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Abstract:  

The problem of poor reproducibility of scientific findings has received much attention over 

recent years, in a variety of fields including psychology and neuroscience. The problem has 

been partly attributed to publication bias and unwanted practices such as p-hacking. Low 

statistical power in individual studies is also understood to be an important factor. In a recent 

multi-site collaborative study, we mapped brain anatomical left-right asymmetries for regional 

measures of surface area and cortical thickness, in 99 MRI datasets from around the world, for 

a total of over 17,000 participants. In the present study, we re-visited these hemispheric effects 

from the perspective of reproducibility. Within each dataset, we considered that an effect had 

been reproduced when it matched the meta-analytic effect from the 98 other datasets, in terms 

of effect direction and uncorrected significance at p<0.05. In this sense, the results within each 

dataset were viewed as coming from separate studies in an ‘ideal publishing environment’, i.e. 

free from selective reporting and p hacking. We found an average reproducibility rate per 

dataset, over all effects, of 63.2% (SD = 22.9%, min = 22.2%, max = 97.0%). As expected, 

reproducibility was higher for larger effects and in larger datasets. There is clearly substantial 

room to improve reproducibility in brain MRI research through increasing statistical power. 

These findings constitute an empirical illustration of reproducibility in the absence of 

publication bias or p hacking, when assessing realistic biological effects in heterogeneous 

neuroscience data, and given typically-used sample sizes. 

 

 

Keywords: Reproducibility; Publication bias; P-hacking; Team science; Multi-site 

collaboration 
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The issue of reproducibility has received considerable attention in a variety of fields 

including medicine (Prinz et al. 2011), psychology (Aarts et al. 2015; Klein et al. 2014) and 

neuroscience (Button et al. 2013). Poor reproducibility has been partly attributed to reporting 

bias and problematic practices such as selective reporting of outcomes (i.e. p-hacking) (Aarts 

et al. 2015; Baker 2016; Bakker et al. 2012; Ioannidis et al. 2014; Ioannidis 2005; Ioannidis 

2008; John et al. 2012; Simmons et al. 2011). This situation has resulted in multiple calls for 

more reproducible research (e.g., (Benjamin et al. 2018; Button et al. 2013; Klein et al. 2018a; 

Poldrack et al. 2017; Valentin Amrhein 2017)). For example, the Open Science Framework has 

been set up as a free and open source project management resource for researchers across the 

entire study cycle. In addition, the Transparency and Openness Promotion (TOP) Guidelines 

(Nosek et al. 2015) have been proposed to improve the quality and credibility of scientific 

literature. In neuroimaging studies, problems such as flexibility in data analysis have been 

widely discussed, and best practices have been proposed to ensure that neuroimaging studies 

can produce meaningful and reliable results (Poldrack et al. 2017). The reproducibility rate was 

not found to correlate with levels of experience and expertise of study authors, in a replication 

study of previous findings in psychology (Aarts et al. 2015), which suggests that some practices 

will not improve merely through training, and that other factors influence reproducibility within 

the current research convention.  

Among these factors, low statistical power is now well understood to contribute to the 

reproducibility problem (Button et al. 2013; Ioannidis 2005). The positive predictive value 

(PPV), i.e. the probability that a ‘positive’ research finding reflects a true effect, has been 

formulated as a function of the prior probability of the effect being real (R, the pre-study odds), 

the statistical power of the study (1−β; β is the type II error), and the level of statistical 

significance required (α; α is the type I error, e.g., 0.05 or 0.01): PPV = (1 − β)R⁄((1− β)R+α)) 

(Button et al. 2013; Ioannidis 2005). For example, it is evident that a research finding is more 

likely true than false (i.e., PPV > 50%) if (1− β)R > α. However, in many cases the true effect 

size is unknown a priori, and/or the pre-study odds are unknown. This problem is then further 

complicated by potentially selective reporting.  

The present study aimed to demonstrate reproducibility in a real-world setting, where a priori 

knowledge of the statistical power and pre-study odds was not necessary, and in the absence of 

selective reporting. We also aimed to show how reproducibility changes with the real effect 

size and sample size used, which together determine the statistical power. If we wanted to 

address this question with actual papers in the literature, an ideal publishing environment, free 

from selective reporting, would first need to be established. This seems impossible in the 

current era, because many journals and scientists are incentivized to report statistically 

significant results, while leaving non-significant findings unpublished (known as the file draw 

effect). Here we leveraged summary statistics from a study performed via a worldwide 

collaborative network, known as the Enhancing NeuroImaging Genetics through Meta-

Analysis (ENIGMA) consortium (Thompson et al. 2014a), to estimate reproducibility when 
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there is no reporting bias. Briefly, the ENIGMA consortium allows researchers worldwide to 

work together on the same questions in neuroscience, genetics, and psychiatry. Analysis plans 

and scripts are prepared by a central site before running any analysis, and then sent out to each 

separate site to run on their own dataset. Finally, outputs from every dataset are sent back to the 

central site and synthesized by the application of meta-analysis methodology. Thus, we can 

consider outputs from each dataset as being from an “ideal reporting environment”, free from 

reporting bias, or other potentially problematic practices such as p-hacking. If we assume the 

overall meta-effect size to represent the ‘true’ effect size, in this way we have access to a real-

world setting for examining reproducibility in the absence of selective reporting, which can 

provide a useful illustration of how consistently some realistic effects can be detected when 

surveying cohorts worldwide.  

     Here, we made use of summary statistics from the ENIGMA project on mapping cerebral 

cortical left-right asymmetry (Kong et al. 2018), which involved 99 datasets and a total 

of 17,141 participants worldwide (see Materials and Methods). We focused our analyses on 

hemispheric effects on cerebral cortical thickness and surface area measures. The human brain 

is subtly asymmetrical on the left-right axis, so that homologous regions in the two hemispheres 

can differ with respect to their cortical thickness and surface area (Kong et al. 2018). 

Specifically, we analyzed thickness and area measures for each of 34 brain regions based on 

the Desikan-Killany atlas from FreeSurfer, as well as entire hemisphere-level average thickness 

and total area (Fischl 2012), for a total of 70 left-right hemispheric effects. To simulate an ideal 

publishing environment, here we considered each asymmetry as one single research question 

(e.g., does the parahippocampal gyrus show left-right asymmetrical thickness, on average, in 

the human brain?). In other words, in the context of the present study of reproducibility, we 

effectively ran 70 research questions about asymmetry, each repeated 99 times in different 

datasets, but with different sample sizes and scanning equipment and parameters (although 

image processing with Freesurfer was harmonized across sites). These data allowed us to assess 

reproducibility in an “ideal publishing environment”, but also in a real-world context of dataset 

heterogeneity. We also examined how reproducibility changed in relation to effect sizes, and 

the sample sizes of individual datasets. Although our empirical illustration focused on the field 

of human brain MRI research, the implications are broadly applicable to many fields.  

 

Materials and Methods 

    Datasets. In this study, we used the publicly available statistical outputs of the ENIGMA 

cortical asymmetry project (http://conxz.net/neurohemi/) (Kong et al. 2018). These datasets 

comprised 17,141 healthy participants in total from 99 datasets, each of which showed different 

sex, age and handedness distributions, and were from diverse ethnic backgrounds. Participants 

were drawn from the general population or were healthy controls from clinical studies. Table 

S1 gives summary information for each dataset. All local institutional review boards permitted 

the use of extracted measures from the anonymized data.  
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Here, we focused the reproducibility analyses on the hemispheric effects on paired left-right 

measures of cortical thickness and surface area, for 34 brain regions based on the Desikan-

Killany atlas from FreeSurfer (Fischl 2012), as well as entire hemisphere-level average 

thickness and total surface area. See Kong et al., 2018 for details about the neuroimaging 

processing and quality control. Briefly, images were acquired using scanners of different field 

strengths (1.5T and 3T) and all images were analyzed using the automated and validate pipeline 

“recon-all” implemented in FreeSurfer (Fischl 2012), although different software versions were 

possible (version 5.0, 5.1, and 5.3) (Table S1). Together with the varying demographic 

composition as summarized above, these datasets illustrate the heterogeneity that is a feature of 

real-world neuroimaging data.  

For each dataset and paired left-right measure, paired t-tests were used to assess inter-

hemispheric differences, and Cohen’s d was calculated based on each paired t-test, to estimate 

the effect size. In the procedure, analysis plans and scripts were prepared by a central site and 

sent out to each dataset’s own site for running the analysis, and finally all outputs for every 

dataset were sent back to the central site. 

     

Estimation of the ‘True’ Effects.  Given a lack of consistency of previous brain asymmetry 

findings in the earlier literature, Kong et al. 2018 performed the largest ever study of this issue, 

based on at least an order of magnitude more participants than any previous study (Kong et al. 

2018). For each hemispheric effect on regional or total thickness or surface area, the outputs 

from each separate dataset were combined using inverse variance-weighted random-effect 

meta-analysis, with the R package metafor, version 1.9-9. A Cohen’s d effect size estimate of 

the population-level asymmetry was obtained for each hemispheric effect, for each paired left-

right measure (Kong et al. 2018). The Cohen’s d hemispheric effects derived from the meta-

analytic approach over 99 datasets can be taken as ‘true’ effects representing left-right 

differences in the average human brain, as measured through this image processing and analysis 

pipeline. Sixty-three of the hemispheric effects were significant at p ≤ 0.05 (uncorrected for 

multiple testing across regions) in the meta-analysis over 99 datasets, while seven of the effects 

were not significantly different from zero (p > 0.05) (Kong et al. 2018). 

 

Estimation of Reproducibility. For the present study, each effect within one dataset was 

compared in turn to the corresponding meta-analytic effect from the 98 other datasets, to avoid 

sample overlap. For an effect that was significant at p ≤ 0.05 in a given meta-analysis of 98 

datasets, then the effect in the remaining single dataset would need to be in the same left-right 

direction as in the meta-analysis, and also be nominally significant within the single dataset (p 

≤ 0.05), in order to be counted as reproduced in that dataset. For an effect that was non-

significant in the meta-analysis (p > 0.05), then the effect would also need to be non-significant 

(p > 0.05) in the single dataset, in order to be counted as reproduced in that dataset. As each 

hemispheric effect was considered as a separate question in this context, no correction for 
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multiple comparisons was applied (uncorrected p = 0.05 was used). This ‘yes/no’ dichotomous 

approach is consistent with the approach that would typically be taken if each dataset had been 

analyzed in a separate study, to decide whether a given bilateral brain structural measure shows 

asymmetry or not, and in which left-right direction. Reproducibility was then quantified per 

effect (i.e., research question) as the proportion of datasets showing hemispheric effects 

consistent with the meta-analytic effects.  

 

   Reproducibility, Effect Size, and Sample Size. The true hemispheric effect size varied 

across different brain structural measures (Kong et al. 2018), from Cohen’s d=0.0015 to 1.76 

(median 0.30) (unsigned magnitudes) (Figure 1). In addition, the sample size varied across 

datasets, from 14 to 2326 (median 72) (Fig. 1A; Table S1). These variabilities allowed us to 

examine how reproducibility changes with the true effect size and sample size. As surface area 

asymmetries are generally more substantial than cortical thickness asymmetries (Fig. 1B) 

(Kong et al. 2018), we first compared reproducibility rates between the hemispheric effects for 

these two types of measure. We then calculated the Spearman correlation between the true 

effect size and the reproducibility rate across all 70 hemispheric effects, as well as across 

cortical thickness and surface area hemispheric effects separately. We then divided the 70 

‘research questions’ into different groups based on the true effect size: 0.0 ≤ d < 0.2, 0.2 ≤ d < 

0.4, 0.4 ≤ d < 0.6, 0.6 ≤ d < 0.8, 0.8 ≤ d<1.8. Next, we calculated the reproducibility rate for 

each group, also using a range of minimum sample size thresholds, starting from 15 as in the 

main analysis above (97 datasets), and then 50 (63 datasets), 100 (37 datasets), 150 (25 datasets), 

200 (20 datasets), 300 (19 datasets), and 500 (7 datasets) (Table S1).  

 

  Data and Code Sharing. Data used in this study were from the ENIGMA cortical asymmetry 

project (http://conxz.net/neurohemi/). Codes for all analyses of the reports are openly shared in 

GitHub (https://github.com/Conxz/illusReproducibility).  

 

Results 

    Estimating Reproducibility. There was an overall mean reproducibility rate of 63.2%, i.e. 

63.2% of tests for hemispheric effects within the separate datasets produced p values less than 

0.05, together with directions of effect consistent with the true (meta-analytic) effects, or else 

produced non-significant effects in cases where the true effect was also non-significant. A large 

variability of reproducibility was observed across effects (SD = 22.9%, range from 22.2% to 

97.0%) (Fig. 1C). The reproducibility rates were 36.4% and 66.7% for hemispheric effects on 

average cortical thickness and total surface area respectively (i.e. when assessed for the entire-

hemisphere thickness and area measures). For regionally specific hemispheric effects, the 

reproducibility rate ranged from 27.3% to 72.7% (Mean = 48.7%, SD = 12.3%), and from 22.2% 

to 97.0% (Mean = 78.4%, SD = 21.7%) for cortical thickness and surface area measures, 
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respectively. These findings show that reproducibility is far from perfect, even without any 

publication bias or potentially problematic practices such as p-hacking.  

 
Fig. 1. Reproducibility in the absence of selective reporting estimated based on outputs of the ENIGMA 

cortical asymmetry project. (A). Sample size distribution of the 99 datasets. (B). Effect size distribution of the 

70 hemispheric effects of interest. (C). Reproducibility distribution of the 70 hemispheric effects. The 

reproducibility was assessed by comparing each dataset in turn to the meta-analytic effect from the 98 others, to 

avoid overlap (see Methods). (D). Scatter plot of the correlation between the reproducibility and the true effect 

size. (E). Reproducibility changes with both the true effect size and the minimum dataset sample size. Each line 

plots the mean and 95% confidence interval for reproducibility. We used the meta-analytic effect size over all 99 

datasets for visualization purposes. The figure key shows the types of cortical measure (orange indicates surface 

area; green indicates cortical thickness), as well as groupings by true effect sizes.  
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    Reproducibility, Effect Size and Sample size. As expected, regionally specific surface area 

measures (Fig. 1B) showed significantly higher reproducibility rates for hemispheric effects 

than cortical thickness measures (Area vs. Thickness: t(33) = 6.84, p = 3.11e-09) (Fig. 1C), as 

hemispheric effects on surface area are generally larger (Fig. 1C). Moreover, we found that 

reproducibility showed a significant correlation with the true effect size for both types of 

measure (all measures together, rho = 0.84, p = 2.15e-19; thickness, rho = 0.52, p = 0.0017; 

area, rho = 0.94, p = 4.28e-16) (Fig. 1D). Note that, although this general relation applied to 

most effects, some true effects very close to zero could also show relatively high reproducibility 

(Fig. 1D), since in most individual datasets they were found to be low and non-significant as in 

the meta-analysis (e.g. surface area asymmetry in superior parietal cortex, d = 0.002, 

reproducibility rate = 84.8%, and cortical thickness asymmetry in the pars opercularis, d = 0.02, 

reproducibility rate = 68.7%).  

When examining subgroups of effects and datasets according to thresholds on effect size and 

sample size, we found that the reproducibility rate increased with the minimum sample size 

threshold, for each specific range of effect size (Fig. 1E). For example, for effects of d ≥ 0.6, 

the reproducibility rate was higher than 90% even when including the datasets with sample 

sizes as low as 15, while for effects of 0.4 ≤ d < 0.6, a minimum sample size of 50 was needed 

to obtain a reproducibility rate of 90%. Moreover, for effects of 0.2 ≤ d < 0.4, a minimum 

sample size threshold of 100 started to make a reproducibility rate of 80% achievable. In 

addition, the empirical findings showed that it was impossible to obtain 70% reproducibility for 

small effects of d < 0.2, even with a relatively large minimum sample size threshold of 500.  

   

Discussion 

In this study, we re-visited the summary statistics from a worldwide collaborative 

neuroscience project (Kong et al. 2018), to empirically assess the reproducibility of realistic 

biological effects in the absence of p hacking or publishing bias, as assessed in heterogeneous 

neuroscience data and typically-used sample sizes. Overall, reproducibility was limited even in 

this idealized regime, with a mean rate across all effects = 63.2%, lowest reproducibility rate = 

22.2%. Our findings will be useful for guiding future study designs, with respect to anticipated 

effect sizes and sample sizes.  

As expected, the reproducibility rate increased with the true effect size, as well as the sample 

size of datasets, which together contribute to statistical power. Clearly, to avoid poor 

reproducibility, a relatively larger sample size is necessary than was available within many of 

the individual datasets of this study. For example, to obtain a reproducibility rate of 80% for a 

true effect size of around d = 0.4, the sample sizes of individual datasets needed be larger than 

100, i.e. greater than the median sample size in this study. There is therefore substantial room 

to improve reproducibility by increasing sample sizes, even when using currently available 
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methods. Note that the analysis of brain asymmetry involves an inherently paired sample design 

(i.e. paired left and right measures within subjects), but that the overall picture and principles 

illustrated here are broadly applicable. 

Button et al., (2013) showed that the average statistical power of studies in the neurosciences 

is low (i.e., around 21%), which is expected to cause low reproducibility, both through false 

positive and false negative findings. For example, many fMRI studies have traditionally been 

performed using 10-20 participants (Desmond & Glover 2002). Our observation that 

reproducibility is strongly influenced by sample size is in line with the PPV calculation (Button 

et al. 2013) mentioned in the Introduction. However, here we have demonstrated this 

empirically in a real-world setting, such that a priori knowledge of the statistical power (1−β) 

and the pre-study odds (R) was not necessary. In addition, we have illustrated how 

reproducibility changes with the true effect size, interacting with sample size. For example, on 

the basis of our results, if the expected effect size (i.e., Cohen’s d) in a paired-measure MRI 

study is below 0.2, then studies with 500 subjects are still not expected to achieve a 

reproducibility rate of 80%. Consistent with this, a recent study performed an empirical 

examination of the replicability of “structural brain behavior” associations using a permutation-

based approach (again without any of problems of selective reporting), and concluded that it is 

relatively unlikely to find an association between behavioral traits and brain morphology with 

a sample size of less than 500 (replication effect sizes were up to 0.4 (Pearson’s r)) (Kharabian 

Masouleh et al. 2019).  

A reproducibility rate of 36% was reported by the Open Science Framework for 100 findings 

from psychological studies (Aarts et al. 2015), and a reproducibility rate of 54% for 28 classic 

findings in psychological science was reported by a more recent Many Lab project (Klein et al. 

2018b). Such poor reproducibility has been partly attributed to reporting bias and potentially 

problematic practices such as selective reporting of outcomes (Aarts et al. 2015; Baker 2016; 

Bakker et al. 2012; Ioannidis et al. 2014; Ioannidis 2005; Ioannidis 2008; John et al. 2012; 

Simmons et al. 2011). While we do not dispute the likely relevance of these factors, it is 

interesting to note that the mean reproducibility rate in the present study, where no such factors 

were in play, was only 63.2%. As the true effect sizes in the present study ranged from zero to 

large (Cohen’s d up to 1.8), in this respect they can be taken as broadly comparable to those in 

the human neuroscience and psychology literature, although the effect size distribution within 

this range might not be representative of the literature at large.  

Varying demographic and/or clinical composition of datasets is another factor likely to 

influence the reproducibility of findings in human neuroscience, even for such fundamental 

processes as age-related change in neural structure (LeWinn et al. 2017). However, one study 

that investigated variation in replicability suggested that the contribution of sample 

heterogeneity can also be modest (Klein et al. 2018b). As noted above and in the Methods, the 

datasets of the current study differed widely in their age ranges and distributions, and the 

recruitment criteria were variable too, especially whether subjects were selected as healthy 
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controls without certain psychiatric diseases, or recruited just in the context of unselected 

population studies. Scanners and scanning parameters differed too (see Table S1). Given this 

heterogeneity, some ‘non-replication’ could be quite appropriate in certain datasets that 

comprise specific sub-groups or methodological variants, in which particular effects might be 

of less relevance. Although this heterogeneity may have contributed to the 63.2% average 

reproducibility rate, we regard it as a strength of the current study, as we wished the meta-

analytic effect sizes to be valid in the context of the heterogeneity typical of the field. Future 

studies may examine how systematic aspects of MRI dataset heterogeneity influence 

reproducibility, to gain further insights into the problem that the neuroscience community is 

facing. In the present study, scanner field strength was somewhat confounded with dataset 

numbers and sizes, such that we did not investigate this particular aspect of heterogeneity in 

relation to reproducibility. It is important to note that, while conceptually related to 

heterogeneity, the reproducibility rate is also influenced by sample and effect sizes, and as such 

provides a useful method of examining the replicability of effects under real world conditions. 

Neuroimaging studies can involve considerable flexibility regarding data processing and 

statistical analysis, while inconsistent strategies can also contribute to poor reproducibility and 

contrasting conclusions (Botvinik-Nezer et al. 2019; Pauli et al. 2016). For the present study, 

the pipeline for MRI quality control, processing and analysis was harmonized, so that the impact 

of this aspect was necessarily limited. Thus our reproducibility rates may be somewhat idealized, 

considering how the field typically operates, i.e. with different researchers asking similar 

questions, but in different datasets and using different strategies. In other words, the 

reproducibility would likely be worse when the processing pipelines and analysis strategies are 

different.  

Another important aspect affecting reproducibility in the literature may be failure to use 

blinded designs in primary studies, for example so that researchers know the case-control status 

of participants while processing their data, and inadvertently introduce bias. This is less likely 

to be relevant for studies based on automated processing of human brain MRI data, unless there 

would be bias during visual quality control. As regards our study specifically, the visual quality 

control of Freesurfer segmentations and parcellations was not done with respect to eventual 

asymmetry measures, and we have no reason to imagine that the inspection of left and right-

hemisphere images was approached differently, on average. 

The lowest reproducibility was 22.2%, for a small but significant meta-analytic effect of d = 

0.052 (cortical area asymmetry in the lingual gyrus). As discussed above, such low 

reproducibility is likely due to limited power in many of the datasets, to detect such small effects. 

Below this, there were also 7 nearly-zero, non-significant meta-analytic effects, which were 

considered to have been reproduced when a given dataset also showed no significant effect. 

These 7 effects showed relatively higher reproducibility, from 42.4% to 84.8%, than the 

smallest among the significant meta-analytic effects. In general, this observation highlights the 

importance of reporting negative, non-significant findings in publications. In addition, as these 
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7 reproducibility rates were still far from perfect, then dataset heterogeneity and/or technical 

difficulties in measuring such asymmetries may have been involved.  

 

Conclusion 

Reproducing results is critical for accumulating knowledge in the scientific community. In 

this study, we re-visited the outputs of a global collaborative neuroscience project (Kong et al. 

2018), to empirically demonstrate reproducibility in a real-world setting as regards dataset 

heterogeneity and sample sizes, but in the absence of p-hacking or reporting bias. The results 

indicate that there is substantial room to improve reproducibility using current neuroimaging 

methods, even in the absence of p-hacking or reporting bias. This can be achieved primarily 

through increasing statistical power, either through increasing the sample sizes of individual 

datasets, or via collaborations between researchers, for example in consortia such as ENIGMA 

(Thompson et al. 2014b). Our study therefore contributes to the ongoing discussion of 

reproducibility in neuroscience, and science more generally. 

 

  

.CC-BY-NC-ND 4.0 International licenseIt is made available under a 
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/866301doi: bioRxiv preprint first posted online Dec. 6, 2019; 

http://dx.doi.org/10.1101/866301
http://creativecommons.org/licenses/by-nc-nd/4.0/


Acknowledgements 

Funding information for each site is available in the SI Appendix.   

 

Conflict of Interest 

Any potential conflicts of interest are listed in the SI Appendix. 

 

Contributions 

X.Z.K. conceived this study and performed data analyses; X.Z.K, E.L.W.G, and C.F. 

contributed data; X.Z.K. and C.F. interpreted the results and wrote the paper. All authors 

provided feedback on the paper.  

 

  

.CC-BY-NC-ND 4.0 International licenseIt is made available under a 
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/866301doi: bioRxiv preprint first posted online Dec. 6, 2019; 

http://dx.doi.org/10.1101/866301
http://creativecommons.org/licenses/by-nc-nd/4.0/


References 

Aarts AA, Anderson JE, Anderson CJ, Attridge PR, Attwood A, Axt J, Babel M, Bahnik S, Baranski 

E, Barnett-Cowan M et al. . 2015. Estimating the reproducibility of psychological science. 

Science 349. 

Baker M. 2016. 1,500 scientists lift the lid on reproducibility. Nature 533:452-454. 

Bakker M, van Dijk A, and Wicherts JM. 2012. The Rules of the Game Called Psychological Science. 

Perspectives on Psychological Science 7:543-554. 

Benjamin DJ, Berger JO, Johannesson M, Nosek BA, Wagenmakers EJ, Berk R, Bollen KA, Brembs 

B, Brown L, Camerer C et al. . 2018. Redefine statistical significance. Nature Human 

Behaviour 2:6-10. 

Botvinik-Nezer R, Holzmeister F, Colin F Camerer AD, Juergen Huber, Magnus Johannesson, 

Michael Kirchler, Roni Iwanir, Jeanette A Mumford, Alison Adcock, Paolo Avesani, Blazej 

Baczkowski, Aahana Bajracharya, Leah Bakst, Sheryl Ball, Marco Barilari, Nadège Bault, 

Derek Beaton, Julia Beitner, Roland G Benoit, Ruud Berkers, Jamil Bhanji, Bharat Biswal, 

Sebastian Bobadilla-Suarez, Tiago Bortolini, Katherine Bottenhorn, Alexander Bowring, 

Senne Braem, Hayley Brooks, Emily Brudner, Cristian Calderon, Julia Camilleri, Jaime 

Castrellon, Luca Cecchetti, Edna Cieslik, Zachary Cole, Olivier Collignon, Robert Cox, 

William Cunningham, Stefan Czoschke, Kamalaker Dadi, Charles Davis, Alberto De Luca, 

Mauricio Delgado, Lysia Demetriou, Jeffrey Dennison, Xin Di, Erin Dickie, Ekaterina 

Dobryakova, Claire Donnat, Juergen Dukart, Niall W Duncan, Joke Durnez, Amr Eed, Simon 

Eickhoff, Andrew Erhart, Laura Fontanesi, G Matthew Fricke, Adriana Galvan, Remi Gau, 

Sarah Genon, Tristan Glatard, Enrico Glerean, Jelle Goeman, Sergej Golowin, Carlos 

González-García, Krzysztof Gorgolewsk, Cheryl Grady, Mikella Green, João Guassi Moreira, 

Olivia Guest, Shabnam Hakimi, J Paul Hamilton, Roeland Hancock, Giacomo Handjaras, 

Bronson Harry, Colin Hawco, Peer Herholz, Gabrielle Herman, Stephan Heunis, Felix 

Hoffstaedter, Jeremy Hogeveen, Susan Holmes, Chuan-Peng Hu, Scott Huettel, Matthew 

Hughes, Vittorio Iacovella, Alexandru Iordan, Peder Isager, Ayse Ilkay Isik, Andrew Jahn, 

Matthew Johnson, Tom Johnstone, Michael Joseph, Anthony Juliano, Joseph Kable, Michalis 

Kassinopoulos, Cemal Koba, , Kong X-Z, and Timothy Koscik NEK, Brice Kuhl, Sebastian 

Kupek, Angela Laird, Claus Lamm, Robert Langner, Nina Lauharatanahirun, Hongmi Lee, 

Sangil Lee, Alexander Leemans, Andrea Leo, Elise Lesage, Flora Li, Monica Li, Phui Cheng 

Lim, Evan Lintz, Schuyler Liphardt, Annabel Losecaat Vermeer, Bradley Love, Michael 

Mack, Norberto Malpica, Theo Marins, Camille Maumet, Kelsey McDonald, Joseph McGuire, 

Helena Melero, Adriana Méndez Leal, Benjamin Meyer, Kristin Meyer, Paul Glad Mihai, 

Georgios Mitsis, Jorge Moll, Dylan Nielson, Gustav Nilsonne, Michael Notter, Emanuele 

Olivetti, Adrian Onicas, Paolo Papale, Kaustubh Patil, Jonathan E Peelle, Alexandre Pérez, 

Doris Pischedda, Jean-Baptiste Poline, Yanina Prystauka, Shruti Ray, Patricia Reuter-Lorenz, 

Richard Reynolds, Emiliano Ricciardi, Jenny Rieck, Anais Rodriguez-Thompson. 2019. 

Variability in the analysis of a single neuroimaging dataset by many teams. bioRxiv. 

Button KS, Ioannidis JPA, Mokrysz C, Nosek BA, Flint J, Robinson ESJ, and Munafo MR. 2013. 

Power failure: why small sample size undermines the reliability of neuroscience. Nature 

Reviews Neuroscience 14:365-376. 

Desmond JE, and Glover GH. 2002. Estimating sample size in functional MRI (fMRI) neuroimaging 

studies: statistical power analyses. J Neurosci Methods 118:115-128. 

Fischl B. 2012. FreeSurfer. Neuroimage 62:774-781. 

Ioannidis JP, Munafo MR, Fusar-Poli P, Nosek BA, and David SP. 2014. Publication and other 

reporting biases in cognitive sciences: detection, prevalence, and prevention. Trends in 

Cognitive Sciences 18:235-241. 

Ioannidis JPA. 2005. Why most published research findings are false. Plos Medicine 2:696-701. 

Ioannidis JPA. 2008. Why most discovered true associations are inflated. Epidemiology 19:640-648. 

John LK, Loewenstein G, and Prelec D. 2012. Measuring the Prevalence of Questionable Research 

Practices With Incentives for Truth Telling. Psychological Science 23:524-532. 

.CC-BY-NC-ND 4.0 International licenseIt is made available under a 
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/866301doi: bioRxiv preprint first posted online Dec. 6, 2019; 

http://dx.doi.org/10.1101/866301
http://creativecommons.org/licenses/by-nc-nd/4.0/


Kharabian Masouleh S, Eickhoff SB, Hoffstaedter F, Genon S, and Alzheimer's Disease 

Neuroimaging I. 2019. Empirical examination of the replicability of associations between 

brain structure and psychological variables. Elife 8. 

Klein O, Hardwicke TE, Aust F, Breuer J, Danielsson H, Mohr AH, Ijzerman H, Nilsonne G, 

Vanpaemel W, and Frank MC. 2018a. A Practical Guide for Transparency in Psychological 

Science. Collabra: Psychology 4. 

Klein R, Vianello M, Hasselman F, Adams B, Adams RB, Alper S, Aveyard M, Axt J, Babalola M, 

Bahník Š et al. . 2018b. Many Labs 2: Investigating Variation in Replicability Across Sample 

and Setting. PsyArXiv. 

Klein RA, Ratliff KA, Vianello M, Adams RB, Bahnik S, Bernstein MJ, Bocian K, Brandt MJ, Brooks 

B, Brumbaugh CC et al. . 2014. Investigating Variation in Replicability A "Many Labs'' 

Replication Project. Social Psychology 45:142-152. 

Kong XZ, Mathias SR, Guadalupe T, Group ELW, Glahn DC, Franke B, Crivello F, Tzourio-Mazoyer 

N, Fisher SE, Thompson PM et al. . 2018. Mapping cortical brain asymmetry in 17,141 

healthy individuals worldwide via the ENIGMA Consortium. Proceedings of the National 

Academy of Sciences of the United States of America 115:E5154-E5163. 

LeWinn KZ, Sheridan MA, Keyes KM, Hamilton A, and McLaughlin KA. 2017. Sample composition 

alters associations between age and brain structure. Nature Communications 8. 

Nosek BA, Alter G, Banks GC, Borsboom D, Bowman SD, Breckler SJ, Buck S, Chambers CD, Chin 

G, Christensen G et al. . 2015. Promoting an open research culture. Science 348:1422-1425. 

Pauli R, Bowring A, Reynolds R, Chen G, Nichols TE, and Maumet C. 2016. Exploring fMRI Results 

Space: 31 Variants of an fMRI Analysis in AFNI, FSL, and SPM. Frontiers in 

Neuroinformatics 10. 

Poldrack RA, Baker CI, Durnez J, Gorgolewski KJ, Matthews PM, Munafo MR, Nichols TE, Poline 

JB, Vul E, and Yarkoni T. 2017. Scanning the horizon: towards transparent and reproducible 

neuroimaging research. Nature Reviews Neuroscience 18:115-126. 

Prinz F, Schlange T, and Asadullah K. 2011. Believe it or not: how much can we rely on published 

data on potential drug targets? Nature Reviews Drug Discovery 10:712-U781. 

Simmons JP, Nelson LD, and Simonsohn U. 2011. False-Positive Psychology: Undisclosed Flexibility 

in Data Collection and Analysis Allows Presenting Anything as Significant. Psychological 

Science 22:1359-1366. 

Thompson PM, Stein JL, Medland SE, Hibar DP, Vasquez AA, Renteria ME, Toro R, Jahanshad N, 

Schumann G, Franke B et al. . 2014a. The ENIGMA Consortium: large-scale collaborative 

analyses of neuroimaging and genetic data. Brain Imaging Behav 8:153-182. 

Thompson PM, Stein JL, Medland SE, Hibar DP, Vasquez AA, Renteria ME, Toro R, Jahanshad N, 

Schumann G, Franke B et al. . 2014b. The ENIGMA Consortium: large-scale collaborative 

analyses of neuroimaging and genetic data. Brain Imaging Behav 8:153-182. 

Valentin Amrhein SG. 2017. Remove, rather than redefine, statistical significance. Nature Human 

Behaviour. 

 

.CC-BY-NC-ND 4.0 International licenseIt is made available under a 
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/866301doi: bioRxiv preprint first posted online Dec. 6, 2019; 

http://dx.doi.org/10.1101/866301
http://creativecommons.org/licenses/by-nc-nd/4.0/

