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ABSTRACT

Advances in single-cell transcriptomics techniques
are revolutionizing studies of cellular differentiation
and heterogeneity. It has become possible to track
the trajectory of thousands of genes across the cel-
lular lineage trees that represent the temporal emer-
gence of cell types during dynamic processes. How-
ever, reconstruction of cellular lineage trees with
more than a few cell fates has proved challenging.
We present MERLoT (https://github.com/soedinglab/
merlot), a flexible and user-friendly tool to recon-
struct complex lineage trees from single-cell tran-
scriptomics data. It can impute temporal gene ex-
pression profiles along the reconstructed tree. We
show MERLoT’s capabilities on various real cases
and hundreds of simulated datasets.

INTRODUCTION

Background

Recent advances in single-cell sequencing techniques (1–3)
permit to measure the expression profiles of tens of thou-
sands of cells making ambitious projects like the single-cell
transcriptional profiling of a whole organism (4) or the Hu-
man Cell Atlas (5) possible. These efforts will better char-
acterize the different cell types in multicellular organisms
and their lineage relationships (6). The advances also put
within reach the question of how single cells develop into
tissues, organs or entire organisms, one of the most fasci-
nating and ambitious goals in biology that would also have
wide-ranging consequences for the study of many human
diseases.

It is critical to develop methods that can reliably recon-
struct cellular lineage trees that reflect the process by which
mature cell types differentiate from progenitor cells. This is
challenging due to the inherently high statistical noise lev-
els in single cell transcriptomes, the high-dimensionality of
gene expression space and the strong non-linearities among
gene interactions due to multiple transcriptional programs
running in parallel for specifying the different cell type iden-
tities (6).

Different methods have been developed in the last years
for inferring single-cell trajectories (7,8). Most of these
methods first apply a manifold embedding in order to re-
duce the dimensionality of the problem and then implement
various strategies for reconstructing the trajectory structure
on it. Some tools are intended for linear topologies, while
others aim to resolve bifurcations, multifurcations or even
complex trees with many internal branchpoints. The latter
case has proven very challenging, and there is much room
for improvement. Here we present MERLoT (MEthod for
Reconstructing Lineage tree Topologies), a tool that can re-
construct highly complex tree topologies containing multi-
ple cell types and bifurcations.

MERLoT uses a low-dimensional embedding to recon-
struct the cellular lineage tree topology and then maps this
topology to the original high-dimensional expression space.
Different manifolds have been shown to be useful for the
reconstruction of different lineage trees. MERLoT imple-
ments diffusion maps (9) as produced by the Destiny pack-
age (10) as the default method for dimensionality reduc-
tion. However, users can provide MERLoT with any low-
dimensional space coordinates to perform the tree recon-
struction.

MERLoT explicitly models the tree structure, defining its
endpoints, branchpoints and locating a set of support nodes
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between these that act as local neighborhoods for cells. This
model-based strategy gives insights into the temporal order
of branching and the emergence of intermediary cell types.
Once the lineage tree has been reconstructed in the low di-
mensional space, MERLoT is able to embed it back to the
high dimensional gene expression space. The support nodes
play a 2-fold role in this step: they integrate the gene expres-
sion information of the cells assigned to them, and they in-
form the gene expression profiles of nearby support nodes.
This reduces the overall noise levels, interpolates gene ex-
pression values for lowly sampled regions of the lineage tree
and imputes missing expression values.

We show MERLoT’s performance on several real
datasets, using different manifold embeddings and on hun-
dreds of simulated datasets. We generated a total of 2000
synthetic datasets with PROSSTT (11), divided into sub-
sets of 100 simulations containing from 1 to 10 bifurcations.
To the best of our knowledge, this benchmark datasets is
the largest and most complete one up to date (available
at http://wwwuser.gwdg.de/∼compbiol/merlot/). We show
that MERLoT outperforms other methods by producing a
better classification of cells to the different branches that
constitute the lineage trees. This is crucial when studying
the progression of gene expression along the different trajec-
tories in the tree, since a sub-optimal classification of cells
mixing different cell types together leads to inaccurate im-
putation of gene expression time courses and impairs down-
stream analysis (3).

We repeated the benchmark with simulations generated
by another tool, Splatter (12). For more information, details
about method performance, and divergence analysis of the
simulations, please refer to the Supplementary Note 3.

MERLoT is implemented as an R package and publicly
available at https://github.com/soedinglab/merlot. MER-
LoT allows users to easily retrieve subpopulations of cells
that belong to specific branches or belong to specific paths
along the tree. It can also calculate pseudotime assign-
ments, impute pseudotemporal gene expression profiles or
find genes that are differentially expressed on different tree
segments.

MATERIALS AND METHODS

MERLoT’s workflow and section summary

Given an expression matrix with N cells as rows and G genes
as columns, a manifold embedding technique can project
the data onto a number of informative dimensions D <<G.
Since many dimensionality reduction techniques project the
data onto mutually orthogonal dimensions, two or three
dimensions often do not capture the true topology of the
data. In practice, we have found that for topologies with N
branches we needed N + 1 dimensions for optimal results.
Determining the correct number of dimensions to use is not
trivial, and using more dimensions than needed might intro-
duce undesired noise.

The rest of the ‘Materials and Methods’ section is struc-
tured to explain the different steps that are followed by
MERLoT after dimensionality reduction for lineage tree re-
constructions and downstream analysis that are further ex-
plained in the following subsections:

(i) Scaffold Tree Reconstruction.
(ii) Elastic Principal Tree (EPT) calculation in low dimen-

sional space.
(ii) EPT Embedding into the gene expression space.
(iv) Pseudotime assignment.
(v) Differentially expressed genes detection.

Additionally to the aforementioned features, MERLoT
offers several functions to allow users to perform further
analysis, exemplified by a correlation network reconstruc-
tion using MERLoT’s gene imputed values explained in the
section:

(vi) Correlation Network Construction:

We describe the datasets used in the manuscript as well
as the benchmark we performed to compare to other tools
using synthetic data in the sections:

(vii) Real Datasets
(viii) Benchmark on Synthetic Datasets

More detailed descriptions of different algorithmic steps
can be found in Supplementary Note 1, and an overview of
MERLoT in pseudocode form can be found in Supplemen-
tary Note 2.

Terminology. We model cellular lineage trees such as the
ones that result from single-cell snapshots of differentiating
populations with trees as defined in graph theory, i.e. undi-
rected graphs in which any two vertices are connected by ex-
actly one path (13). In the context of an EPT, each node is
referred as a support node in the lower dimensional space.
When embedding the EPT into the gene expression space
R

G , support node vn is referred to as pseudocell n, since it
contains the imputed gene expression values based on the
cells assigned to them.

For illustration purposes, consider an experiment where
quiescent progenitor cells A are given a differentiation sig-
nal, mature for a time period and then either differenti-
ate to specific progenitors B or become fully differenti-
ated cells C. Nodes with exactly one neighbor are called
endpoints. They correspond to ending or starting points
of the process captured in the experiment (A, B and C).
Nodes with more than two neighbors are named branch-
points. In this example it will be the node where the mat-
uration ends and the cell fate decision is made. Paths be-
tween endpoints and branchpoints or between two branch-
points are named branches. The collection of endpoints,
branchpoints and their connectivity is the topology of the
tree. For example, a tree (BC, BD)AB; (Newick format; for
more information see http://evolution.genetics.washington.
edu/phylip/newick doc.html) describes a tree with a single
bifurcation. It has three endpoints A, C, D, one branchpoint
B and three branches, AB, BC and BD. We refer to trees
with many branchpoints as having complex topologies.

Scaffold tree reconstruction (Figure 1B)

We calculate the shortest paths pij between all pairs of cells i
and j that minimize the squared Euclidean distance d2

i j (us-
ing the distance dij would only discover the edge i, j and not
a longer path). We use a modified version of the csgraph
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Figure 1. MERLoT’s workflow: (A) Input to MERLoT is a gene expression matrix sampled from a dynamic process in which several cell types are present.
MERLoT uses diffusion maps to reduce the dimensionality of the expression vectors for each cell to a few components (typically between 2 and 20). Users
can provide any low-dimensional manifold set of coordinates to MERLoT as input. (B) A scaffold tree is calculated given the low-dimensional manifold
coordinates. (C) The scaffold tree is used to initialize a principal elastic tree, composed of k support nodes (default: 100), on which cells are assigned
to the different branches of the tree. (D) Given a cell or tree node as the initial pseudotime t0, pseudotime values propagate to the rest of cells/support
nodes proportional to the distance along the tree that separates them from t0. (E) Expression values from cells assigned to a given support node or
pseudocells (see main text) are averaged to provide the expression profile of each gene. (F) Gene expression values after imputation and interpolation
in the gene expression space: A high-dimensional principal elastic tree is initialized with the connectivity from the low dimensional principal elastic tree
plus the averaged expression values from the support nodes to impute smoothed gene gene expression data for each gene in the gene expression space.
(G) MERLoT imputes the pseudotime-dependent expression profile of each gene along each branch in the tree. Gene expression can be visualized as a
function of pseudotime.

module from the scipy (https://www.scipy.org/) library,
available at https://github.com/soedinglab/csgraph mod.

The shortest path pkl that maximizes the number of cells
Skl (or the longest total euclidean distance in case of ties)
is added to the tree T and the cells k, l added to the set of
endpoints of the lineage tree E (Supplementary Figure S1).
Additional endpoints n are iteratively added to the tree by
selecting the shortest paths pni, i ∈ T that maximize sE (n),
the number of cells added to T:

sE (n) := 0.5 × min{Skn + Snl − Skl : k, l ∈ E}. (1)

In ‘auto’ mode every time a new endpoint is proposed
we evaluate if max{sE (n′) : 1 ≤ n′ ≤ N, n′ /∈ E} >

√
N holds

true. Otherwise, we calculate the branchpoints and tree
connectivity for the endpoints in E , including n, using
the methodology explained in the next subsection. After

this, all cells are mapped to their closest branch. If the
branch added by the selected n endpoint contains more than
MinBranchCells= √

N cells mapped to it, the branch is
kept in the tree scaffold structure and the endpoints search
is repeated. Otherwise, the endpoint search terminates and n
is discarded as endpoint. The MinBranchCells threshold
can be modified by the user. Alternatively, instead of using
a stop criterion, users can set the number of endpoints that
are aimed to be found (fixed mode) regardless of the branch
lengths.

After locating all endpoints we use the Neighbor Joining
(NJ) criterion (14) in order to derive a tree (Supplementary
Figure S2). Let V be the set of yet unprocessed endpoint and
branchpoint nodes of the tree. We initialize V ← E with the
endpoint set E .
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We pick the two nodes k, l in V that are guaranteed to
be next neighbors and therefore can be linked via a single
branchpoint by minimizing the NJ distance dNJ

kl :

dNJ
kl := Skl − 1

|V − 2|
∑
m∈V

(Smk + Sml ) . (2)

The branchpoint cell m between k, l has a minimal dis-
tance from k and l as well minimal average distance from
all other nodes in V :

m = argm min

⎧⎪⎨
⎪⎩

Skm + Slm +

∑
n∈V\{k,l}

Snm

|V − 2|

⎫⎪⎬
⎪⎭

. (3)

In V k and l are replaced by m, while the edges l − m and m
− k are added to the tree (Supplementary Figure S2). This is
repeated until |V| = 2, where the remaining nodes trivially
fulfill the criterion and can be joined. Note that the same
cell can be detected more than once as a branchpoint.

Local averaging mode. Dijkstra’s shortest path algorithm
has, in the scipy implementation that MERLoT uses, a
time complexity of O(Nk + Nlog(N)) where N is the num-
ber of nodes (cells) and k the average number of connected
edges per node (cell). During the scaffold tree calculation,
MERLoT calls Dijkstra’s algorithm for every cell, leading
to an overall complexity of O(N(Nk + Nlog(N))). Since
MERLoT does not impose a cut-off on k, it is equal to
N, and the complexity becomes O(N3 + N2log(N)). This
means that a linear increase in cell number leads to more
than a cubic increase in complexity.

To speed up the calculation of the scaffold tree, we imple-
mented a local averaging strategy. Given a number of cen-
troids we cluster the manifold coordinates of the cells with
k-nearest neighbors (knn) (15) and subsequently calculate
the scaffold tree on the cluster centroids. This knn-reduced
scaffold tree is then used as input to the EPT, which returns
a knn-reduced elastic tree. This can then be inflated with the
original manifold coordinates. For the ‘deep’ benchmark
(see Section) we reduced coordinates to 4

√
N cells, for an

effective complexity of O(64N
√

N + 16Nlog(4N)).
Apart from a massive speed-up, the local averaging strat-

egy also made the quality of the elastic trees less dependent
on the choice of elasticity hyperparameters (see next subsec-
tion). Local averaging adds little value for small datasets,
as averaging over very limited samples only worsens the
signal-to-noise ratio. We recommend that MERLoT should
be used with local averaging for large datasets (more than a
few thousand cells; also see Supplementary Figure S7).

Elastic principal tree in the low dimensional manifold (Figure
1C)

To produce smoother, more homogeneously interpolated
lineage trees MERLoT uses the EPT algorithm (16,17) as
implemented in the ElPiGraph.R module (https://github.
com/Albluca/ElPiGraph.R and described on arXiv: https:
//arxiv.org/abs/1804.07580). The EPT algorithm is used to
approximate the distribution of cells in a given space with

a tree structure composed of k nodes. Direct application
of the EPT algorithm is unstable as it often returns trees
that are manifestly far from the global optimum (e.g. wrong
number of endpoints or grossly misplaced branchpoints).
This can be observed in the tree reconstructions that were
performed using the non-initialized EPT using ElPiGraph
(Supplementary Figure S19). The recovered tree topolo-
gies have more (small) branches than MERLoT reconstruc-
tions, while neighboring bifurcations found by our method
get collapsed. We use the computeElasticPrincipal-
Curve function from ElPiGraph, that we initialize with the
coordinates of the scaffold tree endpoints and branchpoints
and the edges among them. This function will not change
the scaffold tree topology used as an initialization point but
add nodes to the EPT by iterative bisection of edges until it
reaches the specified number of k support nodes. As a result
a smoothed version of the scaffold tree is obtained.

We performed a grid search around the default EPT hy-
perparameter values by visually examining reconstructed
EPTs with k = 100 support nodes on the datasets shown
in Figure 2. We obtained �0 = 0.0025 and �0 = 0.8 · 10−9,
values that have held up well for simulated datasets (see be-
low). For different values of k we adjust according to � =
(k − 1)�0 and � = (k − 2)3�0. All reconstructions in our
benchmark were performed with the standard function us-
ing k = 100.

For some particular topologies � and � might need to be
tuned in order to produce optimal results, in particular if
k is increased a lot. Alternatively, MERLoT can bisect the
edges in a given EPT, by additional nodes producing a new
EPT with almost 2k support nodes. Note that these are spe-
cial cases. For future development of MERLoT we plan to
introduce a fitness function to automatically optimize the
hyperparameters individually on each dataset by maximiz-
ing the log likelihood of the EPT. An in-depth discussion of
elasticity hyperparameters can be found in the Supplemen-
tary Material.

During the revision of this article a new tool called
STREAM has been published that also exploits our strategy
of using EPTs (18). STREAM exploits EPTs to find the tree
structure in the embedded low dimensional space (Modified
Locally Linear Embedding, MLLE). As mentioned, MER-
LoT can reconstruct trees in any low dimensional represen-
tation. Additionally, MERLoT exploits the EPT algorithm
to embed the low-dimensional tree structure into the high-
dimensional gene expression space and hence obtains im-
puted gene expression values (see next subsection).

Elastic principal tree embedding into the gene expression
space (Figure 1E and F)

First, cells are assigned to their closest support node accord-
ing to euclidean distance in manifold space. Their average
expression profile is used to initialize the ‘expression pro-
file’ of the node to which we will refer now as a ‘pseudocell’.
Nodes without cells assigned to them are initialized with a
null vector. By constructing such ‘pseudocells’, we translate
the positions of the support nodes in the low-dimensional
manifold space to approximate positions in the full gene ex-
pression space.
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Figure 2. MERLoT’s scaffold tree reconstructions: in combination with (A) DDRTree coordinates for analyzing the data from Paul et al. (22); (B) diffusion
maps coordinates for analyzing the data from Guo et al. (23) (diffusion components 2 and 3 rotated around component 1 for better visualization of the
data); (C) STEMNET coordinates for analyzing the data from Velten et al. (24). Cells are colored according to cell type annotations provided by the
authors of each dataset. (D–F) EPT reconstructions using the scaffold trees from panels A–C, respectively, as an initialization point. Cells are colored
according to MERLoT’s branch assignments.

Finally, the EPT algorithm is initialized with the average
expression profiles of the pseudocells and a list of edges rep-
resenting their connectivity in the low dimensional EPT to
calculate an EPT in the high-dimensional gene expression
space. As a result the pseudocell profiles are updated with
imputed values based on the cells from which the initial av-
eraged values were calculated.

Pseudotime assignment (Figure 1D)

Pseudotime is a quantitative measure of the progress of a
cell through a biological process (19). Given the reconstruc-
tion of a lineage tree by MERLoT, cells can be assigned
pseudotime values as a function of the number of edges
along the structure that separate them from the initial point
of the process. MERLoT automatically sets the initial pseu-
dotime, t0, to one of the first two detected endpoints. Users
can also set t0 to any endpoint, branchpoint or to any indi-
vidual cell. In the latter case, the closest node to that cell will
be assigned as t0 and the pseudotime values for the other
nodes will be assigned as before. After a pseudotime value
is assigned to each support node, cells will take the pseu-
dotime value from their closest node in the tree. Alterna-
tively, cells can be projected to the edge that connects their
two nearest support nodes and thereby receive continuous
pseudotime labels. MERLoT can calculate pseudotime in
both the low-dimensional manifold space and in the high-
dimensional gene expression space.

Differentially expressed genes detection

After a linear tree reconstruction has been performed,
MERLoT can easily find groups of genes being differ-
entially expressed among different groups of cells. If two
groups of cells are provided, e.g cells assigned to two
branches in the tree (Figure 3C), MERLoT performs a
Kruskal–Wallis rank sum test (see Supplementary Note 4
for details) to evaluate which genes in the full expression
matrix are differentially expressed on them. If a single sub-
population of cells is provided, the comparison is made
against the rest of cells in the data. The entire list of genes is
given as output, ordered by the test P-values results. Also, e-
values are provided by multiplying the P-values by the num-
ber of G genes being tested.

Correlation network reconstruction (Figure 8)

We performed a Gene Correlation Network (GCN) recon-
struction for the fibroblasts to neurons transdifferentiation
dataset from the Treutlein group (20). We reconstructed the
lineage tree, reconstructed the GCN, performed gene clus-
tering and differential gene expression analysis. The script
for performing this analysis is available at https://github.
com/soedinglab/merlot/tree/master/inst/example/.

Network construction. Given the expression profile of a
gene in all cells (non-imputed values) or in the tree sup-
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