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Abstract
On short (15-year) to mid-term (30-year) time-scales how the Earth’s surface temperature evolves
can be dominated by internal variability as demonstrated by the global-warming pause or ‘hiatus’.
In this study, we use six single model initial-condition large ensembles (SMILEs) and the Coupled
Model Intercomparison Project 5 (CMIP5) to visualise the role of internal variability in controlling
possible observable surface temperature trends in the short-term and mid-term projections from
2019 onwards. We confirm that in the short-term, surface temperature trend projections are
dominated by internal variability, with little influence of structural model differences or warming
pathway. Additionally we demonstrate that this result is independent of the model-dependent
estimate of the magnitude of internal variability. Indeed, and perhaps counter intuitively, in all
models a lack of warming, or even a cooling trend could be observed at all individual points on the
globe, even under the largest greenhouse gas emissions. The near-equivalence of all six SMILEs and
CMIP5 demonstrates the robustness of this result to the choice of models used. On the mid-term
time-scale, we confirm that structural model differences and scenario uncertainties play a larger
role in controlling surface temperature trend projections than they did on the shorter time-scale.
In addition we show that whether internal variability still dominates, or whether model
uncertainties and internal variability are a similar magnitude, depends on the estimate of internal
variability, which differs between the SMILEs. Finally we show that even out to thirty years large
parts of the globe (or most of the globe in MPI-GE and CMIP5) could still experience no-warming
due to internal variability.

1. Introduction

Short-term trends in climate indices, such as global-
mean surface temperature are significantly influ-
enced by internal variability (e.g. Hawkins and Sutton
2009, Marotzke and Forster 2015). This means that
although greenhouse gas emissions are ever increas-
ing, we may observe a global cooling trend over the
coming decade, as demonstrated by the recent global
warming slowdown or hiatus. Conversely, we could
also observe a decade of accelerated warming that
overshoots what we would expect due to the current
emissions (Meehl et al 2013). In this paper we visually
demonstrate the role of internal variability in the tem-
peratures that will be observed at each point on the

globe in the coming decades and confirm the domin-
ance of internal variability in the short-term trends.
To do this we use a combination of six single model
initial-condition large ensembles (SMILEs) and the
Coupled Model Intercomparison Project 5 (CMIP5)
archive to investigate the range of projected tem-
perature trends from 2019 onwards. Unlike previous
studies, before the availability of many SMILEs, we
are able to additionally demonstrate the effect of the
uncertainty in the magnitude of internal variability
itself on our results.

Internal variability, or chaotic variability of the
climate system (Hasselmann 1976) is a difficult
concept to communicate (Deser et al 2012a). It is
often explained in terms of the “Butterfly Effect”,
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where a small change in the present can result in a
much larger change in the future state. It is also a dif-
ficult concept to study due to the short, and spatially
inconsistent observations. Indeed, to truly study the
observed internal variability of Earth’s surface tem-
perature one must have long observational records
under many different climate conditions, so as to be
able to sample the internal variability.

Practically, internal variability can be quanti-
fied and studied using climate models, with SMILEs
effective tools to quantify the role of small perturb-
ations in changing the short and long-term traject-
ory of the climate system. Individual SMILEs have
been used in previous studies to investigate the role
of internal variability in driving surface temperature
projections, mainly on 35-60 year time-scales (Deser
et al 2012b, Kay et al 2015, Deser et al 2016, Bengtsson
and Hodges 2018), with few studies investigating the
shorter time-scales (e.g. Marotzke 2019).

To date only one study, which focuses on North
America, has investigated 60-year surface temperat-
ure trends from multiple SMILEs (Deser et al 2020).
Importantly this study has demonstrated that the
internal variability of these trends differs between
SMILEs (Deser et al 2020). Indeed both Hawkins
and Sutton (2009) and Kumar and Ganguly (2017)
demonstrated that model differences dominate tem-
perature trends on longer time-scales, with internal
variability dominating on shorter time-scales. As such
usingmany SMILEs is key to identifying uncertainties
in both the magnitude of internal variability and the
forced response due to model differences.

It is also unclear how the rate of anthropogenic
greenhouse gas emissions will evolve over the coming
decades. The last generation of climate models were
run with four different possible futures; RCP2.6, 4.5,
6.0, and 8.5. Scientists have suggested that these scen-
arios cover the likely range of the possible greenhouse
gas emissions for the coming century, however the
true pathway will depend on the policy changes made
by governments. This pathway is known to be import-
ant for long-term projections, however, it has been
found to be less important on short-term time-scales
(Hawkins and Sutton 2009). Indeed when changes
in RCP2.6 were compared to a RCP4.5 scenario in
the Max Planck Institute Grand Ensemble (MPI-
GE) a large overlap in global temperatures in the
short-term projections was found (Marotzke 2019).
When extreme temperatures were considered in the
Community Earth System Model Large Ensemble
(CESM-LE) under RCP4.5 and RCP8.5 scenarios,
statistically significant differences were found only
in 2050 (Lehner et al 2016, Tebaldi and Wehner
2018), again demonstrating that pathway differ-
ences can be less important on short to mid-term
time-scales.

Many previous studies focus on detecting the cli-
mate signal and attributing it to anthropogenic green-
house gas emissions (e.g. Stone et al 2007). Other

studies use large ensembles to identify when a signal
will emerge from the noise or internal variability. This
is known as the time of emergence (e.g. Hawkins and
Sutton 2012, Tebaldi and Friedlingstein 2013). In this
studywe turn this concept around to look not at when
a signal will emerge or when it can be detected and
attributed, but how the simulated internal variability
can influence observed climate in the coming decades.
This has importance for policymakers in determining
the range of possible futures that could be observed.

The purpose of this paper is threefold. We will:

(a) Visually demonstrate the role of internal variab-
ility in driving the observed climate.

(b) Illustrate the maximum and minimum trends
possible at each point of the globe on both
short-term (15-year) and mid-term (30-year)
time-scales.

(c) Investigate the point-wise relative importance
of internal variability, scenario uncertainties
and model differences in controlling temper-
ature trends on both the short and mid-term
time-scales. Here, we include a new estimate
of how model differences in the quantification
of internal variability affect the relative import-
ance of these quantities.

2. Models

In this study we use 6 SMILEs to investigate
internal variability of surface temperature trends
(skin temperature; ts). The internal variability and
model mean biases are shown in Supplementary
figure 1 (stacks.iop.org/ERL/15/054014/mmedia).
The SMILEs are all CMIP5 class models run with
CMIP5 forcing:

• The Max Planck institute Grand Ensemble (MPI-
GE) (Maher et al 2019). This model has 100
ensemble members available for RCP2.6, RCP4.5
and RCP8.5 scenarios.

• The Canadian Earth System Model Large
Ensembles (CanESM2-LE) (Kirchmeier-Young
et al 2017). This model has 50 ensemble mem-
bers available for RCP8.5.

• The Large Ensemble Community Project (CESM-
LE) (Kay et al 2015). This model has 40 members
available for RCP8.5.

• The Commonwealth Scientific and Industrial
Research Organisation Large Ensemble (CSIRO-
Mk3.6-LE). (Jeffrey et al 2012). This model has 30
members for RCP8.5.

• Geophysical Fluid Dynamics Laboratory Earth
System Model Large Ensemble (GFDL-ESM2M-
LE). (Rodgers et al 2015). This model has 30mem-
bers for RCP8.5.

• Geophysical Fluid Dynamics Laboratory Large
Ensemble (GFDL-CM3-LE) (Sun et al 2018). This
model has 20 members for RCP8.5.
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Figure 1. Short-term (2019-2034) trend in surface temperature. Shown for the maximum (top row) and minimum (second row)
global mean surface temperature trend, and the mean trend (bottom row). All trends are shown as a mean of the six SMILEs (left)
and CMIP5 mean (right). All panels use the RCP8.5 scenario.

We additionally use all available ensemble mem-
bers from the CMIP5 archive (Supplementary
table 1), which have the field surface temperature
(in CMIP; ts) available. We do not apply any model
weighting. We do not select for ensemble members
that exist for all scenarios (RCP2.6, RCP4.5 and
RCP8.5 in this study), which means that different
models and different numbers of ensemble members
may be used for each scenario.

3. Short-term projections (2019-2034)

Themean short-term trend at each point on the globe
(2019-2034) and the trend at each grid-point when
the global surface temperature trend is both max-
imum and minimum is demonstrated for the mean
of the SMILEs and CMIP5 in figure 1. We find that
the SMILEs broadly replicate the CMIP5 response,
despite consisting of only 6 models. This highlights

the large role of internal variability in driving the
CMIP5 spread on short time-scales. The main dif-
ferences between CMIP5 and the SMILEs are found
at high-latitudes when the global surface temperat-
ure trend is minimum. In this case CMIP5 shows
larger cooling than the SMILEs, suggesting that in
this case the SMILEs do not quite cover the range of
possible model results at high-latitudes. When the
global surface temperature trend is minimum, both
CMIP5 and the SMILEs show a negative Interdecadal
Pacific Oscillation (IPO) like pattern (figure 1; top
row, individual models in Supplementary figures
2 and 3), while when the global surface temper-
ature trend is maximum all maps show a positive
IPO-like pattern (figure 1; middle row, individual
models in Supplementary figures 2 and 3). This res-
ult agrees well with Meehl et al (2013) and Maher
et al (2014), who demonstrated for CCSM4 and
CMIP5, respectively, that decades of cooling resemble
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Figure 2. Percentage role of internal variability (top row), model uncertainty (middle row) and scenario uncertainty (bottom
row). Shown for the short-term (left; 2019-2034) and mid-term (right; 2019-2049) trends. Internal variability is calculated as the
standard deviation of a single SMILE, then averaged across SMILEs. Model uncertainty is calculated as the standard deviation
across the six SMILE means. Scenario uncertainty is calculated as the standard deviation across the MPI-GE means from the three
scenarios.

a negative IPO-like pattern and decades of accelerated
warming tend to resemble a positive IPO-like
pattern.

We next investigate the relative importance of
internal variability, model structural differences and
scenario uncertainty by completing a decomposition
similar to Hawkins and Sutton (2009) (figure 2; left
column). Figure 2 demonstrates that internal variab-
ility dominates the short-term trend in temperature at
all grid points, confirming the results of Hawkins and
Sutton (2009), with both a newer generation of mod-
els and at a higher resolution. The near equivalence
of each of the SMILEs and CMIP5 (figure 1; Sup-
plementary figure 2 and 3) confirms the robustness
of this result and demonstrates that the conclusions
drawn from the SMILEs can be extended to the lar-
ger CMIP5 archive. Building on this confirmation,
when we investigate the sensitivity of this result to the

uncertainty in internal variability itself, we find that
the dominance of internal variability in comparison
to the other two uncertainties holds if we sample for
either themaximumorminimumvariability estimate
from the SMILEs (figure 3). This emphasises the
robustness of the dominance of internal variability on
the short-term time-scale.

We also visualise what the largest and smallest
trends at any given location on the globe could be
(note that these trends are very unlikely to occur
at the same time across the globe), and determine
the likelihood of warming occurring on a short-term
time-scale at each location (figure 4). We present
these results using MPI-GE (RCP2.6 and RCP8.5)
and CESM-LE (RCP8.5), as these models repres-
ent the spread of all of the SMILEs with RCP2.6
and RCP8.5 covering the scenario spread (individual
model results; Supplementary figures 4 and 5). We
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Figure 3. Percentage role of minimum and maximum possible internal variability (top row), model uncertainty (middle row) and
scenario uncertainty (bottom row) for the short-term (2019-2034; left two panels) and mid-term (2019-2049; right two panels)
trends. Internal variability is calculated as the minimum or maximum standard deviation from the SMILEs. Model uncertainty is
calculated as the standard deviation across the six SMILE means. Scenario uncertainty is calculated as the standard deviation
across the MPI-GE means from the three scenarios.

Figure 4. Point-wise maximum (top row) and minimum (middle row) short-term (2019-2034) trend in surface temperature, and
percentage of ensemble members with an increasing surface temperature trend (bottom row). Shown for MPI-GE, RCP2.6
scenario (left) and RCP8.5 scenario (middle), and CESM-LE, RCP8.5 scenario (right). Note that these trends are very unlikely to
occur at the same time across the globe.
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Figure 5.Mean mid-term (2019-2049) surface temperature trend (top row). Point-wise maximum (second row) and minimum
(third row) mid-term trend in surface temperature, and percentage of ensemble members with a increasing surface temperature
trend (bottom row). Shown for MPI-GE, RCP2.6 scenario (left) and RCP8.5 scenario (middle), and CESM-LE, RCP8.5 scenario
(right). Note that these trends are very unlikely to occur at the same time across the globe.

confirm, again that on short time-scales it is not
model differences or scenario uncertainties that dom-
inate what temperature trend might be observed
at each location. What will be observed in the
coming 15 years is largely determined by internal
variability. Counter-intuitively to what one might
expect given ever increasing greenhouse gas emis-
sions, figure 4 visually demonstrates that at all loc-
ations a cooling trend (or lack of warming trend)
could be observed due to the large internal variabil-
ity on short-term time-scales. We do, however, show

that all locations, besides the Southern Ocean and
the North Atlantic Ocean are much more likely to
warm, than cool, demonstrating the role of increas-
ing greenhouse gases (the forced response). This like-
lihood increases with increasing greenhouse gas emis-
sions as demonstrated by the differences between the
two MPI-GE scenarios and the two CMIP5 scenarios
(Supplementary figure 5). Again we emphasise the
robustness of these results given the near-identical
results found in all individual SMILEs and CMIP5
(Supplementary figures 4 and 5).
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4. Mid-term projections (2019-2049)

Additionally we investigate the role of internal
variability in mid-term (2019-2049) projections of
surface temperature. Even though greenhouse gas
emissions have increased compared to the short-term
time-scale, we still find that many individual loca-
tions could experience cooling or a lack of warm-
ing on this mid-term time-scale due to internal
variability (figure 5). This result is more model
dependent than for the short-term, with MPI-GE
showing a larger potential cooling trend than CESM-
LE. In MPI-GE almost all land locations could
see a lack of warming trend, even under RCP8.5,
while this is only true for approximately half of
the land points in CESM-LE. In general the min-
imum, mean and maximum trends are larger in
CESM-LE, CanESM2-LE and GFDL-CM3-LE, than
in MPI-GE and GFDL-ESM2M-LE, with CSIRO-
Mk3.6-LE somewhere in between (Supplementary
figures 6–9). This is also reflected in the likelihood
of warming at each location, with the models exhib-
iting larger trends, showing a greater likelihood of
warming (figure 5 bottom row). This demonstrates
that the rate of warming in different models does
make a difference to the mid-term projections. Scen-
ario differences can also be visually seen as more
important on the mid-term timescale than the short-
term timescale, with the warmer scenarios show-
ing larger maximum, minimum and mean trends,
and a greater likelihood of warming (Supplementary
figure 9).

When we quantify the relative roles of the dif-
ferent uncertainties for the mid-term time-scale we
find that internal variability is still the largest driver
of what we will observe (figure 2; right column),
however model uncertainties and scenario uncertain-
ties play a larger role than on the short-term time-
scale, with model uncertainties the larger of the two,
again confirming the general results of Hawkins and
Sutton (2009). This result is, however, dependent
on the magnitude of internal variability simulated
by the different SMILEs, something that can only
be demonstrated using the large archive of SMILEs
now available. Here, we find that a low estimate of
internal variability would mean that model uncer-
tainty becomes the main driver, while a high estimate
shows internal variability as the clear driver (figure 3).
This shows that model differences in internal variab-
ility do indeed matter for making projections on the
mid-term time-scale.

More recently it has been emphasised that internal
variability in SMILEs is not the same (Deser et al
2020). These differences could be due to the fact
that not all models have the same internal variab-
ility (e.g. Sutton et al 2015) or due to the fact that
internal variability itself may change under external
forcing (e.gMaher et al 2015). This has not previously

been considered in the Hawkins and Sutton-type
breakdown.

5. Summary and conclusions

This study is the first to investigate point-wise
projected temperature trends across the entire globe
in both multiple (six) SMILEs and CMIP5. Hawkins
and Sutton (2009) originally demonstrated the chan-
ging role of internal variability, model differences and
scenario uncertainty on different time-scales. How-
ever, they were unable to account for the fact that
internal variability in all models is not the same
and that this variability itself may change in the
future (e.g. Sutton et al 2015,Maher et al 2019, Deser
et al 2020). Here, we confirm the results of Hawkins
and Sutton (2009) with a more recent generation of
climate models and at a higher spatial resolution,
usingmultiple SMILEs andCMIP5 in agreementwith
Lehner et al (in review 2020). We build on these res-
ults, by demonstrating their remarkable robustness
and additionally investigating uncertainties due to the
differences in internal variability between different
models.

We first confirm that on short-term time-
scales (15-years) temperature trends are domin-
ated by internal variability. This result is shown
to be remarkably robust. There is near-equivalence
between the six individual SMILEs and CMIP5,
demonstrating that the SMILE results hold when
using all available climate models. We find that
internal variability dominates projections even when
we take the smallest estimate of internal variability
available from the SMILEs.

Second we confirm that on mid-term time-scales
(30-years) internal variability is still important for
driving temperature trends, however in this case both
structural model differences and scenario (or path-
way) uncertainty also matter, with model differences
having the greater importance of the two. Due to
the availability of multiple SMILEs we additionally
show that the relative importance of internal vari-
ability and model differences is dependent on the
models representation of internal variability. Model
uncertainty is found to be the main driver of mid-
term trends when we take a low estimate of internal
variability, while with a high estimate, internal vari-
ability instead dominates. This result highlights the
importance of using multiple SMILEs, with a range
of estimates of internal variability in future studies
investigating mid-term time-scales and underscores
the importance of evaluating not just a model’s mean
state or forced trend, but also its internal variability.

Due to the difficulty in communicating what
internal variability is and its importance in driving
the climate that we observe, we have created maps
to visualise both the maximum and minimum global
and point-wise future trends that could occur on
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both the short andmid-term time-scales. These maps
clearly demonstrate the cooling that could occur
under increasing greenhouse gases, caused by internal
variability. In the short-term all points on the globe
could individually experience cooling or nowarming,
although in a probabilistic sense they are much more
likely to warm.While every grid point can still cool in
the future, Sippel et al (2020) have recently demon-
strated that climate change is still detectable in the
pattern of global temperature anomalies at any given
day. We find that even on the mid-term time-scale a
large proportion of the globe could by chance still not
experience a warming trend due to internal variabil-
ity, although this result is somewhat model depend-
ent. These maps provide an easy way to visualise the
importance of internal variability on both short and
mid-term time-scales, and can be used as a tool for
understanding what we observe as we observe it over
the coming decades.
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