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Abstract

Prediction in language has traditionally been studied us-
ing simple designs in which neural responses to ex-
pected and unexpected words are compared in a cate-
gorical fashion. However, these designs have been con-
tested as being ‘prediction encouraging’, potentially ex-
aggerating the importance of prediction in language un-
derstanding. A few recent studies have begun to address
these worries by using model-based approaches to probe
the effects of linguistic predictability in naturalistic stim-
uli (e.g. continuous narrative). However, these studies
so far only looked at very local forms of prediction, using
models that take no more than the prior two words into
account when computing a word’s predictability. Here,
we extend this approach using a state-of-the-art neural
language model that can take roughly 500 times longer
linguistic contexts into account. Predictability estimates
from the neural network offer a much better fit to EEG data
from subjects listening to naturalistic narrative than sim-
pler models, and reveal strong surprise responses akin to
the P200 and N400. These results show that predictabil-
ity effects in language are not a side-effect of simple de-
signs, and demonstrate the practical use of recent ad-
vances in Al for the cognitive neuroscience of language.
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Introduction

In a typical conversation, listeners perceive (or produce) about
3 words per second. It is often assumed that prediction of-
fers a powerful way to achieve such rapid processing of often-
ambiguous linguistic stimuli. Indeed, the widespread use of
language models — models computing the probability of up-
coming words given the previous words — in speech recog-
nition systems demonstrates the in-principle effectiveness of
prediction in language processing (Jurafsky & Martin, 2014).
Linguistic predictability has been shown to modulate fixa-
tion durations and neural response strengths, suggesting that
the brain may also use a predictive strategy. This dovetails
with more general ideas about predictive processing (Friston,
2005; de Lange, Heilbron, & Kok, 2018; Heilbron & Chait,
2017) and has lead to predictive interpretations of classical
phenomena like the N400 (Rabovsky, Hansen, & McClelland,
2018; Kuperberg & Jaeger, 2016). However, most neural stud-
ies on prediction in language used hand-crafted stimulus sets
containing many highly expected and unexpected sentence
endings — often with tightly controlled (predictable) stimulus
timing to allow for ERP averaging. These designs have been
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criticised as ‘prediction encouraging’ (Huettig & Mani, 2016),
potentially distorting the importance of prediction in language.
A few recent studies used techniques from computational
linguistics combined with regression-based deconvolution to
estimate predictability effects on neural responses to natural-
istic, continuous speech. However, these pioneering studies
probed very local forms of prediction by quantifying word pre-
dictability based on only the first few phonemes (Brodbeck,
Hong, & Simon, 2018) or the prior two words (Willems, Frank,
Nijhof, Hagoort, & van den Bosch, 2016; Armeni, Willems,
van den Bosch, & Schoffelen, 2019). Recently, the field of
artificial intelligence has seen major improvements in neural
language models that predict the probability of an upcoming
word based on a variable-length and (potentially) arbitrarily-
long prior context. In particular, self-attentional architectures
(Vaswani et al., 2017) like GPT-2 can keep track of contexts
of up to a thousand words long, significantly improving the
state of the art in long-distance dependency language mod-
elling tasks like LAMBADA and enabling the model to gener-
ate coherent texts of hundreds of words (Radford et al., 2019).
Critically, these pre-trained models can achieve state-of-the
art results on a wide variety of tasks and corpora without any
fine-tuning. This stands in sharp contrast to earlier (ngram
or recurrent) language models which were trained on specific
tasks or linguistic registers (e.g. fiction vs news). As such,
deep self-attentional language models do not just coherently
keep track of long-distance dependencies, but also exhibit an
unparalleled degree of flexibility, making them arguably the
closest approximation of a ‘universal model of English’ so far.
Here we use a state-of-the art pre-trained neural language
model (GPT-2 M) to generate word-by-word predictability es-
timates of a famous work of fiction, and then regress those
predictability estimates against publicly-available EEG data of
participants listening to a recording of that same work.

Methods
Stimuli, data acquisition and preprocessing

We used publicly available EEG data of 19 native English
speakers listening to Hemingway’s The Old Man and the Sea.
Participants listened to 20 runs of 180s long, amounting to
the first hour of the book (11,289 words, ~3 words/s). Par-
ticipants were instructed to maintain fixation and minimise all
motor activities but were otherwise not engaged in any task.
The dataset contains raw 128-channel EEG data downsam-
pled to 128 Hz, plus on/offset times of every content word.
The raw data was visually inspected to identify bad channels,
decomposed using ICA to remove blinks, after which the re-
jected channels were interpolated using MNE-python. For all
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Figure 1: a) GPT-2 architecture. For more info on individual operations, see Vaswani et al. (2017). (Note that this panel is

a re-rendered version of the original GPT schematic, with subc

omponents re-arranged to match the architecture of GPT-2.) b)

Analysis pipeline overview. ¢) Obtained series of 3 coefficients (TRF) of lexical surprise (from GPT-2), averaged over participants.

analyses, we focussed on the slow dynamics by filtering the
z-scored, cleaned data between 0.5 and 8 Hz using a bidirec-
tional FIR. This was done to keep the analysis close to earlier
papers using the same data to study how EEG tracks acous-
tic and linguistic content of speech; but note that changing the
filter parameters does not qualitatively change the results.
For more information on the dataset and prior analyses, see
(Broderick, Anderson, Di Liberto, Crosse, & Lalor, 2018).

Computational models

Word-by-word unpredictability was quantified via lexical sur-
prise — or —log (p(word|context)) — estimated by GPT-2 and
by a trigram language model. We will describe each in turn.

GPT-2 GPT-2 is a decoder-only variant of the Transformer
(Vaswani et al., 2017). In the network, input tokens U =
(#i—g, ..., ui—1 ) are passed through a token embedding matrix
W, after which a position embedding W), is added to obtain the
first hidden layer: hop = UW, + W,,. Activities are then passed
through a stack of transformer blocks, consisting of a multi-
headed self attention layer, a position-wise feedforward layer,
and layer normalisation (Fig 1a). This is repeated n times for
each block b, after which (log)probabilities are obtained from
a (log)softmax over the transposed token embedding of 4,,:

(1)
()

hyp, = transformer_block (hp—1) Vi € [1,n]

P(u;]U) = softmax (h,,WJ)

We used the largest public version of GPT-2 (345M param-
eter, released May 9)' which has a number of layers (blocks)

"For more details on GPT-2, see https://openai.com/blog/better-
language-models/ or Radford et al (2019)
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of n =24 and a context length of k = 1024. Note that k refers
to the number of Byte-Pair Encoded tokens. A token can be
either a word or (for less frequent words) a word-part, or punc-
tuation. How many words actually fit into a context window of
length k therefore depends on the text. We ran predictions on
a run-by-run basis — each containing about 600 words, imply-
ing that in each run the entire preceding context was taken into
account to compute a token’s probability. For words spanning
multiple tokens, word probabilities were simply the joint proba-
bility of the tokens obtained via the chain rule. The model was
implemented in PyTorch with the Huggingface BERT module?.

Trigram As a comparison, we implemented an n-gram lan-
guage model. N-grams also compute p(w;|wi_g, ..., wi—1) but
are simpler as they are based on counts. Here we used a tri-
gram (k = 2) — which was perhaps the most widely used lan-
guage model before the recent rise of neural alternatives.® To
deal with sparsity we used modified Knesner-Ney, the best-
performing smoothing technique (Jurafsky & Martin, 2014).
The trigram was implemented in NLTK and trained on its
Gutenberg corpus, chosen to closely approximate the test set.

Non-predictive controls We included two non-predictive
and potentially confounding variables: first, frequency which
we quantified as unigram surprise (—log p(w)) which was
based on a word’s lemma count in the CommonCrawl corpus,
obtained via spaCy. Second, following Broderick et al. (2018),
we computed the semantic dissimilarity for each content word:
dissim(w;) = 1 — corr(GloVe(w;), 1 YL GloVe(c;)), where

2see https://github.com/huggingface/pytorch-pretrained-BERT
SWhile k = 2 might seem needlessly restrictive, training ngrams
beyond k = 2 becomes exponentially difficult due to sparsity issues.
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Figure 2: a) Grand averaged TRFs for trigram surprise,GTP-2 surprise and semantic dissimilarity for three channels of interest.
At each time point, the GPT-2 TRF was compared to both the trigram and semantic dissimilarity TRF with a 2-tailed paired t-test;
black bars indicating that both tests were significant at p < 0.01, FDR-corrected. Error bars indicate the between-subject SEM.
b) Topographic maps of grand averaged TRFs for surprise, computed by GPT-2 (top) and the trigram language model (bottom).

(c1,...,cn) are the content words preceding a word in the
same or — if w; is the first content word of the sentence —
the previous sentence, and GloVe(w) is the embedding. As
shown by Broderick et al. (2018) this variable covaries with
an N400-like component. However, it only captures how se-
mantically dissimilar a word is from the preceding words (rep-
resented as an ‘averaged bag of words’), and not how unex-
pected a word is in its context, making it an interesting com-
parison, especially for predictive interpretations of the N400.

Time resolved regression

Variables were regressed against EEG data using time-
resolved regression. Briefly, this involves temporally expand-
ing a design matrix such that each predictor column C be-
comes a series of columns over a range of lags C,’I’:;* =
(Cipins -+ Cimae)- For each predictor one thus estimates a se-
ries of weights BZZ;‘"" (Fig 1c¢) which, under some assumptions,
corresponds to the isolated ERP that would have been ob-
tained in an ERP paradigm. In all analyses, word onset was
used as time-expanded intercept and other variables as co-
variates. All regressors were standardised and coefficients
were estimated with Ridge regression. Regularisation was set
at o = 1000 since this lead to the highest R? in a leave-one-
run-out CV procedure (Fig. 3) Analyses were performed using
custom code adapted from MNE’s linear_regression module.

Results

We first inspected our main regressor of interest: the sur-
prise values computed by GPT-2, estimated with a regression
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model that included frequency (unigram surprise) and seman-
tic dissimilarity as nuisance covariates. As can be seen in
Figure 1C, the obtained TRF revealed a clear frontal posi-
tive response around 200 ms and a central/posterior nega-
tive peak at 400 ms after word onset. These peaks indicate
that words that were more surprising to the network tended to
evoke stronger positive responses at frontal channels at 200
ms and stronger negative potentials at central/posterior chan-
nels 400 ms after word onset. Note that while Figure 1C only
shows the TRF obtained using one regularisation parameter,
we found the same qualitative pattern for any alpha we tested.

We then compared this to an alternative regression model,
in which the surprise regressor was based on the trigram
model, but that was otherwise identical. Although the TRFs
exhibited the same negativity at 400 ms, it was a lot weaker
overall, as can be seen from Figure 2B. One anomalous fea-
ture is that the TRF is not at 0 at word onset. We suspect this
is because 1) we only had onset times for content words, and
not for function words typically preceding content words; and
2) for neighbouring words the log-probabilities from the trigram
model were correlated (p = 0.24) but those from GPT-2 were
not (p = —0.002), explaining why only the trigram TRF dis-
plays a baseline effect. Further analyses incorporating onset
times for all words should correct this issue.

The negative surprise response at 400ms revealed by both
the trigram and GPT is similar to the effect of semantic dis-
similarity reported by Broderick et al. (2018) using the same
dataset. We therefore also looked at the TRF of semantic
dissimilarity, for simplicity focussing on the three main chan-
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Figure 3: Predictive performance of three regression models.
We compared a baseline regression model with only unigram
surprise and semantic dissimilarity as covariates (dotted line)
to two other models that also included surprise values, either
obtained from the trigram model (grey) or from GPT-2 (red).

nels of interest analysed by Broderick et al. (2018). At each
time-point we compared the GPT-2 TRF to both the trigram
and semantic dissimilarity TRF with a 2-tailed paired t-test to
find time-points where both tests where significant at oo = 0.01
(FDR-corrected). As visible in Figure 2b, we observed time-
points in all three channels where the GPT-2 TRF was signif-
icantly more positive or negative than both other TRFs, con-
firming that the surprise values from the neural network covary
more strongly with EEG responses than the other models.
Finally, to make sure that the difference in coefficients were
not related to overfitting or some other estimation problem,
we compared the predictive performance of the GPT-2 regres-
sion model to the alterntives using a leave-one-run-out cross-
validation procedure. As can be seen in Figure 3, this re-
vealed that cross-validated R? of the trigram regression model
was not significantly higher than that of a baseline model
that included only the two nuisance covariates (paired t-test,
t19 = —0.25, p = 0.8); by contrast, R? of the GPT-2 regression
model was significantly higher than both the trigram regres-
sion model (paired t-test, 19 = 5.38, p = 4.1 x 107*) and the
baseline model (paired t-test, 119 = 3.10, p = 6.2 x 1073).

Discussion and conclusion

We have shown that word-by-word (un)predictability estimates
obtained with a state-of-the-art self-attentional neural lan-
guage model systematically covary with evoked brain re-
sponses to a naturalistic, continuous narrative, measured with
EEG. When this relationship was plotted over time, we ob-
served a frontal positive response at 200 ms, and a central
negative response at 400 ms, akin to the N400. Unpredictabil-
ity estimates from the neural network were a much better pre-
dictor of EEG responses than those obtained from a trigram
that was specifically trained on works of fiction, and than a
non-predictive model of semantic incongruence, that simply
computed the dissimilarity between a word and its context.
These results bear strong similarities to earlier work
demonstrating a relationship between the N400 and seman-
tic expectancy. However, we observed the responses in
participants passively listening to naturalistic stimuli, without
many highly expected or unexpected sentence endings typ-
ically used in the stimulus sets of traditional ERP studies.
This suggests that linguistic predictability effects are not just a
by-product of simple (prediction encouraging) designs, under-
scoring the importance of prediction in language processing.
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Future analyses will aim at modelling all words, looking at
different frequency bands, disentangling different forms of lin-
guistic prediction (e.g. syntactic vs semantic), and trying to
replicate these results in different, independent datasets.
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