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Computation in neuronal assemblies is putatively reflected in the excitatory
and inhibitory cycles of activation distributed throughout the brain.
In speech and language processing, coordination of these cycles resulting
in phase synchronization has been argued to reflect the integration of
information on different timescales (e.g. segmenting acoustics signals to
phonemic and syllabic representations; (Giraud and Poeppel 2012
Nat. Neurosci. 15, 511 (doi:10.1038/nn.3063)). A natural extension of this
claim is that phase synchronization functions similarly to support the infer-
ence of more abstract higher-level linguistic structures (Martin 2016 Front.
Psychol. 7, 120; Martin and Doumas 2017 PLoS Biol. 15, e2000663 (doi:10.
1371/journal.pbio.2000663); Martin and Doumas. 2019 Curr. Opin. Behav.
Sci. 29, 77–83 (doi:10.1016/j.cobeha.2019.04.008)). Hale et al. (Hale et al.
2018 Finding syntax in human encephalography with beam search. arXiv
1806.04127 (http://arxiv.org/abs/1806.04127)) showed that syntactically
driven parsing decisions predict electroencephalography (EEG) responses
in the time domain; here we ask whether phase synchronization in the
form of either inter-trial phrase coherence or cross-frequency coupling
(CFC) between high-frequency (i.e. gamma) bursts and lower-
frequency carrier signals (i.e. delta, theta), changes as the linguistic structures
of compositional meaning (viz., bracket completions, as denoted by the onset
of words that complete phrases) accrue. We use a naturalistic story-listening
EEG dataset from Hale et al. to assess the relationship between linguistic
structure and phase alignment. We observe increased phase synchronization
as a function of phrase counts in the delta, theta, and gamma bands,
especially for function words. A more complex pattern emerged for CFC
as phrase count changed, possibly related to the lack of a one-to-one map-
ping between ‘size’ of linguistic structure and frequency band—an
assumption that is tacit in recent frameworks. These results emphasize the
important role that phase synchronization, desynchronization, and thus,
inhibition, play in the construction of compositional meaning by distributed
neural networks in the brain.

This article is part of the theme issue ‘Towards mechanistic models of
meaning composition’.
1. Introduction
A comprehensive account of linguistic compositionality must face up to
difficult questions, namely, how such a powerfully expressive formal property
can be achieved in a neurophysiological system like the human brain. Language
is the canonical externally measurable human perception-action system that
exhibits compositionality [1]. From a theorist’s-eye view, a principal challenge
is to consider how language comprehension might occur from speech or sign,
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while both obeying the constraints of neurophysiology and
staying faithful to the boundary conditions of language
[2–4]. To meet this challenge, the brain must transform the
sensory correlates of speech and sign into structured mean-
ing. Gathering evidence for how the latter might occur is
the focus of this paper. Specifically, we test here the hypo-
thesis that the phase of neural oscillations, as measured
with electroencephalography (EEG), is systematically related
to composition in natural language, operationalized in terms
of the number of phrases completed at a particular word.

The neurobiology of language has been concerned not
only with the identification of network(s) of brain regions
implicated in language processing, but also with inferring the
computations that might take place across those networks
even while the exact nature of those computations remains
ill-defined [5].1 Whatever computations are being carried out
by the language network(s), it is likely that the coordination
of activity across distributed populations plays a key role in
bringing linguistic knowledge to bear on incoming speech- or
sign-related sensory processing.2 As such, our focus in this
paper is to contribute to an emerging constellation of results
that tries to understand how oscillatory patterns that reflect
such coordinated neural activity might relate to the hypo-
thesized states of the structured linguistic representations
undergoing composition.

Here we examine the relationship between the oscillatory
dynamics of induced neural activity and incremental compo-
sition, or parsing decisions [8–12]. While the majority of the
literature has focused on the relationship between amplitude
(in the evoked signal) or power (in the induced signal) and
psycholinguistic manipulations; we turn our attention to the
relationship between phase and a linguistic structure annotation
that reflects compositionality on a word-by-word basis.

There are compelling reasons to believe that the phase of
activation across distributed neural populations, not just
amplitude or power, is critical for neural information coding,
transmission and generation. Some of this evidence comes
from physiology [7,13–18], but also some comes from the few
formalized implementations of symbol-processing systems
in artificial neural networks. See, for example, the notion of
phase set in the model Learning and Inference with Schemas and
Analogies (LISA; [19,20]) and Discovery of Relations by Analogy
(DORA; [3,4,21–23]). In the latter model, for example, phase
synchronization, desynchronization and yoked inhibitory
‘interneurons’ are mechanistically important for carrying and
controlling binding information while also maintaining
independence (see also [24]).

One way to explore the role of phase in the construction of
higher-level linguistic representations from speech is to look at
phase coherence; this measure tracks how consistent the phase
of an oscillation is across repeated trials. Tracking this allows us
to test whether phase in a particular frequency band becomes
more or less consistent formore complex compositional linguis-
tic representations. Another way is to examine cross-frequency
coupling (CFC; [25,26]). Measures of CFC track the alignment
or synchronization between oscillations at different frequencies.
Neuronal assemblies putatively carry and exchange infor-
mation through phase synchronization and CFC [7,13].
In models of cortical speech processing, for example, CFC
links acoustic signals to phonemic and syllabic representations,
which occur on different timescales [27–29].

We adapt from those models the leading idea that
when more representations are inferred, phase between
assemblies will need to bemore consistent, in terms of synchro-
nization and desynchronization, in order to coordinate across
populations. We do not directly address the lively debate of
whether ongoing neural entrainment is causal to perception or
neural computation (see endnote 2), a debate which is also
related to the controversy about whether neural oscillations
are the product of ‘true’ oscillators or, instead, reflect punctate
local field potentials (LFPs). The literature connecting neural
computations at this level of detail to linguistic composition is
in its infancy, but we do not know any current tenable models
for which linguistic structures3 arise from any kind of true oscil-
lators. Rather, Martin [2] describes a hybrid architecture based
on an ongoing speech-envelope-driven oscillation that is trans-
formed or biased in state space by punctate LFPs. These LFPs
reflect perceptual inferences of abstract linguistic structures
(viz., phonetic features, phonemes, words, morphemes, syntac-
tic structures, compositional units) cued by the oscillator. We
note that the details of such a model are underspecified and
the data in support of aspects of the theory are only beginning
to emerge (e.g. [31,32]).

Against this nascent theoretical background, we address
the basic question of how phase relationships at different
timescales relate to compositional structure. We quantify
the contribution of structure to compositional meaning as a
function of the number of phrases that are completed at a
given word. We ask how phase synchronization within and
between high-frequency (i.e. gamma) bursts and lower-
frequency carrier signals (i.e. delta, theta) correlates with
compositional structure quantified in this way.
2. Methods
(a) Stimulus and electroencephalography data
We use a publicly available set of 33 EEG datasets collected while
adult participants passively listen to an audiobook of the first
chapter of Alice in Wonderland [12,33].4 This stimulus is
12.4 min long and comprises 2129 words. Participants listened
to the story over in-ear headphones in an enclosed booth at a
loudness of 45 dB above their hearing threshold. The EEG data
were recorded at 500 Hz using 61 actively amplified electrodes
with impedances kept below 25 kOhm referenced to the left
mastoid electrode.

The data are processed using the FIELDTRIP toolbox in MATLAB

in two stages. In the first stage, artefacts are identified and
removed using previously published procedures [33]: The raw
EEG data are (i) re-referenced to the average of two mastoid elec-
trodes, (ii) high-pass filtered at 0.1 Hz, and (iii) divided into
epochs spanning −300 to 1000 ms around each word onset.
Ocular artefacts are isolated and removed using independent
component analysis and remaining epochs or channels
containing artefacts are removed based on visual inspection
(an average of 13.5% of epochs are marked as containing
artefacts across participants; see [33] for further details on data
pre-processing).

In a second stage of data processing, we extract band-specific
power and phase information for each word in the stimulus. First,
each participant’s raw data is re-loaded from disc, re-referenced to
the average of two mastoid electrodes, high-pass filtered at
0.1 Hz, and previously identified ocular independent components
are subtracted. Second, data from missing or artefactual electrodes
are reconstructed using surface-spline interpolation. Third, the con-
tinuous data are band-pass filtered in three bands: delta (1–4 Hz),
theta (4–8 Hz) and gamma (30–50 Hz) (4th order, butterworth)
and then converted to their respective analytic signal using the



Table 1. Number of function words and content words within each
syntactic phrase bin in the audiobook stimulus.
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Figure 1. Histograms of word length from the audiobook stimulus, divided into content words and function words. Annotations indicate predominant neural
rhythms that have been associated with linguistic representations of different sizes (e.g. [27]).
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Hilbert transformation. Finally, the instantaneous power and phase
as measured at the vertex electrode (Cz) is extracted for each band
and for each word at the time-point corresponding to that word’s
onset, excluding epochs marked as artefactual. We focus on word
onset because our main focus includes relatively low frequencies
(e.g. 1–4 Hz) where temporal resolution is the same order of
magnitude as the rate of word presentation (2–4 words s−1).

(b) Compositional annotation
Following previous work, we quantify composition by counting
the number of phrases completed by a given word in the story
([9,34]; see also [8,11]). Phrase completion was derived from a
bottom-up tree traversal that enumerates mothers before daughters
based on the Penn Treebank annotation scheme [35]. As described
in Brennan et al. [34], the story-book textwas annotated by the Bikel
implementation of the Collins parser trained on the Penn Treebank
and the resulting phrase-structure annotation was manually
reviewed. This annotation yields an estimate for each word in the
story of the number of phrases completed by that word. Phase syn-
chronicity must be assessed across sets of epochs. Accordingly, in
the last annotation step we create three bins: words that complete
a single phrase, words that complete two phrases, and words
that complete three ormore phrases. For each bin,we derive several
phase synchronicity measures as described below.

Table 1 shows the count of words for each of the three phrase
bins, divided into content words and function words. Several
reasons motivate this division. Function words and content
words probably affect online processing in distinct ways. This
is evidenced, in part, by differential effects of unexpectedness
that have been observed in both the eye-tracking record (e.g.
[36]), and in EEG [33]. Separating these two word categories is
further motivated in the present study by the different average
length between categories. As shown in figure 1, function
words average about 0.2 s long in our stimulus; thus a single
function word occupies about one theta cycle (4–8 Hz). By con-
trast, longer content words average about 0.4 s in length, which
is about one delta cycle (1–4 Hz). As previous work postulates
a systematic link between the size of a linguistic unit and
associated oscillatory responses (e.g. [27,28]), we test the predic-
tion that these two word classes may have distinct effects on the
theta- and delta-band responses, respectively.

(c) Phase synchronicity and cross-frequency coupling
We assess phase synchronicitywithin and between three frequency
bands: delta (1–4 Hz), theta (4–8 Hz) and gamma (30–50 Hz).

Within-band phase synchronicity is assessed using inter-trial
phase clustering (ITPC a.k.a. phase-locking value or phase coher-
ence). This value quantifies the uniformity of phases across trials.
This value is higher when different epochs show similar phases,
as is the case, for example, if the phase is reset at each word.
If phase synchronicity plays a role in syntactic composition, we
expect increased ITPCwhenwords are completing larger numbers
of phrases. This follows if phase synchronization mediates the pro-
cessing of additional compositional structure, as predicted by the
perceptual inference account of Martin [2]. ITPC is calculated for
a given electrode and time-point following Cohen [37, p. 244]:

ITPC ¼ n�1
Xn

r¼1

eif fr

�����

�����,

where eif fr provides the polar representation of phase angle f at
frequency f for epoch r.

We assess CFC using two commonly applied measures:
power–power correlation (P-P) and phase-amplitude coupling
(PAC). P-P is simply the Pearson’s correlation between power
at two frequency bands. We compute this pairwise measure for
each combination of frequency bins in our analysis: delta–theta,
delta–gamma and theta–gamma. PAC quantifies the degree to
which the phase of a lower-frequency oscillation affects the
amplitude of a higher-frequency oscillation. We calculate this
following Cohen [37, p. 413]:

PAC ¼ n�1
Xn

r¼1

areifr

�����

�����,

where ar is the power at word onset for epoch r at the higher of two
frequency bands, and eifr is the polar representation of phase for
the lower of two frequency bands. Similar to ITPC, if increased
composition is mediated by CFC, for example, between delta
and gamma bands (cf. [2]), we expect to find higher P-P and/or
PAC values at words that complete a larger number of phrases.

These two measures of CFC have been linked with distinct
neurobiological mechanisms [25,38,39]. P-P coupling is more
likely to be detectable if there is a direct relationship between acti-
vation in one cell assemblywith another, for example, if power in a
network tracking the speech envelope is amplified by power in a
network involved in structural inference as the sentence unfolds.
PAC, on the other hand, requires that the phase of one network
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is affected by the power of the other. This latter might hold, for
example, when a lower-frequency signal is used to synchronize
(perhaps by resetting) a higher-frequency cell assembly.

Several of these measures, especially ITPC and PAC, are sensi-
tive to the number of epochs entered into the calculation. As this
value varies across different phrase bins for our naturalistic stimu-
lus (table 1), we normalize each measure to allow for comparison.
To do this, we compute a ‘null’ variant of eachmeasure by shifting
the phrase bin assigned to each word by 100 epochs. This removes
any potential relationship between phrase count and any of the
phase measures. We then recompute the target measure within
each phrase bin. These offer an estimate of what we would
expect of each measure under the null hypothesis, taking into
account the different numbers of epochs per phrase bin and
word category. Finally, we compute a z-score by subtracting the
mean null value from the target values and dividing the result
by the standard deviation of the null variant.

We carry out two additional analyses to complement these
assessments of phase. First, we quantify power across phrase
bins by simply averaging the single-trial power estimates within
each frequency band. Second, test the relationship between
phrase completion and the evoked signal using single-trial
regression in the following way (e.g. [33,40–42]). Starting with
the same artefact-cleaned epochs, described above, the data are
low-pass filtered at 40 Hz and then subject to a linear regression,
by participant, testing the scalp voltage at each electrode and
time-point (0–1 s after word onset) as a function of the number
of completed phrases as well as a set of control variables: sound
power at word onset, epoch order and word at the target word,
the previous word, and following word frequency (HAL
corpus, log transformed). A control regression is also carried out
per participant in which the rows of the design matrix are ran-
domly permuted. Single-subject regression coefficients are
pooled at the group level using the cluster-based permutation
test ofMaris &Oostenveld [43]. This test returns clusters of electro-
des and time-points where the test coefficient for phrase
completions is reliably different than the matched term from the
control regression. Following Pallier et al. [8], we conduct this
analysis on the count of phrase completions and also the log10
transformation of that count.

(d) Statistical analysis
The z-scored ITPC, P-P, PAC and power values are statistically
analysed using Bayesian mixed-effects linear regression,
implemented in the STAN programming language using the
brms package in R. For each measure, we model the z-scored
value as a function of the number of phrases (one, two or
three+) frequency band (delta, theta or gamma; or frequency
band-pair for CFC), and word category (content, function) and
all higher-order interactions between these terms. We include a
full by-participants random-effects structure that includes each
of these terms and their interactions.

Our research question concerns whether phase relationships
change systematically as a function of syntactic composition. But,
the direction or magnitude of such changes are underspecified
by current theories. We statistically test for any such relationship
in two stages. First, we conduct a joint test for a main effect or
any higher-order interaction involving the number of phrases.
This is done with x2 tests implemented in the emmeans package.
Given the exploratory nature of these tests, we set α = 0.01. To
unpack any higher-order interactions, we conduct post-hoc pair-
wise tests for the effect of phrases within each frequency band
and word category. These are evaluated with Bayes factors
(BF), calculated with the bayestestR package, that indicate the
relative likelihood of the data under the target hypothesis—
that there will be difference in phase synchronization—compared
to the point null hypothesis that there is no such difference.
We focus our attention on differences with a BF > 3 (‘positive’
to ‘strong’ evidence for the target hypothesis; [44]). The esti-
mated effect size and BF value for every pairwise comparison is
given in appendix A.
3. Results
(a) Power
We observe little difference in power as a function of syntactic
phrases (figure 2a). The statistical analysis suggests a reliable
interaction between word category and phrases (x22 ¼ 5:96,
p = 0.003) and also a three-way interaction between those
terms and frequency (x24 ¼ 3:98, p = 0.003). But, post-hoc tests
for power differences as a function of phrases within each fre-
quency band did not show any pairwise differences with
positive or strong support (all BF < 2). Accordingly, we do
not see substantial statistical support for a relationship between
phrase count and power in these three frequency bands. The
full set of pairwise comparisons is given in appendix A, table 2.

(b) Inter-trial phase clustering
ITPC increases with more phrases for function words but
decreases for content words (figure 2b). This pattern is the
strongest in the delta band and is supported by interactions
between phrases and word category (x22 ¼ 39:3, p < 0.001)
and phrases and frequency band (x24 ¼ 3:4, p = 0.009). Pairwise
comparisons indicate strong support for a difference in ITPC
for function words in the delta band (one-versus-three+
phrases, BF = 4513.2; two-versus-three+ phrases, BF = 47.0)
and in the theta band (one-versus-three+ phrases, BF =
5836.6; two-versus-three+ phrases, BF = 295.96). Support is
also found for differences for content words, where more
phrases lead to lower ITPC (delta band, one-versus-two BF =
14.4; one-versus-three+ BF = 72.7; gamma band, one-versus-
three+ BF = 10.01). The full set of pairwise comparisons is
given in appendix A, table 3.

Polar histograms are shown in figure 2c that pool single-trial
phase angles from all participants. These appear to show rela-
tive uniformity in the distribution of phase angles even for
higher numbers of syntactic phrases. This appearance of uni-
formity seems to be at odds with the differences in ITPC
indicated in figure 2b, but this summary at the group level
masks individual differences. The electronic supplementary
material, figure S1 shows that numerous individual participants
show increased phase consistancy for more phrases, but the
peak phase differs across participants, which in turn leads to
the more uniform distribution of phases at the group level.

(c) Power–power coupling
There is a small trend for increased correlation between
power from delta to gamma as the number of syntactic
phrases increases for content words (figure 2d ). But, this
trend is not statistically reliable and there is no evidence for
reliable pairwise differences in P-P coupling. The full set of
pairwise comparisons is given in appendix A, table 4.

(d) Phase-amplitude coupling
We observe a decrease in PAC at higher phrase counts for con-
tent words, as shown on the right-hand side in figure 2e. This
decrease contrasts with an increase in PAC for function words
with higher phrase counts. These observations are supported
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by a statistical interaction between phrases and word category
(x22 ¼ 27:8, p < 0.001) and a three-way interaction between
phrases, word category and frequency (x24 ¼ 6:4, p < 0.001).
Post-hoc pairwise tests for content words strongly support a
decrease in PAC as a function of phrase between delta and
gamma (one-versus-three + BF = 7355.2; one-versus-two BF =
1702.8). For function words, also between delta and gamma,
there is positive support for increased PAC with higher
phrase counts (one-versus-three + BF = 62.2); this also obtained
between theta and gamma (function words one-versus-three +
BF = 46.1; two-versus-three + BF = 23.9). The full set of pairwise
comparisons is given in appendix A, table 5.
(e) Evoked amplitude
We complement our primary analyses of phase synchroniza-
tion with an analysis of how the evoked signal changes as a
function of phrase count. While we needed to bin the single-
trial data for the phase-based analyses above, no such
constraint holds for the evoked signal. Accordingly, we com-
pute a regression between phrase counts and the evoked
signal across all electrodes and time-points.

Two reliable effects are observed: a late positivity associ-
ated with more phrases found primarily on central electrodes
(figure 2, top), and an earlier negativity associated with
more phrases found primarily on central-anterior electrodes
(figure 2, bottom). Aside from slight changes in topography
and precise timing, these results are the same for both content
words and for function words. A similar pattern is found
when phrase count is log transformed, following Pallier
et al. [8] (electronic supplementary material, figure S2).
4. Discussion
Using EEG data from a naturalistic story-listening experiment,
we explore the relationship between a measure of linguistic
composition and phase synchronicity across three bands that
have been implicated in sentence-level processing: delta,
theta and gamma. Broadly, we see evidence for a systematic
relationship between changes in phase synchronicity and
CFC that vary as a function of the number of phrases com-
pleted by a word. But, the observed patterns neither follow a
simple ‘more composition equals more synchronization’
account, nor is there a tight alignment between the ‘size’ of a
particular linguistic unit and the frequency bands showing
changes in synchronicity (e.g. between content words and
slower delta waves). We unpack these observations below.
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Evidence for increased phase synchronicity with increased
composition was observed for function words in several
measures: ITPC in the delta band (with similar trends in
theta and gamma), and also between delta and gamma
bands as measured with PAC. But, both ITPC and PAC
showed decreases in the same bands when considering con-
tent words. These patterns are not consistent with a simple
word-by-word mapping between phrase completion and
phase synchronization. Concerning content words, there is a
wealth of psycholinguistic data which suggests that different
mechanisms might be engaged at the end of large phrases
and sentences than during other moments in structure build-
ing and sentence processing (e.g. [45–47]), and that these
differences affect event-related brain potentials (e.g. [48]).
Some of these theories link phrase boundaries with increased
discourse-level integration, which may be producing the
difference we observed here because content words that com-
plete three or more phrases include a number of clause and
sentence final items. A decrease in ITPC at sentence bound-
aries could also be consistent with the notion that activity
builds up as a phrase or sentence is structured but does not
persist in the same way across phrase and sentence bound-
aries, as reported for power in the gamma band in Nelson
et al. [11]. More broadly, various sentence-related phenomena
occur more often at clause boundaries. These include syntactic
and semantic operations associatedwith identifying and inter-
preting phrases, but also other interpretive processes like the
resolution of referential dependencies. Further, our annota-
tions do not allow us to distinguish the perceptual cues that
might correlate with these syntactic and semantic properties,
such as acceleration or deceleration of speech rate and segment
lengthening [49,50].

The effects for phase synchronization indicated by changes
in ITPC and PAC do not pattern, in a simple way, with
the evoked response for phrase completion. Our control
evoked analysis identified two distinct components that corre-
lated with phrases: an early anterior negativity and a later
central positivity. These components were observed on
both content words and function words (figure 3), and were
also qualitatively similar when treating phrase counts on a
linear or log scale (see the electronic supplementary material,
figure S2). Both of these evoked components align well with
prior literature on event-related potentials associated with
syntactic processing (e.g. the LAN, or the P600; see [51] for
an overview). These complexities point towards a need in
future work to develop annotations that tease apart these
distinct phenomena.

One question that follows from the literature is whether
the mechanism by which the pattern of ITPC arises is phase
resetting as linguistic structure is being inferred or built [52].
Our answer from the present analysis is: not obviously.
In figure 2c, we see a uniformity across bands that does not
provide evidence for coordination around any one phase
angle. It is still logically possible that phase resetting is occur-
ring, but our results indicate that if it is, then participants must
unsystematically vary in the phase angle expressing the
change that the ITPC results reflect. Indeed, such individual
differences in preferred phase is at least tentatively
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supported by per-participant phase-angle distributions
shown in the electronic supplementary material, figure S1.
No account of sentence processing makes any statements
about individual variation in neural oscillations. However,
the finding that that phase consistency across trials within par-
ticipants does not extend to consistency across individuals is
largely in line with an analysis-by-synthesis view. In an archi-
tecture like that of Martin [2], there may be differences across
individuals in the time course of perceptual inference or the
invocation of a higher-level structure via the LFP. Such an
account aligns with observations linking, for example, behav-
ioural outcomes with differences in the peak alpha rhythm
between individuals (e.g. [53]). Further, measurable differ-
ences between individuals could be driven by differences in
brain morphology alone.

Another question from the literature concerns links
between the size of linguistic units (phonemes, syllables,
phrases) and the oscillatory responses that are associated
with cognitive operations over those units [27–29]. There
are at least two ways such a link, if it were to extend to
higher levels of syntactic composition, might be born out in
our analysis. First, we might expect to find that function
words, which are shorter and thus occur primarily on the
same timescale as theta oscillations, might associate primarily
with theta activity. Likewise, content words, which occur
more on the same timescale as delta oscillations, might thus
associate primarily with delta activity. We do not see evi-
dence for any such links between word category and
specific frequency bands: both function words and content
words show the most statistically reliable effects in the
delta band, with trends observed in all three bands that we
investigate here.

A related prediction that we examine is whether words
that complete larger phrases are associated with activity at
lower, longer timescale oscillations. This prediction comes
from observations like those of Nelson et al. [11], already
discussed above, where the build-up of high-gamma band
activity is observed within phrases but not between phrases
of different lengths. Our data are consistent with such a
hypothesis in a limited way: there is indeed increased low-
frequency delta phase synchronicity at function words that
complete a larger number of phrases (see the left-hand side
of figure 2b). However, our results again do not paint a
simple picture: there is also increased phase synchronicity
in the theta band for such words; and, more strikingly,
increased coupling between the gamma and delta bands as
a function of phrase count (figure 2e). This pattern of
increased synchronicity does not align with a simplistic map-
ping between the size of a linguistic unit and oscillatory
neural responses associated with that unit.

Another way to frame these observations is that the pro-
blem the brain faces when it must create linguistic structure
from speech or sign is much more complex than the discrete
frequency band analyses that has sometimes been assumed
in the field (and, indeed, adopted in this study). Syllables
might occur at a timescale that corresponds to the theta-
rate, but syllables can be morphemes or words, and can cue
complex relations in information and discourse structure;
words certainly span theta and delta (e.g. in our dataset,
the correlation between delta for content words and theta
for function words), as do phrases. At some times, a phrase
is a single word lasting a few hundred milliseconds, and at
other times, it is tens of words, and lasts a few seconds.
At the extremes, entire clauses may be elided with silence.
The take-away message is that ‘size’ or length in time, and
ergo frequency, are not directly predictive of linguistic struc-
ture and content. Consequently, it may not be fruitful to
probe for functional data patterns which assume that fixed,
structure-related computations can be associated with a
given band or coupling pattern.

We are far from the first to point out that we have only
a limited understanding of linking hypothesis between
our measurements and the compositional processes we are
trying to do inference about (e.g. [5,54]). Recognizing this
challenge, we attempt to meet a low standard of rhetoric:
we assert that, minimally, phase synchronization reflects
some flow of information between distributed populations
functioning as neuronal assemblies. This minimalistic
hypothesis, from a cue-integration and perceptual inference
perspective [2], is that as more linguistic representations
and structures are inferred or transformed from sensory sig-
nals, the more synchronization (at certain time points) and
desynchronization (at other time points) occurs. The ITPC
and PAC patterns we observe are consistent with the syn-
chronization of excitatory and inhibitory cycles across
assemblies, synchronization which increases with the unfold-
ing structure and concomitant accrual of compositional
meaning. Larger and more distributed networks oscillate at
lower frequencies [17], this is consistent with an interpret-
ation where the formation of higher-level linguistic
structures as indicated by phrase count draws upon distri-
buted networks operating in phase. Speculatively, phase
synchronization may reflect the transfer of information
between ‘reader-integrator’ ensembles [13] that detect or
infer [2,13] linguistic structure and meaning.
5. Conclusion
Our results indicate that neural oscillations show changes
in phase synchronization within and between frequency
bands in response to linguistic compositional demands.
These results highlight the importance of neuronal syn-
chronization and desynchronization to levels of linguistic
structure. Current theoretical models hold that desyn-
chronization and inhibition are key in the function of
computational models that learn and represent a predicate
calculus, (see DORA; [3,4,21,22]), and for maintaining vari-
able-value independence (see [24] for discussion). In this
way, our results suggest the importance of inhibition and
cortical interneurons in controlling the flow of informa-
tion in across assemblies to derive compositional structure
and meaning.
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Appendix A
See tables 2–5.
Table 2. Pairwise estimates for differences in power as a function of phrase count along with 95% credibility intervals and Bayes factors.

word category frequency band comparison estimate lower bound upper bound Bayes factor

functional delta one–two −0.038 −0.094 0.021 0.022

one–three+ 0.088 0.001 0.159 0.142

two–three+ 0.126 0.050 0.207 0.798

theta one–two 0.012 −0.045 0.070 0.006

one–three+ 0.031 −0.063 0.124 0.011

two–three+ 0.021 −0.082 0.112 0.006

gamma one–two 0.028 −0.043 0.103 0.009

one–three+ 0.003 −0.116 0.117 0.012

two–three+ −0.025 −0.152 0.096 0.009

lexical delta one–two −0.003 −0.065 0.056 0.006

one–three+ −0.130 −0.205 −0.054 1.467

two–three+ −0.127 −0.203 −0.054 0.972

theta one–two −0.015 −0.077 0.045 0.004

one–three+ −0.073 −0.156 0.010 0.024

two–three+ −0.057 −0.146 0.027 0.009

gamma one–two 0.117 0.036 0.189 0.397

one–three+ 0.023 −0.075 0.134 0.007

two–three+ −0.095 −0.204 0.022 0.020

Table 3. Pairwise comparisons for differences in ITPC as a function of phrase count along with 95% credibility intervals and Bayes factors. (Bayes factors with
values greater than 3 are indicated in italics.)

word category frequency band comparison estimate lower bound upper bound Bayes factor

functional delta one–two −0.371 −0.877 0.129 0.209

one–three+ −1.577 −2.151 −1.056 4513.206

two–three+ −1.205 −1.805 −0.637 47.038

theta one–two −0.258 −0.761 0.295 0.090

one–three+ −1.680 −2.229 −1.102 5836.647

two–three+ −1.422 −2.017 −0.840 295.966

gamma one–two 0.119 −0.421 0.624 0.055

one–three+ −0.549 −1.149 −0.008 0.368

two–three+ −0.671 −1.260 −0.048 0.400

lexical delta one–two 0.987 0.500 1.545 14.448

one–three+ 1.146 0.606 1.736 72.657

two–three+ 0.146 −0.412 0.741 0.040

theta one–two −0.156 −0.744 0.405 0.041

one–three+ 0.307 −0.281 0.866 0.057

two–three+ 0.463 −0.148 1.115 0.076

gamma one–two 0.096 −0.426 0.672 0.038

one–three+ 1.000 0.446 1.595 10.010

two–three+ 0.904 0.296 1.547 1.218
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Table 4. Pairwise comparisons for differences in P-P as a function of phrase count along with 95% credibility intervals and Bayes factors.

word category frequency band comparison estimate lower bound upper bound Bayes factor

functional delta–gamma one–two 0.082 −0.359 0.506 0.077

one–three+ 0.343 −0.098 0.763 0.216

two–three+ 0.265 −0.203 0.687 0.084

delta–theta one–two 0.011 −0.442 0.458 0.045

one–three+ 0.501 0.062 0.969 0.532

two–three+ 0.489 −0.004 0.954 0.227

theta–gamma one–two −0.048 −0.479 0.421 0.044

one–three+ −0.011 −0.825 0.789 0.078

two–three+ 0.035 −0.812 0.803 0.050

lexical delta–gamma one–two −0.606 −1.096 −0.104 0.844

one–three+ −0.698 −1.158 −0.211 2.743

two–three+ −0.096 −0.613 0.391 0.031

delta–theta one–two −0.122 −0.640 0.386 0.033

one–three+ 0.100 −0.354 0.597 0.033

two–three+ 0.229 −0.368 0.756 0.032

theta–gamma one–two 0.213 −0.335 0.777 0.047

one–three+ −0.202 −0.801 0.444 0.046

two–three+ −0.411 −1.114 0.279 0.057

Table 5. Pairwise comparisons for differences in PAC as a function of phrase count along with 95% credibility intervals and Bayes factors. (Bayes factors with
values greater than 3 are indicated in italics.)

word category frequency band comparison estimate lower bound upper bound Bayes factor

functional delta–gamma one–two −0.426 −0.933 0.069 0.300

one–three+ −1.058 −1.532 −0.482 58.450

two–three+ −0.635 −1.204 −0.066 0.593

delta–theta one–two −0.219 −0.728 0.312 0.073

one–three+ −0.657 −1.149 −0.085 0.802

two–three+ −0.425 −0.969 0.168 0.102

theta–gamma one–two 0.013 −0.505 0.482 0.049

one–three+ −1.049 −1.555 −0.510 42.104

two–three+ −1.053 −1.628 −0.513 22.727

lexical delta–gamma one–two 1.435 0.944 1.968 1703.729

one–three+ 1.462 0.963 2.011 6501.473

two–three+ 0.022 −0.543 0.543 0.033

delta–theta one–two 0.245 −0.293 0.777 0.050

one–three+ 0.578 0.063 1.130 0.336

two–three+ 0.330 −0.219 0.925 0.043

theta–gamma one–two −0.287 −0.894 0.331 0.058

one–three+ 0.461 −0.046 1.032 0.141

two–three+ 0.752 0.113 1.385 0.398
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Endnotes
1However see Martin [2] for an argument that they must be based on,
composed of, or at least bounded by, summation and divisive
normalization, two operations neurons have been shown to do [6].
2Our study does not speak directly to the debate about whether
neural oscillations are causal or epiphenomenal to neural compu-
tation. However, implicit in the theoretical background for this
study (e.g. [2,4]) is the idea that cycles of excitation and inhibition/
refraction are what carry out the computations in question [7].
3Which, interestingly, further could be said to descend to below
phonemic and phonetic levels given recent results suggesting that
auditory cortex might represent a generative model of articulator
dynamics for constructing linguistic representations [30].
4Stimuli and data are available for download at: https://dx.doi.org/
10.7302/Z29C6VNH.
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