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Short Guide to this supporting information

In this supporting information, we present in detail how we performed the convergence

study of the numerical examples shown in the paper and especially how we validate our

implementation in Sec. 1 to 3. We provide a “HowTo” for such calculations in Sec. 4. In

the last section, we examine the issue of the bosonic symmetry in the photon wave function,

which is relevant for the argumentation in the main paper.

To perform the calculations, we integrated our routine in the Octopus code.1 To find the

accuracy threshold of our implementation we compared the Octopus results to calculations of

a private code “Dynamics” that was used and validated for Ref. S1 by S.E.B. Nielsen.2 Both

codes approximate the polaritonic orbitals on discretized real-space boxes in the x and q co-

ordinate, but they use different boundary conditions, a different level of finite differences for

the approximation of the differential operators (fourth order in Octopus vs sixth order in Dy-

namics), a different method of the grid point evaluation (on-point in Octopus vs. mid-point

in Dynamics), and also a different orbital optimization technique. Specifically, we present

the convergence studies for the example of the one-dimensional Helium atom inside a cavity

(He) that we used among others in the main part of this paper. The He atom is described by

the nuclear potential vHe(x) = − 2√
x2+1

(we use atomic units throughout) and coupled to one

cavity mode with frequency ω and coupling parameter λ. The modified local potential due to

the dressed auxiliary construction reads v′He(x, q) = vHe(x)+ 1
2
(λx)2+ ω2

2
q2− ω√

2
q(λx) and the

modified interaction kernel is w′(xq, x′q′) = w(x, x′)+wd(xq, x
′q′) with w(x, x′) = 1√

(x−x′)2+1

and wd(xq, x
′q′) = − ωλ√

2
(xq′ + x′q) + λ2xx′ (see Sec. The “fermionization” of matter-photon

systems of the main text.) We approximate all Coulomb terms by a soft-Coulomb poten-

tial. The extension of an electronic structure code to treat such dressed systems requires

implementing the extra photon coordinate q that should be treated like the electronic ones

(and thus integrated in the calculations of the kinetic energy), the modified local potential

1www.octopus-code.org
2Contact: soerenersbak@hotmail.com
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v′(x, q), and the modified interaction kernel w′(xq, x′q′). Additionally, the many-body wave

function that is constructed from dressed orbitals exhibits an additional exchange-symmetry

between the q-coordinates. In this work, we do not take this symmetry into account, which

is a reasonable approximation for the presented calculations. For further details see Sec.

The “fermionization” of matter-photon systems and Ref. S1.

The convergence study and validation of our implementation in Octopus requires sev-

eral steps, which correspond to the sections of this supporting information. We start with

converging the exact dressed many-body ground-state and compare it to the results of Dy-

namics. Although we are limited to a very small Hilbert space for such exact calculations,

we only have to solve a linear eigenvalue problem, so it is easy to converge the results to a

very high precision within the accessible parameter range. Thus, we obtain an upper bound

for the convergence accuracy from these exact calculations. In the next section, we present

the convergence of dressed HF (that we abbreviate by dHF in this supporting information)

in all its details and compare the converged ground-state to Dynamics. This allows us to de-

termine the accuracy for dHF calculations, that is (because of its non-linear nature) harder

to converge than the exact routine. As a side effect, the comparison of the two codes is

a good validation of the correct implementation of the dressed modifications. Since these

modifications are exactly the same for dressed RDMFT (that we abbreviate by dRDMFT

in this supporting information) and dHF, validating the dHF implementation validates also

the corresponding changes for dRDMFT. In the last section, we discuss the convergence of

dRDMFT, which requires two different minimization procedures that are interdependent,

and thus again is harder to converge than dHF.

All the above sections are organized similarly. We start with the separated problem of

the electronic system outside the cavity and converge first the electronic counterparts of the

routines, i.e. the electronic exact solver, HF or RDMFT. The purely photonic problem of

the separated problem remains the same at all the discussed levels of theory. We therefore

discuss it only once in the first section. Then, we analyze the convergence of the dressed

S3



theories in the no-coupling (λ = 0) limit, which theoretically means that the electronic and

photonic problems are perfectly separated, but solved in only one large calculation. By

comparison of only the electronic (photonic) part of the dressed solutions to the results of

the purely electronic (photonic) theories, we can measure if there is a decrease in accuracy

due to the simultaneous description of electronic and photonic coordinates. We finish the

sections with a convergence study for λ > 0.
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1 Validation of the exact dressed many-body ground-

state

We start with the validation of the exact many-body ground-state. In both codes, this is

calculated by minimizing directly the energy expression of the full many-body wave function

(denoted by Ψ′ in the main text), discretized on the grid. For the He test system, Ψ′ =

Ψ′(x1q1, x2, q2) is four-dimensional. The actual minimization is performed in Octopus by

conjugate gradients method, whereas Dynamics makes use of a Lanczos algorithm.

At the beginning of every calculation, we need to find the proper grid, which is defined

by the box sizes Lx, Lq and the spacings dx, dq in both dimensions. For the minimization

in Octopus, we used two different convergence criteria, εE = 10−9 and ερ = 10−8. The

former tests the energy deviations and the latter the integrated absolute value of the density

deviations between subsequent iteration steps.3 These are the criteria already available in

Octopus, so we here show that these are sufficient to produce reliable results. Note that

we choose εE = 1
10
ερ, because ερ is a much stricter criterion. For the box size and spacing

convergence, we perform series C = {C1, C2, . . . }, where C can be Lx, Lq, dx, or dq in the

following. We perform two types of convergence tests for every C. In the first one, we

investigate the deviations in the energy between subsequent elements ∆ECi = ECi − ECi−1 .

We denote the corresponding thresholds with εEC . The second type of convergence series

considers the maximal deviations in the absolute-value of the electronic/photonic part of the

polaritonic density ∆ρCi = maxx/q |ρCi(x/q)−ρCi−1(x/q)|, with ρCi(x) =
∫

dqρCi(x, q) for the

series Lx, dx and ρCi(q) =
∫

dxρCi(x, q) for the series Lq, dq. We denote the corresponding

thresholds with ερC .

We start with the electronic part of the example (corresponding to the He atom outside

the cavity), choose dx = 0.14 and vary Lx = {8, 10, 12, . . . }. The ground-state energy

3Details can be found on http://octopus-code.org/doc/develop/html/vars.php?page=alpha with
the keywords EigensolverTolerance and ConvRelDens.
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ELx drops with increasing Lx (because boundary effects become less important) and we

find ∆ELx < 10−8 and ∆ρLx < 10−7 for Lx ≥ 20. In the following, we choose Lx =

20 because the thresholds of ερLx = 10−7 and εELx = 10−8 are already stricter than the

maximal accuracy of the later non-linear (dHF,dRDMFT) calculations. Next, we perform

dx = {0.2, 0.19, 0.18, . . . , 0.06}. We find that ∆Edx also drops with decreasing dx until

∆Edx < 10−8 for dx = 0.15 and does not decrease any more (as the convergence criteria

of the minimization are no more precise.) ∆ρdx instead decreases (slowly) until the lowest

tested value of dx = 0.06. We find ∆ρdx < 10−7 already for dx < 0.14, but to reach

∆ρdx < 10−8, we need to decrease the spacing until dx = 0.07. Such a small spacing is

numerically unfeasible for larger boxes and thus we will not try to go beyond ερdx = 10−7.

We repeat the same series for the harmonic oscillator system of the q-coordinate with

frequency ω = ωres ≈ 0.5535 (resonance with the transition between ground and first excited

state of the He atom outside the cavity) and find that the box size is converged with ∆ELq <

10−8 and ∆ρLq < 10−8 for Lq ≥ 14. The spacing is converged in the energy ∆Edq < 10−8

and in the density ∆ρdq < 10−7 for dq ≤ 0.20.

From these preliminary calculations, we can infer the parameters for the dressed cal-

culations: Lx = 20, Lq = 14, dx = 0.14, dq = 0.20. To be sure that these parameters are

still sufficient for non-zero coupling (λ > 0), we perform another box length series in the

four-dimensional space of the exact ground-state, e.g. for λ = 0.1 and ω = ωres. To have a

uniform grid distribution, we also set dx = dq, although our preliminary calculations suggest

that we could choose a larger dq. Unfortunately, we cannot explore this space completely,

but we are limited with Lx, Lq ≤ 18.4 However, we can confirm that the energy is converged

in the q-direction for Lq = 14 and in the x-direction, we have ∆ELx ≈ 10−7 for Lx = 18.

Finally, we compare the Octopus results with the results from the Dynamics code. For

that, we consider the differences in the total energy EOD = |EDynamics − EOctopus| and the

4The precise reasons is that the memory of one node of the cluster we are using is too small. We would
consequently need to distribute the wave function over several nodes, which is possible, but would demand
a considerable programming effort.
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maximum deviations in the polaritonic density ρOD ≡ maxx,q |ρOctopus(x, q)−ρDynamics(x, q)|

between the two codes. Due to the optimization of Dynamics, we are limited to a box length

of Lx = Lq = 14 to have a spacing of dx = dq = 0.14. With these parameters, all the

energy and density errors in Octopus increase to ∆ELx,Lq ,dx,dq = ∆ρLx,Lq ,dx,dq ≈ 10−5. When

we compare the ground-state energies of both codes for this maximum possible mesh, we

find EOD ≈ 10−5 and ρOD ≈ 10−5. So both codes agree on the level of accuracy that we

estimated from the Octopus calculations before, although they are quite different from a

numerical perspective. We conclude from these calculations that the implementation of the

exact many-body routine for dressed two-electron systems5 in Octopus is reliable and we can

use it as benchmark for the dHF and dRDMFT approximations within Octopus.

2 Validation of the dHF routine

In this section, we present the validation of dHF, which requires several steps. We start

with the electronic HF routine and converge the He atom model (outside the cavity) in

box size and spacing, where we proceed like in the previous section. Then, we converge a

second HF routine (HFbasis) that is implemented in Octopus, which makes use of a basis

set. The difference of such a basis-set implementation is that the routine calculates all the

integral kernels of the total energy as matrix elements of a chosen basis and then searches

for the energy minimum by only varying the corresponding coefficients. This routine can

be considerably faster than the standard one of Octopus, because the calculation of the

exchange-term, which is numerically much more expensive than all the other parts of the

Hamiltonian, needs only to be performed once in the beginning for the matrix elements.

The conjugate gradient algorithm of the standard HF routine of Octopus instead needs to

evaluate the Hamiltonian including the exchange term at every iteration step. Such a basis-

set implementation requires a convergence study with respect to the basis size, which we will

explain in detail in the second part of this section together with a comparison between HF

5Larger systems are in principal also possible, but numerically infeasible in real space.
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and HFbasis. We conclude the section with the discussion of dHF, which also uses a basis set.

However, the basis-set convergence for dHF is more involved than for the purely electronic

HFbasis and we explain this in detail. Afterwards, we compare dHF in the no-coupling limit

to HF/HFbasis and we discuss the comparison of Octopus and Dynamics on the level of dHF,

where we follow the same strategy like in the previous section.

2.1 HF minimization on the grid

We start with the He atom outside the cavity and calculate the HF ground-state with the

standard routine of Octopus, which uses a conjugate gradients algorithm for the orbital

optimization. The convergence criteria for the conjugate gradient algorithm are defined

exactly as before for the exact many-body ground-state. We set them to εE = 10−9 and

ερ = 10−8 and determine Lx and dx. We start with a spacing of dx = 0.1 and find that

∆ELx ≈ 10−8 and ∆ρLx < 10−7 for all Lx ≥ 20. We choose Lx = 20 and perform the spacing

series, which is converged in energy with ∆Edx < 10−8 for dx ≤ 0.15 and in the density with

∆ρdx < 10−7 for dx ≤ 0.14. These calculations suggest that all dx ≤ 0.14 are sufficient and

we choose dx = 0.1, which is numerically feasible for the test-system, we consider.

2.2 HF minimization with a basis set

In this section, we present the convergence of the He test system in the HFbasis routine with

respect to the basis set. As Octopus is a real-space code, there are no standard quantum-

chemistry basis sets implemented. This means that if we wish to express the Hamiltonian

and the wave function in a basis set, we need to generate one. For all the calculations of

this paper, we do this in the same way by performing a preliminary calculation with the

independent particle (IP) routine, which solves a simple 1-body Schrödinger equation for

every orbital, neglecting interaction. Among the numerically efficient options that Octopus

offers, the basis from IP converged fastest with respect to the size of the basis set M .6 To

6Note that we used the symbol M in the main text.
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allow for enough variational freedom, we calculate besides the occupied orbitals7 (that form

the HF ground state and are denoted by GS) also excited orbitals, which are called extra

states (ES) in Octopus. The so generated basis set has the size M = GS + ES.

The routine performs the minimization by representing the coefficients of the basis-set ex-

pansion in a matrix and diagonalizing it repeatedly until self-consistence. The corresponding

energy convergence criterion εE remains the same in HFbasis like in HF. But the convergence

criterion εΛ of the orbital minimization needs to be adapted and there are several possible

options. In Octopus, εΛ tests the hermiticity of the Lagrange multiplier matrix ΛS2 that

guarantees the orthonormality of the natural orbitals. This is not an obvious choice, but

it is more general than typical criteria, and thus allows for using it also for RDMFT min-

imizations in a basis set. In fact, HFbasis and RDMFT in Octopus use exactly the same

algorithm for the orbital optimization. This method is explained in detail in Ref. S3. As εΛ

is a considerably stricter criterion than εE, it is set as default to εΛ = 103 · εE.

For the convergence of the size of the basis set M or equivalently the parameter ES,

we perform a series ES = {10, 20, . . . , 100} and test deviations in energy ∆EES,ESref =

EES − EESref and density ∆ρES,ESref = maxx |ρES(x) − ρESref (x)| from the reference value

ESref that yields the lowest total energy and that typically occurs for the largest basis.

We use Lx and dx that we determined before in HF and find that ∆EES,100 and ∆ρES,100

decrease with increasing ES and for ES ≥ 40, ∆EES,100 < 10−8 and ∆ρES,100 ≈ 10−5.

Comparing HF with HFbasis with these parameters, we find that |EHF −EHFbasis| ≈ 10−8

and maxx |ρHF (x)− ρHFbasis(x)| ≈ 10−5. So both methods are consistent.

2.3 Validation of dHF

After having properly understood the convergence of the electronic HF methods, we can

now turn to dHF. All the calculations shown in the main part of this paper are done with

the basis-set type of implementation, which is more involved than in the purely electronic

7Note that in our case, we have always GS = N
2 , where N is the number of electrons, because we only

look at closed-shell systems, which distribute two electrons to every spatial orbital.
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HFbasis case. Thus, we start in Sec. 2.3.1 with discussing the new issues that enter when

one needs to converge a system in the dressed space with respect to the basis set. In Sec.

2.3.2, we present the convergence of dHF with zero-coupling (λ = 0), which means that the

electronic and photonic part of the system completely decouple such that we can compare

the results of the electronic part to electronic HF. In the last section, 2.3.3, we compare the

dHF results from Octopus with Dynamics.

2.3.1 Basis-set convergence in the dressed auxiliary space

In the dressed auxiliary space that we explore with dHF and dRDMFT, the basis-set conver-

gence is not as straightforward as in the HFbasis case. We illustrate this additional difficulty

for dHF in the no-coupling (λ = 0) case. λ = 0 makes the discussion much simpler, because

we have two perfectly separated problems, the atomic system and harmonic oscillators that

are just calculated at the same time. However, we use a combined basis that consequently

needs to include the appropriate degrees of freedom for both systems. But the composition

of the basis set is strongly influenced by the parameters of the system, especially ω, because

it is generated by a preliminary calculation. This can be illustrated as follows:

For λ = 0, the electronic and photonic part of the system separate. Thus, the cou-

pled (dHF) Hamiltonian is a direct sum of the electronic (photonic) Hamiltonian Ĥe (Ĥp)

and the two-dimensional dressed orbitals ψiα(x, q) can be exactly decomposed in their one-

dimensional electronic φi(x) and photonic χα(q) constituents, ψiα(x, q) = φi(x) ⊗ χα(q).

Here, φi (χα) is an eigenfunction with eigenvalue eei (epα) of the electronic (photonic) Hamil-

tonian Ĥe (Ĥp). Consequently, we know that we can calculate the eigenvalues of the dressed

orbitals as sum of the uncoupled ones, i.e. eepiα = eei + epα. The basis set for a dHF calculation

is then constructed using the ground and the first ES excited orbitals of a preliminary IP

calculation. These orbitals are ordered by their eigenvalue eepiα and for that, the relation

between the individual energies of the electron and photon space is crucial.

Table S1 shows the decomposition of such a basis with ES = 6 (and thus M = 7.)
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We see that slightly more electronic states contribute to the basis, but already 3 out of 7

states describe excited photon contributions. So if we wanted to use that basis for an dHF

calculation with for example λ = 0, that trivially needs only ground-state contributions

for the photonic coordinate, these 3 states would be entirely unnecessary and waste com-

putational resources. Before we discuss this further, we want to explain how ω influences

this distribution between electronic and photonic contributions: If we chose for example a

larger ω ≈ 1.3, the first 4 states of the combined basis would only vary in the electronic

contribution. If we instead lowered ω, the opposite would happen and the first states would

vary in the photonic contribution. A similar kind of argument could be done for all other

ingredients of the Hamiltonian of course, but for ω this influence is most directly visible and

comparatively strong. A detailed investigation of this issue is beyond the scope of this paper.

Pragmatically, we sometimes adapt ω such that the produced basis is reasonable (see the

Beryllium test system in Sec. Numerical Results of the main part of the paper.)

At this point, one might ask the question why at all we use the basis-set implementation

and the answer remains the same as for the purely electronic case: Although we need large

basis sets for the properly converged dHF calculations which makes them numerically very

expensive, these computations are still relatively inexpensive compared to calculations with

a conjugate gradients algorithm that calculates all integrals on the grid. In the case of the

He atom, the dHF calculation with conjugate gradients and ES = 15 takes still 4 times

longer than the same calculation with a basis set and ES = 50.

Finally, we want to mention that the statements of this subsection carry over straight-

forwardly to the coupled (λ > 0) case, we just do not have the direct connection to the

decoupled spaces and thus cannot visualize this case so clearly. It is clear that we need more

variational freedom for the photonic subspace than in the λ = 0 case but the basis will still

depend on the system parameters. One can expect that also for λ > 0 many basis states will

be unnecessary.
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Table S1: Basis set structure (IP calculations) with ES = 6 (thus M = N/2 +ES = 7 basis
states) for the dressed He atom with mode frequency ω ≈ 0.5535, but no coupling (λ = 0.)
On the left side of the table are the first eigenenergies eei (epα) of the pure electronic (photonic)
Hamiltonian Ĥe (Ĥp) shown. On the right side, we see the orbital energies eepiα = eei + epα
of the combined Hamiltonian Ĥep and the decomposition of the combined index: The first
eigenenergy eep1 = eep11 = ee1 + ep1 is the sum of the two first uncoupled energies. The second
energy eep2 = eep12 instead is formed from the electronic ground but photonic first excited state,
etc. In this example, we see that both contributions are similar, although there are slightly
more electronic orbitals included. This tendency continues also for increasing ES.

contribution
index eei epα eepiα i α

1 -1.483 0.277 -1.207 1 1
2 -0.772 0.830 -0.653 1 2
3 -0.461 1.384 -0.495 2 1
4 -0.263 -0.184 3 1
5 -0.100 1 3
6 0.014 4 1
7 0.058 2 2

2.3.2 Validation of dHF for λ = 0

Now we can address the ES-convergence of dHF, which we will present for λ = 0, such that

we can compare the electronic part of the converged result to HF afterwards. As we set

λ = 0, we know that for the photon component, the IP ground-state orbital χ1(q) is already

the exact solution, because the photons do not interact directly with each other and HF (or

any other level of approximation) will not change that. The dHF ground-state orbital thus

is ψ(x, q) = φHF (x)⊗ χ1(q) with the electronic HF ground-state orbital φHF (x). As we saw

in the last section, when we converged the He test system using the HFbasis routine, φHF (x)

can be approximated by an IP basis with ES = 40. So we know that in the no-coupling limit

of dHF, we do not need a larger basis set, because Kronecker-multiplying the basis-states

of the HFbasis-calculation with χ1(q) would be exactly sufficient. However, here and in the

following, we do not want to choose by hand such a well-adapted state space (which for very

strong coupling strength is non-trivial), but instead rely on the polaritonic IP-calculations.

From our considerations before, we expect to need more basis states to reach the same level
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of accuracy than using HFbasis and the exact number will depend on ω. Indeed, for ω = ωres,

we need ES = 80 to have ∆EES,100 < 10−7 and ∆ρES,100 ≈ 10−5, where we calculate the

electron density of the dHF-calculation by ρ(x) =
∫

dq ρ(x, q). When we instead choose a

very high value of ω = 5.0, we reach ∆EES,100 < 10−7 and ∆ρ ≈ 10−5 already for ES ≥ 40.

For both calculations, we do not reach ∆EES,100 < 10−8 even for higher ES. This is due to

the many ”unnecessary” states that are taken into account in the minimization. These then

only introduce numerical noise without providing useful variational information. We find

this confirmed by analyzing the “photonic density” ρ(q) =
∫

dx ρ(x, q), which deviates from

the correct density ρex(q) = 2|χ1|2(q) although χ1(q) is explicitly part of the basis. Adding

basis states consequently cannot improve the photonic orbital. For instance, for ω = ωres,

the density deviations remain at approximately ∆ρES,ESref ≈ 10−4 for all ES and ESref .

When we instead choose ω = 5.0, we increase the accuracy to ∆ρES,100 ≈ 10−5 for ES ≥ 40.

Despite being less accurate, we used ω = ωres for the results section in the main part of

the paper (Sec. Numerical Results,) because ∆ρES ≈ 10−4 is still two orders of magnitude

smaller than the deviations from the exact or the dRDMFT solution.8

Finally, we want to compare the electronic part of dHF to HF. For the energy com-

parison, we need to subtract the photon part Ep = 2ω
2

from the total dHF energy EdHF ,

EdHF,e = EdHF − Ep. However, this analytical expression is also not exact, because of the

just mentioned error in the photonic part of the orbitals. Consequently, we have deviations

for ω = ωres of |EHF − Eω=ωres
dHF,e | ≈ 3 · 10−6 and maxx |ρHF (x) − ρω=ωres

dHF,e (x)| ≈ 10−4, but for

|EHF − Eω=5.0
dHF,e| ≈ 4 · 10−7 and maxx |ρHF (x)− ρω=5.0

dHF,e(x)| ≈ 10−5.

2.3.3 Validation of dHF with Dynamics

We conclude this section by comparing the results of our implementation of dHF in Octopus

with the Dynamics code, which uses an imaginary time propagation algorithm to calculate

the HF ground-state. This comparison allows us to validate also the case of λ > 0. We choose

8By using harder types of convergence criteria throughout one can likely control ∆ρES , but this is beyond
our needs.
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ω = ωres and λ = 0.1 for the comparison and perform another ES-convergence, confirming

that we need ES = 90 for the same level of accuracy like before in the no-coupling case. For

the sake of completeness, we want to mention that for ω = 5.0 we need again a significantly

smaller basis set for even better converged results, exactly as we found before in the λ = 0

case. However, already for ω = ωres the level of convergence is an order of magnitude better

than the expected deviations between the codes that we estimated in Sec. 1.

So we compare the ground-state for these parameters to the result of Dynamics and find

for the energy the expected deviations of EOD ≈ 10−5. For the density, we find instead devi-

ations of ρOD ≈ 10−3. This discrepancy is probably due to the different convergence criteria

of the two codes. Dynamics tests the eigenvalue equation of the one-body Hamiltonian for

a certain subset of all the grid points, which is a much stronger criterion than the one of

Octopus, explained in Sec. 1. The influence of these different criteria on a self-consistent

calculation are naturally stronger than on the calculation of a linear eigenvalue-problem like

the many-body calculation. Still, density errors of the order of 10−3 are small enough for

our purposes. We find similar errors also for other values of λ and conclude that both codes

are sufficiently consistent.

3 Validation of dRDMFT

In this last section we turn to dRDMFT. This is the first implementation at all of this theory,

so we cannot validate it with a reference code any more. However, the difference between

HF and RDMFT (using the Müller functional) on the implementation-level essentially is in

the treatment of the occupation numbers, which are fixed to 2 and 0 in the former case

but are allowed to be non-integer for the latter. The 1-body and 2-body terms, which

implementation-wise are the only modifications due to the dressed auxiliary construction

(v(r) → v′(r, q), w(r, r′) → w′(rq, r′q′)) are the same for HF and RDMFT and thus also

for dHF and dRDMFT. This means that the validation of dHF that we presented in the

S14



previous section at the same time largely validates the implementation of dRDMFT.

Still, we need to analyze and understand the convergence with respect to the basis set in

dRDMFT and check for the consistency between the results of RDMFT and dRDMFT in

the no-coupling limit.

3.1 Basis-set convergence of RDMFT

In RDMFT, we have to perform two minimizations that are interdependent: for the natural

orbitals φi and the natural occupation numbers ni (where always i = 1, . . . ,M .) This is

done by fixing alternately φi or ni, while optimizing the other until overall convergence is

achieved.

We have the possibility to define different convergence criteria for each minimization, εE

(which is connected to εΛ, see Sec. 2.2) and εµ. The latter tests the convergence of the

Lagrange multiplier µ that appears in the RDMFT functional to fix the total number of

particles in the system.S2 The occupation number optimization routine at iteration step m

sets µ = µm, minimizes the total energy with respect to the ni = nmi and calculates the

particle number Nm =
∑M

i=1 ni. Based on the deviation to the correct system’s particle

number, µm+1 is increased or decreased. The routine exits if |µm − µm−1| < εµ. For the

remainder of this chapter, we set εE = εµ = 10−8.

However, the ES-convergence of RDMFT is not as straightforward as in the HFbasis-case.

Contrary to the clear monotonic dependence between ES and the energy that we always

found for HFbasis, the current RDMFT implementation in Octopus is not strictly variational

with respect to the number of basis states. For all tested systems, the energy went down

with increasing ES until a certain value ESmin and then up again. Therefore, it seems that

the interplay of the two minimization processes and the relatively soft types of convergence

criteria introduces for high ES such large errors that they exceed the gain of accuracy due

to more variational freedom. In Tab. S2, we show the variation of the ground-state energy

of He (outside the cavity) for a series ES = {10, 20, . . . , 80}. The energy first decreases until
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its lowest value for ESmin ≈ 40 and then increases again.

Table S2: Ground state energies of the He atom (outside the cavity) calculated by RDMFT
with parameters mentioned in the main text. The energy goes first down with increasing
number of ES until it reaches its lowest value at ESmin ≈ 40 and then up again.

ES Energy ∆EES = EES − EES−10

10 -2.2421837 -
20 -2.2426908 −5.1 · 10−4

30 -2.2427080 −1.7 · 10−5

40 -2.2427085 −4.9 · 10−7

50 -2.2427049 +3.6 · 10−6

60 -2.2427035 +1.3 · 10−6

70 -2.2426928 +1.1 · 10−5

80 -2.2426937 −9.9 · 10−8

This non-strictly variational behavior makes a clear definition of the convergence diffi-

cult. However, we find that for every considered system there is an optimal region ESopt =

{ES |ESmin ≤ ES ≤ ESmax}. By optimal region, we mean an interval of ES in which

the solutions vary minimally among each other, i.e. their energy and density deviations are

minimal. For the energies, we define ∆EES,ES′ = |EES −EES′ |, the corresponding threshold

εEopt , and require ∆EES,ES′ < εEopt for all ES,ES ′ ∈ ESopt. For the densities, we define

the point-wise density deviations ρES,ES′(x) = ρES(x) − ρES′(x), their maximal deviations

∆ρES,ES′ = maxx |ρES,ES′(x)|, and the corresponding threshold ερopt . As second condition on

ESopt we require ∆ρES,ES′ < ερopt for all ES,ES ′ ∈ ESopt.

We start with the investigation of the energies and find that ∆EES,ES′ < 5 · 10−6 for all

combinations 30 ≤ ES,ES ′ ≤ 60, but ∆EES,ES′ > 10−5 when we choose 30 ≤ ES ≤ 60 and

30 ≤ ES ′ ≤ 60 or 10 ≤ ES ′ ≤ 20. We conclude that the first condition for ESopt is met

by the interval 30 ≤ ES ≤ 60 with threshold εEopt = 5 · 10−6. For the investigation of the

second condition, we depict in Fig. S1 the density deviations ρES,ES′(x) with ES ′ = 60, the

upper boundary of the just found interval and ES ′ = 80, that corresponds to the largest

basis set of this example. For a better visibility, the curve for ES = 10 is not shown, but it

deviates stronger than all the other curves from both ES ′. We conclude that ∆ρES,ES′ goes
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down until ES = 20, independently of the reference. However, for ES ≥ 30 this is not the

case any more. We find ∆ρES,80 ≈ 10−4 but ∆ρES,60 < 5 ·10−5. Additionally, we observe two

different types of deviations: The curves ρES,80(x) have a similar form for all 30 ≤ ES ≤ 60,

but when we change the reference point to ES ′ = 60, we cannot find pronounced similarities

which is what we would expect from fluctuations. When we test also the other possible

values for ES ′, we find ∆ρES,ES′ < 5 · 10−5 for all 30 ≤ ES,ES ′ ≤ 60. Thus, the second

condition for the optimal region is met by the same interval like the first condition with

threshold ερopt = 5 · 10−5. Therefore, we have ESopt = {ES | 30 ≤ ES ≤ 60} and conclude

that the maximum possible accuracy of RDMFT calculations is already reached for ES = 30

and it is lower than for HFbasis.

Figure S1: Differences in the ground-state density ∆ρES,ES′(x) for RDMFT calculations of
the He atom with ES ′ = 80 (left) and ES ′ = 60 (right.) ρES=20(x) deviates similarly for
both reference points, but for ESref = 80, we see a systematic (instead of random) ∆ρES(x)
for 30 ≤ ES ≤ 60. The deviations merely drop under 10−4, except for ES = 70, which is
very close to the reference. When we instead use ES ′ = 60, the calculations for ES = 30 to
ES = 60 only deviate of the order of 10−5 and the deviations have a random character.

The strong decrease in accuracy of RDMFT in comparison to HFbasis suggests that the

occupation number minimization adds a significant error to the entire calculation. The cur-
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rent implementation uses a Broyden–Fletcher–Goldfarb–Shanno algorithm9 that describes

the region around the minimum by a second order Taylor expansion and approximates the

corresponding coefficient matrix (Hessian) at every iteration step by a combination of the

gradients of the current and the previous iterations, which makes the routine numerically

very efficient. It is very difficult to estimate the exact error that is introduced by the method,

because of the strong non-linear character of the minimization (especially the interdepen-

dence between the φi and ni optimizations.) For a thorough understanding of this issue, one

needs to implement and test different numerical solvers. However, for the purposes of this

paper, we consider the current accuracy as sufficient.

3.2 Basis-set convergence of dRDMFT and comparison to RDMFT

For the ES-series of dRDMFT, we need to deal with the combination of the inaccuracies

introduced by the ni-minimization, explained in the last section and the additional errors

due to extra large basis sets that contain many redundant degrees of freedom, that we found

for dHF before (Sec. 2.) We know already that a large photon frequency is advantageous in

terms of the latter. So let us choose ω = 5.0 to make this error as small as possible.

As expected, it is much harder to define a convergence region in the way we did before

for electronic RDMFT. We find the lowest energy at ES = 50, which deviates from ES = 40

and ES = 60 by |EES=40/60−EES=50| > 10−5. So we cannot find a region, where the energy

is converged better than 10−5. Nevertheless, if we accept an accuracy of ∆EES < 5 · 10−5

as sufficient, we find a region as large as 20 ≤ ES ≤ 100 that satisfies the criterion. A

look in the density deviations reveals that we can slightly tighten this region and exclude

ES = 20, such that we have deviations ∆ρES,50 ≈ 10−4 for all 30 ≤ ES ≤ 100. We found

similar values also for other examples and we can conclude that we lose about one order of

magnitude of accuracy for dRDMFT in comparison to RDMFT. Careful fine-tuning of the

numerical parameters could improve this, but the current accuracy suffices for our purposes.

9A standard routine from the GSL-library. For details, see https://www.gnu.org/software/gsl/doc/

html/multimin.html.
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Finally, we present the consistency check between RDMFT and dRDMFT in the λ = 0

limit. We find |ERDMFT − EdRDMFT | ≈ 10−5 and maxx |ρRDMFT (x)− ρdRDMFT (x)| ≈ 10−4,

which means that the deviations between the levels of theory are of the same order as the

maximal accuracy that dRDMFT provides. We conclude that both theories are consistent.

4 Protocol for the convergence of a dHF/dRDMFT

calculation

We conclude this supporting information with a step-by-step guide for the proper usage of

the dressed orbital implementation in Octopus. All the calculations, presented in the main

part of this paper were performed according to this protocol

1. Box length Lx and spacing dx convergence for the purely electronic part of the system

on the level of IP and electronic HF and for the uncoupled photonic system on the

level of IP.

• Test the deviations in energy ∆ELx < εELx and density ∆ρLx < ερLx , as explained

in Sec. 1. We chose εELx = 10−8 and ερLx = 10−5 to exclude any numerical

artefacts. However, as the dHF and dRDMFT calculations do typically not reach

such precisions, one can relax these criteria in general.

• For the dx-series, test only the deviations in energy ∆Edx < εEdx due to the larger

density errors. We chose εEdx = 10−8, but like for the box length, this criterion

can be relaxed.

2. Basis size convergence for the HFbasis routine with the purely electronic part of the

system.

• Perform an ES-series and test the deviations in energy ∆EES,ESref < εEES and in

density ∆ρES,ESref < ερES as explained in Sec. 2.2. Here, we were typically able

S19



to reach εEES = 10−8 and ερES = 10−4.10 Again, these criteria can be relaxed.

• Compare the converged HFbasis and the electronic HF results in energy and density

and make sure that both are consistent on their level of accuracy.

3. Basis size convergence of the dressed theory that is wanted (dHF or dRDMFT) in the

no-coupling (λ = 0) limit

• Perform an ES-series like for HFbasis. Note that one needs to expect considerably

larger basis sets for the same level of convergence (see Sec. 2.3.2 for details.)

• Check consistency of the electronic sub-part of the system with HFbasis as men-

tioned in Sec. 2.3.2. If this check fails drastically, this is very probably due to the

violation of the extra exchange symmetry in the photonic coordinates (see Sec.

The “fermionization” of matter-photon systems in the main text.)

4. The convergence study is finished with another basis-set convergence for λ > 0. Typ-

ically, we also performed another small box length series with the converged basis set

to make sure that the coupling does not increase the size of the system crucially such

that boundary effects could influence the results.

5 The bosonic symmetry of the photon wave function

In this appendix we go into a little more detail and show how the mode-representation, which

makes the bosonic symmetry explicit, arises and introduce in this setting the usual bosonic

density matrices.S4 Instead of starting with the displacement representation we start with

the definition of the single-particle Hilbert space and its Hamiltonian. We choose the single-

particle Hilbert space H1 to consist of M orthogonal states |α〉. These states are defined by

the eigenstates of the Laplacian with fixed boundary conditions and geometry and correspond

to the Fourier modes of the electromagentic field.S5,S6 This real-space perspective is a natural

10Note that in Sec. 2.2, we wrote instead ∆ρES,ESref
≈ 10−5 because some values were slightly larger

than 10−5. Thus, εEES
= 10−4 for sure is satisfied.
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choice if one either wants to connect to quantum mechanics and deduce the Maxwell field

from gauge independence of the electronic wave function,S5 or when deducing the theory

in analogy to the Dirac equation.S7 It is this analogy of Maxwell’s equations as a single-

photon wave function with spin 1 that makes the appearance of a bosonic symmetry most

explicit when quantizing the theory.S8 We note, however, that in general the concept of a

photon wave function can become highly non-trivial.S9 Since we work directly in the dipole

approximation we do not go through all the steps of the usual quantization procedure of

QED but from the start assume that we have chosen a few of these modes |α〉 (with a

certain frequency and polarization) in Coulomb gauge.S6 The single-particle Hamiltonian in

this representation is then given by

ĥ′ph =
M∑
α=1

ωα |α〉 〈α| .

Since a total shift of energy does not change the physics and for later reference, we can

equivalently use ĥph =
∑M

α=1

(
ωα + 1

2

)
|α〉 〈α|. Therefore, the energy of a single-photon

wave function |φ〉 =
∑M

α=1 φ(α) |α〉 (corresponding to the classical Maxwell field in Coulomb

gaugeS8) is given by

E[φ] =
M∑

α,β=1

φ∗(β) 〈β|ĥph|α〉︸ ︷︷ ︸
=ĥph(β,α)

φ(α) =
∑
α,β

ĥph(β, α)γb(α, β) =
∑
α

(
ωα +

1

2

)
γb(α, α)︸ ︷︷ ︸
|φ(α)|2

.

Here we have introduced the single-particle photonic 1RDM γb(α, β) = φ∗(β)φ(α). We can

then extend the single-particle space and introduce photonic many-body spaces HNb which

are the span of all symmetric tensor products of single-particle states of the formS4,S10

|α1, ..., αNb〉 =
1√
Nb!

∑
℘

|℘(α1)〉 ... |℘(αNb)〉 ,

where ℘ goes over all permutations of α1, ..., αNb . This construction is completely analogous

to the typical construction of the fermionic many-body space with the only difference having
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minus sings in front of odd permutations. Such a many-body basis is not normalized for

bosons, as states can be occupied with more than one particle. Thus, the normalization

factor occurs in the corresponding resolution of identity, i.e. 1 = 1
Nb!

∑M
α1,...,αNb=1 |α1, ..., αNb〉

〈α1, ..., αNb|. This approach is explained in great detail in Ref. S11. An Nb-particle Hamilto-

nian is then given by a sum of individual single-particle Hamiltonians (interactions among the

photons will only come about due to the coupling with the electrons.) Introducing for a gen-

eral Nb photon state |φ̃〉 = 1√
Nb!

∑M
α1,...,αNb=1 φ̃(α1, ..., αNb) |α1, ..., αNb〉 with φ̃(α1, ..., αNb) =

1√
Nb!
〈α1, ..., αNb |φ̃〉 the corresponding 1RDM according to Eq. (6) as γb(α, β) = Nb

∑
α2,...,αNb

φ̃∗(β, α2, ..., αNb) φ̃(α, α2, ..., αNb), the energy of that state is given by

E[φ̃] =
M∑

α,β=1

ĥph(β, α)γb(α, β) =
M∑
α=1

(
ωα +

1

2

)
γb(α, α).

Such a state can be constructed, for instance, as a permanent of Nb single-photon states

φ(α). Note further that the 1RDM of an Nb photon state obeys Nb =
∑

α γb(α, α).

Finally, since we want to have a simplified form of a field theory without fixed number of

photons, we make a last step and represent the problem on a Hilbert space with indetermined

number of particles, i.e., a Fock space. By defining the vacuum state |0〉, which spans the

one-dimensional zero-photon space, the Fock space is defined by a direct sum of Nb-photon

spaces F =
⊕∞

Nb=0HNb . Introducing the ladder operators between the different photon-

number sectors of F byS4

â+
α |α1, ..., αNb〉 = |α1, ..., αNb , α〉

âα |α1, ..., αNb〉 =

Nb∑
k=1

δαk,α |α1, ..., αk−1, αk+1, ..., αNb〉

with the usual commutation relations, we can lift the single-particle Hamiltonian to the full

Fock space and arrive at Eq. (3). The Fock space 1RDM for a general Fock space wave
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function |Φ〉 can then be expressed as

γb(α, β) = 〈Φ|â+
β âαΦ〉 ,

and
∑M

α=1 γb(α, α) = Nb now corresponds to the average number of photons. And finally,

since we know that Eq. (3) is equivalent to Ĥph =
∑M

α=1

(
−1

2
∂2

∂p2α
+ ω2

α

2
p2
α

)
, we also see that

the Fock space F is isomorphic to L2(RM), which closes our small detour.
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