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SUMMARY
Hematopoietic stem cells possess lifelong self-renewal activity and generate multipotent progenitors that differentiate into lineage-

committed and subsequently mature cells. We present a comparative transcriptome analysis of ex vivo isolated mouse multipotent

hematopoietic stem/progenitor cells (LinnegSCA-1+c-KIT+) and myeloid committed precursors (LinnegSCA-1negc-KIT+). Our data display

dynamic transcriptional networks and identify a stem/progenitor gene expression pattern that is characterized by cell adhesion and im-

mune response components including kallikrein-related proteases. We identify 498 expressed lncRNAs, which are potential regulators of

multipotency or lineage commitment. By integrating these transcriptome with our recently reported proteome data, we found evidence

for posttranscriptional regulation of processes includingmetabolism and response to oxidative stress. Finally, our study identifies a high

number of genes with transcript isoform regulation upon lineage commitment. This in-depth molecular analysis outlines the enormous

complexity of expressed coding andnoncoding RNAs andposttranscriptional regulationduring the early differentiation steps of hemato-

poietic stem cells toward the myeloid lineage.
INTRODUCTION

In the adult hematopoietic system, short-lived mature cells

are constantly lost and need to be replaced in order tomain-

tain blood homeostasis (Murphy et al., 2005;Weissman and

Shizuru, 2008). This essential task is fulfilled by hematopoi-

etic stem cells (HSCs), which reside in the trabecular areas of

the bone marrow (Purton and Scadden, 2007; Till and

McCulloch, 1961; Wilson et al., 2009). HSCs possess the

highest self-renewal capacity and produce multipotent pro-

genitors (MPPs) with steadily decreasing self-renewal activ-

ity (Trumpp et al., 2010; Weissman and Shizuru, 2008).

HSCs and MPPs (HSPC) are contained within a compart-

ment immunophenotypically defined as negative for

mature blood cell markers (Lin�) and positive for stem cell

markers SCA-1 and c-KIT (LS+K; Weissman and Shizuru,

2008). HSPCs eventually commit to more mature lymphoid

or myeloid progenitors with increasingly restricted self-

renewal and differentiation potential (Graf and Enver,

2009). The myeloid committed progenitor subset (Lin�,
SCA-1� and c-KIT+; [LS�K]) comprises common myeloid

progenitors (CMPs) as well as more specialized granulo-

cyte-macrophage progenitors (GMPs) and megakaryocyte-

erythroid progenitors (MEPs) (Akashi et al., 2000; Pronk

et al., 2007),whichdifferentiate towardmature effector cells.
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Two crucial aspects of early hematopoiesis are multi-

potency and lineage commitment (Graf and Enver, 2009;

Trumpp et al., 2010). Expression profiling of HSPCs by

cDNA microarrays has elucidated important aspects of

hematopoietic stem cell biology, including the relevance

of the KIT� and Wnt� signaling pathways (Gazit et al.,

2013; Kent et al., 2008; Luis et al., 2012; Seita and Weiss-

man, 2010) for multipotency. Transcriptional control

networks active in early hematopoiesis have been studied

using single-gene expression analysis (Moignard et al.,

2013), but their impact on protein levels and posttranscrip-

tional gene expression regulation in HSPCs has not been

described.

Recently, transcriptome profiling by next-generation

sequencing (NGS; e.g., RNA sequencing [RNA-seq]) has

significantly extended the possibilities to study gene

expression (Ozsolak and Milos, 2011), which was also

used to investigate young versus aged HSCs (Sun et al.,

2014). It permits not only the analysis of differential

mRNA expression of low abundant regulatory factors,

but also the detection of alternative splicing events that

can generate different protein isoforms and the identi-

fication of noncoding RNAs. Long noncoding RNAs

(lncRNAs) (Mercer et al., 2009) are involved in the regula-

tion of gene expression at various levels (Pauli et al., 2011;
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Yoon et al., 2013) and can function as oncogenes or tu-

mor-suppressor genes (Gutschner and Diederichs, 2012).

Although efforts have been made to identify and elucidate

the roles of lncRNAs in stem cells (Qureshi and Mehler,

2012; Uchida et al., 2012), little is known about the

expression of lncRNAs or their functions in hematopoi-

etic stem/progenitors (Paralkar and Weiss, 2013). Further,

the advent of improved proteome techniques has

enabled in-depth comparative analysis of RNA and pro-

tein signatures in diverse systems (Cox and Mann, 2007;

Schwanhäusser et al., 2011; Vogel and Marcotte, 2012).

Although attempts were made to correlate transcriptome

and proteome signatures of hematopoietic immature cells

(Spooncer et al., 2008), a comprehensive comparison is

still lacking.

We performed a genome-wide RNA-seq analysis of pri-

mary multipotent and self-renewing hematopoietic

stem/progenitors and myeloid committed precursors.

We report robust and reproducible transcriptome data

with more than 19,000 quantified genes including more

than 1,300 noncoding RNA species. To address how

gene expression is regulated in multipotency and

commitment, we integrated our RNA-seq data with the

recently reported proteome data set of the identical cell

populations (Klimmeck et al., 2012). These data sets

outline the dynamic expression changes that occur dur-

ing the transition of stem/progenitors toward myeloid

commitment.
RESULTS

Quantitative Transcriptomic Analysis of

Hematopoietic Stem and Progenitor Cells

Whole-transcriptome analysis was performed to investi-

gate differences in the gene expression profiles between

multipotent hematopoietic stem progenitor cells (HSPCs;

LS+K) and myeloid committed cells (LS�K) of the mouse

bone marrow (Figure 1A). We fluorescence-activated cell

sorting (FACS)-sorted 50,000 primary cells of each popula-

tion in three independent biological experiments (Fig-

ure 1B and Figure S1 available online) and enriched for

polyadenylated RNA. We generated paired-end libraries

and sequencedmore than 23 108 reads per sample (Figures

S1 and S2). Quality-control metrics indicated that the data

were reproducible and of high quality (Figures 1C, S1, and

S2). We identified the expression of 19,824 genes (Table

S1). We classified the quantified genes by RNA categories.

As expected after poly(A)-RNA enrichment, the majority

of transcripts were categorized as protein-coding genes

(78%; 15,474; Figure 1D). In addition, we classified hits to

23 other noncoding RNA categories including pseudogenes

(1,783) and lncRNAs (498).
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Differential Gene Expression Analysis Reveals

Significant Transcriptional Divergence between

HSPCs and Myeloid Committed Precursors

Wefound3,236genes tobedifferentially expressed (falsedis-

covery rate [FDR] = 0.05) betweenmultipotent andmyeloid

committed cells, which indicated a high divergence in tran-

script levels (Figure 1E; Table S1). Of these, 1,970 genes were

highly expressed in HSPCs and 1,266 were higher in LS�K
cells. As expected, transcripts encoding SCA-1, which was

used to sort thispopulation, aswell as FLT3andTHY1 surface

markers (Adolfsson et al., 2005; Weissman and Shizuru,

2008) were preferentially expressed in LS+K cells (Table S1).

In contrast, neutrophil serine proteases Ctsg and Elane were

highly expressed in LS�K cells (Korkmaz et al., 2008). We

validated 24 differentially expressed genes by quantitative

real-time PCR, which confirmed the robustness of the data

for a wide range of gene expression transcript abundances

(from 2 to 2,314,409 of the mean of sequenced fragments;

Figure S2D).

To investigate the biological roles of our set of differen-

tially expressed genes, we applied a gene ontology (GO)

enrichment analysis, using a stratified approach that con-

trols for expression strength biases (Figure 1F; Table S2).

The GO terms overrepresented in LS+K cells fell into three

main categories: immune response (* in Figure 1F; e.g.,

antigen processing and presentation, inflammatory res-

ponse), cell adhesion (**; chemotaxis), and transcriptional

control (***; negative regulation of transcription). In

contrast, metabolism (****; cell redox homeostasis, glycol-

ysis) was significantly overrepresented in myeloid

committed cells. Cell cycle (*****) showed a dual pattern

with e.g., negative regulation of cell cycle enriched in

LS+K and spindle assembly involved in mitosis enriched

in myeloid cells, reflecting the higher proliferative state

in the committed progenitors. We determined genes that

were uniquely detected in HSPCs but not in LS�K and

vice versa (Figure S3). Although four genes were exclusively

detected in LS�K myeloid progenitors (Ivl, Gm14705, Gp6,

Zfp819), 69 genes of diverse RNA categories were only de-

tected in LS+K cells and categorized primarily to cell adhe-

sion and immune system process (e.g., Kallikrein-related

peptidases Klk1, Klk9, and Klk10; Figure S3), suggesting

particular importance of these processes for the HSPC state.

In conclusion, the differential expression pattern for key

cellular processes demonstrates a distinct transcriptomic

composition of multipotent and myeloid committed cells.

Cell-Cycle Activity Is Tightly Regulated in HSPCs and

upon Myeloid Commitment

Next, we analyzed the protein-protein interaction network

of thedifferentially expressedgenes related to cell cycle (Fig-

ure 2A; ***** in Figure 1F). We found negative regulators of

mitosis to be highly expressed in LS+K cells (Cdkn1b/p27),
eports j Vol. 3 j 858–875 j November 11, 2014 j ª2014 The Authors 859
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in linewithpreviouswork demonstrating regulationof cell-

cycle activity in HSPCs (Zou et al., 2011; Tesio and Trumpp,

2011). In contrast, a highly interconnected group of prolif-

eration-relatedgeneswere enriched inLS�K(Plk1,Rps6ka2).

We validated these findings by real-time PCR and extended

this expressionanalysis tomore refinedmyeloid committed

progenitors (CMP, MEP, GMP; Figures 2B, S4A, and S4B).

Interestingly, MEPs and GMPs showed higher expression

of cell-cycle activators but lower expression of inhibitors

compared to HSPCs and CMPs. To test whether these gene

expression patterns were reflected functionally, we assessed

cell-cycle stages by flow cytometry (Figures 2C and 2D). In

line, HSPCs showed significantly more cells in G0 (36%)

compared to overall myeloid committed precursors (17%).

Within the LS�K compartment, CMPs were cycling less

(23%; G0) compared to the more committed MEP (13%)

andGMP (11%)populations. Together, these results suggest

that the low cell-cycle activity in HSPCs becomes stepwise

activated upon myeloid commitment.

Global Analysis of Genes Involved in Transcriptional

Control of Multipotency and Commitment

Next, we investigated the differentially expressed genes

related to transcriptional control (*** in Figure 1F). Notably,

themajority of these were enriched in HSPCs (Figure 3; 146

out of 177; 82%) and only few in myeloid progenitors (31

out of 177). Classification of these 177 genes according to

their molecular function (Figure 3A; Table S3) revealed

various functional categories including ligand-receptors

(31) and transcription factors (TFs; 62) (Figure 3A). We

then assigned these differential regulators to signaling

pathways (Table S3). We found the expression of the
Figure 1. Quantitative Transcriptomic Analysis of Hematopoietic
(A) Early hematopoiesis. Multipotent hematopoietic stem cells (HSCs)
myeloid specified progenitors (CMPs, common myeloid progenitors;
erythrocyte progenitor) or to lymphoid specified progenitors.
(B) Experimental design. Cell fractions were purified with fluorescen
Lineage (Lin), SCA-1, and c-KIT, which distinguish multipotent stem
analysis of posttranscriptional regulation, the transcriptome was int
2012) (asterisk).
(C) Clustering of biological replicates. Heatmap represents similarity
(D) Classification of the quantified genes by RNA categories. The pie cha
type of RNA. LncRNA, long noncoding RNA; snoRNA, small nucleolar RN
nuclear RNA; miscRNA, miscellaneousRNA; rRNA, ribosomal RNA; IG_J
Mt_tRNA,mitochondrial transfer RNA; TR_V gene, V gene. Geneswere cal
(E) Differential gene expression between multipotent and myeloid co
dots) a measure of its average expression (x axis) versus the logarithm
blue coloring of dots represents differentially expressed genes (FDR =
Blue dots depict upregulated genes in LS�K (1,266). The five most a
(F) Biological processes enriched in the annotation of differentially ex
genes with higher expression in LS+K (red) and LS�K (blue) are ind
***transcriptional control, ****metabolism, or *****cell cycle are la
complete list of differential GO terms, see Table S2.
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Bmp-Smad-TGF-beta� (Bmp4, Smad1; Blank and Karlsson,

2011) andWnt�Notch� (Wnt10b, Jag2; Bigas and Espinosa,

2012; Luis et al., 2012) signaling pathways to be highly en-

riched inHSPCs. Notably, sixmembers of the Forkhead box

protein family (e.g., Foxa3, Foxr1) were enriched in HSPCs

(2- to 32-fold), whereas Foxh1 was lowly expressed (�8-

fold). Next, we screened the expression of TF targets of

Fox family members (Figure S4C). This analysis revealed

genes possibly activated downstream of Foxo1 (Ccng2,

Trib3) in LS+K and Foxh1 (Aldh1a1, Mixl1) in LS�K cells; it

also highlights factors potentially repressed by Foxh1

upon myeloid commitment (Aldh1a2, Pitx2).

Next, we investigated the expression of long noncoding

RNAs (lncRNAs) in LS+K and LS�K cells (Figures 3B–3F).

From the 489 ENSEMBL-annotated lncRNAs for which we

identified expression in our data, 67 were differentially ex-

pressed between HSPCs and LS�K (FDR = 0.05; 55 up/ 12

down; Table S1). Strikingly, only two out of the 67 differen-

tially expressed lncRNA set were functionally annotated

(H19, Meg3; (Venkatraman et al., 2013; Yoshimizu et al.,

2008; Zhou et al., 2012)). In contrast, other lncRNAs were

also exclusive or strongly differentially expressed in HSPCs

(A930001C03Rik,Gm12066) or LS�Ks (Gm12708), but they

lacked characterization. One of themost abundant lncRNA

wasMalat1 (>800,000 counts in LS�K cells; Figure 3C; Table

S1), which showed more than 2-fold higher expression in

HSPCs. Increased expression of Meg3 and Malat1 in HSPCs

was confirmed by independent real-time PCR (Figure 3D).

In order to examine the expression of Malat1 within the

LS+K compartment, we performed real-time PCR in refined

HSC and MPP populations (Wilson et al., 2008). We

foundMalat1 to be highly expressed in the most immature
Stem and Progenitor Cells
give rise to multipotent progenitors (MPPs), which commit either to
GMP, granulocyte-macrophage progenitor; MEP, megakaryocyte/

ce-activated cell sorting (FACS) using specific surface markers for
progenitor cells (LS+K) from myeloid committed (LS�K) cells. For
egrated with our previously published proteome (Klimmeck et al.,

of samples from black (highest) to light gray (smallest).
rt legend indicates percentage and absolute number of genes for each
A; miRNA, microRNA; IG_V gene, immunoglobin V gene; snRNA, small
gene, immunoglobulin J gene; IG_C gene, immunoglobulin C gene;
led as quantifiedgenes if theyhad at least 20 read counts per cell type.
mmitted progenitors. The plot shows for each gene (indicated by
of the ratio between expression levels in LS+K and LS�K. Red and

0.05). Red dots represent upregulated genes in LS+K (1,970 genes).
bundant genes in each fraction are shown in italics.
pressed genes. Within each gene ontology (GO) term, the number of
icated. Processes related to *immune response; **cell adhesion;
beled. The odd ratios are calculated with respect to background. For
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Figure 2. Cell-Cycle Stages of HSPCs and Myeloid Committed Precursors
(A) Protein-protein interaction analysis built based on GO terms related to cell cycle. Genes highly expressed in LS+K cells are shown in red,
and genes higher in LS�K cells are shown in blue. Log2 fold change is represented.
(B) Heatmap of cell-cycle regulators. mRNA expression levels in LS+K, LS�K, CMPs, GMPs, and MEPs based on real-time PCR. Z scores were
calculated per row to highlight expression differences per gene between populations. See Figures S4A and S4B.
(C and D) FACS analysis of cell-cycle stages of HSPCs and myeloid progenitors. (C) Shows representative gating scheme. (D) Quantification
of three biological replicates. Error bars indicate ±SD of three independent biological replicates.
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HSCs and MPP1 cells compared to later MPPs and LS�Ks
(Figure 3E). On the contrary, the high expression of

1700006J14Rik in LS�K was mostly due to its increased

expression inMEPs, as shown by real-time PCR (Figure 3F).

In addition to ENSEMBL-annotated lncRNAs, we predicted

de novo transcripts using Cufflinks (Trapnell et al., 2010).

In order to increase the confidence of the assemblies, we

considered only multiexonic assemblies and we filtered

these assemblies based on (1) their length (>200 bp), (2)

proximity to annotated genes (>10 Mb), (3) coverage (>20

mean fragment counts across all the samples), and (4)

lack of coding sequences (<100 consecutive codons). After

these filters, we predicted 713 potential de novo lncRNAs,

of which 149 were differentially expressed (FDR = 0.1;

Table S4). This set represents a predictive starting point

for further validation. Taken together, we provide a

comprehensive expression landscape of transcriptional

control factors and lncRNAs, which serves as a resource to

investigate regulatory circuits controlling early adult

hematopoiesis.
862 Stem Cell Reports j Vol. 3 j 858–875 j November 11, 2014 j ª2014 The
Regulation of Gene Expression in HSPCs and

Myeloid Precursors

Next, we tested for differential usage of exons between

LS+K and LS�K cells using DEXseq (Figures 4A and 4B; An-

ders et al., 2012). In total, 4,096 genes showed evidence

of differential exon usage (http://www-huber.embl.de/

DEULSK/testForDEU.html), out of which 755 were differ-

entially expressed genes. Because we identified a transcrip-

tional control cluster (Table S3) to be enriched inHSPCs, we

further investigated exon usage differences within this reg-

ulatory network. We found 48 out of 177 genes showing

differential exon usage (Figure 4A). Of these, we exemplify

the MyoD family inhibitor, Mdfi, a regulator of Wnt

signaling (Kusano and Raab-Traub, 2002). Its fifth exon

was almost exclusively expressed in HSPCs, suggesting spe-

cific roles for different Mdfi isoforms in stem/progenitors

(Figure 4B). Complementarily, we used MISO (Katz et al.,

2010) to quantify annotated alternative splicing events

and used DEXSeq to test for differences in these annotated

splicing events between the LS+K and LS�K populations.
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Using this approach, we found 214 differentially spliced

events (FDR = 0.1; Table S5). These findings suggest tran-

script isoform regulation as an unexpectedly abundant reg-

ulatory mechanism at the transition from HSPCs to LS�K.
In order to explore potential posttranscriptional regula-

tion, we integrated these RNA-seq data with our previously

reported proteome data set generated from the identical cell

populations (Klimmeck et al., 2012) (Figures 4C–4F; Table

S6). Ninety-eight percent of all quantified proteins were as-

signed to the respective gene identifier (4,919 out of 5,027;

Figure 4C). Of these, 419 were found to be differentially ex-

pressed both at the RNA and protein level (FDR = 0.1). Over-

all, the correlation coefficient of the RNA and protein fold

changes was 0.39 (Figure 4D). However, when we restricted

the genes to those detected as differentially expressed on

RNA andprotein levels, the correlation coefficient increased

substantially (R = 0.81; Figure 4D). We found 82% of the

differentially expressed genes with consistent sign of fold

changes in mRNA and protein levels (Figure 4E, 342 out

of 419). In contrast, a group of 77 hits showed anticorrela-

tion in their fold changes, with increased protein but

decreased transcript levels in HSPCs compared to LS�Ks
(Figure 4E; Table 1). These anticorrelated genes were en-

riched formetabolic process and response to oxidative stress

suggesting the involvement of posttranscriptional mecha-

nisms in the regulation of these processes (Figure 4F). No

significant anticorrelated hits with increased transcript

but decreased protein level inHSPCswere found, suggesting

less pronounced effects of paused translation or protein

degradation during hematopoietic commitment.

Extended Self-Protective Signature Highlights

Posttranscriptional Regulation

To extend our findings to differentially expressed genes

related to immune stress response, a protein-protein inter-

action analysis was carried out (Figures 5 and S5; Table S7),

integrating the GO biological process annotation of the

3,236 differentially expressed genes (* in Figure 1F) and

our previously described proteome immune signature

(Klimmeck et al., 2012). The resulting network covered a

broad range of cellular compartments and gene classes

including e.g., secreted inflammatory cytokines (Cxcl2,

Pf4), plasma membrane receptors (Cxcr1, Flt3), and tran-

scription regulators (Mecom, Gata3). Enrichment of self-

protective processes inHSPCs highlighted by our proteome

analysis (e.g., viral dsRNA sensors [Ddx58, Oas3]) was

confirmed by the combined analysis on RNA and protein

level (Figure S5), indicating transcriptional shutdown of

these programs upon commitment. Conversely, all de-

tected genes involved in stress response to unfolded pro-

tein at the endoplasmic reticulum (Calr, Hsp90b) showed

consistent suppression at RNA and protein level in HSPCs

(Figures 5 and S5). In contrast, many proteins involved in
Stem Cell R
mitochondrial response to oxidative stress (Nqo1, Sod2)

showed strong anticorrelation with decreased RNA but

increased protein levels, suggesting a coordinated regula-

tion of translation in HSPCs and whereas Tfrc, a modulator

of antibacterial cellular iron homeostasis was increased on

both RNA and protein level in myeloid LS�K cells, its two

ligands Trf and Ltf as well as iron transporter Fth1 showed

an anticorrelation. Finally, several factors involved in

DNA repair (Xrcc6, Xpc) showed decreased RNA but

increased protein expression in HSPCs, pointing to specific

mechanisms leading to increased translation or protein sta-

bility (Figure 5). Taken together, by integrating transcrip-

tome and proteome data, we achieved a global perspective

on self-protective mechanisms in early hematopoiesis,

which refines gene expression regulation to specific de-

fense processes.
Energy Metabolism in HSPCs

Next, we characterized the regulation of gene expression in

metabolic genes (Figure 6; Table S8). Strikingly, more than

half (seven out of 13) of the compared glycolytic enzymes

showed anticorrelation between protein and RNA differ-

ences (Figures 6A and 6B). Whereas at the first step of

glycolysis the mRNAs of all three hexokinases Hk1-3 were

lowly expressed in HSPCs, only Hk1 showed higher expres-

sion at the protein level. At the final step of glycolysis,

the pyruvate kinases Pkm1 and Pkm2 were highly ex-

pressed on protein levels but lowly expressed on RNA levels

(Figures 6A and 6B). Furthermore, several enzymes

involved in intracellular glycogen breakdown (Pgm1 and

Pgm2) showed an anticorrelation between RNA and pro-

tein, which points to posttranscriptional regulation of

this alternative entry into glycolysis. Although we did not

detect significant changes for most enzymes involved in

the TCA cycle, these transcripts showed higher mRNA

levels in LS�K. In addition, our analysis revealed anticor-

relation in a cluster of 46 enzymes that are likely to

contribute to the energy-creating infrastructure of HSPCs

(e.g., galactose [Glb1/Bgal], superoxide/NADPH [Prdx6],

and acetyl CoA fatty acid [Acads]metabolism). In summary,

whereas parts of energy metabolism are consistently regu-

lated both at mRNA and protein level, many enzymes

show anticorrelation pointing to posttranscriptional regu-

lation in HSPCs and LS�K.
DISCUSSION

In this study, we integrated transcriptome and proteome

data and characterized the inventory of HSPCs and their

immediate myeloid committed progeny (LS�K) (Figure S6).
With almost 20,000 identified expressed genes including

more than 3,000 significantly regulated ones, these data
eports j Vol. 3 j 858–875 j November 11, 2014 j ª2014 The Authors 863
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represent a deep analysis comparing these two cell popula-

tions that can be accessed as an interactive online resource

(http://vega.embl.de/LSK).

The specific cell adhesion repertoire exclusively detected

in HSPCs strongly supports the concept of a distinct auton-

omous microenvironment of HSPCs in the bone marrow

(Hanoun and Frenette, 2013; Wilson and Trumpp, 2006),

which probably serves important protective functions,

among others. In line with this notion, secreted kalli-

krein-related proteases exert pleiotropic roles in a broad

range of physiological processes including inflammatory

response (Sotiropoulou et al., 2009) and thus might

contribute to HSPC specific defense signaling via proteo-

lytic events e.g., via TGF-beta- or Protease-activated recep-

tor (PAR)-GPCR signaling. The immune response network

presented in this study significantly extends our knowl-

edge of distinct self-protective mechanisms elevated in

HSPCs already at steady state and is in agreement with

the recently observed reversible activation of HSCs under

conditions of stress (Essers et al., 2009; Trumpp et al.,

2010).

Maintenance of HSC quiescence under homeostatic

conditions is tightly linked to mitochondrial oxidative

response (Takubo et al., 2013; Yu et al., 2013). In particular,

response to oxidative stress is known to be regulated by a

variety of mechanisms including targeting of RNA-binding

proteins, RNA half-life, and translation efficiency (Vogel

et al., 2011). The comparison of the transcriptome and pro-

teome data sets demonstrates an anticorrelation for central

superoxide enzymes like Gpx1 and Sod2 and provides evi-

dence for posttranscriptional regulation of ROS response

and other defense mechanisms like iron metabolism in

early hematopoiesis. Notably, expression of iron-response

proteins (IRPs) like FTH1 or ACO2 is tightly regulated via

iron-responsive elements (IREs) (Hentze et al., 2010). In
Figure 3. Differential Expression of Genes Involved in Transcriptio
Committed Progenitors
(A) Protein-protein interaction analysis built based on GO-terms relat
according to GeneGo MetaCore annotation and manual curation. Gene
expressed in LS�K cells are shown in blue. The color bar indicates the c
expressed genes involved in transcriptional control, see Table S3.
(B–E) Differential landscape of lncRNAs in multipotent and myeloid c
(B) Differentially abundant lncRNAs. Of the 67 lncRNAs with significan
in each direction. For the complete list, see Table S1. Inf, infinite nu
(C) Top abundant lncRNAs. Ten examples for highly abundant lncRNA
(D) Confirmation of differentially expressed lncRNAs by real-time PCR
and LS�K (blue) samples were quantified by real-time PCR. Numbers re
seq (right) data for LS+K compared to LS�K. For all real-time PCR data,
with three technical replicates each are shown.
(E) Expression analysis of lncRNA Malat1 in HSCs and MPPs. mRNA ex
et al., 2008), and LS�K cells were analyzed by real-time PCR.
(F) Expression analysis of lncRNA 1700006J14Rik in myeloid commit
MEPs based on real-time PCR. *p < 0.05; **p < 0.01; ***p < 0.001; *
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addition, the expression of regulatory hormone Hepcidin,

which is crucial for cellular iron homeostasis, has been

shown to be strongly dependent on Bmp—(Hemojuvelin

[HJV])-Smad signaling (Andriopoulos et al., 2009). Thus,

the BMP-Smad signaling axis, of which we found its com-

ponents to be highly expressed in HSPCs, might as well

be involved in the regulation of iron homeostasis in multi-

potent cells.

Although most differentially expressed genes showed

consistent expression on RNA and protein level and there-

fore may not require posttranscriptional regulation, our

correlation analysis uncovered isozyme specific regulation

for essential glycolytic enzymes (hexokinases, pyruvate ki-

nases) on either RNA or protein level, which argues for

blocked translation or increased protein turnover. The

higher transcript levels of TCA cycle enzymes potentially

boost oxidative phosphorylation after commitment.

Notably, our findings highlight additional regulation of car-

boxylic acid metabolism, which allows novel perspectives

on the coordination of metabolism along early hematopoi-

esis and suggests that energy metabolism as well as the

response to immune mediated stress are modulated by

different gene-regulatory mechanisms affecting differential

and process-specific transcription, translation, mRNA, or

protein turnover. The immune response signature described

here at steady state should be complemented by a global

analysis of induced stress response of HSPCs.

Our study identifies TFs and lncRNAs as candidates con-

trolling multipotency and/or commitment. Indeed, loss of

TFs including Foxo3a, one of the differentially abundant

genes in our study, has been demonstrated to severely affect

HSPC integrity in functional KOmouse studies (Rossi et al.,

2012). Because some lncRNAs are known to facilitate

expression of transcriptional regulators during develop-

ment (Pauli et al., 2011), the differentially expressed
nal Control and Landscape of lncRNA in Multipotent and Myeloid

ed to transcriptional control. Each gene was functionally classified
s highly expressed in LS+K cells are shown in red, and genes higher
olor code for Log2 fold change. For the complete list of differentially

ommitted progenitors.
t change in abundance, the table shows ten examples with changes
mber, meaning read count of one population is zero.
s sorted by mean counts.
. mRNA expression levels of lncRNAs Meg3 and Malat1 in LS+K (red)
present Log2 fold changes from real-time PCR (left, bold) and RNA-
mean values means ± SD of three independent biological replicates

pression levels of Malat1 in HSC, MPP1, MPP2, MPP3, MPP4 (Wilson

ted precursors. RNA expression levels LS+K, LS�K, CMPs, GMPs, and
***p < 0.001 (two-sided Student’s t test).
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Figure 4. Gene Expression Regulation in Multipotency and Commitment
(A and B) Analysis of transcript isoform regulation.
(A) Differential exon usage in genes involved in transcriptional control. Forty-eight out of 177 genes exhibited exon usage changes
between LS+K and LS�K cells in one to 12 exons (top 30 genes in alphabetical order are shown; for full annotation, see Table S3).
(B) Example: TF (Mdfi) shows differential exon usage. The data are consistent with higher levels of isoform #6 of Mdfi in LS+K (red)
compared to LS�K (blue).
(C–F) Analysis of posttranscriptional regulation. (C) Overview of integration of transcriptome and proteome data. Transcriptome RNA-seq data
(19,824 genes quantified), and proteome data (5,027 proteins quantified) were mapped to each other based on Uniprot IDs using BioMart.
Ninety-eight percent of quantified proteins could be mapped (4,919 out of 5,027 total). (D) Overall correlation. Correlation of RNA to protein
expression ratios (Log2 fold change) for all 4,919genes. Four hundrednineteenhitswere significantonboth RNAand protein level (FDR=0.1),
shown in red. R, Pearson correlation coefficient. (E) Correlation of 419 hits significant on RNA and protein level (FDR = 0.1). (F) GO enrichment
analysis of 419 hits significant on RNA and protein level (FDR = 0.1). GO enrichment analysis was carried out on 342 hits, which were
consistently up- or downregulated (yellow), and 77 hits, which were anticorrelated with increased protein but decreased RNA ratios (pink).
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Table 1. List of 77 Anticorrelating Hits between RNA and Protein Level

Uniprot
ID Ensembl Transcript ID

Gene
Name Protein Name

RNA-seq Log2
Fold Change
LS+K/LS�K

RNA-seq
adj. p
Value

Proteome
Log2 Fold
Change
LS+K/LS�K

Proteome
adj. p
Value

Differential
Exon Usage

Q8BHA3 ENSMUSG00000020956 6530401

N04Rik

D-tyrosyl-tRNA(Tyr) deacylase 2 �0.70 0.0692 0.65 0.0901 no

Q07417 ENSMUSG00000029545 Acads acyl-coenzyme A dehydrogenase,

short chain, isoform CRA_a

�0.79 0.0350 0.53 0.0035 no

P28271 ENSMUSG00000028405 Aco1 aconitase 1 �0.98 0.0041 0.39 0.0599 no

Q99KI0 ENSMUSG00000022477 Aco2 aconitate hydratase, mitochondrial �0.93 0.0058 0.26 0.0362 yes

Q9Z2N8 ENSMUSG00000027671 Actl6a actin-like protein 6A;23 kDa protein �0.75 0.0364 0.28 0.0888 no

P54822 ENSMUSG00000022407 Adsl adenylosuccinate lyase �0.68 0.0630 0.25 0.0350 no

Q9ESW4 ENSMUSG00000029916 Agk acylglycerol kinase, mitochondrial �0.71 0.0597 0.45 0.0270 yes

P50247 ENSMUSG00000048087 Ahcy adenosylhomocysteinase �1.20 0.0004 0.43 0.0050 no

Q9JII6 ENSMUSG00000028692 Akr1a1 alcohol dehydrogenase [NADP+] �0.88 0.0101 0.39 0.0423 yes

Q9JLJ2 ENSMUSG00000026687 Aldh9a1 aldehyde dehydrogenase 9A1 �1.05 0.0015 0.20 0.0548 no

P28352 ENSMUSG00000035960 Apex1 DNA-(apurinic or apyrimidinic

site) lyase

�0.64 0.0997 0.67 0.0290 no

Q564P4 ENSMUSG00000006589 Aprt adenine phosphoribosyltransferase �0.85 0.0137 0.55 0.0871 no

P84078 ENSMUSG00000048076 Arf1 ADP-ribosylation factor 1 �1.02 0.0020 0.28 0.0798 yes

Q99PT1 ENSMUSG00000025132 Arhgdia Rho GDP-dissociation inhibitor 1 �0.73 0.0391 0.18 0.0737 yes

P47754 ENSMUSG00000015733 Capza2 F-actin-capping protein subunit

alpha-2

�0.69 0.0915 0.30 0.0708 yes

Q32P00 ENSMUSG00000057886 Cbx3 chromobox homolog 3 �0.81 0.0654 0.35 0.0082 no

Q91WS0 ENSMUSG00000037710 Cisd1 CDGSH iron sulfur domain-

containing protein 1

�0.63 0.0942 0.43 0.0235 no

P61202 ENSMUSG00000027206 Cops2 COP9 signalosome complex

subunit 2

�0.77 0.0316 0.28 0.0484 no

Q8C243 ENSMUSG00000007891 Ctsd cathepsin D �0.63 0.0903 0.27 0.0281 yes

Q91VR5 ENSMUSG00000037149 Ddx1 ATP-dependent RNA helicase DDX1 �0.87 0.0115 0.22 0.0858 yes

Q9ESX5 ENSMUSG00000031403 Dkc1 dyskeratosis congenita 1 �0.71 0.0492 0.27 0.0288 yes

P17182 ENSMUSG00000059040 Eno1 alpha-enolase �1.04 0.0106 0.18 0.0798 no

Q921G7 ENSMUSG00000027809 Etfdh electron transfer flavoprotein-

ubiquinone oxidoreductase,

mitochondrial

�0.77 0.0325 0.39 0.0206 no

Q78JE5 ENSMUSG00000032309 Fbxo22 F-box only protein 22 �0.73 0.0494 0.46 0.0539 no

P23780 ENSMUSG00000045594 Glb1 b-galactosidase �0.69 0.0633 0.51 0.0447 no

Q9CPU0 ENSMUSG00000024026 Glo1 lactoylglutathione lyase �0.74 0.0424 0.80 0.0101 no

Q3UJH8 ENSMUSG00000025190 Got1 aspartate aminotransferase 1 �0.73 0.0524 0.52 0.0167 no

P11352 ENSMUSG00000063856 Gpx1 glutathione peroxidase 1 �1.09 0.0216 0.37 0.0167 no

(Continued on next page)

Stem Cell Reports j Vol. 3 j 858–875 j November 11, 2014 j ª2014 The Authors 867

Stem Cell Reports
Transcriptional Landscape of Adult Hematopoiesis



Table 1. Continued

Uniprot
ID Ensembl Transcript ID

Gene
Name Protein Name

RNA-seq Log2
Fold Change
LS+K/LS�K

RNA-seq
adj. p
Value

Proteome
Log2 Fold
Change
LS+K/LS�K

Proteome
adj. p
Value

Differential
Exon Usage

P51859 ENSMUSG00000004897 Hdgf hepatoma-derived growth factor �0.67 0.0684 0.27 0.0334 yes

Q9ERZ0 ENSMUSG00000028332 Hemgn hemogen �1.06 0.0580 1.01 0.0582 no

Q3UE51 ENSMUSG00000037012 Hk1 hexokinase 1 �0.69 0.0520 1.03 0.0004 yes

P17095 ENSMUSG00000046711 Hmga1 high mobility group protein A1 �1.36 0.0000 1.12 0.0562 yes

O54879 ENSMUSG00000015217 Hmgb3 high mobility group protein B3 �0.83 0.0171 0.42 0.0202 no

B2M1R6 ENSMUSG00000021546 Hnrnpk heterogeneous nuclear

ribonucleoprotein K

�0.81 0.0185 0.23 0.0494 yes

Q9D0E1 ENSMUSG00000059208 Hnrnpm heterogeneous nuclear

ribonucleoprotein M

�0.79 0.0235 0.19 0.0809 yes

Q3TME6 ENSMUSG00000027531 Impa1 inositol (myo)-1(or 4)-

monophosphatase 1

�0.86 0.0124 0.65 0.0059 no

P62482 ENSMUSG00000028931 Kcnab2 voltage-gated potassium channel

subunit beta-2

�0.68 0.0602 0.36 0.0782 yes

Q9CPY7 ENSMUSG00000039682 Lap3 cytosol aminopeptidase �0.80 0.0225 0.24 0.0495 yes

P48678 ENSMUSG00000028063 Lmna ILamin-A/C �1.52 0.0051 1.19 0.0106 no

P97823 ENSMUSG00000025903 Lypla1 acyl-protein thioesterase 1 �0.84 0.0152 0.48 0.0220 yes

Q9CRB2 ENSMUSG00000001056 Nhp2 H/ACA ribonucleoprotein complex

subunit 2

�0.79 0.0615 0.29 0.0862 no

Q9D0T1 ENSMUSG00000063543 Nhp2l1 NHP2-like protein 1 �1.01 0.0181 0.31 0.0283 no

Q64669 ENSMUSG00000003849 Nqo1 NAD(P)H dehydrogenase

[quinone] 1

�1.05 0.0302 1.02 0.0430 no

Q63850 ENSMUSG00000043858 Nup62 nuclear pore glycoprotein p62 �0.88 0.0100 0.36 0.0560 no

Q8K183 ENSMUSG00000032788 Pdxk pyridoxal kinase �0.73 0.0432 0.50 0.0141 yes

P70296 ENSMUSG00000032959 Pebp1 phosphatidylethanolamine-binding

protein 1

�0.76 0.0321 0.57 0.0027 no

Q5SUR0 ENSMUSG00000020899 Pfas phosphoribosylformylglycinamidine

synthase

�0.79 0.0240 0.19 0.0780 yes

Q9D0F9 ENSMUSG00000029171 Pgm1 phosphoglucomutase-1 �1.11 0.0007 0.89 0.0005 yes

Q7TSV4 ENSMUSG00000029171 Pgm2 phosphoglucomutase-2 �1.11 0.0007 0.64 0.0095 yes

P52480 ENSMUSG00000032294 Pkm isoform M2 of Pyruvate kinase

isozymes M1/M2

�0.76 0.0340 0.30 0.0317 yes

P52480 ENSMUSG00000032294 Pkm isoform M1 of Pyruvate kinase

isozymes M1/M2

�0.76 0.0340 1.27 0.0447 yes

P62137 ENSMUSG00000040385 Ppp1ca serine/threonine-protein

phosphatase PP1-alpha

�0.78 0.0263 0.18 0.0886 no

P58389 ENSMUSG00000039515 Ppp2r4 serine/threonine-protein

phosphatase 2A regulatory subunit B

�0.71 0.0482 0.36 0.0218 yes

Q6A0D0 ENSMUSG00000026701 Prdx6 peroxiredoxin-6 �1.05 0.0012 0.55 0.0050 yes

(Continued on next page)
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Table 1. Continued

Uniprot
ID Ensembl Transcript ID

Gene
Name Protein Name

RNA-seq Log2
Fold Change
LS+K/LS�K

RNA-seq
adj. p
Value

Proteome
Log2 Fold
Change
LS+K/LS�K

Proteome
adj. p
Value

Differential
Exon Usage

Q3U5I2 ENSMUSG00000006498 Ptbp1 polypyrimidine tract binding

protein 1

�1.02 0.0019 0.26 0.0338 yes

Q8BVI4 ENSMUSG00000015806 Qdpr dihydropteridine reductase �0.63 0.0973 0.34 0.0087 no

Q8C2Q3 ENSMUSG00000006456 Rbm14 RNA-binding protein 14 �0.82 0.0264 0.64 0.0081 yes

Q9R1T2 ENSMUSG00000052833 Sae1 SUMO-activating enzyme subunit 1 �0.74 0.0381 0.18 0.0875 yes

Q9D154 ENSMUSG00000044734 Serpinb1a leukocyte elastase inhibitor A �0.69 0.0601 1.56 0.0029 no

Q9JJU8 ENSMUSG00000031246 Sh3bgrl SH3 domain-binding glutamic

acid-rich-like protein

�0.71 0.0494 0.27 0.0616 no

O55242 ENSMUSG00000036078 Sigmar1 sigma 1-type opioid receptor �0.68 0.0663 0.34 0.0421 no

Q8BH59 ENSMUSG00000027010 Slc25a12 calcium-binding mitochondrial

carrier protein Aralar1

�1.01 0.0027 0.72 0.0082 yes

Q9QXX4 ENSMUSG00000015112 Slc25a13 calcium-binding mitochondrial

carrier protein Aralar2

�0.79 0.0334 0.42 0.0360 no

P09671 ENSMUSG00000006818 Sod2 superoxide dismutase [Mn],

mitochondrial

�0.81 0.0203 0.60 0.0068 no

Q64442 ENSMUSG00000027227 Sord sorbitol dehydrogenase �0.68 0.0629 0.63 0.0108 yes

Q64105 ENSMUSG00000033735 Spr sepiapterin reductase �0.67 0.0762 0.87 0.0068 yes

Q9WUM5 ENSMUSG00000052738 Suclg1 succinyl-CoA ligase [GDP-forming]

subunit alpha, mitochondrial

�0.64 0.0855 0.33 0.0109 no

Q9Z2I8 ENSMUSG00000061838 Suclg2 succinyl-CoA ligase [GDP-forming]

subunit beta, mitochondrial

�0.69 0.0617 0.57 0.0140 no

Q93092 ENSMUSG00000025503 Taldo1 transaldolase �0.74 0.0386 0.20 0.0583 no

P10711 ENSMUSG00000033813 Tcea1 transcription elongation factor A

protein 1

�0.74 0.0423 0.26 0.0562 yes

P17751 ENSMUSG00000023456 Tpi1 triosephosphate isomerase 1 �0.90 0.0078 0.86 0.0008 no

Q9QZE7 ENSMUSG00000056820 Tsnax translin-associated protein X �0.74 0.0408 0.76 0.0539 no

Q64727 ENSMUSG00000021823 Vcl vinculin �0.90 0.0178 0.28 0.0548 no

Q60932 ENSMUSG00000020402 Vdac1 voltage-dependent anion-selective

channel protein 1

�1.00 0.0023 0.23 0.0698 no

P32921 ENSMUSG00000021266 Wars tryptophanyl-tRNA synthetase,

cytoplasmic

�0.66 0.0708 0.31 0.0430 yes

Q923D5 ENSMUSG00000030216 Wbp11 WW domain-binding protein 11 �0.81 0.0203 0.21 0.0895 no

P62259 ENSMUSG00000020849 Ywhae 14-3-3 protein epsilon �0.79 0.0238 0.34 0.0086 no

FDR = 0.1 for RNA and protein.
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lncRNAs identifiedmight exert similar roles in HSPCs, lead-

ing to stabilization of multipotency. Malat1, which is upre-

gulated in several human tumors and plays an important

role in extravasation in lung cancer metastasis (Gutschner
Stem Cell R
et al., 2013), might be involved in promoting stem cell

motility and HSC-niche interactions in the bone marrow.

In addition, because the vast majority of differentially

expressed lncRNAs lack molecular and biological
eports j Vol. 3 j 858–875 j November 11, 2014 j ª2014 The Authors 869



Figure 5. Gene Expression Regulation of Self-Protective Immune Response in Multipotency and Commitment
Protein-protein interaction visualization of significantly overrepresented GO processes related to immune response (see * in Figure 1F). For
full list of involved differentially expressed genes, see Table S7. For high-resolution image of the interaction network, see Figure S5.
Protein expression ratios were integrated for 138 out of 480 nodes total. Expression levels are displayed in color code (red, enriched in
multipotent LS+K; blue, enriched in LS�K).
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characterization, they are now attractive candidates for

further exploration in vivo. In summary, in this study we

provide the global landscape gene expression of protein-

coding and noncoding transcripts during early hematopoi-

esis. It represents a comprehensive resource for the stem cell

field and will serve as a valuable resource for functional

exploration of self-renewal, multipotency, and lineage

determination.
EXPERIMENTAL PROCEDURES

Animals
Eight- to 12-week-old female C57BL/6 mice purchased from

Harlan Laboratories were used throughout the study. All mice
870 Stem Cell Reports j Vol. 3 j 858–875 j November 11, 2014 j ª2014 The
were maintained in the animal facility at DKFZ, under specific

pathogen-free (SPF) conditions and kept in individually ventilated

cages (IVCs). Animal procedures were performed according to pro-

tocols approved by the German authorities, Regierungspräsidium

Karlsruhe (Nr. Z110/02, DKFZ #261).

FACS Staining, Sorting, and Cell-Cycle Analysis
Bone marrow was isolated from hind legs (femur, tibia), hips

(ilium), and backbone (vertebra). Muscle, connective tissue, and

spinal cord were removed; bones were crushed in RPMI/2% FBS

(GIBCO) using mortar and pestle. Single-cell suspensions were

made by flushing through a 40 mm filter mesh. Cell numbers

and viability were determined using a ViCell Counter (Beckman

Coulter). To deplete lineage-positive cells, total bone marrow

was stained 30 min with a combination of monoclonal rat
Authors
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antibodies directed against mature cell specific lineage markers

(for detailed specifications, see Supplemental Experimental Proce-

dures). Labeled cells were incubated for 20 min with polyclonal

sheep anti-rat immunoglobulin-G-coated magnetic Dynabeads

(Invitrogen) at a ratio 2:1 beads to cell and depleted using a mag-

net, enriching for the lineage-negative (Linneg) cell fraction. Beads

were washed twice with RPMI/2% FBS to harvest residual cell frac-

tions. Centrifugation steps were carried out at 1,500 rpm and 4�C
for 5 min (5810r, Eppendorf). To specify multipotent and myeloid

progenitor fractions, as well as refined HSC and MPP populations,

the Linneg fraction was stained 30 min using rat monoclonal fluo-

rochrome-coupled antibodies (see Supplemental Experimental

Procedures). All antibodies were titrated prior to use. Cell sorting

was performed on a FACS Aria I or II (Becton Dickinson) at

the DKFZ Flow Cytometry Service Unit, using the following sort

parameters: 70 mm nozzle; 15,000 evt/s; 70 psi. LS+K cells and

LS�K cells were obtained by sorting LinnegSCA-1+c-KIT+ and

LinnegSCA-1+c-KIT�, respectively, in biological triplicate (Figures

S1A and S1B). Sorted cells were collected into ice-cold RNA lysis

buffer (ARCTURUS PicoPure RNA Isolation Kit [Life Technologies,

Invitrogen]) and stored at �80�C until further usage. Of note, to

determine sample’s purity we resorted a fraction of each popula-

tion (Figure S1B; purity greater than 95%). Cell-cycle analysis

together with six-color surface staining to define myeloid subsets

was performed as previously described (Wilson et al., 2004) using

Ki67-FITC (BD Biosciences) and Hoechst 33342 (Molecular

Probes).
Total RNA Isolation and RNA-Seq
Total RNA isolationwas performed from the indicated populations

using ARCTURUS PicoPure RNA Isolation Kit (Life Technologies,

Invitrogen) according to the manufacturer’s instructions. DNase

treatment was performed using RNase-free DNase Set (QIAGEN).

Total RNA was used for quality controls and for normalization of

starting material (Figure S2). cDNA-libraries were generated with

10 ng of total RNA using the SMARTer Ultra Low RNA Kit for Illu-

mina Sequencing (Clontech) according to themanufacturer’s indi-

cations.Of note, 12 cycleswere used for the amplification of cDNA,

respectively. Paired-end adaptors were applied to each population.

Sequencing was performed with the HiSeq2000 device (Illumina)

and one sample per lane. Quality controls before and after

sequencing and schematic overview of sampling workflow are

shown in Figures S1 and S2.
Processing of RNA-Seq Data
RNA-seq reads were aligned to the reference genome ofMus muscu-

lus GRcm38 from ENSEMBL release 69 (Flicek et al., 2013) using

GSNAP version 2012-07-20. The alignment quality statistics were

computed using scripts based on the HTSeq Python library (Anders

et al., 2014) and R/Bioconductor (Gentleman et al., 2004). The re-

sults from these statistics are available in Figure S2. Only uniquely

aligned reads unambiguously assigned to annotated exons were

considered for differential expression analysis. The differential

expression analysis was done using DESeq (Anders and Huber,

2010), and the differential exon usage analysis (http://www-huber.

embl.de/DEULSK/testForDEU.html) was done using DEXSeq (An-

ders et al., 2012). In RNA-seq count data, the power to detect differ-
Stem Cell R
entially expressed genes varies widely through the dynamic range.

Therefore, to avoid associated biases in gene set enrichment

analysis, we generated background set of genes whose expression

distribution approximated the expression distribution of our set of

differentially expressed genes (Ho et al., 2007). Genes were called

as quantified genes if they had at least 20 read counts per cell

type. We tested differentially expressed genes from the RNA-seq

data for overrepresented GO categories using Fisher’s exact test.

The R/Bioconductor scripts used for this study are available as an on-

line resource (http://www-huber.embl.de/DEULSK/supplementary_

file.pdf).

Gene Expression Analysis by Real-Time PCR
For real-time PCR, total RNA was isolated as described above and

reverse-transcribed using Superscript III reverse transcriptase (Life

Technologies, Invitrogen). The PCR was performed using the Fast

SYBR Green Master Mix (Applied Biosystems) on a ViiA 7 Real-

Time PCR System (Applied Biosystems) according to the manufac-

turer’s instructions. Primers were designed using the Universal

Probe Library Assay Design Center (Roche). For primers used, see

Supplemental Experimental Procedures. The analysis of amplifica-

tion curves was carried out using theViAA 7 Software v1.1 (Applied

Biosystems).

Bioinformatic Analysis
For Integration of transcriptomics and proteomics, the ENSEMBL

identifiers were associated to their respective UniProt identifiers

using BioMart (Durinck et al., 2005). For the purpose of this anal-

ysis, RNAs and proteins were considered differentially expressed

if the adjusted p value <0.1. We tested for GO enriched categories

using Fishers’ exact test, the functional annotation tool of Meta-

Core (GeneGo; Nikolsky et al., 2005), protein classification by

Panther (Mi et al., 2007), and the BiNGO plugin (Maere et al.,

2005) for Cytoscape (Shannon et al., 2003). To investigate inter-

actions between differentially expressed proteins, networks were

constructed using STRING (Szklarczyk et al., 2011). Interaction

networks were visualized using Cytoscape; nodes were arranged

after manual curation according to Gene Ontology (UniProt;

(Jain et al., 2009), extensive literature search, and STRING inter-

action scores. To identify possible transcription factor targets,

the Transcription Factor Encyclopedia (Yusuf et al., 2012) was

used as a resource.

ACCESSION NUMBERS

The RNA-seq data sets from LS+K and LS�K cells can be ac-

cessed through ArrayExpress (https://www.ebi.ac.uk/arrayexpress;

accession number E-MTAB-1963). An interactive online resource

that also integrates the previous proteome data (Klimmeck et al.,

2012) can be found under the following link: http://vega.embl.

de/LSK.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental

Procedures, six figures, and eight tables and can be found

with this article online at http://dx.doi.org/10.1016/j.stemcr.

2014.08.012.
eports j Vol. 3 j 858–875 j November 11, 2014 j ª2014 The Authors 871

http://www-huber.embl.de/DEULSK/testForDEU.html
http://www-huber.embl.de/DEULSK/testForDEU.html
http://www-huber.embl.de/DEULSK/supplementary_file.pdf
http://www-huber.embl.de/DEULSK/supplementary_file.pdf
https://www.ebi.ac.uk/arrayexpress
http://vega.embl.de/LSK
http://vega.embl.de/LSK
http://dx.doi.org/10.1016/j.stemcr.2014.08.012
http://dx.doi.org/10.1016/j.stemcr.2014.08.012


A

B

(legend on next page)

872 Stem Cell Reports j Vol. 3 j 858–875 j November 11, 2014 j ª2014 The Authors

Stem Cell Reports
Transcriptional Landscape of Adult Hematopoiesis



Stem Cell Reports
Transcriptional Landscape of Adult Hematopoiesis
AUTHOR CONTRIBUTIONS

D.K.,N.C.-W., andA.T. designedandcoordinated thestudy.A.T. and

W.H. (bioinformatics)designedandsupervised theexperimentsand

interpreted the data. N.C.-W., A.R., andD.Kperformed the RNA-seq

experiments, bioinformatic analysis, and data interpretation. A.R.

built the interactive online data resource. D.K. and N.C.-W. coordi-

nated the animal experiments and performed FACS. L.v.P., S.R., and

D.K. performed real-time PCR.D.K.,N.C.-W., A.R., and J.H. together

with J.K., W.H., and A.T. wrote the manuscript.

ACKNOWLEDGMENTS

We thank S.Wolf, S. Schmidt, U. Ernst, A. Hotz-Wagenblatt, andC.

Previti from the Genomics Proteomics Core Facility and A. Atz-

berger and S. Schmitt from the Flow Cytometry Core Facility at

DKFZ for their expert assistance. This work was supported by the

BioRN Spitzencluster ‘‘Molecular and Cell Based Medicine’’ sup-

ported by the German Bundesministerium für Bildung und

Forschung, the Sonderforschungsbereich SFB873 funded by the

Deutsche Forschungsgemeinschaft, and the Dietmar Hopp Foun-

dation (A.T.). W.H and A.R. acknowledge funding from the

European Community’s Seventh Framework Programme (FP7/

2007-2013), project RADIANT (grant agreement no. 305626).

Received: April 27, 2014

Revised: August 20, 2014

Accepted: August 21, 2014

Published: September 25, 2014
REFERENCES
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