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Figure	3.		Within	and	between	exemplar	correlation	of	MEG	RSMs.	Within-exemplar	correlation	was	generally	higher	550 
than	between-exemplar	correlation.	Both	within	and	between-exemplar	correlations	revealed	an	early	peak	(93	ms)	551 
and	a	 late	peak	 (202	and	227	ms,	 respectively),	with	 the	early	peak	being	higher	 than	 the	 late	peak	 for	within-552 
exemplar	correlations,	and	the	late	peak	being	higher	than	the	early	peak	for	between-exemplar	correlations.	Error	553 
bars	 reflect	 SEM.	 Significance	 is	 indicated	 by	 colored	 lines	 above	 the	 accuracy	 plot	 (non-parametric	 cluster-554 
correction	at	p	<	0.05).	555 
	556 
Comparison	of	behavior	and	computational	models	of	low-level	and	high-level	processing	557 
To	quantify	how	the	RSMs	derived	from	behavior	(perceptual	judgments,	visualized	in	Figure	4b),	558 
GloVe	(lexical	semantics),	DNN	Layer	3	(low/mid-level	visual	information),	and	DNN	Layer	7	(high-559 
level	visual	information)	relate	to	one	another,	we	computed	the	correlation	between	each	pair	560 
of	 model	 RSMs	 (Figure	 4a).	 For	 visualization	 purposes,	 we	 applied	 hierarchical	 clustering	 to	561 
independent	pilot	data	of	the	behavioral	task	to	sort	objects	depicted	in	the	model	RSMs	(Figure	562 
4a).	 All	 model	 correlations	 were	 significant	 at	 a	 level	 of	 p	 <	 0.001	 (randomization	 test).	 An	563 
estimate	of	the	upper	noise	ceiling	for	possible	model	correlation	values	was	calculated	by	the	564 
correlation		between	behavior	RSMs	for	the	two	groups	of	participants	(Spearman’s	r	=	0.64).	The	565 
greatest	 similarity	 to	 behavior	 was	 shown	 by	 the	 GloVe	 model.	 There	 was	 low	 similarity	 of	566 
convolutional	 DNN	 Layer	 3	 with	 behavior	 and	 GloVe,	 but	 much	 greater	 similarity	 for	 fully-567 
connected	 DNN	 Layer	 7.	 These	 results	 suggest	 an	 increase	 of	 semantic,	 behaviorally-related	568 
information	contained	in	the	representational	structure	of	the	DNN	Layer	7	as	compared	to	Layer	569 
3.	 	Note	that	 the	 lowest	correlation	observed	was	between	DNN	Layer	3	and	behavior	RSMs,	570 
indicating	that	behavior	was	not	strongly	driven	by	low-	to	mid-level	responses.	As	a	post-hoc	571 
analysis,	 we	 added	 the	 comparison	 of	 behavior	 to	 the	 GIST	 RSM,	 which	 was	 even	 lower	572 
(Spearman’s	r	=	0.02),	highlighting	the	low	explanatory	power	of	low-level	features	in	behavioral	573 
judgments	in	the	present	study.	574 
	575 

	576 
	577 
Figure	 4:	a.	 Explicit	 comparison	 of	 computational	models	 and	 behavior	 using	 RSA.	Models	 compared	 are	 group	578 
average	behavior,	GloVe,	DNN	Layer	3	and	DNN	Layer	7.	RSAs	are	plotted	as	ranks	for	higher	visual	contrast.	Objects	579 
are	 sorted	 based	 on	 clustering	 generated	 from	 independent	 pilot	 data.	 	 b.	 Group	 average	 inverse	 MDS	 plot	580 
generated	from	behavioral	arrangement	task.		581 
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	582 
	583 
Criterion	II	for	conceptual	object	representation:	Behavioral	and	computational	modeling	of	MEG	584 
data	585 
To	determine	when	there	 is	a	 relationship	between	the	MEG	signal	and	high-level	behavioral	586 
judgments,	 satisfying	 Criterion	 II,	 we	 first	 evaluated	 the	 time	 course	 of	 similarity	 between	587 
behavioral	judgments	and	the	MEG	activity	patterns	(Figure	5).	Further,	to	establish	whether	this	588 
relationship	 was	 uniquely	 explained	 by	 behavior,	 we	 additionally	 compared	 MEG	 to	 the	589 
computational	models	 described	 above.	 Every	model	 tested	 exhibited	 significant	 correlations	590 
with	MEG	activity	patterns	within	the	first	200	ms	of	visual	processing.	DNN	Layer	3	showed	peak	591 
correlation	with	MEG	at	118	ms	after	stimulus	onset	(Spearman’s	r	=	0.33),	while	DNN	Layer	7	592 
showed	peak	correlation	with	MEG	at	151	ms	(Spearman’s	r	=	0.23).	Further,	the	GloVe	model	593 
was	most	strongly	correlated	with	MEG	at	151	ms	(Spearman’s	r	=	0.13),	and	behavior	at	160	ms	594 
(Spearman’s	 r	 =	 0.16).	 Additional	 within-subject	 analyses,	 i.e.	 comparing	 each	 individual’s	595 
behavioral	RSM	to	their	MEG	RSM,	revealed	a	very	similar	pattern	of	results	but	lower	overall	596 
correlations	(peak	Spearman’s	r	=	0.06)	and	no	significant	benefit	of	within-subject	over	between-597 
subject	analyses	matched	in	size	(all	p	>	0.12).	598 

This	 sequence	 of	 peaks	 suggests	 an	 evolution	 from	 low-level	 visual	 to	 high-level	599 
conceptual	representations,	with	the	relationship	to	behavior	peaking	latest	in	time.	However,	600 
given	the	significant	correlations	of	all	models	with	MEG	throughout	most	of	the	trial	and	the	601 
presence	of	significant	correlation	between	the	models	themselves	(Figure	4a),	it	is	unclear	to	602 
what	extent	a	given	correlation	was	uniquely	explained	by	one	model,	or	whether	this	correlation	603 
could	equally	well	be	explained	by	other	models.	For	example,	the	correlation	of	both	DNN	Layer	604 
7	 and	 behavior	 with	 MEG	 signals	 after	 150	 ms	 raises	 the	 question	 whether	 the	 behavioral	605 
correlations	can	be	fully	explained	by	the	features	represented	in	the	DNN	models.	606 

	607 
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	608 
	609 
Figure	5.	Results	of	model-based	representational	similarity	analysis	with	MEG	data.	Comparison	includes	models	610 
based	on	DNN	Layer	3,	DNN	Layer	7,	GloVe	and	behavior.	The	results	exhibit	a	progression	of	peaks	from	DNN	Layer	611 
3	 to	behavior,	 suggesting	a	 temporal	evolution	of	 the	underlying	 representation	 from	more	 low-level	 to	higher-612 
level/conceptual.	Grey	shaded	area	depicts	the	noise	ceiling.	Significant	time	points	are	indicated	by	a	colored	line	613 
above	the	plots	(p	<	0.05,	FDR-corrected	permutation	test).	614 
	615 
Variance	Partitioning:	Shared	and	unique	model	contributions	616 
To	 provide	 a	 deeper	 understanding	 of	 the	 unique	 contributions	 of	 different	models	 to	MEG	617 
variance	and	how	much	explanatory	power	they	share	with	behavioral	judgments	in	explaining	618 
MEG	variance,	we	conducted	a	variance	partitioning	analysis	in	which	we	compared	the	results	619 
of	different	multiple	regression	analyses	applied	to	MEG	RSMs	(see	Methods;	Figure	6a).	We	first	620 
considered	the	total	percent	of	variance	in	the	MEG	RSMs	explained	when	all	three	predictors	621 
are	combined	in	a	single	regression	model	(‘full	model’)	in	comparison	to	the	percent	variance	622 
explained	 by	 each	 model	 separately	 (Figure	 6b).	 Since	 variance	 explained	 by	 each	 model	623 
separately	is	identical	to	the	square	of	the	model	correlation,	the	results	of	this	analysis	are	very	624 
similar	to	those	of	the	previous	section	presented	in	Figure	5,	with	the	only	difference	that	these	625 
results	were	collapsed	across	groups	before	conducting	variance	partitioning.	Explained	variance	626 
of	DNN	Layer	3	peaked	at	118	ms	(R2:	11.0	%),	DNN	Layer	7	at	151	ms	(R2:	7.0	%),	and	behavior	627 
at	160	ms	(R2:	4.8	%).		Importantly,	however,	the	dashed	line	indicates	how	these	contributions	628 
relate	to	the	total	variance	accounted	for	by	all	three	models	combined.	At	its	peak	at	118	ms,	629 
the	 full	 model	 explains	 11.6	 %	 of	 the	 variance,	 which	 is	 similar	 to	 the	 amount	 of	 variance	630 
explained	by	DNN	Layer	3	alone,	suggesting	that	all	variance	captured	at	this	time-point	can	be	631 
attributed	 uniquely	 to	 DNN	 Layer	 3,	 with	 limited	 additional	 contribution	 of	 DNN	 Layer	 7	 or	632 
behavior.	 At	 later	 time	 points,	 however,	 the	 full	 model	 always	 substantially	 explains	 more	633 
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variance	than	the	individual	predictors,	providing	a	first	clue	that	some	or	all	of	these	predictors	634 
contribute	unique	(i.e.,	additive)	variance.	635 

To	directly	quantify	 the	unique	and	shared	variance	of	each	model,	we	compared	 the	636 
regression	outcomes	with	different	model	variables	included	(Figures	6c,	6d).	The	unique	MEG	637 
variance	explained	by	DNN	Layer	3	peaked	very	early	in	time,	at	109	ms	(R2:	8.3%).	DNN	Layer	7	638 
peaked	next	at	151	ms	(R2:	2.0	%),	 followed	closely	by	behavior	at	160	ms	(R2:	2.6	%),	with	a	639 
second	peak	at	277	ms	(R2:	3.2	%).	Importantly,	DNN	Layer	3	explained	the	most	unique	variance	640 
until	143	ms,	after	which	behavior	predicted	the	most	unique	variance	until	~400	ms.	Thus,	while	641 
all	 three	models	 (DNN	Layer	3,	DNN	Layer	7	and	behavior)	captured	some	unique	variance	 in	642 
MEG	activity	throughout	the	trial,	behavior	dominated	after	around	150	ms.	643 

Finally,	 to	complete	the	picture,	we	partitioned	the	variance	 into	shared	contributions	644 
from	 combinations	 of	 the	 different	 models.	 Both	 DNN	 Layers	 contributed	 the	 most	 shared	645 
variance	across	all	time	points	after	stimulus	onset,	which	is	perhaps	not	surprising	considering	646 
that	both	layers	are	derived	from	the	same	computational	model.	This	shared	variance	between	647 
DNN	Layer	3	and	Layer	7	peaked	at	126	ms	(R2:	3.5	%).	Interestingly,	the	shared	variance	between	648 
behavior	and	DNN	Layer	7	demonstrated	a	clear	peak	at	151	ms	(R2:	1.7	%),	suggesting	that	it	is	649 
around	this	time-point	that	DNN	Layer	7	best	captures	neural	information	that	is	also	reflected	650 
in	behavior.	 	The	shared	variance	between	DNN	Layer	3	and	behavior	was	slightly	negative,	a	651 
result	 that	 is	 not	 untypical	 for	 variance	 partitioning,	 indicative	 of	 small	 suppression	 effects	652 
(Pedhazur,	1997)	and	suggesting	that	DNN	Layer	3	does	not	capture	information	that	is	relevant	653 
for	behavioral	judgments.	654 

It	is	possible	that	DNN	Layer	3	did	not	accurately	capture	the	low-level	responses.	For	this	655 
reason,	we	ran	additional	variance	partitioning	analyses,	replacing	DNN	Layer	3	with	the	GIST	656 
model.	The	GIST	RSM	exhibited	a	strong	correlation	with	the	DNN	Layer	3	RSM	(Spearman’s	r:	657 
0.65).	As	expected	from	this	correlation,	the	variance	partitioning	results	were	qualitatively	very	658 
similar	(Supplemental	Figure	S3),	demonstrating	that	DNN	Layer	3	likely	captured	relevant	low-659 
level	responses.	660 

Collectively,	 the	 variance	 partitioning	 results	 indicate	 that	 behavioral	 judgments	 are	661 
reflected	in	the	MEG	response	above	and	beyond	what	is	captured	by	the	DNN,	with	behavioral	662 
judgments	explaining	the	most	unique	variance	between	200	and	400	ms	after	stimulus	onset.	663 
Further,	before	150	ms,	DNN	Layer	3	explains	the	most	variance,	suggesting	that	representations	664 
prior	to	this	point	are	unlikely	to	be	conceptual	in	nature.		665 
	666 
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	667 
	668 
Figure	6.	Time-resolved	variance	partitioning:	Total,	shared,	and	unique	MEG	variance	explained	by	models:	DNN	669 
Layer	3,	DNN	Layer	7,	and	behavior.	a.	Schematic	of	unique	and	shared	variance	components	using	a	Venn	diagram.	670 
b.	Percent	MEG	variance	explained	by	each	model	independently	(colored	lines),	and	total	MEG	variance	explained	671 
at	all	time	points	(dotted	line).	c.	Unique	variance	explained	by	each	model.	d.	Shared	variance	between	different	672 
model	combinations.	Significant	time	points	are	indicated	by	a	colored	line	above	the	plots	(p	<	0.05,	FDR-corrected	673 
permutation	test).	674 
 675 
Discussion	676 
	677 
In	 this	 study,	 we	 investigated	 the	 temporal	 evolution	 of	 visual	 object	 representations.	 In	678 
particular	 we	 focused	 on	 determining	 a	 lower	 bound	 for	 the	 emergence	 of	 conceptual	679 
representations	 of	 objects.	 We	 proposed	 two	 criteria	 that	 would	 reflect	 conceptual	680 
representations:	1)	generalization	of	representations	between	different	exemplars	of	the	same	681 
object,	 and	2)	 relationship	 to	high-level	behavioral	 judgments.	We	 find	qualitatively	different	682 
processing	of	objects	over	time:	Early	responses	(<	150	ms)	were	characterized	by	exemplar-level	683 
representations	and	similarity	with	computational	visual	models,	whereas	later	responses	(>	150	684 
ms)	showed	increasing	generalization	across	exemplars	and	similarity	with	behavioral	judgments,	685 
with	greater	stability	of	representations	over	time.	686 
												 To	 evaluate	 generalization	 of	 representations	 reflecting	 conceptual	 processing,	 we	687 
compared	the	representational	structure	of	MEG	responses,	both	within	exemplar	and	between	688 
sets	 of	 exemplars.	 This	 analysis	 revealed	 two	 interesting	 features.	 First,	 between-exemplar	689 
generalization	 was	 found	 to	 be	 consistently	 lower	 than	 within-exemplar	 generalization,	690 
demonstrating	the	persistence	of	exemplar-specific	responses.	This	reduced	between-exemplar	691 
generalization	 likely	 reflects	 the	 impact	 of	 low-level	 features	 varying	 between	 different	692 
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exemplars.	 The	 fact	 that	 this	 advantage	 is	 maintained	 throughout	 the	 trial,	 suggests	 some	693 
persistence	of	low-level	feature	representation.	This	interpretation	is	supported	by	the	temporal	694 
generalization	even	for	very	early	time	points	and	the	variance	explained	by	DNN	Layer	3	(which	695 
likely	corresponds	to	early	to	mid-level	visual	processing,	Cichy	et	al.,	2016a;	Güçlü	&	van	Gerven,	696 
2015;	 Wen	 et	 al.,	 2017),	 throughout	 the	 trial.	 Second,	 both	 within	 and	 between-exemplar	697 
generalization	showed	two	distinct	peaks,	one	early	around	100	ms,	and	another	late	around	200	698 
ms.	However,	their	relative	amplitude	was	reversed:	While	the	early	peak	was	stronger	than	the	699 
second	within-exemplar,	this	pattern	was	reversed	between-exemplar.	This	striking	increase	in	700 
generalization	between	exemplars	that	occurs	for	the	later	peak	suggests	the	emergence	of	a	701 
common	 representation	 across	 exemplars,	 a	 key	 marker	 for	 conceptual	 representations.	702 
Together	 these	 results	 suggest	 that	 the	 earliest	 time	 point	 for	 the	 emergence	 of	 conceptual	703 
representations	is	around	150	ms,	but	also	suggest	a	prolonged	representation	of	low-level	visual	704 
features.	705 
												 To	evaluate	 the	 relationship	 to	high-level	behavioral	 judgments,	we	 compared	models	706 
derived	 from	 behavior,	 semantics	 (GloVe),	 and	 computational	 vision	 (DNN)	 with	 the	 MEG	707 
response	 to	 objects.	 We	 found	 that	 all	 models	 show	 significant	 correlation	 with	 the	 MEG	708 
response	throughout	most	of	the	trial.	The	early	DNN	layer	showed	the	strongest	and	earliest	709 
correlation,	while	the	GloVe	model	showed	the	weakest	correlation.	This	result	highlights	the	710 
importance	 of	 testing	multiple	models	 rather	 than	 relying	 on	 a	 significant	 effect	 for	 a	 single	711 
model.	 Since	 the	models	 themselves	are	correlated	 (Figure	4),	 this	demonstrates	 that	 testing	712 
multiple	models	is	also	not	sufficient;	it	is	important	to	determine	the	unique	and	shared	variance	713 
explained	by	the	different	models	(Lescroart	et	al.,	2015;	Groen	et	al.,	2012;	Greene	et	al.,	2016;	714 
Hebart	et	al.,	2018;	Groen	et	al.,	2018),	motivating	our	variance	partitioning	analysis.	Given	the	715 
complexities	of	describing	the	unique	and	shared	variance	partitions	of	more	than	three	model	716 
variables,	we	decided	to	exclude	one	of	the	four.	Since	the	GloVe	model	showed	the	weakest	717 
correlation	with	MEG	and	was	mostly	subsumed	by	the	behavioral	model,	we	focused	on	the	718 
DNN	and	behavioral	model	variables.	719 
												 The	 variance	partitioning	 revealed	 several	 important	 features.	 Focusing	on	 the	unique	720 
contribution	of	each	model	variable,	 it	becomes	clear	that	DNN	Layer	3	dominates	early	MEG	721 
responses	peaking	at	100	ms,	whereas	behavior	explains	the	most	variance	after	150	ms,	peaking	722 
at	 270	 ms.	 This	 result	 fulfills	 our	 second	 criterion	 –	 relationship	 with	 high-level	 behavioral	723 
judgments	–	converging	with	the	results	of	both	the	temporal	generalization	analysis	and	the	724 
representational	generalization	across	exemplars	in	identifying	the	time	period	after	around	150	725 
ms	as	reflecting	a	lower	bound	for	the	emergence	of	conceptual	representations.	Focusing	on	726 
the	shared	contribution	of	model	variables,	the	results	largely	reflect	the	correlations	between	727 
model	 variables	 (Figure	4),	 e.g.	 no	 shared	variance	between	DNN	Layer	3	 and	behavior,	 high	728 
shared	variance	between	Layers	3	and	7	of	the	DNN	model.	However,	they	provide	important	729 
information	about	the	timing	of	the	shared	variances.	In	particular,	the	shared	variance	between	730 
DNN	Layers	3	and	7	persisted	even	late	in	time,	again	suggesting	a	sustained	representation	of	731 
low-level	visual	information.	732 

Our	results	are	generally	consistent	with	prior	work	investigating	how	visual	processing	733 
of	 objects	 evolves	 over	 time,	 showing	 the	 gradual	 emergence	 of	 high-level	 representations	734 
(Contini	et	al.,	2017).	While	early	signals	reflect	low-level	visual	features	(e.g.	Groen	et	al.,	2013;	735 
Cichy	et	al.,	2014;	Coggan	et	al.,	2016),	later	signals	reflect	perceptual	similarity	(Wardle	et	al.,	736 
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2016),	some	tolerance	for	changes	in	size	and	position	(Isik	et	al.,	2014),	categorical	processing	737 
(Carlson	et	al.,	2013;	Cichy	et	al.,	2014),	and	correlate	with	task	performance	and	reaction	times	738 
(Van	Rullen	and	Thorpe,	2001;	Philiastides	and	Sajda,	2006;	Martinovic	et	al.,	2008;	Ritchie	et	al.,	739 
2015).	Further,	comparisons	of	deep	neural	networks	with	MEG	have	revealed	a	correspondence	740 
of	early	 layers	with	earlier	MEG	responses,	 likely	reflecting	initial	stages	of	processing	in	early	741 
visual	 cortex,	while	higher	 layers	 reflect	 later	 stages	of	processing	 in	occipitotemporal	 cortex	742 
(Cichy	 et	 al.,	 2016b;	 Seeliger	 et	 al.,	 2017).	 Our	 results	 significantly	 extend	 these	 results	 by	743 
establishing	a	lower	bound	for	the	development	of	conceptual	representations.	744 

Other	studies	have	also	investigated	high-level	conceptual	processing	over	time	using	745 
explicit	 semantic	 feature	models	 (Clarke	&	Tyler,	2015)	or	behavioral	 judgments	 (Cichy	et	al.,	746 
2017).	 For	 example,	 Clarke	 and	 colleagues	 showed	 semantic	 feature	 effects	 before	 120	ms,	747 
although	 including	basic	visual	 features	based	on	the	HMAX	model	 revealed	unique	semantic	748 
contributions	 to	MEG	 signals	 only	 after	~200	ms	 (Clarke	 et	 al.,	 2013;	 Clarke	 et	 al.,	 2014).	 In	749 
contrast	to	these	studies,	we	used	more	recent	deep	convolutional	neural	networks	which	have	750 
been	shown	to	be	more	closely	tied	to	neural	and	behavioral	data	(Khaligh-Razavi	et	al.,	2016;	751 
Jozwik	 et	 al.,	 2017;	 Cichy	 et	 al.,	 2016a).	 Further,	 we	 operationalized	 high-level	 conceptual	752 
processing,	 using	 both	 a	 computational	 semantic	 model	 based	 on	 semantic	 co-occurrence	753 
statistics	(GloVe	model),	as	well	as	behavioral	judgments	of	object	similarity	that	we	take	to	more	754 
broadly	reflect	conceptual	processing.	Indeed,	our	results	suggest	that	MEG	variance	explained	755 
by	 the	 GloVe	 model	 was	 comparably	 low	 and	 mostly	 covaried	 with	 behavioral	 judgments,	756 
suggesting	that	conceptual	representations	extend	beyond	those	relationships	captured	by	the	757 
GloVe	model.	Despite	these	differences,	our	results	are	generally	consistent	with	the	results	of	758 
Clarke	and	colleagues,	but	suggest	a	lower	bound	for	conceptual	processing	around	~150	ms	(see	759 
also	Cichy	et	al.,	2017).	Further,	we	show	that	the	computational	visual	model	and	behavioral	760 
judgments	explain	shared	variance	even	prior	to	150	ms.	This	shared	variance	indicates	that	the	761 
neural	 activity	 captured	by	 compational	models	 is	 behaviorally	 relevant	 and	argues	 against	 a	762 
strong	distinction	between	(low-level)	visual	features	on	the	one	hand,	and	high-level	conceptual	763 
processing	on	the	other.	At	the	same	time,	the	presence	of	significant	unique	variance	explained	764 
by	 behavior	 after	 150	ms	 suggests	 that	 not	all	 aspects	 of	 conceptual	 object	 representations	765 
reflected	in	MEG	activity	are	explained	by	current	generations	of	computational	visual	models.	766 

While	our	study	provides	insight	into	the	development	of	conceptual	representations,	767 
there	are	some	important	considerations.	First,	we	used	behavioral	similarity	judgments	using	768 
the	 multi-arrangement	 task	 (Kriegeskorte	 &	 Mur,	 2012)	 to	 index	 conceptual	 processing.	769 
However,	 this	 choice	 of	 method	 might	 constrain	 the	 ability	 to	 capture	 conceptual	770 
representations.	While	the	behavioral	judgments	explain	more	variance	in	the	MEG	signal	than	771 
the	semantic	GloVe	model	we	tested,	we	do	not	know	what	aspects	of	conceptual	processing	are	772 
reflected	in	those	judgments.	Further,	it	is	unclear	how	sensitive	those	behavioral	judgments	are	773 
to	the	context	imposed	by	the	stimuli	and	instructions.	Second,	we	only	employed	two	exemplars	774 
per	object	concept	to	test	generalization	of	representations,	and	this	may	not	have	contained	775 
sufficient	variability	 to	 fully	disentangle	 low-level	and	high-level	processing.	 In	 future	work,	 it	776 
would	 be	 useful	 to	 carry	 out	 similar	 analyses	 while	 presenting	 multiple	 image	 sets	 to	 each	777 
participant,	 which	 would	 allow	 within-subject	 exploration	 of	 differences	 in	 temporal	778 
generalization	 across	 exemplars.	 Finally,	 in	 the	 future	 alternative	 similarity	metrics	 for	MEG-779 
based	RSA,	such	as	the	cross-validated	Mahalanobis	distance	could	be	applied	that	may	increase	780 
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the	 robustness	 over	 the	 current	 approach	 (Guggenmos	 et	 al.,	 2018).	 Future	 studies	 should	781 
consider	 broader	 sets	 of	 stimuli,	 different	 behavioral	 tasks,	 and	 alternative	 computational	782 
models	that	may	better	match	the	MEG	signal.	783 

In	 conclusion,	 by	 focusing	on	 two	 criteria	 for	 conceptual	 object	 representations	we	784 
provide	an	estimate	for	a	lower	bound	for	the	emergence	of	conceptual	object	representations	785 
of	around	150	ms.	Prior	to	this	time,	our	results	demonstrate	limited	generalization	across	object	786 
exemplars	and	time,	and	importantly	little	unique	contributions	of	behavioral	judgments	to	the	787 
MEG	response.		The	multifaceted	nature	of	our	findings	here	show	that	the	combination	of	neural	788 
data,	 behavior,	 and	models	 are	 a	 viable	 method	 to	 probe	 the	 temporal	 dynamics	 of	 object	789 
recognition	and	allow	us	to	establish	a	novel	profile	of	emergent	conceptual	representations	in	790 
time. 	791 
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