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Stabilised laser-driven radiation pressure acceleration of ions

Abstract

The process of radiation pressure ion acceleration is investigated with the aim of suppressing

the transverse Rayleigh-Taylor like interchange instabilities (RTI) in laser-foil interaction.

This is achieved by imposing surface and density modulations on the target surface. First,

calculations of the RTI growth rate are carried out in order to understand the behavior of

the instabilities. Then, PIC (particle-in-cell) simulations of radiation pressure acceleration

with different target modulation parameters are carried out. At the end, we analyze our

simulation results and seek for optimal modulation parameters for a stabilized acceleration

process of ions. It turned out that density modulated targets have more promising results

than surface modulated targets and we get new findings in radiation pressure of ions which

will probably lead to a new research direction.
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Zusammenfassung

Die Beschleunigung durch Strahlungsdruck (RPA) von Ionen verursacht übertragbare

Rayleigh-Taylor ähnliche Instabilitäten (RTI) im Innern von Laser-Plasma-Interaktionen.

Diese RPA von Ionen bzw. die daraus folgende Wachstumsrate der transversalen Insta-

bilitäten wird hier untersucht mit dem Ziel die RTI zu unterbinden bzw. zu dämpfen. Dies

wird mit auferlegten Modulationen der Targetoberfläche erfolgen. Zuerst werden Rech-

nungen zu der RTI Wachstumsrate durchgeführt, um das Verhalten der Instabilitäten

zu verstehen. Danach werden PIC (particle-in-cell) Simulationen des RPA Prozesses

mit verschiedenen Parametern der Target-Modulationen durchgeführt. Schließlich wer-

den die Simulations-Ergebnisse analysiert, und, wenn möglich, optimale Modulations-

Parameter für einen stabilen Beschleunigungsprozess der Ionen ausgearbeitet. Es stellt

sich heraus, dass Dichte-Modulationen vielversprechendere Ergebnisse erziehlen können

als Oberflächen-Modulationen. Außerdem werden neue Erkenntnisse gefunden, die

höchstwahrscheinlich zu einer neuen physikalichen Forschungsrichtung führen.
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1 Introduction

Radiation Pressure Acceleration (RPA) has often been used in astronomical

physics before it was proposed to accelerate ions for tumour therapy [4, 8]. In fact,

the mechanism with High-velocity Interstellar Photon Sails is based on the RPA of

photons, that could accelerate nano-sensors up to 20% of light velocity within min-

utes [1]. The radiation pressure acceleration also has genesis in the studies of Einstein

when Einstein studied the reflection of the a light from a mirror and deduced that

the ratio E/ω, where E is the electric field and ω is the frequency of the light, is an

invariant which later turns out to be the Planck constant (Ep = hν = hc/λ). Since

the first proposed concept of ion RPA [2], theses mechanisms have been studied over

the past years. With super-intense polarized lasers around 1023 W/cm2, RPA have

the potential to produce high-energy ion beams with higher energy conversation

efficiency compared to lower laser intensity mechanisms like target normal sheath

acceleration (TNSA). RPA of ions promises to provide ultrashort pulse duration,

extremely high peak energy having a great potential in ion beam therapy [3–9] or in

other physical areas like fast ignition [10–13].

Seeking a stabilized RPA of ions has been a long-standing goal in this research

area. In fact, transverse instabilities in high-power laser-plasma interaction reduce

the effectiveness, restrain or even break the RPA process. This mechanism has been

studied over the past decades and a several attempts like analysis of the intrinsic

instability origin [14], tailored electromagnetic pulses with sharp intensities [15] or

modulation of the RPA [16] tried to suppress the instabilities.

In order to suppress the RTI, we will use a modulated target with different shapes.

The major difference to [17] is, that we will make different modulations, target shapes,

and compare it with the growth of RTI instabilities in each case. Finally, we see

some results on the effect of considering the radiation reaction process for the most

promising cases (see the Outlook).
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2 Theoretical Background

2.1 Choosing the right setting for the RPA

2.1.1 Polarization of the laser

The polarization of the laser is significant for RPA of ions. In fact, a linear

polarized laser will have higher electron heating than those with circular polarized

lasers [18], and consequently the RPA is weaker for the linearly polarized case. Laser

polarization allows a phase stable region for the RPA mechanism. This is due to

the ponderomotive force i.e v ×B force, which is zero for circular polarization. For

this reason we use circular polarized lasers in this research project. In this case,

the radiation pressure force will apply a constant pressure to the target shell which

starts accelerating the high plasma density layer. For target widths ` < (a0nc/πne)λ0

(where a0 is the dimensionless laser amplitude, λ0 is the laser wavelength, ne the elec-

tron density and nc the critical plasma density), the laser pushes the plasma surface

into the target. This happens as long as the laser pulse continues and therefore, there

is no density limit for the target. This is also called the hole boring regime (HB). In

our case, we will focus on much thinner targets (thickness around laser wavelength)

and higher laser intensities up to Icp = 1.71 × 1023 W/cm2 i.e light sailing regime

(LS). Instead of a laser push of the plasma into the target, the target starts moving

in the forward direction.

2.1.2 Intensity of the laser

The intensity of the laser is very important as it plays a major role in the energy

gaining process. For lasers beyond (1023 W/cm2), the ions become relativistic and

the system will generate much higher energy. For lower intensities and thick targets,

the target normal sheath acceleration (TNSA) dominates. The laser heats up the

electrons at the front of the target and and these hot-electrons start re-circulating
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inside the target. Due to this a charge separation electric field is generated at the

back of the target which accelerates the ions. But as a matter of fact, the ion energy

is only proportional to the square root of the laser power. In the opposite way,

for thinner targets and higher laser intensities, one can get the Coulomb explosion

regime (CE). Here are the target electrons mostly expelled from the front surface

and the ions ’explode’ due to the remaining positive charge. The ion energy is here

proportional to the laser power. For our case, we will use the RPA mechanism, as

for high laser intensities, there is sufficient energy to push the foil as a whole and

it has a high efficiency in the ultra-relativistic regime. In principle, the target gets

almost all the laser energy which leads to high-energy ion beams with higher energy

conversation efficiency.

2.1.3 Surface density and other parameters of the target

For the stability of a thin foil undergoing acceleration, perturbations with wave-

length higher than the target width, are to be avoided. We here employ the compet-

itive feeding of the instability modes. If one modulates the target surface at a given

wavelength, then one feeds this particular mode of the instability compared to oth-

ers. Thus the free energy of the plasma is diverted to this mode and one can hope to

suppress modes at other wavelengths, especially the modes which are detrimental for

the target stability e.g the modes with wavelengths of the order of target thickness.

We study this selective mode feeding for different target shapes and modulations (see

section 3) and compared them with a flat target case.

In our case, we will use a maximum density of

n = 250nc = 250 · ω
2
0me

4πe2
,

n = 4.36× 1023/cm3, (0a)
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where nc is the critical density for the laser pulse for (1µm) laser wavelength and

ω0 = 2.36×1015/s is the laser frequency for Ti:Sa lasers which operate most efficiently

at wavelengths near 0.8× 10−6 m.

The density threshold is linked to the laser intensity with a dimensionless param-

eter

εp ≥ a0, (0b)

where a0 is the dimensionless amplitude of the laser (definition below) and εp =

πne`/ncλ0, where ne is the electron density, ` the target width, nc the critical density

and λ0 the laser wavelength. In our case, we want to be in the light sailing regime,

which is a0 > π for a 1λ0 thick target and a0 > 2π for a 2λ0 thick target.

The normalized dimensionless Lorentz invariant amplitude of the laser electric

field is

a0 =
eE0

meω0c
, (0c)

where E0 is the initial energy of the laser, e the electron charge, c the speed of light

and me the electron mass. a0 = 150 corresponds to a circular polarized laser intensity

of Icp = 6.16 · 1022 W/cm2. Later on, one can consider the value of a0 = 250 (i.e

Icp = 1.71 · 1023 W/cm2) where radiation reaction has to be considered. Please note,

that the two values of a0 validate the inequality (0b).

2.2 Determination of the growth rate of the RTI

2.2.1 Defining the system

For the RPA of a thin flat target, we define a system with a constant electromag-

netic field for the laser, a thickness l0 of the flat target, the surface of the flat target

dS0 and a velocity ν0 of the target at time t = 0. As known from theory, the RPA is

coming from the velocity of the photons (momentum of the electromagnetic wave)

and from their reflection. The so called hot electrons excited by the momentum of
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the photons, transport the absorbed energy

Ep = mec
2(γ − 1) = mec

2(
√

1 + a02/2− 1), (1)

with a0 the dimensionless amplitude of the laser, me the electron mass and c the

velocity of light. This energy is also known as the ponderomotive energy. The ions

are accelerated by the radiation pressure which will overcome the charge separation

force. As a matter of fact, we know e.g that with Ep = 500 MeV, mec
2 = 0.5 MeV

and mic
2 = 1000 MeV, we can estimate the ion velocity with γi = 1.5, γe ≈ 1000 and

therefore νi ≈ 0.7c and νe ≈ c are the respective velocities of the ions and electrons.

At a time t, the shape of the flat target can be curved as the velocity of the

target is not equal in space. We define therefore a new thickness l and new surface

dS of the target, both dependent in time. We can then describe the shell shape of

the system in dependence of time as follow

~M = ~M(ζ, η, t) = {x(ζ, η, t), y(ζ, η, t), z(ζ, η, t)}, (2)

where (ξ, ζ, η) is a set of orthogonal curvilinear coordinates to describe the evolution

of a differential element of the thin-foil element after the laser hits the target. The

shell’s evolution is described by the function ~M(ζ, η, t). The equation of motion for

the mass-limited target, driven by the radiation pressure is then written as

d~p

dt
=
P~n
σ
, (3)

where P is the relativistically invariant radiation pressure, ~p the momentum of the

shell, ~n the unit vector normal to the surface and σ = ln the surface density of the

shell where n is the total number of particles in the shell.
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The mass of the shell does not change in time and is dm = σ dζdη for all times t.

This can be explained by the fact that the total number of particles does not change

and n = n0. Therefore, at a regular point, we have following the equation

|dσ| · σ = |dσ0| · σ0, (4)

and the differential area dσ changes for any regular point with vector ~r as

|dσ| =
∣∣∣∣d~rdζ
× d~r

dη

∣∣∣∣ dζdη. (5)

The surface mass density at any time is therefore

σ = σ0

∣∣∣∣d~rdζ
× d~r

dη

∣∣∣∣−1 , (6)

where only the stretching in transverse directions is considered and hence

σ

σ0
=

∣∣∣∣d~rdζ
× d~r

dη

∣∣∣∣−1 ,
σ

σ0
=
[
{y, z}2 + {z, x}2 + {x, y}2

]−1/2
, (7)

where the Poisson brackets are defined as

{xi, xk} =
∂xj
∂ζ

∂xk
∂η
− ∂xk

∂ζ

∂xj
∂η

. (8)

The equation of motion (3) can therefore be rewritten as

dpi
dt

=
P
σ0

εijk ∂ζxj ∂ηxk, (9)

where εijk is the anti-symmetric Levi-Civita tensor, ∂ζ = ∂/∂ζ (analog for η), {xi} =

{x, y, z} and {pi} = {px, py, pz}. Hence, the components of equation of motion (9)
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can be expressed as

dpx
dt

=
P
σ0

[ ∂ζy ∂ηz − ∂ηy ∂ζz ] ,

dpy
dt

=
P
σ0

[ ∂ζz ∂ηx− ∂ζx ∂ηz ] ,

dpz
dt

=
P
σ0

[ ∂ζx ∂ηy − ∂ηx ∂ζy ] .

(10a)

(10b)

(10c)

The relativistically invariant radiation Pressure P , which can be calculated with

the Maxwell stress-energy tensor, is needed. Its diagonal or rather Maxwell stress

tensors’ diagonal elements will provide the pressure respectively the expression of P .

The electromagnetic stress-energy tensor is:

T µν =
∂L

∂(∂µAρ)
∂νAρ − gµνL =

1

4π
F ρµ∂µAρ − gµνL,

T µν =
1

4π

(
F µρF ν

ρ −
1

4
gµνFσρF

σρ

)
, (11)

where L is the Lagrangian function, A is the four-potential, Fµν the electromagnetic

field tensor and gµν the reciprocal of the metric tensor. The diagonal elements of

the Maxwell stress-energy tensor Tmn = −σmn (with m = n), have a negative sign

included. That’s why the diagonal elements of the Cauchy stress tensor are

σnn =
1

4π

(
E2
n +B2

n −
1

2

(
E2 +B2

))
. (12)

Knowing that the frequency of the reflected electromagnetic wave is reduced

[19] by (1 − βx)/(1 + βx) ≈ 1/(4γ2), with γ = (1 − βx
2)−1/2 and βx = vx/c =

px/
√
mi

2c2 + pk2 (vx, the longitudinal velocity of the shell, mi the ion mass, c the

speed of light and pk the momentum vector with k = {x, y, z}), the energy of the
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reflected electromagnetic pulse is then

Er = E0

√
1− βx
1 + βx

, (13)

with E0 the initial energy of the laser.

Therefore, with equations (12) and (13), the relativistically invariant radiation

pressure is

P = k
E0

2

4π

1− βx
1 + βx

=
E0

2

2π

1− βx
1 + βx

, (14)

where k = 2|ρ|2+ |α|2 with |ρ|2 and |α|2 are the reflection and absorption coefficients,

respectively. In this case, the shell is an ideally reflective target and k = 2.

2.2.2 Interchange instability: Solving the equilibrium of motion

To know the behaviour of the instability, one can solve at first the equilib-

rium of motion of the unperturbed shell. At t = 0, the initial conditions are

x0 = 0, y = ζ, z = η. The perturbations of the initial conditions are denoted

as δx (φ, ζ, η), δy (φ, ζ, η), δz (φ, ζ, η). They are first solved for the equilibrium mo-

tion in x-direction. To find out the growth rate of the RTI, we perturb later on this

equilibrium.

We define now the phase of the wave ϕ as

ϕ = ω0

[
t− x0(t)

c

]
, (15)

where x0(t) is the unperturbed position of the shell. The energy is hence

E0 = E

[
t− x0(t)

c

]
. (16)
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Differentiating equation (15) with respect to time, we get

dϕ

dt
= ω0

[
1− ẋ0(t)

c

]
,

dϕ

dt
= ω0

micγ0 − p0x
micγ0

, (17)

where p0x = mi γ0 v
0
x is the momentum of the shell.

We can therefore write equation (10a) as

dp0x
dt

=
E2

0

2πσ0

micγ0 − p0x
micγ0 + p0x

. (18)

Using the equation of the phase variable (17) one can get

dp0x
dϕ

=
E2

0

2πσ0ω0

micγ0
micγ0 + p0x

. (19)

We define the normalized fluence of the laser pulse (energy iterating over time) as

W (ϕ) =

∫ ϕ

0

R(ϕ′)

λ0
dϕ′, (20)

where R(ϕ) = E2
0(ϕ)/(miσ0ω

2
0) and λ0 = 2πc/ω0

Integrating equation (19) yields to

∫ p0x

0

dp0x
(micγ0 + p0x)

micγ0
· 1

mic
=

∫ ϕ

0

E2
0(ϕ)

2πσ0ω0

· ω0

ω0mic
dϕ,

1

mic

∫ p0x

0

dp0x

(
1 +

p0x
micγ0

)
=

∫ ϕ

0

R(ϕ)

λ0
dϕ,

1

mic

∫ p0x

0

dp0x +

∫ p0x

0

p0x dp0x√
m2
i c

2 + p0x
2

= W (ϕ),

9



p0x +

√
p0x

2 + (mic)2 −mic = micW (ϕ),

p0x
2

+ (mic)
2 = (mic (W (ϕ) + 1)− p0x)2,

p0x
2

+ (mic)
2 = [(W (ϕ) + 1)mic]

2 + p0x
2 − 2p0x(W (ϕ) + 1)mic,

p0x = −p
0
x
2 − p0x + (mic)

2 − [(W (ϕ) + 1)mic]
2

2(W (ϕ) + 1)mic
,

p0x = mic
[W (ϕ) + 1]2 − 1

2(W (ϕ) + 1)
,

p0x = mic
W (ϕ)[W (ϕ) + 2]

2(W (ϕ) + 1)
. (21)

This is the solution of equation (18) where the initial condition is p0x(0) = 0.

In order to analyze the instabilities, we evaluate the quantities around the equi-

librium values. To get the linearized equation, p0x is linerized first. We have following

equations for ~p and ~β:
p0x

2

m2
i c

2
=

β2
x

1− β2
x

,

p0x
mic

=
βx

(1− β2
x)

1/2
, (22)

~p = (p0x + δpx)x̂+ δpy ŷ + δpz ẑ, ~β = (β0
x + δβx)x̂+ δβy ŷ + δβz ẑ. (23)

Here are β0
y = β0

z = 0. Furthermore, one calculates px in some steps:

1− β2
x = 1− (β2

x + 2δβxβ
0
x) = (1− β0

x
2
)

[
1− 2δβxβ

0
x

1− β0
x
2

]
,

√
1− β2

x =

√
1− β0

x
2

[
1− 2δβxβ

0
x

1− β0
x
2

]1/2
=

√
1− β0

x
2

[
1− δβxβ

0
x

1− β0
x
2

]
,
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βx√
1− β2

x

=
β0
x + δβx√

1− β0
x
2
[
1− δβxβ0

x

1−β0
x
2

] ,
βx√

1− β2
x

= γ0β
0
x

(
1 +

δβx
β0
x

)[
1 +

δβxβ
0
x

1− β0
x
2

]
,

βx√
1− β2

x

= γ0β
0
x(1 + 0)

[
1 + δβxβ

0
xγ

2
0

]
,

px
mic

= γ0β
0
x + δβx β

0
x
2
γ30 .

Hence

One can analogically write

px = p0x +mic γ
3
0 β

0
x
2
δβx.

py = mic γ0 δβy,

pz = mic γ0 δβz.

(24a)

(24b)

(24c)

Since ϕ = ω0 [ t − x0(t)/c] yields to ∂tϕ = ω0 [ t − β0
x(t)/c] ≈ ω0/2γ

2
0 ≈ ω0m

2
i c

2/2p0x
2

in the ultra-relativistic limit, and ∂t = ∂ϕ ∂tϕ, one can get

∂δx

∂t
=
∂δx

∂ϕ

∂ϕ

∂t
=
ω0m

2
i c

2

2p0x
2

∂δx

∂ϕ
. (25)

Solving equations (10a), (10b) and (10c) for the initial conditions

x = 0 + δx, y = ζ + δy, z = η + δz,

one gets
dpx
dϕ

=
E2

0micγ0
2πσ0ω0(micγ0 + p0x)

[
1 +

∂δy

∂ζ
+
∂δz

∂η

]
. (26)
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And then,
dp0x
dϕ

=
E2

0micγ0
2πσ0ω0(micγ0 + p0x)

,

∂

∂ϕ

[
micβ

0
x
2
γ3
δẋ

c

]
=

E2
0micγ0

2πσ0ω0(micγ0 + p0x)

[
∂δy

∂ζ
+
∂δz

∂η

]
. (27)

In the ultra-relativistic limit, β0
x → 1 and γ0 ∼ p0x/mic. Therefore, as micγ0 '

2p0x, one can rewrite equation (27) as

∂

∂ϕ

[
mic

c

p0x
3

m3
i c

3

ω0m
2
i c

2

2p0x
2

∂δx

∂ϕ

]
=

E2
0

2πσ0ω0

1

2

[
∂δy

∂ζ
+
∂δz

∂η

]
,

∂

∂ϕ

[
p0x
mic

∂δx

∂ϕ

]
=

E2
0

2πσ0ω2
0mi

[
∂δy

∂ζ
+
∂δz

∂η

]
,

∂

∂ϕ

[
p0x
mic

∂δx

∂ϕ

]
=
R(ϕ)

2π

[
∂δy

∂ζ
+
∂δz

∂η

]
. (28)

The above equation can also be written as

∂2δx

∂ϕ2 +
1

p0x

∂p0x
∂ϕ

∂δx

∂δϕ
=
R(ϕ)

2π

mic

p0x

[
∂δy

∂ζ
+
∂δz

∂η

]
. (28a)

Similarly, equation (10b) yields to

dpy
dϕ

=
E2

0

2πσ0

micγ0 − p0x
micγ0 + p0x

[
∂z

∂ζ

∂x

∂η
− ∂x

∂ζ

∂z

∂η

]
,

∂

∂ϕ
[miγ0δẏ] =

E2
0

2πσ0ω0

micγ0
micγ0 + p0x

[
−∂δx
∂ζ

(
1 +

∂δz

∂η

)]
,

∂

∂ϕ

[
mic

p0x

∂δy

∂ϕ

]
= −R(ϕ)

2π

∂δx

∂ζ
, (29)
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where the product of perturbed terms is ignored.

For the z-component, one can obtain

∂

∂ϕ

[
mic

p0x

∂δz

∂ϕ

]
= −R(ϕ)

2π

∂δx

∂η
. (30)

Writing down all equations like equation (28a), one gets

∂2δx

∂ϕ2 +
1

p0x

∂p0x
∂ϕ

∂δx

∂δϕ
=
R(ϕ)

2π

mic

p0x

[
∂δy

∂ζ
+
∂δz

∂η

]
, (28a)

∂2δy

∂ϕ2 +
1

p0x

∂p0x
∂ϕ

∂δy

∂δϕ
= −R(ϕ)

2π

p0x
mic

∂δx

∂ζ
, (29a)

∂2δz

∂ϕ2 +
1

p0x

∂p0x
∂ϕ

∂δz

∂δϕ
= −R(ϕ)

2π

p0x
mic

∂δx

∂η
. (30a)

Supposing the perturbations have following shape

(δx, δy, δz) ∼ (δx̂, δŷ, δẑ) · exp

(∫ ϕ

0

Γ(ϕ′)dϕ′ − iqζ − irη
)
, (31)

where Γ is the growth rate and q and r are dimensionless parameters.

Then,

[
Γ2 +

∂Γ

∂ϕ
+

1

p0x

∂p0x
∂ϕ

Γ

]
δx̂ =

R(ϕ)mic

2πp0x
· −i[qδŷ + rδẑ], (32a)[

Γ2 +
∂Γ

∂ϕ
+

1

p0x

∂p0x
∂ϕ

Γ

]
δŷ =

R(ϕ)p0x
2πmic

· iqδx̂, (32b)[
Γ2 +

∂Γ

∂ϕ
+

1

p0x

∂p0x
∂ϕ

Γ

]
δẑ =

R(ϕ)p0x
2πmic

· irδx̂. (32c)

In the ultra-relativistic limit, p0x/mic� 1 and the perturbations grow mainly in

y- and z-direction. Thus, the growth rate is rather large and Γ � 1, Γ−2 ∂ϕΓ � 1.

13



Therefore, equations (32a), (32b) and (32c) result in

Γ2δx̂ =
R(ϕ)mic

2πp0x
· −i[qδŷ + rδẑ], (33a)

Γ2δŷ =
R(ϕ)p0x
2πmic

· iqδx̂, (33b)

Γ2δẑ =
R(ϕ)p0x
2πmic

· irδx̂. (33c)

By multiplying equations (33b) and (33c) respectively by q and r and adding

them together, one gets

Γ2(qδŷ + rδẑ) =
R(ϕ)p0x
2πmic

· i(q2 + r2)δx̂. (34)

Furthermore, equation (33a) can be used to simplify equation (34) as

Γ2Γ2

(
2π

R(ϕ)

p0x
mic

)
δx̂

−i =
R(ϕ)

2π

p0x
mic
· i(q2 + r2)δx̂,

Γ4 =

(
R(ϕ)

2π

)2

(q2 + r2). (35)

This leads to the growth rate

Γ =

(
R(ϕ)

2π

)1/2 (
q2 + r2

)1/4
. (36)

One can derive the asymptotic response of the perturbation by solving the equa-

tion for the phase by using equation (21). For doing so, one can simplify

14



γ0 =

√
1 +

p0x
2

m2
i c

2
,

γ0 =

√
1 +

(
W (ϕ)(W (ϕ) + 2)

2(W (ϕ) + 1)

)2

,

γ0 =
W (ϕ)2 + 2W (ϕ) + 2

2(W (ϕ) + 1)
. (37)

Integrating equation (17), one can get

∫ ϕ

0

dϕ′
(

1− p0x
micγ0

)−1
=

∫ t

0

dt′ ω0,∫ ϕ

0

dϕ′
(

1− W (W + 2)

2(W + 1)
· 2(W + 1)

W 2 + 2W + 2

)−1
= ω0 t,∫ ϕ

0

dϕ′
(

1− W (W + 2)

W 2 + 2W + 2

)−1
= ω0 t,∫ ϕ

0

dϕ′
1

2

(
W 2 + 2W + 2

)
= ω0 t,

ϕ+

∫ ϕ

0

dϕ′
(

1

2
W 2 +W

)
= ω0 t, (38)

where W (ϕ′) = W .

Analog for the space coordinate, as

dϕ

dx
= ω0

(
dt

dx
− 1

c

)
=⇒ dt

dx
=

1

ω0

dϕ

dx
+

1

c
,

dx

dϕ
=

dx

dt
· dt

dϕ
=

1

ω0

[
1 +W +

W 2

2

] [
1

ω0

dϕ

dx
+

1

c

]−1
,

15



1

ω0

dx

dϕ

dϕ

dx
+

1

c

dx

dϕ
=

1

ω0

[
1 +W +

W 2

2

]
,

dx

dϕ
=

c

ω0

[
W

(
1 +

W

2

)]
,

dϕ

dx
=
ω0

c

[
W

(
1 +

W

2

)]−1
, (39)

following equation can be obtained by integrating equation (39):

∫ ϕ

0

dϕ′W

(
1 +

W

2

)
=

∫ x

0

dx′
ω0

c
,

∫ ϕ

0

dϕ′
(

1

2
W 2 +W

)
=
ω0

c
x. (40)

For a constant laser pulse amplitude, when R = R0, one can get W (ϕ) =

(R0/λ0)ϕ. Therefore, euqations (38) and (40) yield respectively to

ϕ+

(
R0

λ0

)
ϕ2

2
+

(
R0

λ0

)2
ϕ3

6
= ω0 t,(

R0

λ0

)
ϕ2

2
+

(
R0

λ0

)2
ϕ3

6
=
ω0

c
x.

(41a)

(41b)

From equation (41a), the asymptotic early- and late-time evolution of ions mo-

menta can be obtained. For the early-time asymptotic, t � λ0/ω0R0 or rather

ω0tR0/λ0 � 1 and therefore the first term of equation (41a) dominates giving t ≈ ω0t.

16



Then, for R0/λ0 � 1, the momentum is

px = mic

(
R0

λ0

)
ϕ

[(
R0

λ0

)
ϕ+ 2

]
2
[(

R0

λ0

)
ϕ+ 1

] ,
px ' mic

(
R0

λ0

)
ϕ,

px ' mic

(
R0

λ0

)
ω0 t. (42)

For the late-time asymptotic, t � 1/ω0(λ0/R0) or rather (R0/λ0)ω0t � 1, the

last term of equation (41a) dominates and therefore ϕ3 ≈ 6ω0t(λ0/R0)
2. Then, the

expression of the momentum is

px ' mic

(
R0

λ0

)
ϕ,

px ' mic

(
R0

λ0

)[
6ω0t

(
λ0
R0

)2
]1/3

,

px ' mic

(
3

4

R0

λ0
ω0t

)1/3

. (43)

Analog, one can obtain relationships between the phase ϕ and x using equation

(41b). Therefore, the transverse perturbation growth is

δy ∼ exp

(∫ ϕ

0

Γ(ϕ′)dϕ′ − iqζ − irη
)
. (44)

For a constant laser pulse, equation (44) leads to

δy ∼ exp (Γ(ϕ)ϕ− iqζ − irη) . (45)

17



Using equations (36) and (43) leads to the perturbation growth rate

Γ =

(
R(ϕ)

2π

)1/2 (
q2 + r2

)1/4
. (46)

The long-term asymptote for the transversal perturbation is then

where

δy ∼ exp

[(
t

τr

)1/3

− iqζ − irη
]
,

τr =
(2π)3

6ω0

R
1/2
0

λ20

1

(q2 + r2)3/4

(47)

(48)

is the time constant of the exponential decay.

The early-time asymptote can describe the non-relativistic growth of the pertur-

bation which grows like δy ∼ exp(t/τr−iqζ−irη) with τr = 2π
[
ω0R

1/2
0 (q2 + r2)

1/4
]−1

.

Therefore, as one has t instead of t1/3, the instability increases with time faster than

in the ultra-relativistic regime. We will focus on the ultra-relativistic case, as we are

only interested in the high energetic case or rather the regime where we have the

better growth reduction of the the instabilities.

2.2.3 Interchange instability: Solving the equilibrium of motion for a

modulated target

We will now investigate the instabilities for a surface modulated target in trans-

verse directions. For this case, the initial conditions are

x = 0, y = ζ + am exp(ikmζ), z = η + am exp(ikmη).

18



Like before, one can solve the equilibrium solution of momentum for the x-

component
dp0x
dt

=
E2

0

2πσ0

micγ0 − p0x
micγ0 + p0x

[
∂y

∂ζ

∂z

∂η
− ∂z

∂ζ

∂y

∂η

]
,

dp0x
dt

=
E2

0

2πσ0

micγ0 − p0x
micγ0 + p0x

(1 + ikmly) (1 + ikmlz) , (49)

where ly = am exp(ikmζ) and lz = am exp(ikmη).

The momentum is therefore

p0x = mic
W (W + 2)

2(W + 1)
, (50)

where W = W (ϕ) contains additional factors

W (ϕ) =

∫ ϕ

0

E2
0(ϕ)

miω2
0σ0λ0

(1 + ikmly) (1 + ikmlz) . (51)

Like equations (27) to (30), one proceeds similarly in order to get the three

equations for investigating the instability. Therefore, one has

d

dϕ

[
p0x +micγ

3
0

δẋ

c

]
=

E2
0micγ0

2πσ0ω0(micγ0 + p0x)

[(
∂δy

∂ζ
+ 1 + ikmly

)
·
(
∂δz

∂η
+ 1 + ikmlz

)]
,

d

dϕ

[
p0x +micγ

3
0

δẋ

c

]
=

E2
0micγ0

2πσ0ω0(micγ0 + p0x)

[
∂δy

∂ζ
(1 + ikmlz)

+ (1 + ikmly) (1 + ikmlz) +
∂δz

∂η
(1 + ikmly) +

∂δy

∂ζ

∂δz

∂η

]
. (52)

As
dp0x
dϕ

=
E2

0

2πσ0ω0

micγ0
micγ0 + p0x

(1 + ikmly) (1 + ikmlz) , (53)
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then

d

dϕ

[
micγ

3
0

δẋ

c

]
=

E2
0micγ0

2πσ0ω0(micγ0 + p0x)

[
∂δy

∂ζ
(1 + ikmlz) +

∂δz

∂η
(1 + ikmly)

]
, (54)

where ∂ζδy · ∂ηδz are ignored due to perturbed quantities. After simplifications, this

results in

∂

∂ϕ

[
p0x
mic

∂δx

∂ϕ

]
=
R(ϕ)

2π

[
∂δy

∂ζ
(1 + ikmlz) +

∂δz

∂η
(1 + ikmly)

]
,

∂

∂ϕ

[
mic

p0x

∂δy

∂ϕ

]
= −R(ϕ)

2π

[
∂δx

∂ζ
(1 + ikmlz)

]
,

∂

∂ϕ

[
mic

p0x

∂δz

∂ϕ

]
= −R(ϕ)

2π

[
∂δx

∂η
(1 + ikmly)

]
,

(55a)

(55b)

(55c)

where equations (55b) and (55c) are analogically obtained and R(ϕ) remains the

same like in equation (20).

Supposing

δx, δy, δz ∼ (δx̂, δŷ, δẑ) exp

(∫ ϕ

0

Γ(ϕ′)dϕ′ − iqζ − irη
)
. (56)

Then, one can get

[
Γ2 +

∂Γ

∂ϕ
+

1

p0x

∂p0x
∂ϕ

Γ

]
δx̂ =

R(ϕ)mic

2πp0x
· −i [q(1 + ikmlz)δŷ + r(1 + ikmly)δẑ] , (57a)[

Γ2 +
∂Γ

∂ϕ
+

1

p0x

∂p0x
∂ϕ

Γ

]
δŷ =

R(ϕ)p0x
2πmic

· iq(1 + ikmlz)δx̂, (57b)[
Γ2 +

∂Γ

∂ϕ
+

1

p0x

∂p0x
∂ϕ

Γ

]
δẑ =

R(ϕ)p0x
2πmic

· ir(1 + ikmly)δx̂. (57c)
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As before, since Γ� 1, Γ−2 ∂ϕΓ� 1, equations (57a), (57b) and (57c) yield

Γ2δx̂ =
R(ϕ)mic

2πp0x
· −i [q(1 + ikmlz)δŷ + r(1 + ikmly)δẑ] , (58a)

Γ2δŷ =
R(ϕ)p0x
2πmic

· iq(1 + ikmlz)δx̂, (58b)

Γ2δẑ =
R(ϕ)p0x
2πmic

· ir(1 + ikmly)δx̂, (58c)

By multiplying equations (58b) and (58c) respectively by q(1 + ikmlz) and r(1 +

ikmly) and adding them together, the result is

Γ2 [q(1 + ikmlz)δŷ + r(1 + ikmly)δẑ] =
R(ϕ)p0x
2πmic

· i
[
q2(1 + ikmlz)

2 + r2(1 + ikmly)
2
]
δx̂

(59)

Furthermore, equation (58a) can be used to simplify equation (59) as

Γ2δx̂ =
−i
Γ2

R(ϕ)p0x
2πmic

R(ϕ)mic

2πp0x
· i
[
q2(1 + ikmlz)

2 + r2(1 + ikmly)
2
]
δx̂,

Γ4 =

(
R(ϕ)

2π

)2

· i
[
q2(1 + ikmlz)

2 + r2(1 + ikmly)
2
]
. (60)

If ly = lz = lm, then

Γ4 =

(
R(ϕ)

2π

)2

· i (1 + ikmlm)
(
q2 + r2

)
,

Γ =

(
R(ϕ)

2π

)1/2

· i (1 + ikmlm)1/2
(
q2 + r2

)1/4
. (61)

As before, one can determine the long-term asymptote from equation (41a). How-

ever, in this case, R0 contains the additional factor (1 + ikmlm)2. Hence, one can
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rewrite equation (41a) as

ϕ+

(
R0

λ0

)
ϕ2

2
(1 + ikmlm)4 +

(
R0

λ0

)2
ϕ3

6
(1 + ikmlm)4 = ω0 t. (62)

For the late-time asymptote, this leads to

ϕ3 ' 6ω0t

(
λ0
R0

)2

[1 + ikmlm]−4 . (63)

Then, the transversal perturbation growth rate is written as

δy ∼ exp [Γ(ϕ)ϕ− iqζ − irη] ,

where

δy ∼ exp

[(
t

τr

)1/3

− iqζ − irη
]
,

τr =
(2π)3

6ω0

R
1/2
0

λ20

(1 + ikmlm)5/6

(q2 + r2)3/4
.

(64)

(65)

For |kmlm| � 1, τr is increased and therefore a reduction in the growth rate is

possible if

kmlm >

(√
3

8
− 1√

2

)
, (66)

where the (5/6)th root of i were taking for the inequality. Hence, equation (65) can

be rewritten as

τr =
(2π)3

6ω0

R
1/2
0

λ20

(kmlm)5/6

(q2 + r2)3/4

(√
3

8
− 1√

2

)
. (67)
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3 Numerical analysis of the RTI

3.1 Defining the profile of the system before PIC-simulation

As theory is explained so far, we want to do particle-in-cell (PIC) simulations in

order to investigate the behaviour of the system considering the parameters obtained

in theory. That is why we have to implement the different parameters into the

namelist. SMILEI (version 4.2) will be used for the PIC-simulations.

3.1.1 Parameters of the simulation

We will use a simulation box of the size of Lx × Ly = 18λ0(x) × 10λ0(y) where

λ0 = 0.8 × 10−6 m is the laser wavelength (which correspond to 1800(x) × 1000(y)

cells with a cell length of 0.06λ0). The time step of the simulation is 4.19 τL · 10−2

where τL = 2π/ω0 = 2.67 fs is the laser period. A total of 1.5 × 104 iterations will

be made. We use 16 particles per cell with only a foil target consisting of electrons

and ions.

As we want to exclude other effects occurring due to the laser shape, we will

consider only plane waves in the simulations. In addition, we will focus on a laser

with a constant temporal intensity profile. This ideal laser can be approximated to

a real laser considering that the laser wavelength is much smaller than the whole

target front.

3.1.2 Shape and density parameters of the target

As mentioned in section 2.1.3, we will have several target shapes with different

modulations. In all cases, the modulation is on the left side, where the laser pulse

incident on the target. The following shapes were used:
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• Surface modulated target with rectangular grooves with changing

ion density (rec)

The 1λ0 thick target is located in the region 1λ0 ≤ x ≤ 2λ0 and has a rect-

angular modulation initially located in the region 1λ0 − am ≤ x ≤ 1λ0 + am,

where am is the amplitude of the modulation and λ0 the laser wavelength.

The density modulated surface profile looks like1:

n(x, y) = trap(x, z) · (am cos(kmy)− am) (68)

where trap(x, z) is a trapezoidal function, am the amplitude and km the wave

vector of the modulation.

• Rippled target with constant plasma density (rp)

The 1λ0 thick target is located in the region 1λ0 ≤ x ≤ 2λ0 and has a rippled

modulation initially located in the region 1λ0− am · cos(kmy) ≤ x ≤ 1λ0 + am.

The density modulated surface profile looks like1:

n(x, y) = n0 (69)

where n0 = 250nc is the constant density.

• Rippled target with changing plasma density (rpg)

The 1λ0 thick target is located in the region 1λ0 ≤ x ≤ 2λ0 and has a rippled

modulation initially located in the region 1λ0 + am · cos(kmy) ≤ x ≤ 1λ0 + am,

where am is the amplitude of the modulation and λ0 the laser wavelength.

1the code for the density profile is in appendix
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The density modulated surface profile looks like1:

n(x, y) = trap(x, z) · (am cos(kmy)− am) (70)

• 1λ0 density modulated target with changing plasma density (1λ0

dm)

The 1λ0 thick target is located in the region 1λ0 ≤ x ≤ 2λ0 and is integrally

modulated with lowest density value of nmin = 0.5nmax.

The density modulated surface profile looks like1:

n(x, y) = trap(x, z) ·
(

1

2
am [3 + cos(kmy)]

)
(71)

• 2λ0 density modulated target with changing plasma density (2λ0

dm)

This target is exactly the same like above except that the target is 2λ0-thick

and therefore located in the region 1λ0 ≤ x ≤ 3λ0.

3.2 Results of the PIC-simulations

3.2.1 Density profile

Before checking the energy spectrum, one has to check the self made density

profiles. For doing so, the ion density is plotted for t = 0. These are the modulation

density profiles from simulation:
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Figure 1: the different modulation density profiles of the target (zoomed in, for
km = 1 and am = 0.5: (a) the rectangular groove modulated target with changing
density at the front (rec), (b) the rippled modulated target (rp), (c) the rippled
modulated target with changing density at the front (rpg) and (d) the 1λ0 density
modulated target (1λ dm). The last shape (2λ dm) is similar to (d), a = n0/nc and
Lx and Ly are in units of λ0/2π.

As all target shapes are checked, one can analyze the instabilities by plotting at

first the Energy spectrum of the ions.
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3.2.2 Energy profile

For analyzing the instability growth and compare it to theory, the energy spec-

trum with the thinnest i.e sharpest dominant peak will be plotted. For doing so, one

can define ∆E as the energy difference i.e the full width at half maximum (FWHM)

of the dominant peak and Emax the peak maximum. As long as we have no idea where

the sharpest peaks are, one can plot for (with a iteration step of 30 × time step) km,

am and all shapes ∆E/Emax against time i.e against t/τL where τL is the laser period.

A self made python program2 will iterate over each timestep and calculate ∆E/Emax

for each time. The result of one of the plots are in figure 2. Noticed, that the single

points around 1400 < t/τL < 2000 are values of the FWHM (full-width-at-half-

maximum) which are not properly captured from the python-program as the roots

for the FWHM mismatched when too many peaks are displayed. However, this will

pose only a problem for the data from the density modulated target with low am.

Actually, in this case, one can rather plot an animation of the ion spectra and look

manually in time for the sharpest peak. This method allows an analysis for am down

to 0.1 for density modulated targets and am = 0.01 for surface-modulated targets.

In all plots (i.e like figure 2), one can see that the value of the peak maximum

shifts more and more to higher energies until a breakpoint (in figure 2c, which one

can estimate the breakpoint at around t/τL ≈ 1025). With these information, the

region around the breakpoint can now be iterated with a step of 1 × time step,

and the energy spectrum of the sharpest peak can be plotted (see figure 4). This

procedure will be done for all am, km and all target shapes (globally 80 times). The

non-modulated target will be the reference and is shown in figure 3a and figure 3b

2the code is in appendix
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with respectively the widths of 1λ0 and 2λ0, where only the first zoom is displayed.
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Figure 2: ∆E/Emax over t/τL where τL is the laser period with the rec modulated
target at km = 1 and am = 0.5 . (a) the density simulation time plotted, (b) zoom
in the linear area, (c) zoom in the lowest area. Here is the green line the limit of
∆E/Emax = 0.05 which is seeked and the color of the scatter is the value of the peak
maximum.
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Figure 3: ∆E/Emax over t/τL where τL is the laser period with the non-modulated
target zoomed i.e best simulation time plotted for (a) 1λ0 width and (b) 2λ0 width.
Here is the green line the limit of ∆E/Emax = 0.05 which is sought and the color of
the scatter is the value of the peak maximum.

One can see between figure 2c and 3a , that the FWHM of the peak for the

rectangular groove modulated target has a barely lower value of ∆E/Emax than the

1λ0 width non-modulated target (this will be more evident in figure 4). This is the

first evidence, that surface-modulated targets can suppress instabilities.

In addition, figure 3 refers the difference between the two widths: for high ener-

gies, the 1λ0 width non-modulated target has a higher value of Emax at the end and

a lower value of ∆E/Emax, i.e a sharper peak and slightly higher peak maximum in

the energy spectrum than the one with a 2λ0 width. This can be explained by the

fact that the heated electrons in the front surface i.e in the skin-depth layer reached
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almost the back of the target as ds ∼ c
√
γ0/ωp ≈ 1µm = λ0 (with ds the skin-deph

layer thickness). With a thinner target width, the RPA of ions takes less time to

start operating and thus, higher energies can be reached. In general, for a good RPA

of ions, one should get ds < `0 < λ0
3.

After knowing where the sharpest peaks with the highest values of Emax are dis-

played, one can plot the ion energy spectrum of the time step, automatically given

from the self made python program. This allows a better viewing into the energy

spectrum of each single case especially the weight i.e dN/dε, the particle per energy.
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Figure 4: Energy spectrum of (a) the rec surface-modulated target and (b) the
non-modulated target (both for 1λ0 width).

3 If ds > `0, we are in the BOA regime, which is less effective than RPA
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One can see, that only the FWHM and the particle number per energy differ

between figures 4a and 4b: After modulation, fewer ions are accelerated for the same

maximum energy peak. This can be explained with the loss of plasma which goes

into the vacuum as the time step is also quite advanced. The FWHM of the peak is

only little varying due to the loss.

In order to compare the peaks of each am and km, we plot am against km with

Emax in third dimension. As data points are generated, one can interpolate the val-

ues of Emax and generate then a map. This will allow us to look at all best data

points at one time. At first, a linear interpolation is made, followed by a cubic in-

terpolation. We suppose therefore, that the behaviour of Emax matches better with

the cubic interpolation. We do the same for ∆E/Emax.

Results for Emax and ∆E/Emax for the density modulated target are shown in

figure 5 and figure 6.
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Figure 5: linear (a) and cubic (b) interpolation of the data for the 1λ0 density
modulated target shape: related am and km with Emax in third dimension.
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Figure 6: linear (a) and cubic (b) interpolation of the data for the 1λ0 density
modulated target shape: related am and km with ∆E/Emax in third dimension.

In order to compare the regions where Emax is maximized and ∆E/Emax is min-

imized, one needs to only plot the cubic interpolation and display them both side by

side4.
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Figure 7: cubic interpolation of the data for the 1λ0 density modulated target shape:
related am and km with ∆E/Emax (a) and Emax (b) in third dimension.

4Notice that for the figures with ∆E/Emax, we create this colorbar only for this kind of data,
in order to distinguish better the different regions.
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In figure 7a, one can see that the best regions for sharp peaks are located in the

area where am ≈ 0.1 and km ≈ 10 with ∆E1/Emax < 0.10, followed by 0.3 < am < 0.4

with 2 < km < 3 where ∆E2/Emax ∈ [0.10, 0.11]. The first area is indeed certain to

have low values (see more in figure 13) whereas the second area is defined thanks to

the cubic interpolation. To be sure, one can do a simulation in this area to check it5.

As instability growth is low for low values of ∆E/Emax, one can compare the

regions with the am and km from theory. However, for |kmam| � 1, there is a non-

conformity between theory and simulation results. This is due to the fact, that in

theory, no modulation in x-direction were considered, the target were assumed to be

an ideally reflective target and other approximation should also played a role in this

non-conformity. In order to check the reasoning, one can look into the other shapes

(where also the right modulation like in theory is displayed).

Concerning figure 7b, one can see, that the maximum reachable energy for the

sharpest peaks grow proportionally with am and km (see figure 22 for more details).

This is confirmed with figure 8b. Clearly, one can also see that the exact half of

the maximum value of Emax from figure 7b is displayed in figure 8b. As the width

doubles, one can later see a clean relationship between width and Emax.

5Notice that the peak for the density modulated targets were not easily obtained. For very low
am, one had to look manually into the animation and find out the best peaks. For am = 0.01, no
single peaks could be obtained as the whole energy spectrum displays multiple peaks in the nearby
region of the dominant peak.
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Figure 8: cubic interpolation of the data for the 2λ0 density modulated target shape:
related am and km with ∆E/Emax (a) and Emax (b) in third dimension.

In figure 8a, a similar behaviour like figure 7a is noticed. However, there seems

to be a shift for of the second area with km → km+1 and am → am−0.15. This shift

could be dependent on the target width, but this should be checked. In addition,

the shift actually impacts also the values ∆E/Emax ∈ [0.10, 0.11] for am = 0.1 and

km = {1, 10}.

We now show the same plots for the surface modulated targets. These are dis-

played in figure 9, figure 10 and figure 11. First, it can be seen, that all maximum

energy peaks are roughly identical, i.e all surface modulated targets have similar val-

ues of Emax and a clean peak in the ion energy spectrum. However cross-comparing

them to the density modulated targets, shows much lower values.

34



1 10
km

0.0

0.1

0.2

0.3

0.4

0.5

a m

Interpolation (cubic) : am against km

data points

0.10

0.15

0.20

0.25

0.30

ΔE
ΔE

m
ax

 o
f b

es
t p

ea
k

(a)

1 10
km

0.0

0.1

0.2

0.3

0.4

0.5

a m

Interpolation (cubic) : am against km

data points

494.2

494.4

494.6

494.8

495.0

E m
ax

 o
f b

es
t p

ea
k 

(M
eV

)

(b)

Figure 9: cubic interpolation of the data for the 1λ0 rec modulated target shape:
related am and km with ∆E/Emax (a) and Emax (b) in third dimension.
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Figure 10: cubic interpolation of the data for the 1λ0 rp modulated target shape:
related am and km with ∆E/Emax (a) and Emax (b) in third dimension.
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Figure 11: cubic interpolation of the data for the 1λ0 rpg modulated target shape:
related am and km with ∆E/Emax (a) and Emax (b) in third dimension.

Looking in the ∆E/Emax figures, one can find similar regions for am and km giving

better values of ∆E/Emax. The surface modulated target shape that corresponds

the best to theory calculations is the rp target. Actually, for this case, only the

rippling on the surface is considered. Theory tells, that for values |kmam| � 1, one

can reduce the growth of RTI like instabilities, thus the best results. In figure 10a,

this behaviour can be confirmed if the reflectivity of the target is dropped down to

75%. Therefore, the best area would be shifted (for am = 0.25) from km = 5 to

km = 3. Thus, the results are according to the expectations.

The other shapes are quite similar. However, the best results for surface modu-

lated targets are obtained for the rpg shape. Here are values of ∆E/Emax ≈ 0.11,

where on the contrary the values ∆E/Emax ∈ [0.12, 0.14] are obtained for the rec-

and rp-shapes.

For a better overview, one needs to cross compare the different values of all maps

and display them below:
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Figure 12: cubic interpolation of the whole data for all target shapes after cross
comparing the values of all interpolations: related am and km with (a) Emax (in
102 MeV) and (b) ∆E/Emax in third dimension with best data peaks (color of data
points are related to the different shapes).
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The two best peaks are thus displayed together with the non-modulated target

in figure 13 below.
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Figure 13: Energy spectrum of (a) the 1λ0 and (b) 2λ0 density modulated target
(both for km = 10 and am = 0.1).

The two best peaks are located in the density modulated targets especially for

the region km = 10 and am = 0.1. Comparing them to figure 4 and figure 14,

one can notice, that the amount of particles per energy (dN/dε) is quite low, how-

ever one can see that between figure 13a and 13b there is almost a factor of two

higher energy in figure 13a compared to figure 13b. The other peaks in the spectra

in figure 13 are much sharper than the cluster of peaks in figure 14b in the area
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(1 × 101 MeV, 2 × 102 MeV). This could be explained due to heated electrons from

the modulated skin-depth layer. In fact, depending on the amplitude and the wave

vector of the modulation, one finds different wavelength harmonics in the ion energy

spectrum. This is time dependent, as harmonics vary with the position and veloc-

ity of the electrons, and therefore, the peak of the RPA ions is unstable in time.

This time dependent instability increases for amplitudes less than am < 0.1. How-

ever, these kinds of dominant sharp peaks can be used (as one could select them

for specific time steps) and are better than the regular ones (higher energies and

lower FWHM) for the surface modulated targets like in figure 4a (which are stable

in time). We do a deeper analysis of instabilities later (see section 3.2.3).
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Figure 14: Energy spectrum of (a) the 1λ0 and (b) the 2λ0 non-modulated target.
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3.2.3 Instability analysis

In order to understand the instability growth and their development better, we

look into the spatial spectra of the ions from which is obtained by taking the Fast

Fourier transform (FFT) from the ion density distribution:

n(k, t) =

∫ Ly

0

∫ Lx

0

n(x, y, t)eikydxdy, (72)

where n(k, t) is averaged in x-direction and the FFT is taken along the y-direction.

Thus, time is plotted against the wave vector based on simulation results (figure 15).
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Figure 15: time i.e t/τL against FFT of the frequency, defined as the normalized
wave vector k/kL with (a) the whole density behaviour and (b) selected density
intensities in third dimension for the non-modulated target. Same with (c) and (d)
(zoom).
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One can see, that the ion density has modulations in the area where k/kL ≤ 4,

i.e where the wavelength of the instabilities is λinst ≥ 0.25λ0. As displayed in figure

15d, the dominant mode of the ion density oscillations is located around the area

where λinst ≈ λ0. After the time t = 600 τL, the long wavelengths dominate in time.
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Figure 16: time i.e t/τL against FFT of the frequency, defined as the normalized
wave vector k/kL with (a) the whole density behaviour and (b) selected density
intensities in third dimension for the density modulated target with 1λ0 width and
am = 0.50, km = 1. Same for (c) and (d) with the 2λ0 density modulated target.

In figure 16, one can see that the amplitude of the density is slightly lower for

the 1λ0 width than the 2λ0 width modulation and the long wavelengths dominate

much earlier for the 2λ0 case and continue for a longer time period. The ideal case to

achieve is a have instability modes with shorter wavelength in order to stabilize the
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RPA, as long wavelengths of the instability cause breaking of the target. Actually,

the behaviour of the instability modes i.e the stabilization of the instability occurs

i.a due to the transverse ion motion and diffusion of the target mass. Thus, the 1λ0

density modulated target have better results than the 2λ0 case.
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Figure 17: time i.e t/τL against FFT of the frequency, defined as the normalized
wave vector k/kL with the selected density behaviour in third dimension and am =
0.50, km = 1 for (a) the density modulated target (1λ0-width), (b) the rp surface-
modulated target, (c) the rec surface-modulated target and (d) the rpg surface-
modulated target.

For a modulated target (for a modulation wavelength of 1λ0 in figure 16 and

figure 176), a reduction of the spectra and amplitude of instability modes can be

6the whole density behaviour is in appendix
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observed. For the different 1λ0 width modulations, the long wavelengths dominate

at much later time t = 400 τL or t = 600 τL, depending on the modulation.
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Figure 18: time i.e t/τL against FFT of the frequency, defined as the normalized
wave vector k/kL for (a) the non-modulated target, (b) selected intensities for the
non-modulated target, (c) the dm modulation, (d) the rec modulation, (e) the rp
modulation and (f) the rpg modulation (all have a 1λ0 width).
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However, the long wavelength perturbations have globally much lower amplitude for

the modulated than for the non-modulated targets. The reduction or rather sup-

pression of the low instability modes (i.e long wavelength perturbations) is also been

observed in figure 18: All the surface modulations have the dominant mode of the ion

density oscillations near the area where λinst ≈ 0.10λ0. For the density modulated

target, these modes are stronger than the long wavelengths until the time t ≈ 300 τL.

This is due to the recently explained effect of electrons reaching faster the back of

the target thanks to the modulation of the plasma density.

One can also notice, that for the 1λ0 density modulated target, the long wave-

length in figure 18c stopped around t ≈ 600 τL, this behaviour is also observed in

figure 16b but for t ≈ 900 τL. This can be explained by a loss of the target mass in

longitudinal direction into the vacuum. This is actually the TNSA-regime. One now

have a hybrid regime of TNSA and RPA, but the RPA-regime dominates in this case.
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Figure 19: time i.e t/τL against FFT of the frequency, defined as the normalized wave
vector k/kL with the whole density behaviour for the density modulated targets with
(a) 1λ0 width and (b) 2λ0 width.

Comparing figure 19a and 19b, one can see a different amplitude of the instability
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modes. As the 1λ0 density modulated target has less target mass and is smaller in

x-direction, this target has less ion density modulation and enters faster into the

hybrid regime (the time at which FFT amplitude is low starts sooner) than the 2λ0

density modulated target.

Notice, that the best results for the density modulated targets are obtained for

times after the loss of the target mass. The instability modes in higher order persist

(especially for the 1λ0 density modulation), and the long wavelength modes no longer

play a role in RPA of ions (see figure 19).

The phase space of the target shapes are plotted in order to get an idea where

the ions reach a stable velocity. In figure figure 20e, one can see that this is the case

for x ≥ 95λ0/2π. The other cases are displayed in figure 20 and figure 21.

Most of the surface-modulations have a linear phase space between −250mec <

px < 1000mec. However, the majority of the forward moving ions have all a constant

velocity at the end of the simulation box. Without the moving window (i.e the target

is not tracked after it leaves the simulation box), one could find negative momentum

of ions in some phase space regions. This could be explained with a loss of ions

from the foil in the front side where the laser hits the target. Actually, these ions

are detached from the target surface due to plasma dynamics displayed in figure 22

showing vortex formations. Then, the lost ions don’t manage to keep up with the

moving foil. This process should however be more analyzed in-depth and leads to a

new explorable research area.

The thickness of the lines in the phase space and the density of ions are propor-

tional to the number of particles in the ion energy spectra. All cases do not have the

plateau (like figure 20e) in the same x-position. This depends on the configuration

of the target shapes and modulations.
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The behaviours of the phase space in figure 21a and figure 21b are however special

cases: Here one cannot find a constant momentum for cases of unstable ion energy

spectra (the plateau could be displayed outside the simulation box).

For the surface-modulated targets in figure 21, one can see an unstable region be-

fore the plateau and a split of two dominant ion populations which merge again. The

laser pulse accelerates the ions with a higher efficiency due to surface modulations

which have higher absorption of the laser pulse than the target without modulation.

The rippling in the surface modulation in fact is reflected in the rippled line of the

momentum (seen in all figures, but mostly observed in figure 20).
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Figure 20: Phase space of the 1λ0 dm modulation. x is in dimension of λ0/2π
and momentum px is normalized with mec for am = 0.50 and km = 1 with (a) the
density modulated target (1λ0 width), (b) the density modulated target (2λ0 width),
(c) the rec surface-modulated target, (d) the rpg surface-modulated target, (e) the
rp surface-modulated target and (f) the non-modulated target
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Figure 21: Phase space of the 1λ0 dm modulation. x in dimension of λ0/2π and
momentum px is normalized with mec for am = 0.10 and km = 10 with (a) the
density modulated target (1λ0 width), (b) the density modulated target (2λ0 width),
(c) the rec surface-modulated target, (d) the rpg surface-modulated target, (e) the
rp surface-modulated target and (f) the non-modulated target
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3.2.4 Further analysis

In order to foresee the behaviours of other simulations (especially to know also

how it depends for different target-widths), we try to get a relation between the

target and modulation shape or rather its length, am, km and the Emax maximum

energy reachable for the sharpest peaks.
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Figure 22: cubic interpolation of the data from density modulated targets: related
am and km with Emax (in 102 MeV) in third dimension for (a) 1λ0 and (b) for the
2λ0 widths.

The figures 7b and 8b are analyzed in-depth, where km and am are plotted against

Emax separately (see figure 22). In figure 22b, we can eliminate the light gray area

in the plot am against Emax, as we are supposed to have a continuous line. Further-

more, also the plot of km against Emax does not include the value of km = 1. That

is why, we will only use values where km & 1.5. In addition, one can see, that differ-

ent fits are displayed in the figures, which are useful for deducing the relation of Emax.

Assuming, that the modulation has a non-modulated target length of ` and a
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modulation length of `mod (so the total target length is L = `+ `mod) and supposing

that the surface modulated targets have similar behaviours, i.e have a nearly con-

stant value of Emax for amplitudes am � L (that is almost the case, comparing the

different data values of the L = 1λ0 case), one can plot:
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Figure 23: Emax against `/`mod with (a) the fits with the data points and (b)
behaviour for other target widths.

The green line is plotted, supposing that the surface modulated target has the

same behaviour for the 2λ0 target width i.e it has the same reachable maximum

energy Emax like the non-modulated target. This assumption is valid as this be-

haviour was observed for the 1λ0 target width and simulations are consistent. The

fit function of an exponential decay was chosen as the data points are widely spread

(up to `/`mod = 100) and only the exponential function fits with this kind of data.

The fit coefficients can therefore be used to describe the relation of Emax as

follows:
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Emax = Emax(`, `mod, λ0, am, km),

Emax = C1E`mod� ` + C2E`� `mod · exp

(
−β `

`mod

)
,

Emax ' α
L
λ0E`mod� ` +

C2λ0
`mod

a−αm P (km, `mod) · exp

(
−β `

`mod

)
. (73)

where α = 0.63 is a constant where we can also assume, (for the value of α
L
λ0 )

that the ideal target has L → 0 where L = ` + `mod is the total target length,

E`mod� ` = 800 MeV, C2E`� `mod = 1967 (`mod/λ0) MeV, β = 11.75 is a constant, am

is the amplitude of the modulation, km is the wave vector of the modulation, λ0 is

the laser wavelength and P is a polynomial function.

The factor of α
L
λ0 was chosen, as the minimum Emax varies with L. With this

result, E`mod� ` = 800 MeV could be obtained. Thus, C1E`mod� `, the minimal value

of the exponential decay is only related to ` as amplitude and the wave vector did

not change this value (see data points for the ` = λ0 case).

The other exponential coefficients are more difficult to obtain. However, as the

maximum energy doubles when going from the 2λ0 to the 1λ0 case, one can write a

proportional relation like E`� `mod ∝ λ0/`mod. The value of β is already taken from

the two fits in figure 23 (fortunately, both fits showed the same value of β with a

deviation of 0.01), supplemented with the x value `/`mod of the plot. Last but not

least, from the fits in figure 22, one can include the relation of Emax with am and km,

where a−αm is taken from the fit parameters of y = a ·xb with a a constant included in

C2. Finally, km is included with the polynomial function P (km, lmod) which is depen-

dent on `mod as different coefficients are obtained for the two different modulation

lengths for the fits in figure 22.

51



Therefore, for a 3λ0 density modulated target, we expect for best am and km pa-

rameters a maximum value of Emax ' 0.633×800 MeV +1
3

1967×exp(−11.75·0) MeV

= 856 MeV. In the other region, where `� `mod i.e for surface modulated targets, one

will find a Emax ' 0.633 ·800 MeV +1
3

1967·exp(−11.75×100) MeV ' 0.633 ·800 MeV

= 200 MeV. The dark blue line in figure 23a displays the behaviour of Emax for this

case. Analogically, one can do the same for other target thicknesses (for example the

dark red dashed line for a L = 0.5λ0 thickness).

Generally, one can see with figure 23 and equation 73 that the best results, i.e

the maximum Emax can be obtained for density modulated targets (dm modulations)

with a target thickness of L = `mod → 0 (however, we did not consider the effect of

the BOA-regime if the skin-depth layer is too small) and with a modulated density

amplitude inside the target of am ≤ 0.1. Like before, all cases of density modulated

density (dm) have a maximum density of ammax = am and a minimum density of

ammin = 0.5 am inside the target (see also figure 1d).
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4 Conclusions and Discussions

A stabilized RPA has been a long standing goal in these research areas. The goal

to obtain a reduction of the RTI-like instabilities in order to get a peak with sharpness

of ∆E/Emax = 0.05 for tumor therapy will still have a long way ahead. However with

our modulation shapes, one gets values of ∆E/Emax ≈ 0.097 which is very promising.

Studying density modulated target target shapes turned out to have a great po-

tential in RPA as these modulation shapes realized much better results than surface-

modulated targets. In fact, the broadening of the peaks in the ion energy spectrum

are minimized even if these peaks are very unstable in time for extremely low mod-

ulation amplitude values.

For density modulated targets, the instability growth for long wavelength can

be very interesting. Actually, the beginning of a RPA-TNSA hybrid-regime is very

promising due to the loss of long wavelength instability modes in the modulated ion

density. This allows the unstable time development of sharp peaks in the ion energy

spectra with a suppressed instability growth (figure 19).

The simulation data also revealed a relation between modulation parameters and

the maximum value of the dominant peaks in the ion energy spectra. This allows

further a description of the behaviour between energy peaks, target thickness and

modulation parameters for next simulations.

In order to improve PIC-simulations, one needs to adapt theory calculations for

the density modulated targets by including the variation in the radiation pressure

due to the pre-imposed surface and density modulations. Furthermore, our next

step is to extend our research in considering the radiation reaction process and to

look into these new simulations in order to see how radiation reaction will affect the

results. One can, in addition, modulate the laser shapes and consider also Gaussian
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or semi-Gaussian laser shapes.

5 Outlook

5.1 Influence of Radiation Reaction of the RPA of ions for

surface/density modulated targets

We performed one simulation of the best peaks from previous results and included

the radiation reaction (RR) force with a0 = 250 instead of a0 = 150.

100 101 102 103

ε (MeV )

0.0

0.2

0.4

0.6

0.8

1.0

d
N
/d

ε

×1015

Emax = 800.56 MeV

∆E = 83.36 MeV

Energy spectrum, t/τL = 747.55

Ion energy spectrum

(a)

100 101 102 103

ε (MeV )

0.0

0.5

1.0

1.5

d
N
/d

ε

×1015

Emax = 1226.42 MeV

∆E = 122.10 MeV

Energy spectrum, t/τL = 628.18

Ion energy spectrum

(b)

Figure 24: Energy spectrum of the 2λ0 density modulated target at km = 10 and
am = 0.10 and (a) a0 = 150, (b) a0 = 250.
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Figure 25: Energy spectrum of the 1λ0 density modulated target at km = 10 and
am = 0.10 and (a) a0 = 150, (b) a0 = 250.

Here, globally one cannot reach lower values of ∆E/Emax. The energy spec-

tra have similar peaks like in earlier simulations. Due to the radiation reaction

(RR), one expects that the peaks in the ion energy spectra should be more sup-

pressed, and therefore should have lower energy. This behaviour is however not

observed. RR is so weak for our parameters, that it does neither affect signifi-

cantly the particle number in the energy spectra nor the peak width. For density

modulated targets, one has, if anything, a slightly higher amount of particles. The

sharpness of the peaks vary and no trend could be observed, i.e values with RR
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and without RR are quite similar as (∆E/Emax)RR,1λ0 > (∆E/Emax)noRR,1λ0 and

(∆E/Emax)RR,2λ0 < (∆E/Emax)noRR,2λ0 due to the unstable energy spectra in time.
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Figure 26: Energy spectrum of the rpg modulated target at km = 1 and am = 0.5
and (a) a0 = 150, (b) a0 = 250.

For surface modulated targets, this behaviour is also present. Thus, with RR,

the sharpness of the peak leads to a little augmentation of ∆E/Emax by around 1%

to 2% for surface modulated targets (see figure 26. Other surface modulations have

similar behaviours). Therefore, apart from reaching the hybrid regime sooner for

figure 27h, one can see that RR is not so relevant for modulated targets in ion RPA.
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Figure 27: t/τL against k/kL and am = 0.25, km = 2, with rpg modulation (a0 = 250)
for (a) the whole density behaviour, (b) selected density, (a0 = 150) (c) the whole
density behaviour, (d) selected density, am = 0.10, km = 10 with dm modulation for
1λ0 width (e) a0 = 250, (f) a0 = 150 (same for (g) and (h) with 2λ0 width).
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5.2 Analyzing new finding in the RPA of ions for modulated

targets

In the beginning, the density modulated target shapes were not supposed to be

studied in this thesis as theory did not consider modulations in x-direction. However,

accidentally, while creating different shapes of the targets we found the higher energy

gains for density modulated targets. For density modulated targets, one could see a

RPA-TNSA hybrid regime which is time dependent, i.e unstable in time. However,

these new target shapes showed better results than the surface modulated target

shapes and should be more studied in-depth.

In addition, some new physical trends were encountered in our simulation data in

terms of ion density behaviour: one could see negative momentum of the ions, which

led us into investigating the ion density evolution further. As previously stated,

this behaviour could be explained by a loss of ions explained in section 3.2.3 (before

figure Fig.20). The density in logarithmic scale are displayed in figure 28. Notice,

that the logarithmic scale is important here (and was only chosen after observing

the negative momentum area in the other figures), as without it, the density of the

ions will look like a regular foil. The different behaviours in figure 28 are depen-

dent on the modulation chosen and suggests of vortex formation and acceleration

of ions due to it. The black transversal line should be the layer i.e area where the

ions are accelerated by the constant laser pulse. However, the ions on the left side of

the target are still moving in the other direction if we compare it with later time steps.

In order to understand these new effects better, one should investigate them

further. They will probably lead to a new research direction which has not been

explored yet.
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Figure 28: ion density behaviour for t/τL = 191 with a = n0/nc, leading to a new
research area, with (a) the density modulated target (1λ0 width), (b) the density
modulated target (2λ0 width), (c) the rec surface-modulated target, (d) the rpg
surface-modulated target, (e) the rp surface-modulated target and (f) the non-
modulated target. All modulations are displayed for parameters am = 0.5, km = 1.
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6 Appendix

The density profile for the rectangular groove modulated target looks like:

trap1 = trapezoidal(n0 ,xvacuum=l0-am,xplateau=2*l0,xslope2=0.0)

def denProfile(x,y):

if l0+am >= x >= l0-am:

return trap1(x,y)*(am*math.cos(km*y)-am)

if l0+am < x <= 2*l0:

return n0

if not (l0+am >= x >= l0-am and l0+am < x <= 2*l0):

return 0.

The density profile for the rp modulated target looks like:

def denProfile(x,y):

if l0+am >= x >= l0-am*math.cos(km*y):

return n0

if l0+am<x<=2*l0:

return n0

if not ((l0+am >= x >= l0-am*math.cos(km*y)) and (l0+am<x<=2*l0)

):

return 0.

The density profile for the rpg modulated target looks like:

trap1 = trapezoidal(n0 ,xvacuum=l0-am,xplateau=2*l0,xslope2=0.0)

def denProfile(x,y):

if l0+am >= x >= l0+am*math.cos(km*y):
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return trap1(x,y)*(am*math.cos(km*y)-am)

if l0+am<x<=2*l0:

return n0

if not (l0+am >= x >= l0-am+am*math.cos(km*y) and (l0+am<x<=2*l0

)):

return 0.

The density profile for the density modulated target (1λ0-width) looks like:

trap = trapezoidal(n0 ,xvacuum=l0 ,xplateau=2*l0 ,xslope2=0.0)

def denProfile(x,y):

if ( 1.0*l0 < x < 3.*l0):

return (0.5*am(3.0+math.cos(km*y)))*trap(x,y)

else:

return 0.

where trapezoidal is a smilei-implemented function

The python code for selecting the best energy spectrum of the sharpest peak:

path = "path/to/file"

# after looking into the area where the peak might be, the

starting and ending time step are

written here:

timestep_s = int(1322*2*math.pi)

timestep_e = int(1324*2*math.pi)

weight = 4.9*10 ** 15
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# open Smilei results

S = happi.Open(path , verbose=False)

# Parameters

dt = S.namelist.Main.timestep

dx = S.namelist.Main.cell_length[0]

dy = S.namelist.Main.cell_length[1]

simulation_time = S.namelist.Main.simulation_time

print ’ Space steps:’,dx ,dy

t=int(simulation_time/dt)

#initial empty lists before filling

mx=[]

max_x=[]

fwhm=[]

tc=[]

root1 = []

root2 = []

hm=[]

for timestep in range(timestep_s ,timestep_e):

tc.append(timestep)

PartDiag = S.ParticleBinning(diagNumber=0,timesteps = timestep)

ekin = np.array(PartDiag.get()["ekin"])

n = np.array(PartDiag.get()["data"][0])

#amplitude of the peak:

mx.append(np.max(n))

#mu_s1:

max_x.append(ekin[n.argmax ()])
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#calculating fwhm:

half_max = np.amax(n)/2.0

hm.append(half_max)

s = splrep(ekin , n - half_max , k=3)

roots = sproot(s)

# here one have to find the best roots

try:

if roots[0]<ekin[n.argmax ()]<roots[1]:

fwhm.append(np.abs(roots[1]-roots[0]))

root1.append(roots[0])

root2.append(roots[1])

elif roots[1]<ekin[n.argmax ()]<roots[2]:

fwhm.append(np.abs(roots[2]-roots[1]))

root1.append(roots[1])

root2.append(roots[2])

else:

fwhm.append(np.abs(roots[3]-roots[2]))

root1.append(roots[2])

root2.append(roots[3])

except IndexError:

fwhm.append(np.nan)

#converting the lists into arrays for further calculations:

hm = np.array(hm)

mx = np.array(mx)

tc = np.array(tc)/(2*math.pi)

de = np.array(fwhm)

e = np.array(max_x)

root1 = np.array(root1)

root2 = np.array(root2)

de_e = de/e
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xs_de_e = 0

ti = timestep_s

nan = np.nan

# Here the best time step will be searched before plotting

def find_ti(de_e ,e):

xs_de_e = 0

ti = 0

for i in range(0,len(de_e)):

if (xs_de_e < de_e[i]) and xs_de_e!=0:

xs_de_e = xs_de_e

else:

xs_de_e = de_e[i]

ti = i

return ti+timestep_s

# ion energy spectrum is then plotted
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Figure 29: time i.e t/τL against FFT of the frequency, defined as the normalized
wave vector k/kL with the whole density behaviour in third dimension and am =
0.50, km = 1 for (a) the density modulated target (1λ0 width), (b) the rp surface-
modulated target, (c) the rec surface-modulated target and (d) the rpg surface-
modulated target.

67



List of Figures

Figure 1 – the different modulation density profiles of the target (zoomed in,

for km = 1 and am = 0.5: (a) the rectangular groove modu-

lated target with changing density at the front (rec), (b) the rip-

pled modulated target (rp), (c) the rippled modulated target with

changing density at the front (rpg) and (d) the 1λ0 density mod-

ulated target (1λ dm). The last shape (2λ dm) is similar to (d),

a = n0/nc and Lx and Ly are in units of λ0/2π. . . . . . . . . . . 26

Figure 2 – ∆E/Emax over t/τL where τL is the laser period with the rec mod-

ulated target at km = 1 and am = 0.5 . (a) the density simulation

time plotted, (b) zoom in the linear area, (c) zoom in the lowest

area. Here is the green line the limit of ∆E/Emax = 0.05 which is

seeked and the color of the scatter is the value of the peak maximum. 28

Figure 3 – ∆E/Emax over t/τL where τL is the laser period with the non-

modulated target zoomed i.e best simulation time plotted for (a)

1λ0 width and (b) 2λ0 width. Here is the green line the limit of

∆E/Emax = 0.05 which is sought and the color of the scatter is

the value of the peak maximum. . . . . . . . . . . . . . . . . . . . 29

Figure 4 – Energy spectrum of (a) the rec surface-modulated target and (b)

the non-modulated target (both for 1λ0 width). . . . . . . . . . . 30

Figure 5 – linear (a) and cubic (b) interpolation of the data for the 1λ0 den-

sity modulated target shape: related am and km with Emax in third

dimension. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

Figure 6 – linear (a) and cubic (b) interpolation of the data for the 1λ0 den-

sity modulated target shape: related am and km with ∆E/Emax in

third dimension. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

68



Figure 7 – cubic interpolation of the data for the 1λ0 density modulated target

shape: related am and km with ∆E/Emax (a) and Emax (b) in third

dimension. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

Figure 8 – cubic interpolation of the data for the 2λ0 density modulated target

shape: related am and km with ∆E/Emax (a) and Emax (b) in third

dimension. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

Figure 9 – cubic interpolation of the data for the 1λ0 rec modulated target

shape: related am and km with ∆E/Emax (a) and Emax (b) in

third dimension. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

Figure 10 – cubic interpolation of the data for the 1λ0 rp modulated target

shape: related am and km with ∆E/Emax (a) and Emax (b) in

third dimension. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

Figure 11 – cubic interpolation of the data for the 1λ0 rpg modulated target

shape: related am and km with ∆E/Emax (a) and Emax (b) in

third dimension. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

Figure 12 – cubic interpolation of the whole data for all target shapes after

cross comparing the values of all interpolations: related am and

km with (a) Emax (in 102 MeV) and (b) ∆E/Emax in third di-

mension with best data peaks (color of data points are related to

the different shapes). . . . . . . . . . . . . . . . . . . . . . . . . . 37

Figure 13 – Energy spectrum of (a) the 1λ0 and (b) 2λ0 density modulated

target (both for km = 10 and am = 0.1). . . . . . . . . . . . . . . . 38

Figure 14 – Energy spectrum of (a) the 1λ0 and (b) the 2λ0 non-modulated

target. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

69



Figure 15 – time i.e t/τL against FFT of the frequency, defined as the nor-

malized wave vector k/kL with (a) the whole density behaviour

and (b) selected density intensities in third dimension for the non-

modulated target. Same with (c) and (d) (zoom). . . . . . . . . . 40

Figure 16 – time i.e t/τL against FFT of the frequency, defined as the normal-

ized wave vector k/kL with (a) the whole density behaviour and

(b) selected density intensities in third dimension for the density

modulated target with 1λ0 width and am = 0.50, km = 1. Same

for (c) and (d) with the 2λ0 density modulated target. . . . . . . 41

Figure 17 – time i.e t/τL against FFT of the frequency, defined as the normal-

ized wave vector k/kL with the selected density behaviour in third

dimension and am = 0.50, km = 1 for (a) the density modulated

target (1λ0-width), (b) the rp surface-modulated target, (c) the

rec surface-modulated target and (d) the rpg surface-modulated

target. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

Figure 18 – time i.e t/τL against FFT of the frequency, defined as the nor-

malized wave vector k/kL for (a) the non-modulated target, (b)

selected intensities for the non-modulated target, (c) the dm mod-

ulation, (d) the rec modulation, (e) the rp modulation and (f)

the rpg modulation (all have a 1λ0 width). . . . . . . . . . . . . . 43

Figure 19 – time i.e t/τL against FFT of the frequency, defined as the normal-

ized wave vector k/kL with the whole density behaviour for the

density modulated targets with (a) 1λ0 width and (b) 2λ0 width. 44

70



Figure 20 – Phase space of the 1λ0 dm modulation. x is in dimension of λ0/2π

and momentum px is normalized with mec for am = 0.50 and

km = 1 with (a) the density modulated target (1λ0 width), (b)

the density modulated target (2λ0 width), (c) the rec surface-

modulated target, (d) the rpg surface-modulated target, (e) the

rp surface-modulated target and (f) the non-modulated target . . 47

Figure 21 – Phase space of the 1λ0 dm modulation. x in dimension of λ0/2π

and momentum px is normalized with mec for am = 0.10 and

km = 10 with (a) the density modulated target (1λ0 width), (b)

the density modulated target (2λ0 width), (c) the rec surface-

modulated target, (d) the rpg surface-modulated target, (e) the

rp surface-modulated target and (f) the non-modulated target . . 48

Figure 22 – cubic interpolation of the data from density modulated targets:

related am and km with Emax (in 102 MeV) in third dimension for

(a) 1λ0 and (b) for the 2λ0 widths. . . . . . . . . . . . . . . . . . 49

Figure 23 – Emax against `/`mod with (a) the fits with the data points and (b)

behaviour for other target widths. . . . . . . . . . . . . . . . . . . 50

Figure 24 – Energy spectrum of the 2λ0 density modulated target at km = 10

and am = 0.10 and (a) a0 = 150, (b) a0 = 250. . . . . . . . . . . . 54

Figure 25 – Energy spectrum of the 1λ0 density modulated target at km = 10

and am = 0.10 and (a) a0 = 150, (b) a0 = 250. . . . . . . . . . . . 55

Figure 26 – Energy spectrum of the rpg modulated target at km = 1 and am =

0.5 and (a) a0 = 150, (b) a0 = 250. . . . . . . . . . . . . . . . . . 56

71



Figure 27 – t/τL against k/kL and am = 0.25, km = 2, with rpg modulation

(a0 = 250) for (a) the whole density behaviour, (b) selected den-

sity, (a0 = 150) (c) the whole density behaviour, (d) selected

density, am = 0.10, km = 10 with dm modulation for 1λ0 width

(e) a0 = 250, (f) a0 = 150 (same for (g) and (h) with 2λ0 width). 57

Figure 28 – ion density behaviour for t/τL = 191 with a = n0/nc, leading

to a new research area, with (a) the density modulated target

(1λ0 width), (b) the density modulated target (2λ0 width), (c)

the rec surface-modulated target, (d) the rpg surface-modulated

target, (e) the rp surface-modulated target and (f) the non-

modulated target. All modulations are displayed for parameters

am = 0.5, km = 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

Figure 29 – time i.e t/τL against FFT of the frequency, defined as the normal-

ized wave vector k/kL with the whole density behaviour in third

dimension and am = 0.50, km = 1 for (a) the density modulated

target (1λ0 width), (b) the rp surface-modulated target, (c) the

rec surface-modulated target and (d) the rpg surface-modulated

target. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

72



Erklärung

Ich versichere, dass ich diese Arbeit selbstständig verfasst und keine anderen als die
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