for a suit-
able admissible character y;. These non-tempered representations J(v1,2, 71,) have non-trivial cohomology
in degree 3 and 5; it vanishes in other degrees. We obtain as a consequence that

H* (9005 Koo3 LE,p,},0 ® E) # 0.

In particular, it is non-vanishing in the minimal degree 3d. Finally, using [51, Theorem 1.1 = III.1], we can
conclude that these non-vanishing square-integrable classes represented by residues of Eisenstein series
contribute non-trivially to H* (gco, Koo; AE,{p,} ® E) € Hpi (G, E). O

Remark 7.8. By means of the global theta lifting related to the dual reductive pair (Hq, SL,), where Hg
denotes a suitable orthogonal group containing G, as a subgroup one finds in [45] a construction of cusp-
idal automorphic representations which give rise to non-vanishing cohomology classes in H¢,(G, E). The
archimedean components of these representations are non-tempered and correspond to the irreducible uni-
tary representations A, (x1) for a suitable character y;. The classes so obtained are shadows of the residual
cohomology classes constructed above.

8 The symplectic group of k-rank two

8.1 Roots, weights and parabolic subgroups

Let k be a totally real algebraic number field of degree d = [k : Q]. We consider the k-split simple simply
connected symplectic group G = Sp, of k-rank two. Let Py be a minimal parabolic k-subgroup, and Py = Ly Ny
its Levi decomposition, which are fixed throughout the paper. The maximal split torus Ly is isomorphic to
a product of two copies of G,,/k, and Ny is the unipotent radical. Let ®, ®*, A denote the corresponding
sets of roots, positive roots, simple roots, respectively. If e; is the projection of Ly to its ith component, then
A ={a; = e; — e7, ay = 2e,}. The fundamental dominant weights are Ay = a; + %az and Ay, =ag +a. Let W
be the Weyl group of G with respect to Ly, generated by the reflections w; associated to the roots a;, i = 1, 2.

8 This holds as well for the image of N(v1,», 71y, wo) because these two operators are proportional for tempered representations
Ty.
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For r =1, 2, the maximal proper standard parabolic k-subgroup Pa\jq,} corresponding to the subset
A\ {a;} of A is denoted in short by P, and its Levi decomposition by P, = L,N,, where L, is the Levi factor,
and N, the unipotent radical. For r = 1 we have L, = GL; x SL,, and for r = 2 we have L, = GL,. Observe
that the parabolic subgroups P; are self-associate. However, P, is conjugate to its opposite parabolic sub-
group P;*® by a representative of the unique non-trivial Weyl group element wo € W with the property
that wo(A \ {a;}) C A.

As in the previous case, we choose as a suitable basis for ap,c = C the element pp, = {pp,, &) 'pp,.
We obtain, as already observed in [53],

1 _ 2
pP1:EpP1’ pP2:§pP2'

We always identify accordingly s € C with vs = pp, ® s € ap, .

8.2 C(lasses of type (m, w), w € WP

Given a maximal parabolic k-subgroup P,, r = 1, 2, of Sp,, the way to analyze which types (7, w), w € W'r,
occur is analogous to the case of the group G- dealt with. Based on the computationsin [53, 56], we obtain the
following results. First, the Lie algebra cohomology H* (n,, E) of n, := np, with coefficients in the irreducible
representation (1, E) of Sp; is given as an (l;, Koo N Ly,0)-module as the sum

H* (. B) = P Fu,.
weWPr
where the sum ranges over w in the set W”r of the minimal coset representatives for the right cosets of
Wp, in W, and F), denotes the irreducible finite-dimensional (I;, Ko N Ly,o0)-module of highest weight
Hw = W(A + pp,) — pp,, Where A € ap, ¢ is the highest weight of (1, E).
As already proved in [56], the elements of length 2 in WPr are the ones of interest for us; only in that case
a residue of an Eisenstein series is possible. Following [56] one has:

Proposition 8.1. Let A = c1A1 + c2\, be the highest weight of the algebraic representation (n, E), where

c1,C € Z,Cq1,Cy =0.

(1) For the element wiw, € WPt of length 2 the highest weight py,w, of the (11, Koo N L1 00)-module Fy,.., is
given by (¢1 + ¢2 + 1)ws.

(2) For the element wowq € WP2 of length 2 the highest weight Mw,w, Of the (I2, Koo N Ly, )-module F#wm is
given by (c1 + 2¢3 + 2)w»,

where w, denotes the fundamental dominant weight for L,,r = 1, 2.

Proposition 8.2. The point of evaluation for an Eisenstein series which is attached to a cuspidal cohomology
class of L, of type (mr, w), w € WP, e(w) = 2 is given
(1) in the case Py by
“W1W2 (A + ppy)jap, ¢ = (€2 + 1)pp,,
(2) in the case P; by

c1+1_
“WaW1(A + Ppy)jap, ¢ = 1TPP2-

8.3 Residues of Eisenstein series

In the case of the symplectic group Sp,, the discussion of possible residues of the Eisenstein series attached
to cohomological cuspidal automorphic representations of the Levi components of the maximal parabolic
k-subgroups was essentially carried through in the case Sp,/Q in [56]. In the general case Sp;, /k, the residual
spectrum was determined in [33] resp. [37]. We give the final results and briefly indicate the main points in
the line of argument.
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Let P be a maximal parabolic k-subgroup with Levi decomposition P = LN. Let ¢ be an associate class
of cuspidal automorphic representations represented by 7 @ eHr() of L(A), where 7 is a unitary cuspidal
automorphic representation of L(A). Let Lk (p} ¢ C AE,(p},¢ denote the subspace of the space of automorphic
forms supported in ¢ which consists of all square-integrable automorphic forms in ¢, i.e., spanned by the
residues of the Eisenstein series attached to 7 at possible poles at A.

Theorem 8.3 (The case P = P,). Let P be a maximal parabolic k-subgroup of type P, with Levi decomposition
P, = L,N,, i.e., L, = GL,. Then the following holds:
(1) Thespace L, py,¢ is trivial except possibly if the cuspidal automorphic representation r is selfdual, that is,
wo(m) = m.
(2) Given a cuspidal automorphic representation 1 ® eHr()) of L, (A), the space L, py, ¢ is non-trivial if and
only if the following assertions hold:
(a) mis selfdual, that is, wo(m) = T,
(b) A= 3pp,ie,s=13,
(c) the central character of m is trivial,
(d) the principal L-function L(s, 71, p,) attached to rt does not vanish at s = 3, that is, L(3, , p2) # 0.

Proof. The maximal parabolic group P of type P, is self-associate, thus, by [48, Section IV 3.12], the
Eisenstein series Ef,fz (f, vs) attached to f € W is holomorphic in the region Re(s) > 0 unless 7 is selfdual.
Consequently, the space L, p,},¢ is trivial except possibly if wo () = 7. This proves (1).

Given a cuspidal automorphic representations 7 of L,(A), and given f € W,, we have to determine the
possible poles of the corresponding Eisenstein series Egz (f, vs) in the region Re(s) > 0.

By [11, Theorem 11.1], in the global intertwining operator the local normalized intertwining operator
N(vs, iy, wp) is holomorphic and non-vanishing for s > 0.° Thus the possible poles of the standard inter-
twining operator M(vs, 71, wo) for s > O coincide with the poles of the global normalizing factor r(vs, 7, wo).

As determined in [41, case (vi)] the adjoint action of the L-group GL,(C) of L, on n, decomposes as
r1®ry = py ® A’py, where p, denotes the two-dimensional standard representation of GL,(C).X° Thus we
obtain for the global normalizing factor the expression

L(s, m) L(2s, 1, A’p>)
L(1+s,m) L(1+2s,m,A2p7)°

r(AS9 m, WO) =

where L(s, 1, A%p>) denotes the exterior square L-function. We note that the exterior square A2p; is the deter-
minant det p, and hence L(s, 7T, A%p>) = L(s, w,) is the Hecke L-function attached to the central character w;
of m.

A careful investigation of the analytic properties of this normalizing factor as in [33, Theorem 3.3] resp.
[37, Theorem 4.4] yields the assertions regarding the existence of a pole and a corresponding residue of the
Eisenstein series Egz (f, vs) in the region Re(s) > 0. O

Next we deal with the case of a maximal parabolic k-subgroup of type P;. In this case one has the Levi
decomposition P; = L1 N7 with L; = GL; x SL;.

Given an irreducible unitary cuspidal automorphic representation 7 of L1 (A) with 7 = y®0, 0 = ®",€V ay,
a unitary cuspidal automorphic representation of SL,(A), y = ®\’/ev Xv, a unitary Hecke character of k, and
given f € W, we have to determine the possible poles of the corresponding Eisenstein series Egl (f, vs) in the
region Re(s) > 0.

In general, following [39, 2.5], given a local component ¢y, v € V, of the cuspidal automorphic represen-
tation o of SL,(A), there exists an irreducible unitary representation o} of GL,(k,) such that o, is contained

9 In the case of interest for us that 77 is cohomological one can also argue in this way: The infinite component of 7 is a discrete
series representation. By the Ramanujan conjecture as proved in [12] the non-archimedean components 7, of 7 are tempered
representations. Then, by [63, Theorems 5.3 and 5.4], the local intertwining operator is holomorphic for Re(s) > 0, and, using
[57, Proposition 3.1], the operator is non-zero.

10 See also [59, Section 4].
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as a subrepresentation in o7 |sr,x,). One can choose the family {0} },cy in such a way that 0* := @y 0} is
a unitary cuspidal automorphic representation of GL, (A ). We denote the local Gelbart-Jacquet lift [17] of o}
from GL, to GL3; by Z,, v € V. This lift depends only on the representation gy, it is independent of the choice
of g}. By an analysis of the local L-function L(s, iy, 1), v ¢ S, (see [33, Section 4]), one obtains the identity

LS(s,mt,11) = L5(s, Z®Y),

where S denotes a finite set of places containing V,, so that for every v ¢ S the group L, (k,) and , are both
unramified at v and where r; denotes the adjoint action of the L-group GL; (C) x SO3(C) of L1 on Lny, given by
the tensor product of the standard representation p; of GL; (C) and the standard representation 7y of SO3(C),
as determined in [41, case (xx)]. The right-hand side denotes the principal L-function of GL3 attached to the
tensor product of ¥ := ®,’, X, and y. This L-function converges absolutely for Re(s) > 1 and is non-zero in that
region. By [17, Theorem 9.3], this partial L-function is entire for any y if ¢* is not monomial.

By definition, if o* is monomial, there exists a non-trivial unitary Hecke character § of k such that
0" ® 6 = o*. Comparing the central character of both sides we see that §2 = 1. We denote by K/k the quadratic
extension which corresponds by class field theory to § = §k/k. As shown in [39, Lemma 6.5] there exists a uni-
tary Hecke character 6 of K such that o* = 71(6), that is, o* is obtained by automorphic induction. Since o* is
a cuspidal automorphic representation, we have 6 # 6¢, ¢ € Gal(K/k), ¢ + 1, i.e., 6 does not factor through the
norm map from K to k. See Section 6.4 for more details. The Gelbart-Jacquet lift £ of o* is described in terms
of 1(0) as the induced representation Indga()& ) (m(BO) Hes k/k), where Q denotes the maximal parabolic
subgroup of GL3 of type (2, 1). In the sequel one has to distinguish the two cases whether 7(6(6°)7!) is
a cuspidal representation or not. In the former case, one obtains

L(s,2®) = L(s, 1(0(6°)™ ) @ x) - L(s, xbK/k)-

Thus, L(s, Z® y) has a simple pole at s = 1 if y = §kk.

In the latter case, that is, 7(6(6€)™1) is not a cuspidal representation, there are exactly three possible
choices (K/k, 0), (K'/k,0"), (K" [k, 8") for the quadratic extension K/k and the unitary Hecke character 6
such that o* = () = n(0') = m(0""), see [39, p. 774]. Thus, one has that

L(s,Z®)) = L(s, x6k/x)L(s, X ji)L(s, X6k k)

and the left-hand side has a pole at s = 1 if y coincides with one of these three possible characters §.
Finally, following the discussion of the intertwining operator at the places v ¢ S in [33, Section 4] resp.
[37, Section 5] we arrive at the conclusion:

Theorem 8.4 (The case P = P;). Let P be a maximal parabolic k-subgroup of type P1 with Levi decomposi-
tion Py = LNy, i.e., L1 = GL; x SL;. Given a cuspidal automorphic representation 1 ® eHr1()) of 1 (A) with
7T =x®0, 0 a cuspidal automorphic representation of SL,(A), x a unitary Hecke character of k, the space
LE,p,},¢ 1S non-trivial if and only if the following assertions hold:

(a) The cuspidal representation ¢ is monomial, that is, with o* of the form 11(6) for some quadratic extension
K/k and some unitary Hecke character 6 of K and x determined by o either as y = ;i or as one of the three
choices x € {6k/k, Ox'/k» Ok} in the notation as above.

(b) A=pp,,ie,s=1.

8.4 Existence of residual Eisenstein cohomology classes

Now we suppose that k is a totally real algebraic number field of degree d = [k : Q]. We consider the summand

P Hioy (000 Koo A, i), ® E)
PeDE,p)

in the square-integrable cohomology corresponding to the associate class {P} of maximal parabolic k-sub-
groups in G = Sp, represented by P. We have to distinguish the two cases P = P, and P = P,. Given the
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irreducible finite-dimensional representation (n, E) of the group G, = Resy;q(Sp2)(R) in a complex vec-
tor space, its highest weight can be written as A = (A),,, v € V. For the sake of simplicity we assume that
A, = A, for all archimedean places v, v e V.

Theorem 8.5 (The case P = P,). Suppose that the highest weight A of the representation (n, E) of G = Sp; is of
the form A = c,\,, that is, c1 = 0. Then there exists a selfdual unitary cuspidal automorphic representation it
of Lo(A) such that for m ® eV12-Hp. () ywe have

H* (900; Keos LE,{Pz},dJ ® E) + 0.

*

Moreover, the residual Eisenstein cohomology space H(sq)(goo, Keos AE,(p,},¢ ® E) does not vanish. In degree
q = 2d, these classes represented by residues of Eisenstein series contribute to the total cohomology group
H* (800> Koos AE,p,} ® E) € Hpi (G, E).

Proof. The line of argument is similar to the proof of Theorem 7.7, thus we can be brief. Following Propo-
sition 8.1, the highest weight of the ([, Ko N L2,00)-module Fﬂwm is given by (c1 + 2¢, + 2)w;, where w;
denotes the fundamental dominant weight for L,. Under the assumption on the highest weight A of (1, E) the
weight py,w, takes the form (2¢, + 2)w,. Since the integral coefficient (2c, + 2) is even, there exists, using
Proposition 6.2, an irreducible cuspidal automorphic representation 7 of GL;, (A ) whose central character w,
is trivial, whose archimedean components 71, in 71y, = ®V€Vw 1, are discrete series representations of GL; (R)
compatible with (2¢;, + 2)w;, and whose corresponding L-function L(s, m, p,) does not vanish at s = % Note
that the corresponding class in H*(l, Koo N L2,00; Vi, ® F, Mowyy ) is non-trivial.

Second, given such a cohomology class of type (17, w,w1) as constructed, we consider the corresponding
Eisenstein series Egz (f, vs). By Proposition 8.2, the evaluation point is

W)Wy (A + pPo)lﬁpz,c = %ﬁpz .

Since by assumption c; = 0, this amounts to consider the point % pp,. By Theorem 8.3, the Eisenstein series
Egz (f, vs) in question has a simple pole at sg := % The map

f elVsotor,Hp(+)) (s- SO)EgZ(f’ VS)ls:so

is an intertwining of the induced representation I(vs,, 71) and the space of automorphic forms on the group
Sp2 (k)\Sp2(A). It is non-trivial and consists of square integrable automorphic forms. Recall that the poles
of the Eisenstein series coincide with the poles of the intertwining operator which accounts for the second
summand in the constant term of Egz (f, vs) along P,, given by, using the notation fs := f,,

E3 (, vs)p,(8) = fs(g) + M(vs, 7, wo)fs(8),

where wo € W is the unique non-trivial Weyl group element such that wo(A \ {a1}) c A, while wp(ay) is neg-
ative. One sees that wo equals wp,, the longest element in WPz, Note that the archimedean components 7, in
Moo = @)y, My are discrete series representations, thus, tempered representations. By the very construction
of the Langlands quotients within the classification of irreducible representations of real groups (see [44]) it
follows that the image of the local operator M(v12, 1y, wo) coincides with the unique irreducible Langlands
quotient of the representation I(v1,, 71y). This unique irreducible quotient is usually denoted by J(v1,2, my).
By construction 71y, v € Vo, is compatible with the weight (2¢, + 2)w», hence J(v1,2, 7)) is a representation
of the real Lie group Sp,(R) with non-vanishing relative Lie algebra cohomology. More precisely, it is (up to
infinitesimal equivalence) of the form A () for a suitable admissible character x, g a 6-stable parabolic subal-
gebra. This non-tempered representation J(v1,2, 7,) has non-trivial cohomology in degree 2 and 4; it vanishes
in other degrees. We obtain as a consequence that

H*(goo» Koo3 LE,(p,},¢ ® E) # 0.

In particular, it is non-vanishing in the minimal degree 2d. Finally, using [51, Theorem 1.1 = III.1], we can
conclude that these non-vanishing square-integrable classes represented by residues of Eisenstein series
contribute non-trivially to H* (g§co, Koo; AE,{p,} ® E) € Hpi (G, E). O
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Theorem 8.6 (The case P = P1). Suppose that the highest weight A of the representation (1, E) of G = Sp is of
the form A = c11, that is, c; = 0. Then there exists a monomial unitary cuspidal automorphic representation
7 of L1 (A) such that for the associate class ¢ represented by n ® e¢1-Hr1(-) we have

H* (gooa Koo LE,{P1},¢ ® E) + 0.

Moreover, the residual Eisenstein cohomology space H(*Sq)(goo, Keo3 AE,p,},¢ ® E) does not vanish. In degree
q = 2d, these classes represented by residues of Eisenstein series contribute to the total cohomology group
H*(go0» Keo3 AE,{p;} ® E) € Hg (G, E).

Proof. Though some of the ingredients are different, the line of argument is similar to the proof of Theo-
rem 8.5, thus we can be brief. Following Proposition 8.1, the highest weight of the ([1, Ko N L1,00)-module
F gy is given by (c1 + ¢» + 1)w1, where w; denotes the fundamental dominant weight for L;. Under the
assumption on the highest weight A of (n, E) the weight py,w, takes the form (c1 + 1)w1. There exists,
using Proposition 6.4, an irreducible monomial cuspidal automorphic representation o* of GL,(A) of the
form 77(0) for some imaginary quadratic extension K/k and some unitary Hecke character 6 such that the
archimedean components o, in o := o*|s;, are discrete series representations of SL,(R) compatible with
(c1 + 1)w1. Note that the corresponding class attached to the cuspidal representation 7 = y ® o with y as
indicated in Theorem 8.4 in H* (I1, Koo N L1,00; Vi, ® F Ywyw, ) 1S non-trivial.

Second, given such a cohomology class of type (71, wyw>) as constructed, we consider the corresponding
Eisenstein series Egl (f, vs). By Proposition 8.2, the evaluation point is

“WiW2 (A + pp)jap, o = (€2 + 1)pp,.

Since by assumption ¢, = 0, this amounts to consider the point v, = pp,. By Theorem 8.4, the Eisenstein
series Egl (f, vs) in question has a simple pole at so := 1. Thus its residues span the space L p,},4-

By looking at the intertwining operator as in the previous proof, the archimedean components of this
space are isomorphic to the Langlands quotient J(v1, 7,). By construction m,, v € V,, is compatible with the
weight (¢; + 1)wq, hence J(vq, 7,) is a representation of the real Lie group Sp, (R) with non-vanishing relative
Lie algebra cohomology. More precisely, it is (up to infinitesimal equivalence) of the form A, (¢) for a suitable
admissible character &, q a 6-stable parabolic subalgebra. This non-tempered representation J(v1, ,) has
non-trivial cohomology in degree 2 and 4; it vanishes in other degrees. We obtain as a consequence that

H*(goos Koos LE,p.},0 ® E) # 0.

In particular, it is non-vanishing in the minimal degree 2d. Finally, using [51, Theorem I.1 = III.1], we can
conclude that these non-vanishing square-integrable classes represented by residues of Eisenstein series
contribute non-trivially to H*(geo, Koo; Ak, p,} ® E) ¢ H, (G, E). O

9 The odd special orthogonal group of k-rank two

9.1 Residues of Eisenstein series

As before let k be a totally real algebraic number field. We now consider the k-split odd special orthogonal
group G = SOs of k-rank two. Note that at the archimedean places SO5(R) = SO(3, 2), the special orthogonal
group of signature (3, 2). The residual spectrum for this group is studied by Kim in [35]. We retain the notation
of the previous section with minor adjustments. As before Py is a fixed minimal parabolic k-subgroup, with
the Levi decomposition Py = LoNp. Then L is isomorphic to a product of two copies of Gy,/k. The set of
simple roots is

A={a; =e1-er, a2 = €3},

where e; is the projection of L to its ith component. The fundamental weights are given by

1 1
A1 =€e1 =01 +ay and Az = E(€1+€2) = 5(11 + Ay,
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The Weyl group of SOs is
W ={1,wi, wo, WiWwa, WaW1, WiWa W1, WaW1 W2, Wi Wr W1 W2},

where w; is the simple reflection with respect to a;, i = 1, 2.

Forr =1, 2, the maximal proper standard parabolic k-subgroup Pa\(4,} is denoted by P,, with Levi decom-
position P, = L,N,. Then L, = GL; x SO3 and L, = GL;. We have
2 _ 1
gPPl and pp, = EpPz'
Both maximal parabolic subgroups Py, r = 1, 2, are self-associate. Observe that pp, coincides with the funda-
mental weight A,, r =1, 2.

ﬁpl =

Theorem 9.1. Let P be the maximal standard parabolic k-subgroup as above, with Levi factor L1 = GL; x SOs.

Let m = x ® 0 be a unitary cuspidal automorphic representation of L1(A), where x is a unitary Hecke character

of Iy, and o a unitary cuspidal automorphic representation of SO3(A). Let ¢ be the associate class of cuspidal

automorphic representations represented by m ® eMHri () where A € Re Xgl is in the positive Weyl chamber

determined by P. Then the space L, p,},¢ Of square-integrable automorphic forms supported in ¢ is non-trivial

if and only if the following assertions hold:

(@) A=3pp, =3esie,s=1,

(b) x? is the trivial character of 1,

(c) the principal L-function L(s, x ® 0', p>) attached to y ® o' is non-zero at s = % where o' is the representa-
tion of GL;(A ) with trivial central character obtained from o via identification of SO3 with PGL,.

Proof. The normalizing factor that determines the poles of the Eisenstein series at s > 0 is given by

K5, wo) = —LEX®Op1®p2)  LQs.x.Sym’py)

L(1+s,x®0,p1®p2) L(1+2s,x,Sym?p1)
Thelatter L-functionis L(2s, x, Symz p1) = L(2s, x?), the Hecke L-function attached to the Hecke character y2.
Since SO3 may be identified with PGL,, the Rankin-Selberg L-function L(s, y ® g, p1 ® p2) is the same as the
principal L-function L(s, y ® ¢'), where ¢’ is obtained from ¢ via the identification. Hence, the conditions in
the theorem follow from the properties of the principal L-functions for GL, and the Hecke L-functions. [

Theorem 9.2. Let P, be the maximal standard parabolic k-subgroup as above, with Levi factor L, = GL,. Let 1
be a unitary cuspidal automorphic representation of L,(Ay). Let ¢ be the associate class of cuspidal automor-
phic representations represented by m ® eHp (1)) where A € ReXg2 is in the positive Weyl chamber determined
by P,. Then the space L, p,},¢ 0f square-integrable automorphic forms supported in ¢ is non-trivial if and only
if the following assertions hold:

(@) A=pp, = 3(e1 +ey),ie,s=1,

(b) the symmetric square L-function L(s, 7, Sym2 p2) attached to m has a pole at s = 1.

Proof. The poles of Eisenstein series for s > 0 are determined by the normalizing factor

L(s, m, Sym? p;)
L(1+s,m, Sym?p,)

r(s, m, wo) =

The properties of the symmetric square L-function L(s, 77, Sym? p;) are known from [20]. O

9.2 Existence of residual Eisenstein cohomology classes

As explained before, we now have to analyze which types (r, w), w € W*r, may possibly contribute to the
square-integrable cohomology spaces supported in P,, r = 1, 2. Therefore, given w € W*7, we need to com-
pute the highest weight u,, and the evaluation point A[y. Besides u,,, we provide the infinitesimal charac-
ter x,, of the unitary cuspidal automorphic representation 7 of L,(A ) at every archimedean place. Since 7 must
be cohomological, this forces the archimedean components of 77 to be the discrete series representations com-
patible with uy, i.e., of infinitesimal character y,, as explained in Section 5. The results are given in Table 9.1
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!

we wh Aw) =?-Pp, Pw= @ Xw
1 _2:1+252+3 I _522+1 e
c+1 2 2¢1+02+3
W1 -5 c1+Cr+2 —fez
wiwsy f2+1 2C1 + Cy + 2 72C1+2C2+3 er
2c1+C2+3 c2+1
W1 Wa Wy e (33 Z=e

Table 9.1: The evaluation points Ay, highest weights y, and infinitesimal characters x,, for w € WP1 in the case G = SO,
where w' is the fundamental weight for GL, under the identification of SO3 and PGL,.

weWP2 Ay =?.Pp, pw=7 @ Xw
1 —(c1+c2+2) c1 —%e1+%e2

w3 —(c1+1) c1+c+1 —7‘1*22*2 el + 7‘”?*2 e,
Wowq c1 + 1 C1+C+ 1 —7cl+;2+2 e + 7c1+§2+2 e)
WaWyWs C1+C+2 1 ~Gtle, 4 Gtle,

Table 9.2: The evaluation points A}, highest weights p1,, and infinitesimal characters x,, for w € W"2 in the case G = SOs,
where w, is the fundamental weight for the Levi factor L, = GL,.

for P; and Table 9.2 for P,. The highest weight of E is written in terms of the fundamental weights A1, A, as
A= C1A1 + CzAz,

where c1, c; € Z and c1, c; > 0. The evaluation point Ay is given in the basis pp,, and the infinitesimal
character yy, in the basis {e1, e}.

Theorem 9.3. Let P, be the maximal standard parabolic k-subgroup as above, with Levi factor L1 = GL1 x SOs.

Let m = x ® 0 be a unitary cuspidal automorphic representation of L,(A), where x is a unitary Hecke char-

acter of 1, and o a unitary cuspidal automorphic representation of SO3(A). Let ¢ be the associate class of

cuspidal automorphic representations represented by m® e»Hr1 (")) where A € ReXg1 is in the positive Weyl

chamber determined by P,. Then the cohomology space H* (geo, Keo; LE,p,},¢ ® E) is non-trivial if and only if

the following assertions are satisfied:

(@) A=3pp, = 3er,ie,s=1,

(b) x? is the trivial character of 1,

(c) the principal L-function L(s, x ® ¢') is non-zero at s = %, where o' is a representation of GL,(A) with trivial
central character obtained from o via identification of SOz with PGL,,

(d) the highest weight A of the coefficient system E is of the form A = c; A1 with ¢, € Zso, i.e., c2 =0,

(e) thelocal component of o' at every archimedean place is the discrete series representation Dy, 4 of GL2(R)
of lowest O(2)-type 2c1 + 4.

The type (mr, w), w € WP, giving non-trivial cohomology classes has the minimal coset representative

W=Wwiw; € wh
of length two.

Proof. Comparing the tables with the theorems in the previous subsection we identify the possible types
(r, w) that may contribute to the square-integrable cohomology as follows. For P; the only possibility is that
the evaluation point is Ajy) = 3pp,, i.e., Sy = 3, because this is the only point at which the Eisenstein series
may have a pole in the positive Weyl chamber. This gives condition (a). From Table 9.1, we see that the condi-
tions for existence of non-trivial cohomology classes imply that this may only happen for the minimal coset
representative w = wiw, € WP of length two, provided that ¢, = 0 and that the infinitesimal character of o
is (c1 + %)ez. The first condition implies the form of A in assertion (d). The infinitesimal character of SO3
corresponds via the identification with PGL, to the infinitesimal character (c1 + %, —C1 — %) for GL,. Thus,
we obtain condition (e) for the archimedean components of ¢’. Furthermore, 7 = y ® ¢ should satisfy the
conditions of Theorem 9.3, so that the Eisenstein series has a pole. This gives assertions (b) and (c). O



1256 —— N.Grbacand). Schwermer, Construction of square-integrable classes DE GRUYTER

Corollary 9.4. In the notation of Theorem 9.3, suppose that the highest weight A of the representation (n, E) of
G = SOs is of the form A = ¢y A\ with c1 € Zso, i.e., c; = 0. Then there exists a unitary cuspidal automorphic
representation i = y ® o of L1(A) such that for the associate class ¢ represented by m ® e‘2:Hr1(:)) we have

H*(gooa KOO;LE,{Pl},(P ®E) + 0.

Moreover, the residual cohomology space H(*Sq)(goo, Koo AE,(p,},¢ ® E) does not vanish. In the lowest possible
degree q = 2d, these classes represented by residues of Eisenstein series contribute to the total cohomology
group H*(goos Keos AE,(p,) ® E) € Hg (G, E).

Proof. For the first part of the corollary, we must show that there exist a unitary cuspidal automorphic rep-
resentation 71 = y ® o satisfying assertions (b), (c) and (e) of Theorem 9.3. Note that assertion (a) on the
evaluation point and assertion (d) on the highest weight A are the assumptions in the corollary.

The representation ¢’ of GL,(A), with trivial central character, satisfying assertion (e) exists, as we may
take o' € D(x, q) for k = (2¢c1 + 4, ...,2c1 + 4), and any level q such that D(k, q) is non-empty. See Sec-
tion 6.3. Taking any such representation o', the existence of a quadratic Hecke character y of I such that
L(%, x®a') 0 follows from the work of Waldspurger [69], [50, Theorem A.2], since ¢, is a discrete series
representation at all archimedean places. Thus, for such y assertions (b) and (c) are satisfied.

Finally, to show that the residual cohomology does not vanish, we observe that the lowest possible degree
in which the non-tempered representation J(v1/2, xv ® D¢, +4) has non-trivial cohomology is degree 2. Hence,
H*(gc0s Koo; LE,(p,},¢ ® E) isnon-vanishing in degree 2d. Invoking again [51, TheoremI.1 =1II.1], we conclude
that these non-vanishing square-integrable classes contribute non-trivially to H (*sq)(goo, Koo AE,p,},¢ ® E)
in degree 2d, and thus, to the total cohomology group H*(geo, Koo; Ak, p,} ® E) € H, (G, E). O

Theorem 9.5. Let P, be the maximal standard parabolic k-subgroup as above, with Levi factor L, = GL,. Let 1

be a unitary cuspidal automorphic representation of L,(Ay). Let ¢ be the associate class of cuspidal automor-

phic representations represented by m @ eHr. () ' where A € Re X}G,2 is in the positive Weyl chamber determined

by P». Then the cohomology space H*(g, Keo; LE,(p,},¢ ® E) is non-trivial if and only if the following assertions

are satisfied:

(@) A=pp, = 3(e1 +ey),ie, s =1,

(b) the symmetric square L-function L(s, mr, Sym? p,) has a pole at s = 1,

(c) the highest weight A of the coefficient system E is of the form A = c; A, with ¢; € Zsg, i.e.,c1 =0,

(d) the local component of m at every archimedean place is the discrete series representation D, 3 of GL,(R)
of lowest O(2)-type c; + 3.

The type (1, w), w € WP2, giving non-trivial cohomology classes has the minimal coset representative

w=w,w; € WP
of length two.

Proof. We compare Theorem 9.5 with the possible types (77, w) in Table 9.2, and argue in a similar way as in
the proof of Theorem 9.3. O

Corollary 9.6. In the notation of Theorem 9.5, suppose that the highest weight A of the representation (1, E) of
G = SOs is of the form A = c, A, with ¢, € Zs and c;, even. Then there exists a unitary cuspidal automorphic
representation m of L, (A) such that for the associate class ¢ represented by m ® e+-H7.(-) we have

H*(goo» Koo3 LE,(p,},¢ ® E) # 0.

Moreover, the residual cohomology space H(*Sq)(goo, Keo; AE,(p,},¢ ® E) does not vanish. In the lowest possible
degree q = 2d these classes represented by residues of Eisenstein series contribute to the total cohomology
group H*(goos Keos AE,(py} ® E) C Hg (G, E).

Proof. As in the proof of Corollary 9.4, we need to show that there exists a unitary cuspidal automorphic rep-
resentation 77 of GL, (A) such that assertions (b) and (d) of Theorem 9.5 are satisfied. Note that assertion (a) on
the evaluation point is among assumptions of the corollary. The highest weight A satisfies assertion (c) by the
assumption ¢, € Zso and ¢, even in the corollary. Note that there is a wider class of A satisfying assertion (c),
namely those with ¢, odd. These are not considered in the corollary. See the remark below.
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Since c; is even, the discrete series D, 3 is of odd lowest O(2)-type. Hence, the existence of 7 satisfying
assertions (b) and (d) is proved in Proposition 6.5.

Finally, the minimal degree in which the non-tempered representation J(v1, D,+3) has non-trivial coho-
mology is degree 2. Hence, it follows that H*(geo, Koos £E,(p,},¢ ® E) is non-vanishing in degree 2d, and
invoking again [51, Theorem I.1 = III.1], we conclude that these non-vanishing square-integrable classes
contribute non-trivially to H (*Sq) (go0> Koo3 AE,(p,},¢ ® E) in degree 2d, and thus, to the total cohomology group
H*(gOO’ Koo;AE,{P2}®E) C HEiS(Ga E). O
Remark 9.7. The case of highest weight A = ¢, A; such that ¢, € Z5¢ and ¢, odd is not covered by the previ-
ous corollary. The point is that in that case there is no 77 with the required properties, as already explained
in Remark 6.6. More precisely, in that case the archimedean components of 77 should be the discrete series
representations D, .3 of even lowest O(2)-type. However, according to Remark 6.6, there is no 7 such that
L(s, m, Sym? p;) has a pole at s = 1 with the discrete series of even lowest O(2)-type as archimedean local
components.

10 The even special orthogonal group of k-rank two

10.1 Residues of Eisenstein series

Finally, we consider the k-split even special orthogonal group G = SO, of k-rank two. Note that at the
archimedean places SO4(R) = SO(2, 2), the special orthogonal group of signature (2, 2). The residual spec-
trum for this group was partially determined in [19]. We retain the notation of the previous section with minor
adjustments. As before Py is a fixed minimal parabolic k-subgroup, with the Levi decomposition Py = LoNg.
Then L is isomorphic to a product of two copies of G, /k. The set of simple roots is

A={a;=e1-er,a; =€+ ez},

where e; is the projection of Ly to its ith component. The fundamental weights are given as
1 1
A = E(el —-ep) and A= E(el +e7).

For r = 1, 2, the maximal proper standard parabolic k-subgroup Pa\jq,} is denoted by P,, with Levi
decomposition P, = L,N,. We have L; = GL, and L, = GL,, but they are not associate. In fact, both P, are
self-associate [62, Lemma 3.4]. We have

pp, =pp, and pp, =pp,.
Observe that the pp, coincides with the fundamental weight A, r = 1, 2.

Theorem 10.1. Let P, be the maximal standard parabolic k-subgroup as above, with Levi factor L, = GL,. Let 1
be a unitary cuspidal automorphic representation of L,(A) = GL,(A). Let ¢ be the associate class of cuspidal
automorphic representations represented by m ® e (")) where A in the closure of the positive Weyl chamber
associated to Py. Then the space Lk, p,},4 Of square-integrable automorphic forms supported in ¢ is non-trivial
if and only if the following assertions hold:

(@) one has

A=pp - {%(61 —ey) forr=1,
s(e1+ep) forr=2,

ie,s=1,
(b) the central character w, of 7 is trivial.

Proof. Inboth cases r = 1 and r = 2, the normalizing factor is of the form

L(s, 1, A’p3) L(s, wyn)
r(s, m, wo) = = ,
( 0) L(1+s,m,A2p;) L(1+s,ws)
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so the analytic properties of the Eisenstein series follow from the properties of the Hecke L-function L(s, w )
attached to the central character w of 7. O

10.2 Existence of residual Eisenstein cohomology classes

As in the previous section, we provide the evaluation points, highest weights, and the infinitesimal character
for possible types (71, w), w € WPr, that may contribute to square-integrable cohomology supported in P,. The
Weyl group of SO, is

W= {1, wi, wa, wiwa},
where w; is the simple reflection with respect to the simple root «a;, i = 1, 2. We write the highest weight of

E in terms of fundamental weights as A = ¢c; A + c2 Ay, where ¢1, ¢ € Z and c1, ¢, > 0. The results of the
computation are given in Table 10.1 for P; and Table 10.2 for P;.

Theorem 10.2. Let P, be the maximal standard parabolic k-subgroup as above, with Levi factor L, = GL,. Let
be a unitary cuspidal automorphic representation of L,(A) = GL,(A). Let ¢ be the associate class of cuspidal
automorphic representations represented by m ® e‘MHr (1)) where Ais in the closure of the positive Weyl chamber
with respect to Py. Then the cohomology space H* (g0, Koos LE,(p,},¢ ® E) is non-trivial if and only if the following
assertions hold:

(a) one has

sle1-ey) forr=1,

sle1+ey) forr=2,

ie,s=1,
(b) the central character w, of mis trivial,
(c) the highest weight A of the coefficient system E is of the form
ch, forr=1,
cNy forr=2,

A=

where ¢ € Zxo,

(d) the local component of i at every archimedean place is the discrete series representation D¢, of GL,(R)
of lowest O(2)-type c + 2.

The type (1, w), w € WP, giving non-trivial cohomology classes has the minimal coset representative

w=w, e WP
of length one.

Proof. Inthe same way as for G = SOs, this follows comparing Theorem 10.1 with Tables 10.1 and 10.2. [

weWPt Au=?-pp, pw=? w1 Xw
co+1 c+1

1 —(C1+1) C2 —ZTe1+2T(—e2)

wy c+1 2 —Zley+ Ll(-ey)

Table 10.1: The evaluation points Ay, highest weights p, and infinitesimal characters x,, for w € W1 in the case G = SO,
where w1 is the fundamental weight for the Levi factor L; = GL,.

weWP2 Ay =?-pp, pw=? -0 Xw
1 —(c2+1) C1 —%e1+ Cl;i [=5)
ws cr+1 c1 —‘1—;1e1+%e2

Table 10.2: The evaluation points Ay, highest weights p,, and infinitesimal characters y,, for w € WP2 in the case G = S04,
where w, is the fundamental weight for the Levi factor L, = GL,;.
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Corollary 10.3. In the notation of Theorem 10.2, suppose that the highest weight A of the representation (n, E)
of G = SOy is of the form
cA\ orr=1,
P
ch\y forr=2,

with ¢ € Zso and c even. Then there exists a unitary cuspidal automorphic representation m of L,(A) such that
for the associate class ¢ represented by m ® V11 (")) we have

H*(goo» Koo3 LE,ip,},9 ® E) # 0.

*

Moreover, the residual cohomology space H(Sq)(goo, Koo; AE,¢p,} ® E) does not vanish. In the lowest possible
degree q = d these classes represented by residues of Eisenstein series contribute to the total cohomology
8roup H* (goo, Koo3 AE(p,1.¢ ® E) € Hyio(G, E).

Proof. Assertion (a) of Theorem 10.2 is the assumption of the corollary. The form of the highest weight sat-
isfies assertion (c). Hence, it remains to show the existence of 7 satisfying assertions (b) and (d). That is, the
central character w, of 7 should be trivial and the archimedean components of 77 should be the discrete series
D¢+ of even lowest O(2)-type. However, such m exist, as we may take 7 € D(k, q) fork = (c+2,...,c+2)
and any q such that D(k, ¢) is non-empty, see Section 6.3. This shows the first claim of the corollary.

To show that the residual cohomology classes contribute non-trivially to the residual cohomology space
H(*sq)(g, Keos Ag,ip,},¢ ® E), observe that in the lowest possible degree 1 the cohomology of the Langlands
quotient J(v1, D¢4») is non-trivial. Hence, using [51, Theorem I.1 = III.1], we conclude that these cohomol-
ogy classes contribute non-trivially to the total cohomology group H*(g, Keo; Ag,(p,} ® E) € Hp; (G, E) in
degree d. O

Remark 10.4. In Corollary 10.3, we assume that the highest weight A is of the form A = cA; with c even. How-
ever, in Theorem 10.2, there is another form of A that may possibly contribute to the residual cohomology,
namely, the case of ¢ odd. But in that case, there is no 7 satisfying the required properties for a non-trivial
cohomology class in Theorem 10.2. More precisely, the central character w, of 7 should be trivial according
to assertion (b), while the archimedean components should at the same time be the discrete series represen-
tations D, of odd lowest O(2)-type according to assertion (d). But this is impossible because the central
character of such discrete series representation is non-trivial.

A Unitary representations with non-zero cohomology

It is a fundamental problem to determine (up to infinitesimal equivalence) all irreducible unitary represen-
tations (1, H;) of a real Lie group G with non-vanishing Lie algebra cohomology. A complete solution to this
classification problem was given in a constructive approach by Vogan and Zuckerman [66]. An outgrowth of
this is the computation of the relative Lie algebra cohomology groups H* (g, K, Hy x ® F), where g denotes the
complexified Lie algebra of the given connected real reductive Lie group, K ¢ G a maximal compact subgroup.

Following [45, 68], we briefly review in this appendix the classification in the case where G is the excep-
tional split real Lie group of type G,. It is a connected group of rkr G = 2. The Weyl group W of G is isomor-
phic to the dihedral group D¢ of order 12. Let K be a maximal compact subgroup of G; its Lie algebra ¢ is
isomorphic to sp(1) @ sp(1).

Let O be the corresponding Cartan involution and let gy = €, ® po be the corresponding Cartan decompo-
sition of the Lie algebra go of G,. Given an irreducible unitary representation (17, H;) of G with non-vanishing
cohomology with respect to a finite-dimensional representation space F, there is a g-stable parabolic sub-
algebra q of g. By definition, q is a parabolic subalgebra of g such that 8xq = q, and gn¢q = lis a Levi subalgebra
of q, where q refers to the image of q under complex conjugation with respect to the real form g of g. Write u
for the nilradical of g. Then [ is the complexification of a real subalgebra [y of go. The normalizer of q in G
is connected since G is, and it coincides with the connected Lie subgroup L of G with Lie algebra [y. Then
F/uF is a one-dimensional unitary representation of L. Write —A : [ — C for its differential. Via cohomolog-
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ical induction, the data (q, A) determine a unique irreducible unitary representation A,(A) of G so that the
Harish-Chandra module of (, H) is equivalent to the one of A4(A).

It is worth noting that the Levi subgroup L has the same rank as G, is preserved by the Cartan involu-
tion O, and the restriction of 8k to L is a Cartan involution. Moreover, the group L contains a maximal torus
T c K. This result serves as a guideline to construct all possible 8x-stable parabolic subalgebras g in g up to
conjugation by K. There are only finitely many K-conjugacy classes of Og-stable parabolic subalgebras q in g.

In the given case the construction runs as follows: Fix non-zero elements x, y in £y, the first one belonging
to the first summand, the second to the second, and let it be the real vector space spanned by ix, iy. Then t
is a Cartan subalgebra of £y, and t = C2. We denote the evaluation in the first and second coordinate by e;
and e, respectively, and we write @; = e; — e; and a, = 3e; — e». Taking a;, i = 1, 2, as simple roots, the set
A* (g, t) of positive roots of g with respect to t is given as the set

A+(g, t) = A+(E) t) U A+(pa t),

where
AT, t) = {a1 + a2, 31 + a2},  AT(p,t) ={a1, az, 2a1 + a2, 31 + 242},

Note that a; is the short simple root, and «, is the long simple root. The fundamental dominant weights are
A :=2a1 +axand Aj = 3a1 + ay.

Starting off from an element z € t, there is an associated 6-stable parabolic subalgebra q of g¢ with Levi
decomposition q = [¢ @ uc defined by q¢ = sum of non-negative eigenspaces of ad(z), I¢ = centralizer of z,
and u¢ = sum of positive eigenspaces of ad(z). Let A be the differential of a unitary character of L, the con-
nected subgroup of G with Lie algebra I¢ N g, such that (a, Aj¢.) > O for each root a of u with respect to tc.
One refers to such a one-dimensional representation A : [ — C as an admissible character. A pair (g, A) of
a f-stable parabolic subalgebra q of g¢ and an admissible character A determines a unique irreducible uni-
tary representation A4(A) of G with non-vanishing cohomology with respect to a suitable finite-dimensional
representation (v, F) of G.

Up to infinitesimal equivalence, if [¢ c £c, one obtains discrete series representations, and there are
exactly three of them up to infinitesimal equivalence having the same infinitesimal character for a given
admissible character A. Recall that this number is generally given as the ratio |Wg/Wg|, where Wx denotes
the Weyl group of K. The only degree in which these three discrete series representations m;, i = 1, 2, 3, have
Hi(g, K, Hy, ® F) + 0 with a suitable coefficient system is j = 4.

The trivial representation of G only matters if the coefficient system F is trivial as well. Note that one has
Hi(g,K,C) = Cifj=0,4,8and H(g, K, C) = 0 otherwise.

The most interesting irreducible unitary representations of G = G, are (up to infinitesimal equivalence)
the ones originating in the following way: Consider two elements zj € t,j = 1, 2, with aj(zj) > Oand ax(zj) = 0
for k # j. We denote the corresponding 0-stable parabolic subalgebra as constructed by gj, j = 1, 2. The con-
nected subgroup Lj, j = 1, 2, is isomorphic to SL(RR) x U(1). These two algebras gj, j = 1, 2, are the only
6-stable parabolic subalgebras of g with R(q;) = 3. Let A : [; » C be an admissible character. Then the cor-
responding irreducible unitary representation A, (A) of G is non-tempered. We summarize this classification
result in the case of an arbitrary coefficient system, see [45, 67, 68].

Proposition A.1. Let G be the split simple real Lie group of type G,, g its complexified Lie algebra, and K c G

a maximal compact subgroup. Let (v, F) be an irreducible finite-dimensional representation of G with highest

weight A = c1 A1 + c2 A5, 1, Co non-negative integers. Then we have:

o Fix the index j € {1, 2}. If the integral coefficient c; = 0,1 + j, then there exists an admissible character
Xj : lj — C with regard to g; such that the corresponding irreducible non-tempered representation Aq;(x;),
as constructed above, occurs with

C ifgq=3,5,

HY(g,K,Aq,(xj)®F) =
% 0 otherwise.

o If both integral coefficients c1 # 0, ¢, # O, then there is no irreducible unitary representation (r, H) of G
with H(g, K, t® F) # O forq = 3, 5.



DE GRUYTER N. Grbac and ). Schwermer, Construction of square-integrable classes —— 1261

Remark A.2. Observe the shift in indices: This occurs as well if we describe the two non-tempered represen-
tation as Langlands quotients of principal series representations (see [45, 7.7.(3)]). We have

J(P2,0,1pp,) = Aq,(x1), J(P1,0,3pp,) = Aq,(X2)-

Here we use the notation used in Section 7 for the principal series representations.
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