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Abstract

In this Thesis we explore parametric decay instabilities (PDIs) in the electron cyclotron
resonance heating (ECRH) beams at the ASDEX Upgrade tokamak. PDIs are nonlinear
phenomena leading to decay of a strong quasi-monochromatic pump wave to two daugh-
ter waves once the amplitude of the pump wave exceeds a threshold determined by the
interaction strength between the three waves. Due to their reliance on large wave ampli-
tudes, PDIs are found in applications involving high-power wave heating, for instance in
connection with ECRH of the plasmas at ASDEX Upgrade to temperatures relevant for
fusion of hydrogen isotopes (∼ 100 MK) by means millimeter-waves generated by gyrotron
sources. Conservation of energy in the three-wave process underlying PDIs requires the
daughter waves excited by the instability to have a different frequency from the pump
wave used to excite them. This is a serious issue, as the ECRH beams at ASDEX Upgrade
contain up to 1 MW of power, while the millimeter-wave diagnostics used to determine
the plasma properties accept powers in the range of µW or lower. Even the conversion of
a minuscule part of the ECRH power to millimeter-waves in the frequency range outside
the protective filters around the ECRH frequency can thus have disastrous consequences
for the millimeter-wave diagnostics, and this problem will be further amplified in a fusion
power plant, which will rely heavily on millimeter-wave diagnostics due to their relative
resistance to neutron damage. A further concern is that current theories suggest that a
non-negligible part of the ECRH power can be converted to power in the daughter wave
modes under certain circumstances, resulting in different heating and current drive char-
acteristics than those expected from linear ECRH theories, potentially jeopardizing more
than the just the diagnostics of a fusion power plant.

The studies at ASDEX Upgrade described in this work have been devised to assess the
actual impact of PDIs in ECRH beams under fusion-relevant conditions, to avoid the above-
mentioned deleterious effects, as well as to explore the possibility of utilizing such PDIs
in novel diagnostic schemes. Our approach has been both theoretical and experimental
in nature. We provide a detailed description of the theory behind PDIs, deriving some
new and number of known results. With the developed theory and the ASDEX Upgrade
ECRH system, we proceed to investigate PDIs experimentally. Our focus is on PDIs near
the upper hybrid resonance (UHR) and its second-harmonic.

The PDIs near the UHR occur in connection with injection of 105 GHz radiation for
collective Thomson scattering (CTS). Using analog modulation of the ECRH power, a
sweep of the toroidal magnetic field strength, and the ASDEX Upgrade CTS system, we
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are able to demonstrate agreement between the experimental PDI threshold and the PDI
threshold expected theoretically. Additionally, we are for the first time able to characterize
secondary and tertiary PDIs near the UHR in a controlled laboratory setting. A simple
increase of the toroidal injection angle of the gyrotron beam is found to suppress these
instabilities in usual cases.

The PDIs near the second-harmonic UHR are investigated in the standard 140 GHz ECRH
scenarios at ASDEX Upgrade. These instabilities require the daughter waves to be trapped
near the PDI region in order to be accessible at the power levels available with ECRH gy-
rotrons. They therefore occur when the second-harmonic UHR is located near a local
density maximum, e.g., the center of an edge localized mode (ELM) filament, the O-point
of a magnetic island, or the plasma center. PDIs in connection with ELMs are investi-
gated in standard second-harmonic ECRH scenarios and found to be of limited concern
to millimeter-wave diagnostics, but of potential diagnostic value. The PDI threshold dur-
ing the passage of an ELM filament expected theoretically is found to be is reasonable
agreement with the experimental PDI threshold observed during ELM crashes, and the
duration of the microwave spikes during an ELM crash are additionally found to be in
agreement with the passage time of an ELM filament through an ECRH beam according
to a nonlinear magnetohydrodynamics simulation. The PDIs in connection with magnetic
islands and near the plasma center are of more concern, as they have been found to damage
mixers of the electron cyclotron emission (ECE) system due to the generation of strong
millimeter-wave signals near half the ECRH frequency. For the PDIs in connection with
magnetic islands, we have reproduced the original results from the TEXTOR tokamak and
additionally shown the occurrence of such PDIs in third-harmonic ECRH experiments for
the first time; we have also made the first observations of PDIs near the plasma center
in third-harmonic ECRH experiments. The mere vicinity of an island to the overlap of
an ECRH beam and the second-harmonic UHR is, however, found to be insufficient for
the generation of strong millimeter-wave signals, highlighting the need for a more detailed
characterization of the electron density profile associated with magnetic islands. The PDIs
in third-harmonic ECRH scenarios are a potential risk to the ECE system in the early
operation phase of ITER. They can, however, be mitigated by minimizing the ability of
the ECE radiometers to pick up signals generated in the ECRH beams.
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Dansk Resumé

Denne afhandling omhandler parametriske henfaldsinstabiliteter (PDI’er) i elektron-cyklo-
tron-opvarmnings-strålerne ved ASDEX Upgrade-tokamakken. PDI’er er ikke-lineære fæno-
mener, der fører til henfald af en stærk kvasi-monokromatisk pumpebølge til to datterbøl-
ger, når dens amplitude overstiger en tærskelværdi bestemt af interaktionsstyrken imellem
de tre bølger. Da de afhænger af store bølgeamplituder, optræder PDI’er i anvendelser,
der involverer bølgeopvarmning med høj effekt, f.eks. i forbindelse med elektron-cyklotron-
resonans-opvarmning (ECRH) af plasmaer i ASDEX Upgrade, til temperaturer der er rel-
evante for fusion af hydrogen-isotoper (∼ 100 MK), vha. millimeterbølger genereret af
gyrotron-kilder. Energibevarelse for den underliggende tre-bølge-proces kræver, at dat-
terbølgerne, der eksiteres i instabiliteten, har en anden frekvens end pumpebølgen, der
eksiterer dem. Dette er et alvorligt problem, da ECRH-strålerne ved ASDEX Upgrade kan
indeholde en effekt op til 1 MW, mens millimeterbølge-diagnostikkerne, der bruges til at
måle plasmaets opførelse, opererer med effekter af størrelsesordenen 1 µW eller mindre.
Konvertering af selv en lille del af ECRH-effekten til millimeterbølger uden for frekvensom-
rådet, der er beskyttet af filtre omkring ECRH-frekvensen, kan således have katastrofale
konsekvenser for millimeterbølge-diagnostikkerne, og dette problem bliver forstærket i et fu-
sionskraftværk, der vil være stærkt afhængigt af millimeterbølge-diagnostikker, pga. deres
evne til at modstå neutron-skader. En yderligere grund til bekymring er, at nuværende
teorier indikerer, at en ikke ubetydelig del af ECRH-effekten kan blive konverteret til effekt
i datterbølgerne under bestemte omstændigheder, hvilket fører til andre opvarmningskarak-
teristika end de forventede, og kan have alvorligere konsekvenser for et fusionskraftværk
end skadede måleinstrumenter.

Studierne ved ASDEX Upgrade, der beskrives i denne afhandling, er blevet formuleret med
henblik på at undersøge konsekvenserne af PDI’er i ECRH-stråler under fusionsrelevante
betingelser for at kunne undgå de ovennævnte negative følgevirkninger og desuden under-
søge muligheden for nye diagnostikker baseret på PDI’er. Vores tilgang har været både
teoretisk og eksperimentel. Vi giver en detaljeret beskrivelse af teorien bag PDI’er, i hvilken
vi udleder nogle nye og mængde kendte resultater. Med den udledte teori og ASDEX Up-
grade ECRH-systemet kan vi gå videre til den eksperimentelle undersøgelse af PDI’er. Vi
fokuserer på PDI’er ved den øvre hybrid-resonans (UHR) og dens 2. harmoniske.

PDI’erne ved UHR’en sker i forbindelse med indsendelse af 105 GHz stråling brugt til
kollektiv Thomson-spredning (CTS). Vha. analog modulation af ECRH-effekten, et skan
af det toroidale magnetfelt og ASDEX Upgrade CTS-systemet er vi i stand til at vise ov-
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erensstemmelse imellem teoretiske og eksperimentelle PDI-tærskelværdier. Vi kan desuden
for første gang karakterisere sekundære og tertiære PDI’er ved UHR’en i et kontrolleret
laboratorie-eksperiment. En simpel forøgelse af den toroidale indsendelsesvinkel er normalt
nok til at undgå disse instabiliteter.

PDI’erne ved den 2. harmoniske UHR blev undersøgt i standard 140 GHz ECRH-scenarier
ved ASDEX Upgrade. Disse instabiliteter kræver datterbølger, der er fangede i PDI-
området, for at have en lav nok tærskelværdi til at kunne eksiteres med ECRH-gyrotroner.
De finder derfor sted, når den 2. harmoniske UHR optræder ved et lokalt tæthedsmaksi-
mum, f.eks. ved midten af et kant-lokaliseret filament (ELM), O-punktet i en magnetisk
ø eller plasma-centret. PDI’er i forbindelse med ELM’s blev undersøgt i standard 2. har-
moniske ECRH-scenarier, og lader ikke til at være noget problem for millimeterbølge-
diagnostikker, men kan potentielt selv bruges som en diagnostik. Den teoretiske PDI-
tærskelværdi, når en ELM passerer igennem en ECRH-stråle er i rimelig overensstemmelse
med de eksperimentelle observationer, og varigheden af millimeterbølge-toppene er også i
overensstemmelse med magnetohydrodynamiske simuleringer. PDI’erne i forbindelse med
magnetiske øer og nær plasma-centret er mere bekymrende, da de har skadet elektron-
cyklotron-emissions-systemets miksere igennem stærke millimeterbølge-signaler nær den
halve ECRH-frekvens. Vi har reproduceret de oprindelige resultater fra TEXTOR-tokamak-
ken i forbindelse med magnetiske øer og desuden vist, at PDI’er sker i 3. harmoniske
ECRH-scenarier for første gang både for øer og nær plasma-centret. Den blotte tilstede-
værelse af en ø nær den 2. harmoniske UHR er dog ikke tilstrækkelig til at generere stærke
millimeterbølge-signaler, hvilket viser behovet for en bedre karakterisering af elektron-
tæthedsprofilerne forbundet med magnetiske øer. PDI’er i 3. harmoniske ECRH-scenarier
er en potentiel risiko for elektron-cyklotron-emissions-systemet i den tidlige operationsfase
for ITER. Denne risiko kan dog reduceres ved at minimere elektron-cyklotron-radiometrets
evne til at opfange signaler genereret i ECRH-strålerne.
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Chapter 1

Introduction

The title of this Thesis includes the terms parametric decay instabilities (PDIs), electron
cyclotron resonance heating (ECRH), and ASDEX (Axially Symmetric Divertor Experi-
ment) Upgrade which are all related to plasma physics, and magnetic confinement fusion
research in particular. PDIs are, however, ubiquitous in media with quadratic nonlinear-
ities, including optical crystals [1], mechanical systems [2], fluids [3], ionospheric plasmas
[4, 5, 6], and inertial confinement fusion plasmas [7], which has prompted us to approach
the subject matter from a rather basic physics angle. When discussing the experiments
at ASDEX Upgrade, we shall, nevertheless, investigate and apply many concepts that are
mostly familiar to magnetic confinement fusion specialists, so in order to provide a coher-
ent presentation that is accessible to an audience with a more general background, this
Introduction Chapter is essential.

Before delving into the world of PDIs, ECRH, and ASDEX Upgrade, some remarks on the
scope and style of presentation in the present work are in order. We have placed a rather
heavy emphasis on the basic theoretical Chapters 2−4, which provide descriptions of linear
plasma waves, semi-classical wave theory, and PDI theory, respectively. This is done in
order to provide a more gentle introduction to PDIs than what can be provided in journal
articles, which we hope will prove useful to researchers entering the field of PDIs in the
ECRH frequency range. Our approach to PDIs in these Chapters is heavily based on PDI
framework developed in [8, 9, 10, 11, 12], although our results are in some cases different
from those of these works; when there is a non-negligible difference, we shall point out this
difference, as well as the reason for the difference. The experimental Chapter 5 utilizes
the theory developed in Chapters 2−4, particularly Section 4.3, which allows most of the
experimental results to be explained satisfactorily. Chapter 6 is based on a rather different
PDI framework than the previous chapters and somewhat special as a result. The theory
and experiments discussed in Chapter 6 are presented in detail in [13, 14], which are so
far the main articles published as a result of the PhD project associated with this Thesis.
Chapter 6 therefore simply consists of an introduction, along with [13] and [14] in their
entirety. We further note that a number of other works associated with the Author have
been published during the course of the PhD project: two journal articles as a co-author
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[15, 16] (plus one recently accepted journal article [17]), three conference contributions as
a main author [18, 19, 20], two conference contributions as a co-author [21, 22], and two
journal articles as part of a scientific collaboration [23, 24]; [20] forms a partial basis for
Section 5.1 of the present work. Finally, Chapter 7 presents the conclusions based on the
results of the entire Thesis.

Returning to the present Chapter, Section 1.1 discusses the basic properties of, and the
motivation for studying, plasma physics, particularly focusing on fusion energy. Section
1.2 concerns the ASDEX Upgrade device and tokamaks (of which ASDEX Upgrade is
one) in general. Section 1.3 addresses wave heating of magnetically confined plasmas,
with a particular focus on ECRH. Section 1.4 presents the plasma diagnostics used in the
experimental part of this work, focusing on wave-based diagnostics. Finally, Section 1.5
discusses three-wave interactions and PDIs in more detail.

1.1 Plasma Physics and Fusion Energy

The plasmas considered in this work are fairly close to the original definition by Langmuir
[25], namely quasi-neutral collections of non-degenerate electrons, positive ions, and neutral
particles. We do, however, note that plasma physics can also describe properties of non-
neutral and pair plasmas [26, 27], electrolytes [28], metals [29], and warm dense matter
[30] when appropriately modified. Although somewhat removed from everyday experience,
classical plasmas make up the vast majority of the known matter in the universe, as they
constitute the bulk of matter in stars and the interstellar medium. Classical plasmas are
further capable opening up reaction pathways that are inaccessible in gases and condensed
matter, making them essential for chemical processing and surface treatment/modification.
In this work, we consider an application which combines the astrophysical and reaction
technological aspects of classical plasmas: energy production by controlled fusion.

It is well-known that fusion of light nuclei, particularly isotopes of hydrogen, in stars
is the principal source of free energy in the universe, and if fusion of heavy nuclei in
supernovae is included, one can argue that all energy sources available to humanity at
present are derived from fusion in some way. Based on this, it is natural to consider
the feasibility and potential benefits of removing the intermediate steps, whether they
be conversion of the kinetic energy of the fusion products to photons, chemical potential
energy, nuclear potential energy, or kinetic energy of a fluid (wind/mechanical waves),
and creating fusion power plants. Essentially, a fusion power plant should enable nuclei
to come into close enough proximity for the fusion reaction to occur at a sufficient rate
and with sufficiently low auxiliary power for the process to produce a significant amount
of energy at a competitive price. Due to the short range of the attractive nuclear forces
(∼ 10−15 m) and the long range of the repulsive electrical forces, the power plant must
allow the nuclei to overcome a rather large potential barrier in order for fusion to occur;
the proximity to which the nuclei must be brought is, however, not quite as small as the
nuclear scale length ∼ 10−15 m, but rather on the order of the de Broglie wavelength [31],
as the nuclei may tunnel through the potential barrier with significant probability at this

2



point. In order to achieve fusion, the power plant must thus either heat the nuclei to be
fused to an extremely high temperature, optimally around 174 MK (15 keV in energy units,
obtained by multiplying the usual temperature by the Boltzmann constant, which will be
used from this point onward) for the deuterium−tritium (D−T) reaction and higher for
all other reactions [32], or have some mechanism for catalyzing the fusion reactions at a
lower temperature.

The latter concept, known as "cold" fusion, has been the subject a considerable amount
of pseudoscience, but is in principle just the nuclear equivalent of chemical catalysis. The
most well known laboratory fusion catalyst is the muon, which is capable of forming hy-
drogen molecular ions where the distance between the nuclei is reduced by a factor of
approximately 200 relative to electronic hydrogen molecular ions, owing to the muon mass
being roughly 200 times that of the electron. The nuclei of the muonic hydrogen molecular
ion are sufficiently close together for the nuclei to tunnel through the electric potential
barrier and fuse within a time on the order of 250 fs for the D−T reaction [33]. This re-
leases the muon, allowing it to catalyze another fusion reaction. It is, however, not feasible
to extract energy from muon catalyzed fusion since a muon can only catalyze ∼ 100 D−T
reactions within its lifetime (and fewer of any other reaction) and the generation of muons
requires high-energy particles which cannot be generated with high energy efficiency [33].
Unless some revolutionary catalytic process is found, it thus seems that a fusion power
plant will have to achieve temperatures ∼ 10 keV in order for the fusion reactions to oc-
cur at an appreciable rate; this requirement is the basic reason for the close connection
between fusion energy research and high-temperature plasma physics. Before discussing
"hot" fusion, we do, however, note that proton−proton fusion catalyzed by carbon, nitro-
gen, and oxygen (in the so-called CNO cycle) is the main energy producing process in large
stars [34], but since proton−proton fusion must necessarily include decay of a proton to a
neutron, which is mediated by the weak interaction, in order to produce isotopes within
the proton drip line, such processes occur at a far slower rate than what is necessary to
realize a non-astrophysical fusion power plant.

The main problem within "hot" fusion is to generate a plasma with temperatures ∼ 10 keV
and sustain it long enough for an appreciable number of fusion reactions to occur. Two
rather different approaches to solving this problem, relying on different methods for con-
fining the plasma, exist: magnetic confinement fusion and inertial confinement fusion.

Inertial confinement fusion relies on rapid compression of pellets of frozen hydrogen isotopes
to create a short-lived high-density plasma (often its state is closer to warm dense matter
than a classical plasma) which releases a large burst of fusion energy. The most well known
example of inertial confinement fusion is the energy boost provided to a nuclear explosion
in a hydrogen bomb, where the initial fission explosion provides the necessary compression
of the hydrogen fuel to start fusion reactions. While this clearly illustrates the possibility
of producing large amounts of energy from hydrogen fusion, it is not of much use in
practical energy production. More recent developments in inertial confinement fusion have
therefore focused on compression of much smaller hydrogen pellets with lasers. The current
culmination of these efforts has been the report of net fusion energy gain from D−T pellets
in the National Ignition Facility at the Lawrence Livermore National Laboratory, United
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States of America [35]. It should, however, be noted that the energy gain only considers
the energy coupled to the pellet, which is on the order of 1 % of the energy supplied to the
lasers. An actual fusion power plant would further have to ignite pellets at a rate ∼ 10 Hz
in order to provide a significant power output. This rate will require the production time of
the pellets and recharging time of the lasers to be reduced by several orders of magnitude;
the cost of the pellets will likewise have to be reduced by several orders of magnitude.
Inertial confinement fusion thus seems to provide the possibility of studying plasmas with
a non-negligible number of fusion reactions, but several technological breakthroughs will
have to take place in order for it provide a viable basis for a power plant.

Magnetic confinement fusion has more of the basic features desirable in a power plant and
is, as previously stated, the main fusion concept considered in this work. Rather than the
intense bursts of fusion energy produced due to compression in inertial confinement fusion,
magnetic confinement fusion aims at creating a quasi-stationary low-density trapped fusion
plasma; an exception is magnetized target fusion, which uses a magnetic field to compress
a target plasma in order to achieve fusion. Due to the extremely high temperatures, the
interaction of a trapped fusion plasma with the solid parts of a fusion power plant must be
minimized. Since the plasma consists of charged particles, this can be achieved by a mag-
netic field (electrostatic fields cannot confine charged particles according to the Earnshaw
theorem), generated, at least partially, by currents external to the plasma. A number of
different magnetic confinement fusion concepts exist, the most promising at present being
the toroidal tokamak and stellarator concepts [36]; toroidal geometries ensure that the
magnetic field lines, to which the plasma is confined, form closed loops inside the plasma
without terminating at solid surfaces. Stellarators generally produce the entire confining
magnetic field externally, resulting in very stable, inherently steady-state plasmas (if the
external field is generated by superconducting coils), but requiring rather complex geome-
tries in order to cancel the drifts across the magnetic field lines introduced by the curvature
and strength gradient of the magnetic field inherent in toroidal devices. Tokamaks have a
simpler, almost axially symmetric, shape, but require a large plasma current (∼ 1 MA in
ASDEX Upgrade) to produce a magnetic field capable of canceling the drifts across the
magnetic field and confining the plasma, resulting in plasmas that are more prone to dis-
ruptions and difficult to operate in steady-state than those of stellarators. The achievement
of good plasma confinement in stellarators requires magnetic field coils of highly optimized
shapes, which could only be found following the advent of high-performance computing,
within very narrow tolerances. For these reasons, the development of stellarators was some-
what delayed relative to that of tokamaks, leaving the tokamak concept closer to a fusion
power plant at the current stage. This is clearly illustrated when comparing the largest
tokamak and stellarator presently in operation. The largest stellarator is Wendelstein 7-X
at the Max-Planck-Institut für Plasmaphysik in Greifswald, Germany, which has a plasma
volume of 30 m3, an energy confinement time around 0.2 s, and no D−T capability [37].
The largest tokamak is the Joint European Torus (JET) at the Culham Science Centre in
Abingdon, United Kingdom, which has a plasma volume of 100 m3, an energy confinement
time around 1.2 s, and D−T capability, with which it achieved a fusion power equivalent
to 65 % of the auxiliary heating power in 1997 [38]. Wendelstein 7-X is capable sustaining
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a plasma for much longer than JET, up to 30 minutes when its active cooling system is in-
stalled versus 10 s, owing to its superconducting coil system, but a similar plasma duration
is possible in superconducting tokamaks. The next step toward a magnetic confinement
fusion power plant, ITER, is therefore a superconducting tokamak with a plasma volume
of 840 m3, an energy confinement time around 3.7 s, and D−T capability, with which it is
predicted to produce a fusion power 10 larger than the auxiliary heating power; ITER is
scheduled to start operation in 2025, although the D−T experiments will not take place
until 2035 [39]. Provided that ITER is able to demonstrate the above features, the next
step will be an actual demonstration power plant, DEMO, which may be a tokamak, a stel-
larator, or a hybrid of the two concepts, depending on the outcome of the various branches
of current research.

Now that the feasibility of a magnetic confinement fusion power plant has been estab-
lished, we briefly discuss the operation of such a power plant and its advantages over the
energy sources presently known to humanity. As alluded to above, the D−T reaction, in
which a deuteron and a triton collide to produce an alpha particle and a neutron with 3.5
MeV and 14.1 MeV of kinetic energy in the center of momentum frame, respectively, is
the least demanding fusion reaction in terms of the required temperatures and hence the
primary candidate for the first generation of fusion power plants [36]. Deuterium makes
up approximately 0.0115 % of natural hydrogen, which is sufficient to cover present levels
of energy consumption with fusion for billions of years [32], owing to the large amount of
energy released in a fusion reaction. Since tritium is a radioactive element with a half-
life of about 12 years [36], it is not found in naturally occurring hydrogen. Tritium can,
however, be bred by neutron bombardment of lithium-6 and -7 [36]. A fusion power plant
will therefore be equipped with a lithium breeder blanket (different concepts are to be
tested in ITER [39]) where tritium will be bred by the neutrons generated by the D−T
reactions; the neutrons are not confined by the magnetic field and therefore enter the
breeder blanket almost immediately after their creation. This constantly replenishes the
tritium consumed in the D−T reactions without the creation of a large tritium inventory
which would be a potential safety hazard. While this method of tritium generation can
only cover around twenty thousand years of energy consumption at current levels [32], this
should still provide ample time to develop more advanced fusion power plants capable of
deuterium−deuterium fusion, which would extend the currently known resources to billions
of years. Apart from providing a virtually inexhaustible source of energy, a fusion power
plant is expected to provide cost-effective electricity by driving turbines through the heat
absorbed in the breeder blanket [32]. It is also clear that the operation of a fusion power
plant will not be associated with the emission of any greenhouse gases or other atmospheric
pollutants, the only product of the combined D−T and breeder reactions will be a small
amount of inert helium-4. The neutrons released by the D−T process will invariably gener-
ate secondary radioactive isotopes, but by careful selection of the fusion reactor materials,
none of these isotopes will be long-lived, allowing the fusion reactor materials to be recy-
cled within a time on the order of 100 years after the plant ceases operation [32]. A fusion
power plant is further inherently safe since it only contains a small inventory of tritium
and deuterium fuel, and additional relies on a high-temperature combustion process, which
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Figure 1.1 – Schematic cross section of ASDEX Upgrade illustrating the main parame-
ters and plasma shape in the divertor configuration. Picture is adapted from the ASDEX
Upgrade drawing gallery [40].

can be terminated by reducing the plasma fueling externally, rather than a potentially un-
stable chain reaction. Besides the attractive features listed above, the output of a fusion
power plant will not depend on factors beyond human control, such wind or cloud cover,
and a fusion power plant will not require any specific natural features or change its local
environment in any significant way, unlike a hydroelectric power plant. A fusion power
plant would thus be complimentary to renewable energy sources and enable controllable,
virtually inexhaustible, carbon dioxide-free, cost-effective generation of electricity without
the safety and waste issues of a fission power plant.

1.2 ASDEX Upgrade and Tokamak Physics

Having motivated plasma physics and magnetic confinement fusion research, we now turn
to the specific device of interest in this work, ASDEX Upgrade. ASDEX Upgrade is a
medium-sized tokamak with a plasma volume of 14 m3 located at the Max-Planck-Institut
für Plasmaphysik in Garching b. München, Germany, which is mainly used to investigate
the physics basis of ITER and DEMO [23]. A schematic cross section of an ASDEX
Upgrade plasma, including its major and minor radii, R0 = 1.65 m and a = 0.5 m, and
the cylindrical (R,Z)-coordinate system used when describing such plasmas under the
assumption of axial symmetry, is seen in Fig. 1.1.

The physics of tokamaks is described in a number of textbooks, e.g., [32, 41, 42], so here
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we shall only provide a brief overview of the concepts that will be of interest later in this
work. The simplest magnetohydrodynamics (MHD) description of a tokamak equilibrium
involves assuming an axially symmetric plasma with no electrical resistivity and no fluid
velocity in the laboratory frame. This leads to the plasma pressure being constant on
axially symmetric surfaces, seen as yellow, orange and red areas in Fig. 1.1, which en-
close a particular amount of poloidal magnetic flux (generated by the plasma current),
ψ, wherefore they are known as flux surfaces [42]; the flux surfaces in a tokamak may be
calculated using the the Grad−Shafranov equation. In addition to having constant plasma
pressure, which usually translates to constant density and temperature, the flux surfaces
also contain the equilibrium magnetic field and current density vectors, and since charged
particles roughly follow the magnetic field lines, they also tend to remain near the same
flux surface.

When discussing the stability properties of tokamaks, an important parameter is the so-
called q-factor of a flux surface which characterizes the number of toroidal revolutions
necessary for a magnetic field line (and hence a particle/fluid element) to return to the
same poloidal position. For rational q-values, a perturbation at one poloidal location re-
mains localized to a narrow band on the flux surface, making such flux surfaces more prone
to instabilities. Instabilities at the rational surfaces can, in the basic MHD description,
be driven by the plasma current, the plasma pressure gradient, or a combination of these
factors. The current-driven (kink) instabilities impose the condition q > 2 near the plasma
edge, limiting the total plasma current, since the poloidal magnetic field, which reduces
q, is produced by the plasma current; if q < 1 at the plasma center, i.e., for large central
current densities, the plasma will further experience, generally non-disruptive, sawtooth
instabilities [42]. Pressure-driven instabilities, unsurprisingly, provide a limit of the max-
imum plasma pressure attainable for a given confining magnetic field strength, although
the overall limit, known as the Troyon limit, is determined by a combination of current-
and pressure-driven modes [42]. The introduction of finite plasma resistivity further allows
tearing of the flux surfaces near rational surfaces, creating magnetic islands. The most
common source of magnetic islands in ASDEX Upgrade are so-called neoclassical tearing
modes (NTMs) which are caused by the bootstrap current due to the plasma pressure gra-
dient in the presence of trapped (banana) particles [32, 41, 42]. While a single island will
generally not cause the plasma to disrupt so long as it is rotating, the occurrence of NTMs
may still provide an effective limit on the attainable plasma pressure. The magnetic islands
may further be associated with non-monotonic density profiles, making them of interest in
connection with PDIs.

Flux surfaces in tokamaks can be split into two types, closed flux surfaces on which the
magnetic field does not intersect any solid surfaces (yellow and orange areas in Fig. 1.1)
and open flux surfaces where the magnetic field, and thus the plasma particles, eventually
intersect a solid surface (red areas in Fig. 1.1). Fusion-relevant plasmas can only exist
on the closed flux surfaces, while the open flux surfaces form the so-called scrape-off layer
where the heat and particle exhaust from the core fusion plasma must be guided to material
surfaces in a controlled manner if stable tokamak operation is to be maintained. ASDEX
Upgrade is a divertor tokamak, meaning that the flux surfaces have a separatrix, where
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q →∞, which separates the open and closed flux surfaces. The open flux surfaces outside
the separatrix guide the exhaust particles to a so-called divertor structure, visible in the
bottom of the plasma vessel in Fig. 1.1, removing the plasma−surface interaction from the
vicinity of the core plasma. This improves the plasma performance over the traditional
limiter configuration where the open flux surfaces are formed by a solid limiter structure
inside the separatrix; ASDEX Upgrade can also be operated in limiter mode with the inner
(or high-field side, since the magnetic field is stronger near the cylindrical axis) vessel wall
acting as the limiter. A magnetic island has a separatrix structure, similar to the overall
shape of a tokamak divertor equilibrium, but with a periodicity determined by the rational
surface near which it occurs; the center of a magnetic island is known as the O-point, while
its narrowest point is known as the X-point.

The shape of an ASDEX Upgrade plasma cross section clearly deviates from a simple circle.
This is partially due to the X-point formed by the separatrix, visible near the divertor in
Fig. 1.1, but the elongated D-shape also allows the plasma to carry a larger current and
obtain higher pressure without becoming unstable [42]. In order to characterize the flux
surfaces despite their non-trivial shapes, it is convenient to introduce a normalized poloidal
flux coordinate, ρpol, which is zero at the plasma center and 1 at the last closed flux surface
(LCFS). This may be done by using ψ, particularly its value at the center, ψcenter, and the
LCFS, ψLCFS,

ρpol =

√
ψ − ψcenter

ψLCFS − ψcenter
; (1.1)

the square root is taken to make ρpol approximately proportional to the distance from the
plasma center. In the plots of ASDEX Upgrade equilibria in this work, we show ρpol from
0 to 1 as background contours to indicate the location of the bulk plasma.

With the basic concepts of tokamak plasmas established, we now discuss some more phe-
nomenological and machine specific points. Apart from the basic Ohmic heating system
used to drive current, based the plasma acting as a secondary winding of a central trans-
former core, ASDEX Upgrade is equipped with three auxiliary heating systems to create
fusion-relevant conditions in the plasma core, drive additional current, generate fast ions
and electrons, etc: neutral beam injection (NBI), ion cyclotron resoance heating (ICRH),
and ECRH. NBI works by injecting high-energy neutral particles (kinetic energies in the
range 60− 100 keV at ASDEX Upgrade) into the plasma core, where they are ionized and
subsequently confined by the magnetic field. ICRH and ECRH are both based on the
injection of electromagnetic waves for heating the plasma; they will be discussed in detail
in Section 1.3. The NBI system is the main auxiliary heating system at ASDEX Upgrade,
consisting of 8 beams capable of providing at total heating power up to 20 MW; the ICRH
system consists of four antennae capable of delivering a total heating power up to 7 MW;
the ECRH system consists of 8 gyrotron sources capable of delivering up to 6 MW of heat-
ing power [23]. All heating systems operate in pulses up to 10 s, as this this the maximum
duration of an ASDEX Upgrade plasma discharge due to heating of the uncooled copper
coils used to generate the toroidal magnetic field.

When a heating power threshold is exceeded, tokamak plasmas undergo a transition from a
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state characterized by relatively low edge densities and temperatures, the so-called L-mode,
to a state characterized by high edge densities and temperatures with a steep pedestal re-
gion just inside the LCFS, the so-called H-mode [43, 36]; other confinement modes exist,
but are unimportant for the plasmas discussed in this work. The H-mode transition is
caused by a suppression of edge turbulence due to an increased radial electric field shear
at high heating powers, although the detailed mechanism is still a field of active research
[44]. While the H-mode is crucial for allowing ITER to achieve significant fusion power, it
is also accompanied by quasi-period ejection of energy and particles on a fast time scale
(∼ 1 ms), known as edge localized modes (ELMs) [45]. A number of phenomenologically
different ELM types exist, principally depending on the proximity of the heating power to
the L-H threshold and the plasma shape [45, 24]; in this work, we are mainly interested
in type I ELMs, which are large ELMs occurring for heating powers well above the L-H
threshold in plasmas without strong shaping. ELMs are useful in reducing the accumu-
lation of impurities in the plasma core and providing quasi-stationary H-mode plasmas,
but the occurrence of large ELMs will greatly reduce the lifetime of plasma-facing com-
ponents, particularly the divertor, in a tokamak fusion reactor, making operation in an
ELM-mitigated, and ideally ELM-free, stationary high-confinement scenario necessary in
such devices. There exist several methods for mitigating ELMs in H-modes at ASDEX
Upgrade, the one of most interest in this work being magnetic peturbations [46]. The
magnetic perturbations, produced by non-axially symmetric coils, increase losses from the
plasma edge, replacing the large ELMs with a more continuous form of energy transport.
When magnetic perturbations are applied to discharges with reduced toroidal magnetic
(1.8 T at the plasma center, rather than the usual value of 2.5 T), the structure of their
magnetic field may become resonant with the edge q-profile at attainable plasma currents,
resulting in an increased impact on the ELMs from what is known as resonant magnetic
perturbations. In clean low-density plasmas, e.g., discharges performed shortly after coat-
ing the vessel walls with boron (a boronization) [47] or dropping boron/boron nitride into
the plasma during a discharge [48], resonant magnetic perturbations can lead to completely
ELM-free stationary H-mode discharges [49]. In these discharges, the resonant magnetic
perturbations further lead to a reduction of the plasma density, so-called pump out [49],
resulting in conditions where PDIs are expected at ASDEX Upgrade.

We finally note that tokamak plasmas may not only be driven unstable by the plasma
current and pressure gradients, but also by exceeding the so-called Greenwald edge density
limit [50, 51]. Current theories suggest that the Greenwald edge density limit is caused by
greatly increased radiation losses due to recombination at the edge once the temperature
drops below 10 eV, which occurs at high densities [42]. However, in order to obtain high
fusion power, it is obviously beneficial to have high core densities. Such densities may be
obtained without exceeding the Greenwald edge density limit by fueling the plasma with
pellets of frozen deuterium (and tritium) [52]. Pellets may further be the only effective
fueling method in a tokamak fusion power plant [53] and create inverted density profiles
of interest in connection with PDIs [54].
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1.3 Wave and Electron Cyclotron Resonance Heating

Now that an overall description of ASDEX Upgrade has been given, we are in a position to
discuss the more specific topic of interest in this work, namely wave heating and ECRH in
particular. Wave heating of particles in the high-temperature, low-collisionality conditions
of a tokamak core plasma generally relies on the collisionless Landau and cyclotron damping
mechanisms, which are outlined below.

In the absence of a magnetic field, the Hamiltonian of a particle with mass mσ is H =√
m2
σc

4 + p2c2, where p is the magnitude of the momentum of the particle and c is the
speed of light. When a particle absorbs a wave quantum with angular frequency ω and wave
vector k, its Hamiltonian and momentum is modified to H ′, p′. Energy and momentum
conservation impose the selection rules H ′ = H + ~ω and p′ = p + ~k, with ~ being the
reduced Planck constant. Squaring the momentum equation yields (p′)2 = p2 + ~2k2 +
2~k · p, and inserting this in the energy equation gives

ω =
H

~

(√
1 +

2~k · pc2 + ~2k2c2

H2
− 1

)
. (1.2)

In the classical limit of wave−particle interaction the change in particle parameters from
absorption of a single wave quantum small, so p � ~k and ~kpc2/H2 � 1. This allows
the above expression to be Taylor expanded with the result that

ω ≈ k · pc2

H
= k · v, (1.3)

where v = pc2/H is the (pre-interaction) velocity of the particle according to the first
Hamiltonian equation. Eq. (1.3) is the well-known Landau resonance condition. The
derivation made no reference to whether the particle is charged or not, indicating that the
Landau resonance occurs whenever a particle is moving at the phase velocity of a wave. If
the particle distribution function is a monotonically decreasing function of |v| in the plasma
frame, as assumed in this work, the Landau resonance always results in wave damping,
known as Landau damping [55]. The universality of the Landau resonance is confirmed by
the observation of strong damping of sound waves, consistent with the values expected for
Landau damping, in neutral gases at low pressures [55, 56, 57]; at higher pressures collisions
become sufficiently frequent to render the Landau mechanism ineffective, allowing sound
waves to propagate [56]. As noted in [57], the observation of Landau damping in neutral
gases [56] actually predates the observation of Landau damping in plasmas [58].

When charged particles move in a constant, static magnetic field, B, their kinetic en-
ergy perpendicular to B becomes quantized, giving rise to so-called Landau levels. For
a particle of mass mσ and charge qσ the Dirac equation gives the Hamiltonian, H =√
m2
σc

4 + p2
‖c

2 + 2n~|qσ|Bc2 [59], where p‖ is the component of p parallel to B and n ∈ N0.
Conservation of energy and momentum parallel to B when a wave quantum is absorbed
by a particle again yields H ′ = H + ~ω and p′‖ = p‖ + ~k‖. Inserting the expression for p′‖
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into H ′, and introducing the variable ∆n = n′ − n, we find

ω =
H

~


√

1 +
2~k‖p‖c2 + ~2k2

‖c
2 + 2∆n~|qσ|Bc2

H2
− 1

 . (1.4)

In the classical limit of wave−particle interaction, where p‖ � ~k‖ and |(~k‖p‖c2 +
∆n~|qσ|Bc2)|/H2 � 1, the above equation may be Taylor expanded in a similar way
to the non-magnetic case, from which

ω ≈ k‖
p‖c

2

H
+ ∆n

|qσ|Bc2

H
= k‖v‖ + ∆n

|ωcσ|
Υ

, (1.5)

where v‖ = p‖c
2/H is the (pre-interaction) component of v parallel to B, |ωcσ| = |qσ|B/mσ

is the cold cyclotron frequency, and Υ = H/(mσc
2) is the (pre-interaction) Lorentz factor.

The above expression gives the well-known Landau (∆n = 0) and cyclotron (∆n ≥ 1)
resonance conditions a relativistic, magnetized plasma. Note that only the projections
of v and k parallel to B enter the Landau resonance condition in a magnetized plasma,
whereas their full scalar product was involved in the non-magnetic case. In actuality there
is a transition between these extreme cases at a particular value of B [55, 60, 61]: when the
collision frequency or growth rate of an instability is much larger than |ωcσ|, that species
will behave as though it is unmagnetized, since it will only be deflected a negligible amount
by the magnetic field before being strongly deflected by other effects; if |ωcσ| is much larger
than the collision frequency and instability growth rates, the species will be magnetized.

As indicated by their names, ICRH and ECRH rely on cyclotron heating of ions and
electrons, respectively; lower hybrid (LH) heating and current drive on the other hand relies
on Landau damping. The ratio of the ion and electron cyclotron frequencies, ωci/|ωce| =
Zime/mi ≈ 2.724 × 10−3 (for deuterons), where Zi is the ion charge number, determines
the order of magnitude of the ICRH frequency (30−55 MHz at ASDEX Upgrade) to the
ECRH frequency (105 or 140 GHz at ASDEX Upgrade).

Since a magnetized plasma is an anisotropic medium, it generally allows the propagation
of two distinct electromagnetic modes, discussed in detail for ECRH in Section 2.1. For
propagation close to perpendicular to B, which is approximately true for the waves used
for ECRH in tokamaks, the two modes can be characterized as an ordinary (O) mode,
whose propagation characteristics are relatively unaffected by B, and an extraordinary
(X) mode, whose propagation characteristics are strongly affected by B. O- and X-mode
radiation may be injected by matching the polarization of the injected radiation to that
of O- or X-mode at the plasma edge. The efficiency of the cyclotron damping mechanism,
and hence the overall efficiency of ECRH, depends on the injected mode, the cyclotron
harmonic(s) where absorption takes place, and the plasma parameters around the cyclotron
harmonics, particularly the electron temperature, Te, and density, ne. Detailed calculations
[62, 63] show that the optical thickness is proportional to [Te/(mec

2)]∆n for O-mode when
∆n ≥ 1 and [Te/(mec

2)]∆n−1 for X-mode when ∆n ≥ 2; the case of ∆n = 1 for X-mode
is somewhat special and discussed in more detail in Chapter 6. Since Te/(mec

2) is a small
number ∼ 1/50 in the core of a tokamak plasma, indicating that the electrons are weakly
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relativistic, the absorption decreases rapidly with increasing cyclotron harmonics. ECRH
is thus generally performed with O-mode at the first-harmonic (∆n = 1) or X-mode at the
second-harmonic (∆n = 2); second-harmonic O-mode and third-harmonic X-mode ECRH
are also employed, but require more care to ensure absorption of the ECRH power.

As mentioned in Section 1.2, the ECRH system at ASDEX Upgrade consists of 8 gyrotron
sources [64, 65]. A gyrotron generates microwaves by inverting the process of the electron
cyclotron damping discussed above, leading to electron cyclotron emission (ECE). Essen-
tially, a hollow beam of electrons is sent into the gyrotron cavity where a strong magnetic
field, generated by superconducting coils, is present. The electrons have a significant kinetic
energy perpendicular to the magnetic field which may be reduced by the emission of pho-
tons at the electron cyclotron resonance (ECR) frequencies, usually the first-harmonic for
high-power gyrotrons. The gyrotron cavity is constructed to be resonant with the photons
emitted at the chosen ECR frequency and the hollow shape of the electron beam further
ensures that the emission pattern corresponds to the selected mode of the gyrotron cavity;
the photons emitted by the electron beam are coherent due to the relativstic shift of the
ECR frequency [66]. This results in a strong microwave field in the gyrotron cavity, part
of which is coupled out and converted to a Gaussian beam that is guided to the tokamak
plasma, where it is injected for ECRH. Gyrotrons allow a high ECRH power (∼ 1 MW
per beam) to be generated with high efficiency (∼ 50 %). Apart from ECRH, gyrotrons
with lower power are used in electron spin resonance investigations of chemical substances
[66, 67] and for enhancing nuclear magnetic resonance signals through the dynamic nuclear
polarization effect [68].

The gyrotrons at ASDEX Upgrade operate near 105 or 140 GHz [64, 65, 69]. They are
capable of delivering 10 s pulses of up to 1 MW at 140 GHz and up to 800 kW at 105
GHz, although they are usually operated at slightly lower power to improve reliability [69].
It is further possible to modulate the gyrotron power on a fast time scale in an analog
fashion by modulating the cathode voltage. Analog modulations allow determination of
the dependence of microwave signals on gyrotron power, which is a very useful tool for
identifying and characterizing PDIs. The ports from which the Gaussian output beams of
the gyrotrons are injected are located on the outer (low-field side) part of the torus. The
ports of the older (ECRH2) system are located close together with two ports slightly above
and two ports slightly below the mid-plane. The ports of the newer (ECRH3) system are
all located on the mid-plane, but distributed around the torus; the original ECRH1 system
used the same ports as the ECRH3 system. In connection with PDIs, it is particularly
worth noting that one of the ECRH3 gyrotrons is located near the ECE diagnostic port. In
the standard scenario, with a central toroidal magnetic field, |Bt|, of 2.5 T, second-harmonic
X-mode at 140 GHz is used, since the resonance for perpendicular injection, ω = 2|ωce|,
occurs at the plasma center at this field; high plasma densities may necessitate the use of
second-harmonic O-mode ECRH instead. We also consider discharges with third-harmonic
X-mode ECRH at 140 GHz, in which |Bt| = 1.8 T. 105 GHz operation is only used for
ECRH in special scenarios and for diagnostic purposes, e.g., for the probe beam of the
collective Thomson scattering (CTS) diagnostic discussed in Section 1.4. Discharges with
105 GHz gyrotron operation are considered in Chapter 6.
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1.4 Plasma (Wave) Diagnostics

With the basic plasma properties and heating methods of tokamaks covered, we shall now
consider the problem of actually determining the properties of a fusion-relevant plasma. It
is rather obvious that probe-based diagnostics, e.g., Langmuir probes, can only be used in
the scrape-off layer and the very edge of the confined plasma, due to erosion of the probe and
impurity accumulation in the plasma caused by the bombardment of the probe by energetic
particles. Fusion plasmas are therefore diagnosed by a number of remote techniques, which
may be separated based on whether they involve active or passive probing of the plasma,
as well as on type of signals they are sensitive to.

1.4.1 Passive Plasma Diagnostics

Passive techniques measure signals generated by the plasma itself, rather than its response
to external perturbations. They include magnetic diagnostics, e.g., Mirnov coils, Rogowski
coils, and B-dot probes, which essentially measure the time derivatives of various compo-
nents of B through voltages induced due to Faraday’s law, allowing reconstruction of the
magnetic equilibrium and the plasma current through time integration, as well as the de-
tection of magnetic islands and waves in the ICRH frequency range [70, 71]. Other passive
diagnostics are based on the detection of fast ions and neutrons escaping the plasma, or cur-
rents in the plasma facing components due to interactions with the plasma; we particularly
utilize the divertor current to infer the occurrence of ELM crashes. The class of passive
diagnostics of most direct interest in this work is, however, the diagnostics based on the
detection of electromagnetic radiation. Apart from the use of coils to detect relatively low-
frequency waves, there are microwave diagnostics, most notably ECE, detecting waves in
the ECRH frequency range; visible light diagnostics, detecting light from recombination of
the deuterons with electrons at the plasma edge; soft X-ray diagnostics, measuring changes
in the bremsstrahlung levels, providing a second diagnostic for detecting magnetic islands;
and even gamma ray diagnostics detecting characteristic lines due to neutron-generated
radioactive isotopes [70]. The passive diagnostic of most explicit interest in this work is
ECE, as it is capable of detecting the waves generated by PDIs in the ECRH beams, but
we shall of course also make use of magnetic and soft X-ray diagnostics for reconstructing
magnetic equilibria, detecting magnetic islands, etc.

The physical principle behind the ECE diagnostic relies on emission of radiation at the
ECR harmonics, just as a gyrotron, but unlike the gyrotron, the ECE originates from
plasma electrons and is far weaker. B in a tokamak is chiefly determined by the toroidal
field, which decreases as 1/R due to Ampère’s law, so a particular value of ω detected by
the ECE system can be linked to radiation emitted from a particular R for a given ECR
harmonic. Provided that the ECR is optically thick and that the electrons have a thermal
distribution, the amplitude of the ECE signal will be given by the Planck radiation law and
thus proportional to Te at the R-value corresponding to a particular ω (since Te � ~ω);
the output of the ECE system is therefore often given as a radiation temperature, which
is the temperature that would correspond to a given signal with the above assumptions.
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Several factors, such as the lack of an optically thick ECE, the overlap of ECE from several
ECR harmonics, ECE from non-thermal electrons, and the occurrence of PDIs may cause
the radiation temperature to be rather different from Te [72].

The ECE radiometer at ASDEX Upgrade is, like most other microwave diagnostics, based
on the heterodyne detection technique [73]. This technique involves picking up the radi-
ation emitted by the plasma using a microwave horn (which provides localization of the
measurements perpendicular to R, allowing Te to be mapped to ρpol), filtering it, and mix-
ing the filtered signal with a quasi-monochromatic signal from a local oscillator (LO) of
angular frequency ωLO. The mixing stage is a three-process, which, as discussed in Section
1.5, maps an angular frequency component ω of the filtered signal near ωLO to a down-
converted beat frequency |ω−ωLO|; as frequency components shifted by the same amount
above and below the LO frequency are mapped to the same frequency upon mixing, it is
necessary to filter out one of these regions before the mixer in order to have an unam-
biguous mapping of the original signal to the down-converted signal, which is also known
as the intermediate frequency (IF) signal. Provided that the LO signal is much stronger
than any component of the filtered signal, the IF signal amplitude will be proportional to
that of the filtered signal. If this is not the case, e.g., due the occurrence of PDIs, the
IF signal will saturate and the mixer itself can even be damaged, as shown in Chapter 5.
The IF signal is typically in the frequency range of 0 − 20 GHz, while the filtered signal
has frequencies ∼ 100 GHz, at ASDEX Upgrade [73]. This permits the IF signal to be
amplified, split, re-amplified, sent through various band pass filters, detected by diodes,
re-amplified, and sampled by analog to digital converts (ADCs). The above concept is
that of a filter bank, which has a frequency resolution determined by the bandwidth of the
band pass filters and a sampling rate determined by the ADCs. In order to cover a broad
frequency range, several receivers with filter banks using mixers operating at different LO
frequencies may be operated in parallel. ASDEX Upgrade has a 60 channel ECE system,
consisting of three filter banks operating in parallel, with frequency resolutions of 300 or
600 MHz, sampled at a rate of 1 MHz [74]. Assuming that the radiation temperature is
roughly equal to Te at the measurement location, ECE measurements with a sampling rate
of 1 MHz may be used to identify magnetic island structures and other MHD phenomena
[74, 75]. The LO frequencies employed depend on |Bt| of the plasma discharge and are
tuned to observe second-harmonic X-mode ECE; the X-mode fraction of the microwave
signal is selected by a polarizer before the mixer.

1.4.2 Active Plasma Diagnostics

Active plasma diagnostics are separate from their passive counterparts in that they in-
volve subjecting the plasma to a known external perturbation and using the response of
the plasma to infer the plasma parameters. Active plasma diagnostics may involve the
injection of particles, e.g., fast neutral particles from the NBI system, lithium from the
lithium beam system, and helium from a beam or in the form of a gas puff. Characteristic
atomic and ionic lines of the injected particles may then be observed and the Doppler shift
of these lines may provide information about the fast particles, thermal particles, and ne
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through charge exchange and beam emission spectroscopy [70]. The lithium beam diagnos-
tic is, for instance, particularly useful for determining ne near the plasma edge [76]. Other
diagnostics, e.g., the heavy ion beam probe, detect the injected particles themselves upon
exiting the plasma. The active plasma diagnostics most directly impacting this work are,
however, the ones relying on the injection of electromagnetic waves. These include interfer-
ometry, polarimetry, reflectometry, and scattering-based diagnostics. Interferometry uses
the phase shift of a quasi-monochromatic wave traversing the plasma relative to that of a
similar wave traversing free space to determine the line-averaged ne; polarimetry is similar,
but uses the change of polarization rather than the phase shift. Reflectometry relies on
the injection of (micro)waves encountering a cutoff, at which they are reflected, into the
plasma. The phase shift accumulated by the reflected wave allows the determination of the
cutoff location, which corresponds to a particular ne at a particular B for a given polariza-
tion of the injected wave with a known ω. Using waves at various ω thus allow the plasma
density profile to be reconstructed, and other features such as plasma turbulence may also
be investigated using reflectometry. The scattering-based fusion plasma diagnostics rely on
scattering of electromagnetic waves by free electrons, known as Thomson scattering in the
classical limit. ASDEX Upgrade has two Thomson scattering systems, a conventional non-
collective Thomson scattering system using scattering of an NdYAG laser beam and the
CTS system using scattering of the ECRH beams. The conventional Thomson scattering
system operates in the small-wavelength limit where electrons can be considered individ-
ually, meaning that the scattered signal is essentially an image of the NdYAG laser line
broadened by the Doppler shift due to the electron velocities, allowing determination of Te,
with an amplitude depending on ne [77]. The CTS system operates in a regime of larger
wavelengths where collective plasma effects, such as electrostatic screening of the plasma
ions by the electrons and plasma waves, must be taken into account [78]. Scattering of
the gyrotron radiation from the electrons turns out to yield information about the thermal
and fast ions due to electrostatic screening, but since the CTS signal originates from the
ECRH beams, the CTS receiver view is designed to overlap with the ECRH beams; the
beam which overlaps with the CTS receiver view is referred to as the probe beam. This
makes the CTS diagnostic much more sensitive to PDIs in the aforementioned beams than
other microwaves diagnostics, such as ECE and reflectometry [15].

The CTS system at ASDEX Upgrade consists of two heterodyne radiometers, both of
which include a filter bank system with a frequency resolution of 100 to 500 MHz, sampled
at a rate of 100 kHz [79]. Both CTS radiometers are capable of operating with a 95.5
GHz LO, which permits the use of a 105 GHz probe gyrotron for CTS measurements,
but one of the radiometers can also be operated with a 130.5 GHz LO, which allows the
use of a standard 140 GHz ECRH probe beam [80, 21]; PDIs with 140 GHz probe beams
are studied in Chapter 5 and PDIs with 105 GHz probe beams are studied in Chapter 6.
The CTS radiometers are connected to the lower ports of the ECRH2 launching system
in ASDEX Upgrade, meaning that the operation of one of these prevents the operation of
the gyrotron connected to the same port, and the polarization of the radiation detected by
the CTS system is controlled using a univerisal polarizer [22]. A necessary component of
the CTS system is a notch filter in front of the mixer blocking the signals in the frequency
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range around the unshifted gyrotron frequencies; ECE radiometers operating near the
ECRH frequency have similar, albeit generally broader notch filters. Other CTS safety
systems include a pin-switch blocking the full frequency range of the radiometer when a
gyrotron is switched on and off, as well as various variable attenuators. The CTS system
is further equipped with a fast acquisition system, inserted after the IF signal is split. The
IF signal going to the fast acquisition system is sent through a relatively broad bandpass
filter (bandwidth ≈ 3 GHz) and amplified. After this, the IF signal is mixed with a second
LO, creating a down-converted signal with frequencies in the range 0 − 3 GHz, which is
amplified, passed through a low-pass filter, and finally digitized at rate up to 12.5 GHz
by a fast ADC, although only rates up to 6.25 GHz are used in this work, since this is
sufficient to stay below the Nyquist frequency of the down-converted signal [81]. The LO
and filter pass frequencies are chosen such that the the fast acquisition system is sensitive
to frequencies in the range of ±1.5 GHz from the gyrotron frequencies. The signal recorded
by the fast acquisition system is a time domain signal which can be transformed to the
frequency domain using a fast Fourier transform with a particular time window length and
shape, determining the frequency and time resolution of the final spectra, both of which
tend to be far finer than those of the filter bank. However, due to memory limitations,
the fast acquisition system can only operate in limited phases of an ASDEX Upgrade
discharge, while the filter bank system can operate throughout a discharge. We shall often
refer to the fast acquisition system and the filter bank system as the fast and slow CTS
systems, respectively. As the fast acquisition system has two channels, one of these can
be connected to other signal sources than the usual CTS system, e.g., a mixer with a 70
GHz LO, allowing signals with frequencies near half that of a 140 GHz probe gyrotron to
be investigated, or a B-dot probe [71], allowing low-frequency signals to be investigated;
both these systems are of interest for studying PDIs.

In order to characterize the overall properties of an ASDEX Upgrade plasma, it is often
necessary to combine the results from multiple diagnostic systems measuring related quan-
tities or even the same quantity by different methods. An example of the former is the
CLISTE code [82], which is used to reconstruct the magnetic equilibria from the magnetic
diagnostic data with a time resolution of 1 ms. Multiple diagnostics measuring the same
quantity can be combined through integrated data analysis (IDA) [76], which utilizes a
Bayesian combination of the diagnostic signals and their uncertainties, along with certain
regularization requirements, to construct the most likely ne and Te profiles, as well as their
confidence intervals, on the flux surfaces with the same time resolution as CLISTE (1 ms).
Unless explicitly stated otherwise, the magnetic equilibria and plasma profiles used in this
work are calculated using CLISTE and IDA.

1.5 Three-Wave Interactions and Parametric Decay Instabil-
ities

After a thorough general discussion, we are now in a position to discuss three-wave inter-
actions and PDIs.
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When multiple waves interact, it is necessary that the sum of ω and k be conserved for the
incoming and outgoing quanta in order to conserve the total Hamiltonian and canonical
momentum of the system. For three-wave interactions, we thus get the selection rules

ω0 = ω1 + ω2, k0 = k1 + k2 (1.6)

where a large-amplitude pump wave, characterized by subscript 0, decays to two daughter
waves, characterized by subscripts 1 and 2. If the pump wave combines with daughter
wave 1 to produce another daughter wave, characterized by subscript 3, the selection rules
become

ω0 + ω1 = ω3, k0 + k1 = k3. (1.7)

We note that a real signal invariably contains both positive and negative frequency com-
ponents, such that combination of two waves also leads to waves with frequencies |ω0−ω1|,
which creates the IF signal in a heterodyne radiometer.

As is evident from the example of heterodyne radiometers, three-wave interactions have
many important applications. Some select examples are the generation of entangled pho-
tons for fundamental tests of quantum mechanics [83, 84], the generation of squeezed states
of light for increased sensitivity of gravitational wave observatories [85, 86], conversion of
light between telecom and visible frequencies [1], and studies of the ionospheric plasma
[4, 5, 6].

Three-wave interactions are inherently nonlinear and particularly originate from quadratic
nonlinear terms in the governing equations, which occur in plasma physics, fluid mechanics,
nonlinear optics, etc. We note that three-wave interactions are only the lowest order
nonlinear interactions, i.e., the ones relying on the lowest order of the wave amplitudes,
but that higher order nonlinear interactions in quadratically nonlinear media can be split
into a cascade of three-wave interactions [87]. An interesting example of such interactions
between ECRH and ICRH waves recorded by the fast CTS system at ASDEX Upgrade
is seen in Fig. 1.2. In the experiment, 105 GHz O-mode radiation with no ECR in the
main plasma is injected for CTS alongside 55.1 MHz radiation for third-harmonic ICRH,
which is also poorly absorbed. As a result of the large amount of unabsorbed wave power,
interactions between the 105 GHz radiation and the 55.1 MHz radiation is observed when
both systems are switched on. This is evident from the sides bands with a separation of
55 MHz observed around the gyrotron frequency by the CTS system in pane (b) of Fig.
1.2; the chirping of the gyrotron frequency is due to analog gyrotron power modulations.

The dependence of three-wave interactions on the wave amplitudes means that their char-
acter may change as the wave amplitudes increase. This is indeed what happens in a PDI:
once the pump wave amplitude exceeds a certain threshold, the decay into two daughter
waves, implied in Eq. (1.6) and visualized in Fig. 1.3, becomes unstable. Depending on
the characteristics of the medium, such an instability may lead to an initial exponential
growth of the daughter wave amplitudes in time (an absolute instability), which will only
saturate once a non-negligible fraction of the pump wave energy has been converted to
daughter wave energy, or to a convective instability, which only results in finite spatial
amplification of the daughter waves and generally consumes less of the pump wave energy.
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Figure 1.2 – Mixing of ECRH and ICRH waves in ASDEX Upgrade #34195. In pane
(a), no ICRH power is injected, leading to a single line from the CTS gyrotron around 105
GHz. In pane (b), ICRH power with a frequency of 55.1 MHz is injected, leading to side
bands separated by the ICRH frequency around the CTS gyrotron line. The low spectral
power density around 105 GHz is due to the CTS notch filter; the overall low spectral power
during switch on/off of the gyrotron is due to the CTS pin-switch.

Absolute PDIs occur in (almost) homogeneous plasmas, e.g., in the ionosphere [5, 6],
and inhomogeneous plasmas if some mechanism by which the daughter wave energy may
be continuously amplified exists, e.g., when the daughter waves are trapped around a
region in which the PDI selection rules are satisfied [88, 8]. Convective PDIs generally
require a higher pump wave amplitude threshold to be exceeded than absolute PDIs in
order for their consequences to be observable and occur in inhomogeneous media when
no localization of the daughter wave energy is possible [89, 90, 91]; the convective PDI
threshold is well beyond the power of the ECRH beams in ASDEX Upgrade, except under
special circumstances to be discussed in Chapters 2 and 6. Both PDI types are described
theoretically in Chapter 4. Absolute PDIs in connection with daughter waves trapped
in the non-monotonic ne-profiles associated with ELMs, magnetic islands, edge density
spikes, and near the plasma center are investigated experimentally in Chapter 5, while
convective PDIs in the gyrotron beams used for CTS are investigated experimentally (and
theoretically) in Chapter 6.

An idealized version of the spectrum generated in the presence of PDIs with trapped
daughter waves is shown in Fig. 1.4. The original (primary) PDI generates waves near
half the pump wave frequency, facilitating the trapping of both daughter waves, which
results in the lowest PDI threshold. After the primary PDI, a secondary PDI, in which
one of the daughter waves, taken to be daughter wave 2, decays to a secondary (still
trapped) daughter wave near its own frequency, with angular frequency ω′2, and a low-
frequency daughter wave, with angular frequency ωLF, occurs; the frequency selection
rule requires that ω2 = ω′2 + ωLF. The secondary PDI is involved in saturation of the
instability, as will be shown in Section 4.4. The primary and secondary daughter waves
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Figure 1.3 – Visual representation of the
PDI selection rules. Figure 1.4 – Theoretical PDI spectrum

with cascading.

additionally combine to produce radiation near the pump frequency with angular frequency
ω′0 = ω2 + ω′2 = 2ω2 − ωLF ≈ ω0 − ωLF. This radiation has the form of microwaves which
may be picked up by the CTS system, and its theoretically expected amplitude has been
shown to agree with experiments [9]. While the waves near half the pump frequency are
nominally electrostatic, and thus not detectable by microwave diagnostics, they may give
rise to strong electromagnetic signals, in agreement with the experiments in Chapter 5 [92].

We have already alluded to the consequences of PDIs, but for the sake of reference it
is useful to have a detailed description here. First, the daughter waves generated by
a PDI are shifted in frequency relative to the pump wave. In the case of an ECRH
pump beam, the available power is ∼ 1 MW, while microwave diagnostics are rated to
receive wave powers . 1µW. Even the conversion of a very small fraction of the ECRH
power to microwaves in the frequency range detectable by microwave diagnostics can thus
damage these diagnostics, as will be shown in Chapter 5. This problem will be further
amplified in a fusion power plant which will rely heavily on microwave diagnostics due to
their relative resistance to neutron damage compared with, e.g., optical diagnostics. It is
therefore crucial to identify the situations in which PDI-generated microwaves may damage
microwave diagnostics in order to mitigate or, ideally, avoid their deleterious consequences.
Second, the occurrence of absolute PDIs with trapped daughter waves may lead to a
significant fraction of the ECRH power being converted to power in the daughter wave
modes; the fraction ranges from 6−60 % according to present theories [9, 10, 11, 12, 93]
and values of 45 % have been found in recent low-temperature plasma experiments [94].
The alteration of ECRH power deposition and current drive characteristics caused by
such drastic mode conversion would certainly have to be taken into account in ECRH
applications like NTM suppression/stabilization and current profile tailoring. At present,
there is, however, little experimental evidence of major deviations from the characteristics
expected based on linear heating and current drive ECRH theories in tokamaks.
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Chapter 2

Plasma Wave Theory

As PDIs involve coupling of different linear plasma wave modes, we provide a brief overview
of linear plasma wave theory, focusing on the wave modes which enter in the instabilities
treated in the latter part of this Thesis. Section 2.1 treats cold electromagnetic waves
in the electron cyclotron frequency range, which are injected by gyrotrons at ASDEX
Upgrade for ECRH and CTS. Section 2.2 discusses electrostatic waves in the electron
cyclotron frequency range, particularly electron Bernstein waves (EBWs). Finally, Section
2.3 considers electrostatic waves with a significant ion response, specifically ion Bernstein
waves (IBWs) and warm lower hybrid (LH) waves.

The most fundamental macroscopic, classical description of plasma waves is provided by
kinetic theory. Kinetic theory describes the evolution of the distribution function of plasma
species σ (characterized by its mass, mσ, and charge, qσ), fσ, in phase space through a
Boltzmann-like equation [95],

∂fσ(r,p, t)

∂t
+ v · ∂fσ(r,p, t)

∂r
+ qσ[E(r, t) + v×B(r, t)] · ∂fσ(r,p, t)

∂p
=

[
∂fσ(r,p, t)

∂t

]
col

.

(2.1)
In Eq. (2.1), t is time, r is the position vector, p is the momentum vector (∂/∂r and
∂/∂p denote gradients with respect to r and p), v = pc2/H is the velocity vector, H =√
m2
σc

4 + p2c2 is the Hamiltonian, c is the vacuum speed of light, E is the electric field
vector, B is the magnetic field vector, and [∂fσ(r,p, t)/∂t]col is the collision operator for
species σ. The evolution of E and B are given by the Maxwell equations [96]

∂

∂r
×E(r, t) = −∂B(r, t)

∂t
, (2.2)

c2 ∂

∂r
×B(r, t) =

J(r, t)

ε0
+
∂E(r, t)

∂t
, (2.3)

∂

∂r
·E(r, t) =

ρ(r, t)

ε0
, (2.4)

∂

∂r
·B(r, t) = 0, (2.5)
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where ε0 is the vacuum permittivity, and

J(r, t) =
∑
σ

qσ

∫
all p

vfσ(r,p, t) dp, (2.6)

ρ(r, t) =
∑
σ

qσ

∫
all p
fσ(r,p, t) dp (2.7)

are the current and charge densities, respectively. To obtain a wave equation, we differen-
tiate Eq. (2.3) with respect to t and insert ∂B/∂t from Eq. (2.2) to obtain

− c2 ∂

∂r
×
[
∂

∂r
×E(r, t)

]
− ∂2E(r, t)

∂t2
=

1

ε0

∂J(r, t)

∂t
. (2.8)

Using a vector calculus identity [96], Eq. (2.8) may be recast as[(
c2 ∂

∂r
· ∂
∂r
− ∂2

∂t2

)
1− c2 ∂

∂r

∂

∂r

]
·E(r, t) =

1

ε0

∂J(r, t)

∂t
, (2.9)

where 1 is the 3-dimensional identity matrix. Since we are interested in weakly nonlinear
phenomena, we write J = Jl + Jnl, with Jl being the linear current density and Jnl being
the nonlinear current density. Jl is the linear response of the plasma to E and is hence
given by [87]

Jl(r, t) =

∫
all (r′,t′)

σ

(
r− r′,

r + r′

2
; t− t′, t+ t′

2

)
·E(r′, t′) dr′ dt′; (2.10)

σ is a conductivity tensor in physical space. Noting that E(r, t) =
∫

all (r′,t′) δ(r− r′)δ(t−
t′)E(r′, t′) dr′ dt′, where δ is the Dirac delta distribution, Eq. (2.9) can be written in an
integral form,∫

all (r′,t′)

{[(
c2 ∂

∂r
· ∂
∂r
− ∂2

∂t2

)
1− c2 ∂

∂r

∂

∂r

]
δ(r− r′)δ(t− t′)

− 1

ε0

∂σ

∂t

(
r− r′,

r + r′

2
; t− t′, t+ t′

2

)}
·E(r′, t′) dr′ dt′ =

1

ε0

∂Jnl(r, t)

∂t
,

(2.11)

which represents a general starting point for the discussion of plasma waves in this work.
While the above equation is capable of describing essentially all macroscopic plasma wave
phenomena, it is not feasible to calculate σ and Jnl for an arbitrary inhomogeneous plasma;
we shall therefore make approximations to study the phenomena of interest to us. In the
present Chapter, we assume the plasma to be homogeneous (this constraint will be relaxed
in Chapter 3), which means that σ = σ(r − r′, t− t′). This turns the integral on the left
hand side of Eq. (2.11) into a convolution integral, allowing the Fourier−Laplace transform
of Eq. (2.11) to be evaluated using the convolution theorem [97]

D(k, ω) ·E(k, ω) =

[(
ω2 − c2k2

)
1 + c2kk +

iωσ(k, ω)

ε0

]
·E(k, ω) = − iωJnl(k, ω)

ε0
; (2.12)
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D is the dispersion matrix, k and ω are the wave vector and angular frequency of a given
Fourier−Laplace mode, the Fourier−Laplace transform of a function g(r, t) is defined as

g(k, ω) =

∫
all r

[∫ ∞
0

g(r, t) ei(ωt−k·r) dt

]
dr, (2.13)

and all quantities are taken to vanish at t = 0. To study linear waves, we set Jnl = 0 which
turns Eq. (2.12) into a homogeneous linear equation for E. In order for such an equation
to have a non-trivial solution (E 6= 0), the determinant of D must vanish [97], i.e.,

det[D(k, ω)] = det

[(
ω2 − c2k2

)
1 + c2kk +

iωσ(k, ω)

ε0

]
= 0. (2.14)

Eq. (2.14) is the dispersion relation for linear waves in a homogeneous plasma, and solving
it in different limits is the main objective of the remainder of this Chapter. Since the plasma
response is contained in σ, this essentially boils down to determining the conductivity of
a plasma in Fourier−Laplace space.

2.1 Cold Electromagnetic Waves

As we are considering coupling of the electromagnetic waves used for ECRH to plasma
waves, it is natural to start out with a description of electromagnetic waves. Although
computation of absorption near the cyclotron harmonics requires a kinetic treatment [62,
63, 98], the basic propagation properties of electromagnetic plasma waves can be obtained
from a cold fluid model, as the phase velocity of the waves is generally much larger than
the thermal velocities of the plasma particles [99, 55]. This model, often referred to as
the Altar−Appleton−Hartree model [55], is well-known and described in detail elsewhere
[100, 99, 55]; therefore, we shall only provide a brief overview, focusing on the results which
are incorporated later in this work. The fluid equations are obtained by taking moments of
Eq. (2.1), i.e., multiplying by a power of v and integrating over all p. The zeroth moment
yields the continuity equation,

∂nσ(r, t)

∂t
+

∂

∂r
· [nσ(r, t)Vσ(r, t)] = 0, (2.15)

where nσ =
∫

all p fσ dp is the (number) density of species σ and Vσ =
∫

all p vfσ dp/nσ
is the fluid velocity of species σ. The cold fluid approximation is obtained by taking the
first moment in the non-relativistic limit (p ≈ mσv), ignoring the terms related to finite
plasma pressure,

∂Vσ(r, t)

∂t
+ Vσ(r, t) · ∂Vσ(r, t)

∂r
=

qσ
mσ

[E(r, t) + Vσ(r, t)×B(r, t)]

+
∑
σ′

νσσ′(r, t) · [Vσ′(r, t)−Vσ(r, t)];

(2.16)
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Eq. (2.16) assumes the collisional drag of σ′ on species σ to be proportional to the difference
of their fluid velocities [101] and νσσ′ is a collision frequency matrix, obtained from the
collision operator, determining the strength of the collisional drag of species σ′ on species
σ. Since we are concerned with waves used for ECRH that have ω ∼ |ωce| � ωci, we
can generally ignore the response of the ions (and set Vi = 0). This reduces the set of
equations in Eqs. (2.15) and (2.16) to the equations for the electrons

∂ne(r, t)

∂t
+

∂

∂r
· [ne(r, t)Ve(r, t)] = 0, (2.17)

∂Ve(r, t)

∂t
+ Ve(r, t) ·

∂Ve(r, t)

∂r
= − e

me
[E(r, t) + Ve(r, t)×B(r, t)]− νei(r, t) ·Ve(r, t),

(2.18)
where νei is the electron−ion collision frequency matrix, given by a Braginskii-style ex-
pression [55] (neutrals may also be included in it, but are not considered in this work).
In order to calculate σ, which is required to obtain the dispersion relation, we linearize
Eqs. (2.17) and (2.18) around a stationary, potentially inhomogeneous, equilibrium with
ne = n

(0)
e (r), B = B(0)(r), νei = ν

(0)
ei (r), Ve = V

(0)
e = 0, and E = E(0) = 0,

∂ne, l(r, t)

∂t
+ n(0)

e (r)
∂

∂r
·Ve, l(r, t) = 0, (2.19)

∂Ve, l(r, t)

∂t
= − e

me
[E(r, t) + Ve, l(r, t)×B(0)]− ν(0)

ei (r) ·Ve, l(r, t); (2.20)

ne, l and Ve, l represent the linearized response of the plasma to E. According to Eq. (2.6),
J = −eneVe, which has the linearized version Jl(r, t) = −en(0)

e (r)Ve, l(r, t), so ne, l is
unimportant for linearized, electromagnetic plasma waves; it does, however, enter in Ve, nl,
as shown in Chapter 4. Plugging Jl into Eq. (2.20) yields

∂Jl(r, t)

∂t
= ε0ω

2
pe(r)E(r, t) + Jl(r, t)× ωce(r)− ν(0)

ei (r) · Jl(r, t), (2.21)

where ωpe =

√
e2n

(0)
e /(ε0me) is the electron plasma frequency and ωce = −eB(0)/me is

the electron cyclotron frequency vector. Performing a Laplace transform in t on Eq. (2.21)
and rearranging, we find

E(r, ω) = − 1

ε0ω2
pe

(r)[iωJl(r, ω) + Jl(r, ω)× ωce(r)− ν(0)
ei (r) · Jl(r, ω)]. (2.22)

Taking B(0) to point in a constant direction, which we define to be the z-direction, ωce =

ωceez and ν(0)
ei = νei(exex + eyey) + νei‖ezez [55]. This allows Eq. (2.22) to be recast in

the matrix−vector form,

E(r, ω) =
1

ε0ω2
pe(r)

 −iω + νei(r) −ωce(r) 0
ωce(r) −iω + νei(r) 0

0 0 −iω + νei‖(r)

 · Jl(r, ω); (2.23)
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strictly speaking, a constant direction of B(0) also requires B(0) to be independent of r,
but as we are generally considering a mainly toroidal field, varying as 1/R, for waves
propagating mainly along the R-direction, we retain the r-dependence. Eq. (2.23) can be
inverted using standard linear algebra,

Jl(r, ω) =



ε0ω
2
pe(r)[−iω + νei(r)]

[−iω + νei(r)]2 + ω2
ce(r)

ε0ω
2
pe(r)ωce(r)

[−iω + νei(r)]2 + ω2
ce(r)

0

−ε0ω2
pe(r)ωce(r)

[−iω + νei(r)]2 + ω2
ce(r)

ε0ω
2
pe(r)[−iω + νei(r)]

[−iω + νei(r)]2 + ω2
ce(r)

0

0 0
ε0ω

2
pe(r)

−iω + νei‖(r)


·E(r, ω).

(2.24)
We shall employ Eq. (2.24) when discussing field enhancement in inhomogeneous plasmas
in Chapter 3; however, for the remainder of this Chapter we take the plasma to be homoge-
neous and additionally ignore collisions (set νei = νei‖ = 0), as they are not essential when
discussing the general characteristics of electromagnetic waves. With these assumptions,
Eq. (2.24) may be Fourier transformed in r, giving

Jl(k, ω) = σ(k, ω) ·E(k, ω), σ(k, ω) =



iε0ω
2
peω

ω2 − ω2
ce

−ε0ω2
peωce

ω2 − ω2
ce

0

ε0ω
2
peωce

ω2 − ω2
ce

iε0ω
2
peω

ω2 − ω2
ce

0

0 0
iε0ω

2
pe

ω

 . (2.25)

Using σ from Eq. (2.25), D(k, ω) = [(ω2−c2k2)1+c2kk+iωσ(k, ω)/ε0] can be computed.
Defining k = k sin(θ)ex + k cos(θ)ez, where θ ∈ [0, π] is the angle between k and B(0), we
find

D(k, ω) =

 ω2S − c2k2 cos2(θ) −iω2D c2k2 cos(θ) sin(θ)
iω2D ω2S − c2k2 0

c2k2 cos(θ) sin(θ) 0 ω2P − c2k2 sin2(θ)

 , (2.26)

where

S = 1−
ω2
pe

ω2 − ω2
ce

, D =
ωce
ω

ω2
pe

ω2 − ω2
ce

, P = 1−
ω2
pe

ω2
(2.27)

are the Stix parameters [99]. The dispersion relation is found by requiring the determinant
of D to vanish,

det[D(k, ω)] = [S sin2(θ) + P cos2(θ)]ω2c4k4

− {PS[1 + cos2(θ)] + (S2 −D2) sin2(θ)}ω4c2k2 + P(S2 −D2)ω6 = 0.

(2.28)
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Eq. (2.28) is a quadratic equation for k2 which, when solved, yields

k2 =
ω2

2c2

{
PS[1 + cos2(θ)] + (S2 −D2) sin2(θ)

S sin2(θ) + P cos2(θ)

±
√

(S2 −D2 − PS)2 sin4(θ) + 4P2D2 cos2(θ)

S sin2(θ) + P cos2(θ)

}
.

(2.29)

From Eq. (2.29) it is clear that a cold magnetized plasma supports two electromagnetic
modes which can be either propagating (k2 > 0) or evanescent (k2 < 0) depending on the
plasma parameters and the mode frequency. The points at which qualitative changes in
the propagation characteristics of electromagnetic waves occur may be found by identifying
the resonances (|k| → ∞) and cutoffs (k → 0) for propagation parallel to B(0) (θ = 0) and
perpendicular to B(0) (θ = π/2), known as the principal resonances and cutoffs [99, 55].
For θ = 0, the modes supported by Eq. (2.29) are referred to as the R- and L-modes,

R-Mode: k2
R =

ω2

c2
(S +D) =

ω2

c2

ω(ω + ωce)− ω2
pe

ω(ω + ωce)
, (2.30)

L-Mode: k2
L =

ω2

c2
(S −D) =

ω2

c2

ω(ω − ωce)− ω2
pe

ω(ω − ωce)
. (2.31)

Since ωce < 0, the R-mode has a resonance at ω = |ωce|, while the L-mode has no resonance
for ω > 0. The resonance at ω = |ωce| is the non-relativistic ECR. Cold plasma theory alone
does not describe the behavior at the ECR, which requires the inclusion of kinetic and/or
collisional effects, but as discussed in Chapter 1, the ECR is a point where electromagnetic
waves are absorbed by the electrons. We also note that inserting Eqs. (2.30) and (2.31)
in the dispersion equation D(k, ω) · E(k, ω) = 0, with D from Eq. (2.26) and θ = 0,
yields the polarization vectors ER = [Ex,R, iEx,R, 0] and EL = [Ex,L,−iEx,L, 0], such that
the both modes are circularly polarized with the R-mode being right hand polarized and
the L-mode being left hand polarized, which is the motivation for the R,L-nomenclature.
The R-mode has a cutoff at |ωce|/ω = 1 − ω2

pe/ω
2, while the L-mode has a cutoff at

|ωce|/ω = ω2
pe/ω

2 − 1; both cutoffs are given by the condition ω2
ce/ω

2 = (1− ω2
pe/ω

2)2. An
R/L-mode encountering the R/L-cutoff will be reflected. Now, turning our attention to
θ = π/2, two different modes, referred to as the O- and X-modes, are supported by Eq.
(2.29),

O-Mode: k2
O =

ω2

c2
P =

ω2 − ω2
pe

c2
, (2.32)

X-Mode: k2
X =

ω2

c2

S2 −D2

S
=
ω2

c2

(S +D)(S −D)

S
=
ω2

c2

(
1−

ω2
pe

ω2

ω2 − ω2
pe

ω2 − ω2
UH

)
, (2.33)

where ωUH =
√
ω2
pe + ω2

ce is the upper hybrid (UH) frequency. The O-mode has a cut-

off at ω = ωpe and no resonance; O-mode radiation is thus unaffected by B(0) and re-
flected when its frequency is equal to the (electron) plasma frequency. We may find
the O-mode polarization vector in a manner similar to the R- and L-mode polarization
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Figure 2.1 – CMA diagram. No propagating X-mode exists in the yellow shaded region,
no propagating O-mode exists in the orange shaded region, and neither the O-mode nor the
X-mode is propagating in the red shaded region.

vectors, EO = [0, 0, E‖,O], which shows that O-mode radiation is linearly polarized and
only induces motion parallel to B(0). The mode of interest for PDIs in this work is the
X-mode, which is seen to have a resonance at ω = ωUH , known as the upper hybrid
resonance (UHR), and cutoffs at the R- and L-cutoffs (S ± D = 0), characterized by
the condition ω2

ce/ω
2 = (1 − ω2

pe/ω
2)2. The X-mode polarization vector is found to be

EX = [(iD/S)Ey,X, Ey,X, 0]. Since Ex,X = i{ωceω2
pe/[ω(ω2−ω2

UH)]}Ey,X, the x-component
of EX attains a very large numerical value in the vicinity the UHR, making nonlinear
effects, such as PDIs, important in this region. The behavior of X-mode radiation near
the UHR requires the inclusion of kinetic and/or collisional effects, but generally involves
linear conversion of the X-mode waves to electrostatic electron Bernstein waves (EBWs) at
low collision frequencies and collisional absorption at high collision frequencies. Section 2.2
describes EBWs and the linear conversion process within an electrostatic, kinetic frame-
work, while Section 3.3 describes X-mode amplification near the UHR in an inhomogeneous
plasma, accounting for a finite collision frequency, but ignoring kinetic effects.

Evaluating the signs of Eqs. (2.32) and (2.33), we find that the O-mode is propagating
for ω > ωpe, while the X-mode is propagating for ω above the R-cutoff frequency, non-
propagating for ω below the R-cutoff frequency and above ωUH , propagating for ω below
ωUH and above the L-cutoff frequency, and non-propagating for ω below the L-cutoff fre-
quency. These characteristics can be visualized using a Clemmow−Mullaly−Allis (CMA)
diagram in which the O-cutoff, ω2

pe/ω
2 = 1, R-cutoff, |ωce|/ω = 1 − ω2

pe/ω
2, L-cutoff,

|ωce|/ω = ω2
pe/ω

2 − 1, UHR, ω2
UH/ω

2 = ω2
pe/ω

2 + ω2
ce/ω

2 = 1, and ECR, ω2
ce/ω

2 = 1, are
plotted against ω2

pe/ω
2 and ω2

ce/ω
2, since regions with distinct propagation characteristics

are bounded by the above lines [99, 55]. Such a diagram with the regions of interest marked
is seen in Fig. 2.1.
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2.2 Electrostatic Waves and Electron Bernstein Waves

Having discussed cold electromagnetic waves, we now turn our attention to electrostatic
plasma waves. Such waves only propagate in plasmas of finite density and have phase
velocities much smaller than c. The latter fact allows the E associated with the waves to
be expressed as an electrostatic field, i.e., E(r) = −∂φ(r, t)/∂r, where φ is the electrostatic
potential. Rather than employing Eq. (2.11) to describe electrostatic waves, it is more
efficient to insert the expression for E in Eq. (2.4) to obtain the Poisson equation, which
governs the evolution of φ,

∂

∂r
· ∂φ(r, t)

∂r
= −ρ(r, t)

ε0
. (2.34)

As was done with J for the electromagnetic waves, we write ρ = ρl + ρnl, where ρl and
ρnl are the linear and nonlinear response of ρ to φ, respectively (in this work, we take the
equilibrium φ = φ(0) = 0). ρl may be expressed in a manner similar Jl,

− ρl(r, t)

ε0
=

∫
all (r′,t′)

X

(
r− r′,

r + r′

2
; t− t′, t+ t′

2

)
φ(r′, t′) dr′ dt′, (2.35)

whereX plays the role of a generalized susceptibility in physical space. X may be connected
to σ through the charge continuity equation,

∂ρ

∂t
+

∂

∂r
· J(r, t) = 0, (2.36)

which is obtained by taking the divergence of Eq. (2.3) and inserting Eq. (2.4). Lin-
earizing Eq. (2.36), ∂ρl/∂t = −(∂/∂r) · Jl, using Eqs. (2.10) and (2.35) with E(r′, t′) =
−∂φ(r′, t)/∂r′, and integrating by parts, we find

∂X

∂t

(
r− r′,

r + r′

2
; t− t′, t+ t′

2

)
=

1

ε0

∂

∂r′
·
[
∂

∂r
· σ
(
r− r′,

r + r′

2
; t− t′, t+ t′

2

)]
;

(2.37)
in a homogeneous plasma, where X = X(r− r′, t− t′) and σ = σ(r− r′, t− t′), Eq. (2.37)
can further be Fourier−Laplace transformed to give X(k, ω) = ik ·σ(k, ω) ·k/(ε0ω). Now,
returning to Eq. (2.34), plugging in Eq. (2.35), and using φ(r, t) =

∫
all (r′,t′) δ(r− r′)δ(t−

t′)φ(r′, t′) dr′ dt′, we obtain an integral equation for electrostatic waves,∫
all (r′,t′)

[
X

(
r− r′,

r + r′

2
; t− t′, t+ t′

2

)
− ∂

∂r
· ∂δ(r− r′)

∂r
δ(t− t′)

]
φ(r′, t′) dr′ dt′ =

ρnl(r, t)

ε0
.

(2.38)

Eq. (2.38) is the main equation used for studying parametric decay instabilities in this
work; in Chapter 3, we consider the left hand side in the semi-classical limit, while the
right hand side is considered in Chapter 4. However, in the present Chapter, we assume
the plasma to be homogeneous, i.e., X = X(r − r′, t − t′), which turns the left hand side
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of Eq. (2.38) into a convolution integral and allows the Fourier−Laplace transform of the
equation to be evaluated using the convolution theorem [97],

D(k, ω)φ(k, ω) = [X(k, ω) + k2]φ(k, ω) =
ρnl(k, ω)

ε0
; (2.39)

from Eqs. (2.37) and (2.12), the dispersion function D(k, ω) = k2 +ik ·σ(k, ω) ·k/(ε0ω) =
k · D(k, ω) · k/ω2. To study linear waves, we set ρnl = 0. This turns Eq. (2.39) into a
homogeneous equation which only has non-trivial solutions (with φ 6= 0) if the dispersion
relation

D(k, ω) = X(k, ω) + k2 = 0 (2.40)

is satisfied. Eq. (2.40) plays the same role for electrostatic waves as Eq. (2.14) does for
electromagnetic waves, and just as the plasma response was contained in σ for electromag-
netic waves, it is contained in X for electrostatic waves.

Since electrostatic waves have phase velocities comparable with the thermal plasma particle
velocities rather than c, their description generally requires a kinetic treatment of the
plasma response. We thus return to Eq. (2.1), for now limiting our discussion to the
electrons, as we are considering waves with ω ∼ |ωce| � ωci. In order to obtain X, Eq.
(2.1) must be linearized around a background plasma which we take to be homogeneous and
in thermal equilibrium. We further assume the plasma to be non-relativistic (p ≈ mev) and
the collision operator to be a particle conserving Krook operator [102, 103, 104], commonly
used for studying PDIs [105, 106, 107, 13]. This gives

f (0)
e (p) =

n
(0)
e e−p

2/(mevTe)2

π3/2(mevTe)3
,

[
∂fe(r,p, t)

∂t

]
col

= νe

[
ne(r, t)

n
(0)
e

f (0)
e (p)− fe(r,p, t)

]
,

(2.41)
where f

(0)
e (p) is the Maxwellian thermal equilibrium background distribution, vTe =√

2Te/me is the thermal electron speed (Te is the electron temperature in energy units),
and νe is a semi-empirical electron collision frequency which is usually set equal to νei in
a fully ionized plasma [104]. The above assumptions, along with the electrostatic approx-
imations, E = −∂φ/∂r and B = B(0), allow Eq. (2.1) to be linearized and X to be found
using the method of characteristics [105]. Since the details of the calculation are of little
importance in what follows, we simply quote the result [105],

X(k, ω) =
2ω2

pe

v2
Te

1 +
ω + iνe
k‖vTe

∞∑
n=−∞

In(k2
⊥r

2
Le) e−k

2
⊥r

2
LeZ

(
ω + iνe − nωce

k‖vTe

)
1 +

iνe
k‖vTe

∞∑
n=−∞

In(k2
⊥r

2
Le) e−k

2
⊥r

2
LeZ

(
ω + iνe − nωce

k‖vTe

) , (2.42)

where rLe = vTe/(
√

2|ωce|) =
√
meTe/[eB

(0)] defines the thermal electron Larmor radius,
k‖ and k⊥ =

√
k2 − k2

‖ are the components of k parallel and perpendicular to B(0), respec-

tively, Z(ζ) = (1/
√
π)
∫∞
−∞[e−ξ

2
/(ξ− ζ)] dξ is the Fried−Conte plasma dispersion function

[99, 55], and In is a modified Bessel function of the first kind of order n [97].
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Plugging Eq. (2.42) into Eq. (2.40) yields a dispersion relation with an infinite num-
ber of wave solutions; the waves with k nearly perpendicular to B(0) (k⊥ � |k‖|) are
collectively known as electron Bernstein waves (EBWs) [108] (except for the electrostatic
approximation of the X-mode wave). In this regime, it generally holds that |(ω + iνe −
nωce)/(k‖vTe)| � 1, permitting use of the large-argument asymptotic approximation of Z,
Z(ζ) ≈ −1/ζ − 1/(2ζ3) + i e−ζ

2 for |ζ| � 1 (when the imaginary part of ζ is small) [55].
For |νe/ω| � 1, which is always the case in the present work, this causes the −nth term
to practically diverge near the nth EC harmonic, meaning that a solution with ω ≈ n|ωce|
exists for all n ∈ N; these solutions make up the bulk of the EBW modes. However, the
EBWs of interest in this work belong to a special branch of the dispersion relation which
merges with the slow X-mode at the UHR. This branch can be investigated by assuming
k2
⊥r

2
Le � 1 (in addition to |(ω + iνe − nωce)/(k‖vTe)| � 1 and |νe/ω| � 1) and carrying

out an expansion of X to first order in all small quantities. The details of the calculation
are given in [109]; here, we only quote the final result,

X(k, ω) ≈ −

[
ω2
pe

ω2 − ω2
ce

+
3ω2

peω
2
cer

2
Lek

2
⊥

(ω2 − ω2
ce)(ω

2 − 4ω2
ce)
− i

ω2
pe(ω

2 + ω2
ce)

(ω2 − ω2
ce)

2

νe
ω

]
k2
⊥

−

[
ω2
pe

ω2
− i

ω2
peω

|k‖|3v3
Te

e
−ω2/(k2‖v

2
Te)

]
k2
‖.

(2.43)

Inserting Eq. (2.43) in Eq. (2.40), remembering that k2 = k2
⊥ + k2

‖, yields the dispersion
relation

D(k, ω) = `2Tek
4
⊥ + Sk2

⊥ + Pk2
‖ + iI = 0, (2.44)

where S and P are defined in Eq. (2.27), while

`2Te =
3ω2

peω
2
ce

(4ω2
ce − ω2)(ω2 − ω2

ce)
r2
Le, I = k2

⊥
ω2
pe(ω

2 + ω2
ce)

(ω2 − ω2
ce)

2

νe
ω

+
ω2
peω

|k‖|v3
Te

e
−ω2/(k2‖v

2
Te)
. (2.45)

We note that if we set νe = 0 and use the cold plasma approximation, `Te = vTe = 0, the
dispersion relation can be written as D(k, ω) = Sk2

⊥+Pk2
‖ = [S sin2(θ)+P cos2(θ)]k2 = 0,

which is equivalent to the electrostatic version of the cold plasma dispersion relation, as it
should be.

As we are using a Laplace transform in t, ω is allowed to have an imaginary part which is
important when discussing damping and instabilities. We write ω = ωj + iγ, where ωj ≥ 0
is the real frequency of the wave, with the subscript j characterizing a particular wave
mode, and γ ∈ C includes the imaginary part of ω, with Re(γ) < 0 indicating damping
and Re(γ) > 0 indicating instability; γ is allowed to have an imaginary part to account
for frequency shifts due to wave−wave interactions. We generally assume that ωj � |γ|.
Similarly writing D = D′ + iD′′, with D′ being the part of D not containing an explicit i
and D′′ being the part containing an explicit i, e.g., D′ = `2Tek

4
⊥ + Sk2

⊥ +Pk2
‖ and D

′′ = I

in Eq. (2.44), and assuming the ordering |D′| � |D′′| allows us to expand D to first order

29



around (k, ωj), yielding

D(k, ω) ≈ D′(k, ωj) + i

[
D′′(k, ωj) + γ

∂D′(k, ω)

∂ω

∣∣∣∣
ω=ωj

]
; (2.46)

a similar expression holds for electromagnetic waves if we let D → det(D). D′(k, ωj) and
D′′(k, ωj) are both real, and for linear waves γ is also real, so within the approximation of
Eq. (2.46), the real and imaginary parts of the dispersion relation D(k, ω) = 0 become

D′(k, ωj) = 0, (2.47)

γ = −Γ(k, ωj) = − D′′(k, ωj)
∂D′(k, ω)/∂ω|ω=ωj

. (2.48)

Eq. (2.47) determines the connection between ωj and k, while Eq. (2.48) determines the
linear damping rate, Γ.

For the waves whose D is given in Eq. (2.44), Eq. (2.47) gives

D′(k, ωj) = `2Te,jk
4
⊥ + Sjk

2
⊥ + Pjk2

‖ = 0, (2.49)

where `2Te,j , Sj , and Pj are `2Te, S, and P evaluated at ω = ωj . Eq. (2.49) is a quadratic
equation for k2

⊥ which may be solved to give

(k±⊥)2 = − Sj
2`2Te,j

1±

√√√√1−
4Pjk2

‖`
2
Te,j

S2
j

 . (2.50)

Eq. (2.50) supports two modes that merge at S2
j = 4Pjk2

‖`
2
Te,j , which reduces to Sj =

0, i.e., the UHR, in the cold plasma limit; it is thus capable of describing linear mode
conversion at the UHR. We can gain insight into the modes supported by the dispersion
relation by assuming 4Pjk2

‖`
2
Te,j/S

2
j � 1 and expanding the square root in Eq. (2.50) to

first order in this parameter,

(k−⊥)2 ≈ −Pj
Sj
k2
‖, (2.51)

(k+
⊥)2 ≈ − Sj

`2Te,j
+
Pj
Sj
k2
‖. (2.52)

Eq. (2.51) is the dispersion relation for electrostatic, cold plasma waves, e.g., the slow
X-mode wave close to the UHR, while Eq. (2.52) describes an EBW which has a wave
vector depending on `2Te,j . A useful approximation of Eq. (2.52) can be obtained if we
consider k to be almost perpendicular to B(0), such that k2

‖ � |Sj(k
+
⊥)2/Pj |. In this case,

Sj ≈ −(k+
⊥)2`2Te can be inserted in the term proportional to k2

‖, giving

Sj ≈ −(k+
⊥)2`2Te,j − Pj

k2
‖

(k+
⊥)2

. (2.53)
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Generally |k+
⊥`Te,j |

2 ∼ |k+
⊥rLe|

2 � 1 and |Pjk2
‖/(k

+
⊥)2| � 1 in this case, so |Sj | � 1 and

ωj ≈ ωUH . This allows us to use the approximations Sj ≈ (ω2
j −ω2

UH)/ω2
pe, Pj ≈ ω2

ce/ω
2
UH ,

and `2Te,j ≈ r2
Le/[1− ω2

pe/(3ω
2
ce)] to find

ω2 ≈ ω2
UH − ω2

pe

[
(k+
⊥)2r2

Le

1− ω2
pe/(3ω

2
ce)

+
ω2
ce

ω2
UH

k2
‖

(k+
⊥)2

]
, (2.54)

which is used in [110, 111, 109, 13]. A further approximation can be obtained by writing
Sj ≈ (ωj + ωUH)(ωj − ωUH)/ω2

pe ≈ 2ωUH(ωj − ωUH)/ω2
pe, with which

ω ≈ ωUH −
ω2
pe

2ωUH

[
(k+
⊥)2r2

Le

1− ω2
pe/(3ω

2
ce)

+
ω2
ce

ω2
UH

k2
‖

(k+
⊥)2

]
; (2.55)

this approximation is used in [14].

While Eq. (2.50) may be used to study mode conversion at the UHR, its purely electrostatic
nature makes it unsuitable in the case k‖ = 0, which is the one of most interest in this
work. For k‖ = 0, (k−⊥)2 = 0 and (k+

⊥)2 = −Sj/`2Te,j is found, meaning that the cold branch
of the dispersion relation is non-propagating. We can, however, obtain an ad hoc solution
of this problem by requiring the cold branch to match the cold X-mode far from the UHR.
To do this, we note that the cold electromagnetic dispersion relation in Eq. (2.28) may be
multiplied by ω2/(c2k2) to give

Sk2
⊥ + Pk2

‖ −
ω2

c2

[
PS

(
1 +

k2
‖

k2

)
+ (S2 −D2)

k2
⊥
k2

]
+
ω2

c2

ω2

c2k2
P(S2 −D2) = 0, (2.56)

where use has been made of k‖ = k cos(θ) and k⊥ = k sin(θ). Eq. (2.56) resembles the cold
version of Eq. (2.49), but includes terms ∼ ω2/c2 which are neglected in the electrostatic
approximation. As the terms ∼ ω2/c2 in Eq. (2.56) should lead to a dispersion relation
matching that of the cold X-mode far from the UHR when k‖ = 0, we set k‖ = 0 and
k2
⊥ ≈ k2

X = (ω2/c2)(S2 −D2)/S in these to find

Sk2
⊥ + Pk2

‖ −
ω2

c2
(S2 −D2) ≈ 0. (2.57)

Based on Eq. (2.57), it seems that adding −(ω2/c2)(S2 −D2) to D in Eq. (2.44) should
lead to a dispersion relation with the desired properties. Hence, we arrive at the corrected
dispersion relation

D(k, ω) = `2Tek
4
⊥ + Sk2

⊥ + Pk2
‖ −

ω2

c2
(S2 −D2) + iI = 0, (2.58)

which is similar to the ones used by [8, 9, 10, 11, 112, 12]. Approximating the solution of
Eq. (2.58) by Eq. (2.47), we find

D′(k, ωj) = `2Te,jk
4
⊥ + Sjk

2
⊥ + Pjk2

‖ −
ω2
j

c2
(S2
j −D2

j ) = 0, (2.59)
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where Dj is D from Eq. (2.27) evaluated at ω = ωj . Just as Eq. (2.49), Eq. (2.59) is a
quadratic equation for k2

⊥, which can be solved to give

(k±⊥)2 = − Sj
2`2Te,j

1±

√√√√1−
4Pjk2

‖`
2
Te,j

S2
j

+
4ω2

j `
2
Te,j

c2

S2
j −D2

j

S2
j

 . (2.60)

The two branches merge at S2
j = 4`2Te,j [Pjk2

‖ − (ω2
j /c

2)(S2
j − D2

j )], reducing to S2
j =

−4`2Te,j(ω
2
j /c

2)(S2
j −D2

j ) at k‖ = 0, which we shall refer to as the warm UHR. By assuming
4|`2Te,j [Pjk2

‖ − (ω2
j /c

2)(S2
j −D2

j )| � 1 and expanding the terms in the square root to first
order in this parameter, we find

(k−⊥)2 ≈ −Pj
Sj
k2
‖ +

ω2
j

c2

S2
j −D2

j

Sj
, (2.61)

(k+
⊥)2 ≈ − Sj

`2Te,j
+
Pj
Sj
k2
‖ −

ω2
j

c2

S2
j −D2

j

Sj
. (2.62)

Eq. (2.61) demonstrates that the cold branch of Eq. (2.59) approaches the cold X-mode
far from the warm UHR, as wanted; Eq. (2.62) is a generalization of Eq. (2.52).

We finally consider the conditions for propagating EBWs when k‖ = 0 and `2Te,j > 0; from
Eq. (2.45), the latter condition is equivalent to |ωce| < ωj < 2|ωce| and restricts the results
to underdense and moderately overdense plasmas, similar to the ones found in conventional
tokamaks. In this case, (k+

⊥)2 = −[Sj/(2`
2
Te,j)][1+

√
1 + 4ω2

j `
2
Te,j(S

2
j −D2

j )/(c
2S2

j )], which
can only be positive if

Sj =
ω2
j − ω2

UH

ω2
j − ω2

ce

< 0, (2.63)

requiring
|ωce| < ωj < ωUH , (2.64)

which means that the EBWs exist on the same side of the UHR as the cold X-mode waves,
as required for wave trapping. For the EBWs to be propagating, it is further necessary that
the argument of the square root be positive. Remembering that k2

X = (ω2/c2)(S2−D2)/S,
this may be written as

`2Te,j < −
Sj

4k2
X,j

, (2.65)

where k2
X,j is k2

X evaluated at ω = ωj . Plugging in the explicit expressions, Eq. (2.65) is
recast in the form

Te < T ce =
(4ω2

ce/ω
2
j − 1)(1− ω2

pe/ω
2
j − ω2

ce/ω
2
j )

2

12(ω2
pe/ω

2
j )[ω

2
ce/ω

2
j − (1− ω2

pe/ω
2
j )

2]
mec

2, (2.66)

with T ce being a critical electron temperature above which the EBWs are no longer prop-
agating. From Eq. (2.66), T ce = 0 for ωj = 2|ωce| and ωj = ωUH , which are the 2nd
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Figure 2.2 – Electron Bernstein wave CMA-like diagram where `2Te,j > 0. No propagating
EBWs exist in the blue or purple shaded regions at any Te. For Te = 1 keV, no propagating
EBWs additionally exist in the orange shaded region, for Te = 10 keV the yellow shaded
region is added to the region with no propagation EBWs, and for Te = 30 keV the green
shaded region is finally added.

harmonic ECR and the cold UHR, respectively, while T ce →∞ for ω2
ce/ω

2
j = (1− ω2

pe/ω
2
j ),

which is the cold X-mode cutoff condition, particularly the L-cutoff in this case; for ωj
below the L-cutoff frequency, T ce < 0 and no propagating EBWs exist. At Te = 0 prop-
agating EBWs will thus exist in the CMA region bounded by the ECR, ω2

ce/ω
2
j = 1, the

cold UHR, ω2
UH/ω

2
j = ω2

pe/ω
2
j + ω2

ce/ω
2
j = 1, the 2nd harmonic ECR, ω2

ce/ω
2
j = 1/4, and

the X-mode cutoff, ω2
ce/ω

2
j = (1− ω2

pe/ω
2
j )

2. At finite Te, the 2nd harmonic ECR and the
cold UHR are replaced by the line where Te = T ce , with T ce defined in Eq. (2.66), which
we refer to as the warm UHR. A CMA-like diagram showing the region with propagating
EBWs at different Te is found in Fig. 2.2.

2.3 Ion Bernstein and Warm Lower Hybrid Waves

So far, we have discussed waves in the EC frequency range for which the ion response could
be neglected. However, PDIs often cause pump waves in the EC frequency range to decay
to one daughter wave with a frequency close to that of the pump wave and one daughter
wave with a frequency much lower than that of the pump wave, for which the ion response
may be important. Confining our attention to electrostatic waves, we note that X may be
written as a sum of electron and ion contributions,

X(k, ω) = Xe(k, ω) +
∑
i

Xi(k, ω); (2.67)

Xe is the electron susceptibility and Xi is the ion susceptibility, with the sum indicating
the possibility of multiple ionic species. For a non-relativistic plasma with a Maxwellian
background distribution and a particle conserving Krook collision operator, both of which
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are seen in Eq. (2.41), Xe and Xi are given in the form of Eq. (2.42) (if the subscripts
e → i for the ions). Confining our attention to k almost perpendicular to B(0), Xe may
be approximated by Eq. (2.43), and since we are in the low-frequency regime, where
|ω| � |ωce|, this can be further reduced to

Xe(k, ω) ≈
ω2
pe

ω2
ce

(
1− 3

4
r2
Lek

2
⊥ + i

νe
ω

)
k2
⊥ −

ω2
pe

ω2

[
1− i

ω3

|k‖|3v3
Te

e
−ω2/(k2‖v

2
Te)

]
k2
‖; (2.68)

note that the requirement of k2
‖/k

2
⊥ � 1 is much stricter in the low-frequency regime than

in the high-frequency regime, as the coefficient of k2
‖, ω

2
pe/ω

2, is numerically large in this
case. Xi can be evaluated using different approximations. First, the ion collision frequency
is generally small compared with that of the electrons, and we hence set νi ≈ 0 in Xi [109].
With this, we obtain

Xi(k, ω) =
2ω2

pi

v2
T i

[
1 +

ω

k‖vT i

∞∑
n=−∞

In(k2
⊥r

2
Li)e

−k2⊥r
2
LiZ

(
ω − nωci
k‖vT i

)]
. (2.69)

For propagation perpendicular to B(0), we can use Z[(ω−nωci)(k‖vT i)] ≈ k‖vT i/(nωci−ω)
and collect the ±n-terms, remembering that In(k2

⊥r
2
Li) = I−n(k2

⊥r
2
Li) for n ∈ Z and 1 =∑∞

n=−∞ In(k2
⊥r

2
Li) e−k

2
⊥r

2
Li [113], to get

Xi(k, ω) ≈ − 2

r2
Li

∞∑
n=1

In(k2
⊥r

2
Li) e−k

2
⊥r

2
Li

n2ω2
pi

ω2 − n2ω2
ci

. (2.70)

Just as for EBWs, the dispersion relation with Xi from Eq. (2.70) admits solutions with
ω ≈ nωci, known as ion Bernstein waves (IBWs). If we take k2

⊥r
2
Li � 1 and assume

ω ≈ mωci for m ≥ 2, we can approximate Eq. (2.70) by keeping only the n = 1 and n = m
terms and using In(k2

⊥r
2
Li) e−k

2
⊥r

2
Li ≈ (k2

⊥r
2
Li)

n/(2nn!) [113], giving

Xi(k, ω) ≈ −k2
⊥

[
ω2
pi

(m2 − 1)ω2
ci

+
(k2
⊥r

2
Li)

m−1

2m(m− 1)!

ω2
pi

ωci(ω −mωci)

]
. (2.71)

For a simple, quasi-neutral plasma (with one ionic species), we can then insert Xi from
Eq. (2.71) in the dispersion relation D(k, ω) = k2 + Xe(k, ω) + Xi(k, ω) = 0, along with
Xe(k, ω) ≈ (ω2

pe/ω
2
ce)k

2
⊥ from Eq. (2.68) and k2 ≈ k2

⊥, to find the dispersion relation for
IBWs with m ≥ 2,

ω ≈ mωci

{
1−

(m2 − 1)(k2
⊥r

2
Li)

m−1

2m(m− 1)![1− (m2 − 1)(ω2
ci/ω

2
pi + Zime/mi)]

}
; (2.72)

here, use has been made of the quasi-neutrality condition in a simple plasma, n(0)
e = Zin

(0)
i ,

where Zi = qi/e is the ion charge number. We note that Eq. (2.72) is equivalent to
Eq. (4.277) of [55] if VA is identified with the non-inductive Alfvén speed and me/mi is
neglected; the IBW dispersion relation with m = 2 from [55] was used in [14].
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As was the case for EBWs, the IBW dispersion relation also has a special branch near a
hybrid resonance. However, unlike the EBW-case, the special branch of the IBW dispersion
relation generally occurs at large k2

⊥r
2
Li and at high ion cyclotron harmonics, since ω2

pi/ω
2
ci =

[mi/(Zime)]ω
2
pe/ω

2
ce � ω2

pe/ω
2
ce. In this limit, the ion Larmor radius is large compared with

the wavelength and the wave frequency is large compared with the ion cyclotron frequency.
The ion response to the wave can thus, in some sense, be considered unmagnetized, which
modifies Xi to [99, 55]

Xi(k, ω) =
2ω2

pi

v2
T i

[
1 +

ω

kvT i
Z
(

ω

kvT i

)]
. (2.73)

While the approximation of unmagnetized ions may be shown to match the real part of
the magnetized Xi from Eq. (2.69) for k2

⊥r
2
Li � 1 and |ω| � ωci [114, 55], the imaginary

part related to Landau damping requires more careful discussion [61, 114, 60].

Returning to Eq. (2.73), the dispersion relation of the special branch is obtained by first
using the asymptotic approximation of Z [55],

Z
(

ω

kvT i

)
≈ −kvT i

ω
− 1

2

k3v3
T i

ω3
− 3

4

k5v5
T i

ω5
+ i
√
π e−ω

2/(k2v2Ti), (2.74)

which recasts Eq. (2.73) as

Xi(k, ω) ≈ −
ω2
pi

ω2

[
1 +

3

2

k2v2
T i

ω2
− i
√
π

ω3

k3v3
T i

e−ω
2/(k2v2Ti)

]
k2. (2.75)

Now, setting k2 ≈ k2
⊥ and recalling that v2

T i = 2[Ti/(ZiTe)]ωci|ωce|r2
Le, the dispersion

relation of the special branch in a simple, quasi-neutral plasma, D(k, ω) = k2 +Xe(k, ω) +
Xi(k, ω) = 0 with Xe from Eq. (2.68) and Xi from Eq. (2.75), is found to be

D(k, ω) =

[
ω2
UH

ω2
ce

−
ω2
pi

ω2
− 3

(
ω2
pe

4ω2
ce

+
Ti
ZiTe

ω2
piωci|ωce|
ω4

)
r2
Lek

2
⊥

]
k2
⊥ −

ω2
pe

ω2
k2
‖

+ i

[
ω2
pe

ω2
ce

νe
ω
k2
⊥ +

ω2
piω

k⊥v
3
T i

e−ω
2/(k2⊥v

2
Ti) +

ω2
peω

|k‖|v3
Te

e
−ω2/(k2‖v

2
Te)

]
= 0,

(2.76)

where use has been made of the fact that 1 + ω2
pe/ω

2
ce = ω2

UH/ω
2
ce. We approximate the

solution of Eq. (2.76) by Eq. (2.47), D′(k, ωj) = 0, and multiply the resulting expression
by ω2

j to obtain

ω2
UH

ω2
ce

ω2
j − ω2

pi − 3

(
ω2
pe

4ω2
ce

ω2
j +

Ti
ZiTe

ω2
piωci|ωce|
ω2
j

)
r2
Lek

2
⊥ − ω2

pe

k2
‖

k2
⊥

= 0. (2.77)

Eq. (2.77) may be rewritten as a quadratic equation for ω2
j , which can be solved with

the usual method, but here we consider the limit of r2
Lek

2
⊥ � 1 (since rLi � rLe, this

is still possible for large r2
Lik

2
⊥) and k2

‖/k
2
⊥ � 1, where an approximate solution, ωj ≈
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|ωce|ωpi/ωUH = ωLH , may be obtained by neglecting the terms proportional to r2
Lek

2
⊥ and

k2
‖/k

2
⊥. ωLH is the so-called lower hybrid (LH) frequency at which a resonance for cold

plasma waves, similar to the UHR, exists if the ion response is included in the cold plasma
model [99, 55]. Substituting ωj ≈ ωLH into the terms proportional to r2

Lek
2
⊥ and k2

‖/k
2
⊥ in

Eq. (2.77), we obtain the dispersion relation for the special branch of the IBW dispersion
relation, which we refer to as the dispersion relation for warm LH waves,

ω2 ≈ ω2
LH

[
1 + 3

(
ω2
pe

4ω2
UH

+
Ti
ZiTe

ω2
UH

ω2
pe

)
r2
Lek

2
⊥ +

mi

Zime

k2
‖

k2
⊥

]
; (2.78)

the warm LH wave dispersion relation in Eq. (2.78) was also utilized in [109, 13].
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Chapter 3

Semi-Classical Wave Theory

The waves of interest in the present work have been introduced with the assumption of
completely homogeneous media. Realistic media, and fusion plasmas in particular, do,
however, always possess some level of inhomogeneity. In the cases of interest to us, the
length and time scales (L and T , respectively) over which the properties of the medium vary
significantly are large compared with the wavelength and period of the wave phenomenon.
This places us in the semi-classical region where the full inhomogeneous wave propagation
problem may be significantly simplified by use of the geometrical optics approximation and
generalized WKBJ (Wentzel−Kramers−Brillouin−Jeffreys) methods. Even in the semi-
classical region, the inhomogeneity turns out to be extremely important for determining
the threshold of PDIs, and we hence devote this Chapter to describing the theory of semi-
classical waves.

In Section 3.1, we introduce the geometrical optics approximation as a generalization of
classical mechanics to the quanta associated with wave phenomena. This allows us to
derive the geometrical optics ray equations, determining the propagation of waves (and
particles) in the semi-classical region, as well as to discuss the damping and electric field
of ECRH beams in ASDEX Upgrade specifically. In Section 3.2, we generalize the WKBJ
approximations, known from quantum mechanics, to obtain equations of motion for waves
with arbitrary dispersion relations within the semi-classical region. These equations form
the basis of the theory of parametric decay instabilities in Chapter 4. Finally, in Section
3.3, we turn to a specific example of interest in this work, namely amplification of X-mode
waves near the UHR. While this cannot be determined within the usual semi-classical
approximations, it can be handled by means of a different generalization of the WKBJ
approximations, known as the uniform approximation, which is presented and applied.
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3.1 Geometrical Optics as a Generalization of Classical Me-
chanics

It is well-known that the ray equations of geometrical optics are equivalent to the Hamil-
tonian equations describing motion of particles in classical mechanics [115, 116]. We can
thus scarcely avoid the inference that geometrical optics represents an extension of clas-
sical mechanics to the motion of quanta associated with wave phenomena, be it photons,
phonons, plasmons, polaritons, etc. This interpretation is confirmed by noting that the
Hamiltonian, H, and canonical momentum, p, associated with a wave quantum of real fre-
quency ωj and wave vector k yield the geometrical optics ray equations as their canonical
equations of motion by use of the Einstein [117] (H = ~ωj) and de Broglie [31] (p = ~k)
relations, i.e.,

ωj(t) = ω(r(t),k(t), t),
dr(t)

dt
=
∂ωj(r,k, t)

∂k

∣∣∣∣ r = r(t),
k = k(t)

,
dk(t)

dt
= −∂ωj(r,k, t)

∂r

∣∣∣∣ r = r(t),
k = k(t)

,

(3.1)
where r is the generalized coordinate vector and t is time. The first part of Eq. (3.1)
expresses that ωj is given by the dispersion relation ωj(r,k, t) of the wave phenomenon in
question; the second part of Eq. (3.1) expresses that the wave quanta move at the local
group velocity (note how naturally this obtained compared with conventional treatments);
the third part of Eq. (3.1) describes the rate of change of k, showing that k is conserved
along invariant directions, as expected from its proportionality to p. From Eq. (3.1), the
development of ωj along a ray may also be calculated,

dωj(t)

dt
=
∂ωj(r,k, t)

∂t

∣∣∣∣
r=r(t),k=k(t)

. (3.2)

Eq. (3.2) shows that ωj is a constant of motion for stationary media, confirming its role
as the Hamiltonian of the wave quanta. The conservation of ωj and H, as well as k
and p, demonstrated above is the basis of the selection rules derived in Chapter 1. We
emphasize that ωj(r,k, t) may refer to any wave (or particle) phenomenon and allows the
study of wave (and particle) propagation in non-stationary, inhomogeneous, anisotropic
media within the geometrical optics approximations. It is, however, not even necessary to
have an explicit expression for ωj from the dispersion relation; we can simply consider a
dispersion relation of the type D′(r,k, ωj(r,k, t), t) = 0, from which the geometrical optics
ray equations may be written as

D′(r(t),k(t), ωj(t), t) = 0,
dr(t)

dt
= − ∂D′(r,k, ωj , t)/∂k

∂D′(r,k, ωj , t)/∂ωj

∣∣∣∣ r = r(t),
k = k(t),
ωj = ωj(t)

,

dk(t)

dt
=

∂D′(r,k, ωj , t)/∂r
∂D′(r,k, ωj , t)/∂ωj

∣∣∣∣ r = r(t),
k = k(t),
ωj = ωj(t)

,
dω(t)

dt
= − ∂D′(r,k, ωj , t)/∂t

∂D′(r,k, ωj , t)/∂ωj

∣∣∣∣ r = r(t),
k = k(t),
ωj = ωj(t)

,

(3.3)
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which was noted by [118, 119, 120]. Eq. (3.3) can particularly be applied to the electrostatic
waves from Chapter 2, as well as to the electromagnetic waves if D → det(D). The
ray tracing equations are slightly simplified by assuming a stationary medium, leading to
contant ωj , and parametrizing the equations of motion in terms of the arc length of the
trajectories, s, where ds = |∂ωj(r,k)/∂k|r=r(t),k=k(t)|dt [116, 109],

D′(r(s),k(s), ωj) = 0,
dr(s)

ds
= − sign

[
∂D′(r,k, ωj)

∂ωj

]
∂D′(r,k, ωj)/∂k
|∂D′(r,k, ωj)/∂k|

∣∣∣∣ r = r(s),
k = k(s)

,

dk(s)

ds
= sign

[
∂D′(r,k, ωj)

∂ωj

]
∂D′(r,k, ωj)/∂r
|∂D′(r,k, ωj)/∂k|

∣∣∣∣ r = r(s),
k = k(s)

;

(3.4)

sign is the signum function. In this work, the propagation of X-mode and O-mode radiation
from gyrotrons and wall reflections is modeled using Eq. (3.4) for a dispersion relation
based on the analytical approximations of [121, 122], which is essentially the dispersion
relation of Eq. (2.28) with corrections due to finite Te and relativistic electrons. Eqs.
(3.3) and (3.4) consider wave (and particle) propagation in the absence of damping. Weak
damping can be included by using the linear damping rate from Eq. (2.48) and integrating
over the trajectories given by Eq. (3.3). Doing this, the ratio of the power propagating
along the ray at t = tend, Pend, to the power which was originally injected at t = t0, P0,
may be written as Pend/P0 = e−τ , where

τ = 2

∫ tend

t0

Γ(r(t),k(t), ωj(t), t) dt = 2

∫ tend

t0

D′′(r,k, ωj , t)
∂D′(r,k, ωj , t)/∂ωj

∣∣∣∣ r = r(t),
k = k(t),
ωj = ωj(t)

dt (3.5)

is the optical thickness, and the factor of 2 comes from the fact that P is proportional to
the square of the wave amplitude [55]. For a stationary medium, we can further express τ
in terms of s,

τ = 2

∫ send

s0

Γ(r,k, ωj)

|∂ωj(r,k)/∂k|

∣∣∣∣ r = r(s),
k = k(s)

ds

= 2

∫ send

s0

sign

[
∂D′(r,k, ωj)

∂ωj

]
D′′(r,k, ωj)

|∂D′(r,k, ωj)/∂k|

∣∣∣∣ r = r(s),
k = k(s)

ds;

(3.6)

s0 and send are the s-values corresponding to t0 and tend in Eq. (3.5), and the integrand
in Eq. (3.6) is the spatial damping rate of the waves. In this work, τ from the launching
position of O-mode and X-mode waves is evaluated using Eq. (3.6) and a relativistic model
of EC absorption based on the analytical approximations in [121, 122].

When discussing the PDI threshold, it is very useful to connect the electric field amplitude
of a quasi-monochromatic pump wave, |E|, to the injected beam power, P0, as this is the
quantity which is known experimentally; in this work, the physical electric field is always
defined as the real part of the electric field amplitude vector multiplied by a (complex)
phase factor of unit amplitude. This may be done using the relation between |E| and the
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local wave energy density from [55], along with the fact that energy propagates along a geo-
metrical optics ray with speed |∂ωj(k, r)/∂k|, to find the local intensity of the beam. Then
assuming a Gaussian profile of |E| around the beam center, |E(s, ρ)| = |E(s, 0)| e−ρ2/W 2(s),
where ρ is the distance from the central geometrical optics ray of the beam and W (s) is
the beam width, and integrating over the coordinates perpendicular to s yields [109, 13],

|E(s, 0)| =

√
8P (s)

πε0W 2(s)|∂ωj(k, s)/∂k|k=k(s)e∗(s) · ∂{H[D(k(s), ω)]/ω}/∂ω|ω=ωj · e(s)
,

(3.7)
with e(s) being a unit polarization vector of the wave at position s along the central beam
ray and H[D] being the Hermitian part of D; for the cold electromagnetic pump waves
in this work, H[D] is simply D from Eq. (2.26). When looking at the directly injected
beam, P (s) = P0 e−τ , while a for beam which has undergone reflection/mode conversion,
P (s) = FP0 e−τ , where F is a factor describing the efficiency of the reflection/mode
conversion process. W can in general be determined from beam tracing codes such as
TORBEAM [123] and WKBeam [124], but here we assume it to be equal to that of a
Gaussian beam propagating in vacuo [125]

W (s) = W0

√
1 +

4c2(s− s0)2

ω2
jW

4
0

. (3.8)

In Eq. (3.8), W0 is the beam width at the focus of the beam, which is taken to be 2.29 cm
for the ECRH beams at ASDEX Upgrade, s0 is the location of the beam focus with respect
to the zero of s; setting s = 0 at the ECRH launchers, gives s0 = 85.4 cm for the ECRH
beams at ASDEX Upgrade.

3.2 Generalized WKBJ Methods

The geometrical optics methods discussed in Section 3.1 are of great use when discussing
linear wave propagation in plasmas. However, they treat ωj and k as the Hamiltonian and
canonical momentum of a classical particle and thus fail to take the phase variation, which
is crucial for nonlinear wave phenomena, properly into account. Fortunately, methods
capable of handling the wave phenomena more directly in the semi-classical limit, known
as generalized WKBJ methods, have been developed [126, 127]. These methods start out
with an integral form of the wave equation, e.g., Eq. (2.11) or Eq. (2.38), and approximate
the linear response using semi-classical arguments. While the methods are applicable to
matrix−vector wave equations such as Eq. (2.11) [127], we shall only apply them to
electrostatic waves and hence use the simpler scalar dispersion relation from Eq. (2.38),

ρnl(r, t)

ε0
=

∫
all (r′,t′)

D
(
r− r′,

r + r′

2
; t− t′, t+ t′

2

)
φ(r′, t′) dr′ dt′, (3.9)
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where

D
(
r− r′,

r + r′

2
; t− t′, t+ t′

2

)
= X

(
r− r′,

r + r′

2
; t− t′, t+ t′

2

)
− ∂

∂r
· ∂δ(r− r′)

∂r
.

(3.10)
We further simplify Eq. (3.9) by considering a stationary medium which is only inhomo-
geneous along the x-direction, i.e., a plasma slab, and taking φ to have the form of a single
WKBJ-mode,

φ(r′, t′) = Re[A(r′, t′) eiθ(r′,t′)], (3.11)

where A is a slowly varying amplitude (or envelope) function and the phase function (or
eikonal) θ(r′, t′) =

∫ x′
0 kx(x′′) dx′′ + kyy

′ + kzz
′ − ωt′ gives a fast plane wave-like variation;

more general solutions can be constructed by superposition of WKBJ-modes. With these
assumptions, Eq. (3.9) becomes

ρnl(r, t)

ε0
= Re

[∫
all (r′,t′)

D
(
r− r′,

x+ x′

2
; t− t′

)
A(r′, t′) eiθ(r′,t′) dr′ dt′

]
. (3.12)

We now invoke the WKBJ approximations in which D is a sharply peaked function of r−r′
and t− t′, only carrying a weak dependence on (x+ x′)/2 due to the weak inhomogeneity.
The first assumption allows us to Taylor expand A(r′, t′) around the point (r, t) to obtain

A(r′, t′) =
∞∑
j=0

∞∑
l=0

∞∑
m=0

∞∑
n=0

(x′ − x)j(y′ − y)l(z′ − z)m(t′ − t)n

j! l!m!n!

∂j+l+m+nA(x, y, z, t)

∂xj∂yl∂zm∂tn
.

(3.13)
The second assumption allows us to Taylor expand D around x in the second argument,

D
(
r− r′,

x+ x′

2
; t− t′

)
=
∞∑
p=0

(x′ − x)p

2pp!

∂pD(r− r′, x; t− t′)
∂xp

. (3.14)

Inserting Eqs. (3.13) and (3.14) in Eq. (3.12), also using that θ(r′, t′) = θ(r′ − r, t′ − t) +
θ(r, t), we find

ρnl(r, t)

ε0
= Re

eiθ(r,t)
∞∑
j=0

∞∑
l=0

∞∑
m=0

∞∑
n=0

∞∑
p=0

1

2pj! l!m!n! p!

∂j+l+m+nA(r, t)

∂xj∂yl∂zm∂tn

×
∫

all (r′,t′)
(x′ − x)j+p(y′ − y)l(z′ − z)m(t′ − t)n∂

pD(r− r′, x; t− t′)
∂xp

eiθ(r′−r,t′−t) dr′ dt′

]
.

(3.15)

With the assumption of a localized D with respect to x−x′, we can expand
∫ x′
x kx(x′′) dx′′ =∑∞

n=0[(x′−x)n+1/(n+ 1)!]∂nkx(x)/∂xn and obtain a good approximation by keeping only
the leading term,

∫ x′
x kx(x′′) dx′′ ≈ kx(x)(x′ − x). Plugging this in, θ(r′ − r, t′ − t) ≈
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kx(x)(x′− x) + ky(y
′− y) + kz(z

′− z)−ω(t′− t), and the integrands of Eq. (3.15) may be
simplified by noting that

(x′ − x)j+p(y′ − y)l(z′ − z)m(t′ − t)n eiθ(r′−r,t′−t) ≈ (−i)j+p+l+m−n

× ∂j+p+l+m+n[eiθ(r′−r,t′−t)]

∂kj+px ∂kly∂k
m
z ∂ω

n

∣∣∣∣
kx=kx(x)

,

(3.16)

which shows that the integrals are derivatives of the Fourier−Laplace transform of D, i.e.,
the well-known dispersion relation in a homogeneous medium extended to hold locally at
each point in space. Substituting these results back into Eq. (3.15) yields

ρnl(r, t)

ε0
≈ Re

eiθ(r,t)
∞∑
j=0

∞∑
l=0

∞∑
m=0

∞∑
n=0

∞∑
p=0

(−i)j+p+l+m−n

2pj! l!m!n! p!

∂j+l+m+nA(r, t)

∂xj∂yl∂zm∂tn

× ∂j+2p+l+m+nD(k, x, ω)

∂kj+px ∂kly∂k
m
z ∂ω

n∂xp

∣∣∣∣
kx=kx(x)

]
.

(3.17)

In the semi-classical region the x-, y-, and z-derivatives of A and D can be taken as order
1/L � k and the t-derivatives can be taken as order 1/T � |ω|, while the kx-, ky-, and
kz-derivatives of D can be taken as order 1/k and the ω derivative can be taken as order
1/|ω|. This causes the sums in Eq. (3.17) to converge rapidly. In the extreme case, it is
permissible to keep only the term where j = l = m = n = p = 0 and the terms where one
of the indices is 1 while the rest are 0, with which

ρnl(r, t)

ε0
≈ Re

{
eiθ(r,t)

[
A(r, t)D(k, x, ω) + i

∂A(r, t)

∂t

∂D(k, x, ω)

∂ω

−i
∂A(r, t)

∂r
· ∂D(k, x, ω)

∂k
− i

2
A(r, t)

∂2D(k, x, ω)

∂kx∂x

] ∣∣∣∣
kx=kx(x)

}
.

(3.18)

Introducing a(r, t), where A(r, t) = a(r, t)/
√
∂D(k, x, ω)/∂kx|kx=kx(x), allows us to elimi-

nate the term proportional to ∂2D(k, x, ω)/(∂kx∂x)|kx=kx(x),

ρnl(r, t)

ε0
≈ Re

{
eiθ(r,t)√

∂D(k, x, ω)/∂kx

[
D(k, x, ω)a(r, t) + i

∂D(k, x, ω)

∂ω

∂a(r, t)

∂t

−i
∂D(k, x, ω)

∂k
· ∂a(r, t)

∂r

] ∣∣∣∣
kx=kx(x)

}
,

(3.19)

and further utilizing the weak damping approximation of Eq. (2.46) along with the
WKBJ ansatz (D′(k(x), x, ωj) = 0) yields D(k, x, ω) ≈ iD′′(k, x, ωj), ∂D(k, x, ω)/∂k ≈
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∂D′(k, x, ωj)/∂k, and ∂D(k, x, ω)/∂ω ≈ ∂D′(k, x, ω)/∂ω|ω=ωj , from which we obtain

ρnl(r, t)

ε0
≈ Re

{
i eiθ(r,t)√

∂D′(k, x, ω)/∂kx

[
D′′(k, x, ω)a(r, t) +

∂D′(k, x, ω)

∂ω

∂a(r, t)

∂t

−∂D
′(k, x, ω)

∂k
· ∂a(r, t)

∂r

] ∣∣∣∣
kx=kx(x), ω=ωj

}
.

(3.20)

Factoring out ∂D′/∂ω, while recalling that Γ = D′′/(∂D′/∂ω) is the linear damping rate
and v = −(∂D/∂k)/(∂D′/∂ω) is the group velocity of the wave, finally yields

ρnl(r, t)

ε0
≈ Re

{
i[∂D(k, x, ω)/∂ω] eiθ(r,t)√

∂D′(k, x, ω)/∂kx

[
Γ(k, x, ω)a(r, t) +

∂a(r, t)

∂t

+v(k, x, ω) · ∂a(r, t)

∂r

] ∣∣∣∣
kx=kx(x), ω=ωj

}
.

(3.21)

Eq. (3.21) demonstrates the characteristics of linear waves deduced within the geometrical
optics approximation in Section 3.1. To see this, we note that for linear waves, ρnl = 0,
Eq. (3.21) is equivalent to

∂a(r, t)

∂t
+ v(k(x), x, ωj) ·

∂a(r, t)

∂r
= −Γ(k(x), x, ωj)a(r, t). (3.22)

The left hand side of Eq. (3.22) is the convective time derivative of a along trajectories
moving with velocity v, i.e., the geometrical optics ray trajectories from Section 3.1. We
thus find

da(t)

dt
= −Γ(k(t), x(t), ωj)a(t), (3.23)

where a(t) = a(r(t), t), and r(t), k(t) are given by Eq. (3.3). Integrating Eq. (3.23) with
respect to t yields an optical thickness similar to that given by Eqs. (3.5) and (3.6). Eq.
(3.23) further shows that, in the absence of damping, a is conserved along the geometrical
optics trajectories, meaning that the wave amplitude A varies as 1/

√
∂D′/∂kx. This is

a generalization of the well-known WKBJ amplitude variation for the time-independent
Schrödinger equation, which has D′(k, x, ωj) = ~2k2/(2mσ)− ~ωj + V (x) and hence A ∝
1/
√
kx [128]; it expresses the conservation of wave energy along the geometrical optics rays

in the absence of damping.

We finally note that the treatment of wave trapping and losses from the regions where
trapped waves exist, which are crucial for evaluating the threshold of the PDIs in Chapter
5, requires the inclusion 2nd order terms from the expansion in Eq. (3.17) [126]. The
Bohr−Sommerfeld conditions resulting from the trapping conditions along the x-direction
[126, 8, 9] may be derived from geometrical optics arguments to be introduced in Chapter
4. Here, we simply observe that expanding a dispersion relation like Eq. (2.59), for which

43



∂2D/(∂ky∂k‖) = 0, to 2nd order along the y- and z-directions yields

ρnl(r, t)

ε0
≈ Re

{
eiθ(r,t)√

∂D′(k, x, ω)/∂kx

[
iD′′(k, x, ω)a(r, t) + i

∂D′(k, x, ω)

∂ω

∂a(r, t)

∂t

− i
∂D′(k, x, ω)

∂k
· ∂a(r, t)

∂r
− 1

2

∂2D′(k, x, ω)

∂k2
y

∂2a(r, t)

∂y2

−1

2

∂2D′(k, x, ω)

∂k2
‖

∂2a(r, t)

∂z2

] ∣∣∣∣
kx=kx(x), ω=ωj

}
.

(3.24)

3.3 X-Mode Amplification from the Uniform Approximation

To discuss the amplification of X-mode waves, we insert Jl from from Eq. (2.24) as J in Eq.
(2.8), remembering that the wave is assumed to have a harmonic time variation of angular
frequency ω0, assume the wave and plasma parameters to only depend on the x-coordinate,
which is perpendicular to B(0) = B(0)ez, and consider only the x- and y-components of E
(referred to as E0x and E0y; the physical electric field is obtained by taking the real part of
the complex values including the harmonic time dependence), as these are the components
related to X-mode propagation perpendicular to B(0). With these assumptions, we arrive
at two equations also found in [129],

d2E0y(x)

dx2
+ k2

0(x)E0y(x) = 0, k2
0(x) =

ω2
0

c2

[
1−

ω2
pe(x)

ω2
0

ω2
0 − ω2

pe(x)

ω2
0 − ω2

UH(x)

]
, (3.25)

E0x(x) = i
ωce(x)

ω0

ω2
pe(x)

ω2
0 − ω2

UH(x) + i[2ω2
0 − ω2

pe(x)]νei(x)/ω0
E0y(x); (3.26)

collisions have been neglected in Eq. (3.25), while they have have been retained in Eq.
(3.26), assuming νei/ω0 � 1.

3.3.1 The Uniform Approximation

Now that we have stated the problem, all that remains is for us to solve Eq. (3.25) near
the UHR with appropriate boundary conditions. Because we are interested in general
profiles of k2

0(x), it is not feasible to solve Eq. (3.25) exactly, so we shall instead seek an
approximate solution using the so-called uniform approximation, described in [130, 131,
132]. The uniform approximation is based on mapping an expression like Eq. (3.25) onto
another differential equation possessing an exactly known solution, which then allows an
approximate solution of Eq. (3.25). Suppose that ϕ(σ) is a known function satisfying the
differential equation,

d2ϕ(σ)

dσ2
+Q(σ)ϕ(σ) = 0, (3.27)
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where Q(σ) is also a known function resembling k2
0(x) is some way. It is generally possible

to write E0y(x) = f(x)φ(σ(x)), which may be plugged into Eq. (3.25). Doing this, while
using Eq. (3.27) to eliminate d2ϕ/dσ2|σ=σ(x), we obtain[

2
df(x)

dx

dσ(x)

dx
+ f(x)

d2σ(x)

dx2

]
dϕ(σ)

dσ

∣∣∣∣
σ=σ(x)

+

{
k2

0(x)f(x)−Q(σ(x))f(x)

[
dσ(x)

dx

]2

+
d2f(x)

dx2

}
ϕ(σ(x)) = 0.

(3.28)

The term proportional to dϕ/dσ|σ=σ(x) may be eliminated by taking f(x) = 1/
√

dσ(x)/dx,
giving an amplitude variation similar to that from the generalized WKBJ method. With
this, Eq. (3.28) is satisfied for ϕ(σ(x)) 6= 0 if

k2
0(x) = Q(σ(x))

[
dσ(x)

dx

]2

− 1√
dσ(x)/dx

d2

dx2

[
1√

dσ(x)/dx

]
. (3.29)

So far the calculation is exact. The uniform approximation consists in neglecting the second
term of Eq. (3.29) and setting k2

0(x) = Q(σ(x))[dσ(x)/dx]2; this is permitted if k2
0(x) and

Q(σ) are sufficiently similar, as the second term will vanish if σ(x) is a linear function of
x. With the uniform approximation, Eq. (3.29) may be rearranged to give the following
implicit definition of σ(x), ∫ σ(x)

σ(x0)

√
Q(σ′) dσ′ =

∫ x

x0

k0(x′)dx′; (3.30)

x0 and σ(x0) represent a known pair of equivalent points for k2
0(x) and Q(σ). We conclude

this Subsection with a small note on the sense in which Q(σ) should resemble k2
0(x) if

accurate results are to be obtained from the uniform approximation. As waves are prop-
agating for k2

0(x) > 0 and evanescent for k2
0(x) < 0, the points at which k2

0(x) changes
sign represent points at which the solution changes character, from propagating to evanes-
cent or vice versa, and they are hence known as transition points. The sign of k2

0(x) may
change either at points where k2

0(x) → 0 (cutoffs) or at points where |k2
0(x)| → ∞ (res-

onances). If k2
0(x) possesses a particular number and structure of transition points, the

uniform approximation will only yield accurate results if Q(σ) possesses a similar number
and structure of transition points, as Eq. (3.25) can only be mapped to Eq. (3.27) in
a smooth fashion at the transition points if they occur at equivalent points of k2

0(x) and
Q(σ). The requirement that the transition points occur at equivalent points of k2

0(x) and
Q(σ) additionally imposes the condition∫ σ(xj)

σ(xi)

√
Q(σ′) dσ′ =

∫ xj

xi

k0(x′) dx′, (3.31)

where xi, xj are the ith, jth transition points of k2
0(x) and σ(xi), σ(xj) are the ith, jth

transition points of Q(σ), for all i, j.
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3.3.2 Field Enhancement near the Upper Hybrid Resonance

Having reviewed the uniform approximation within a general setting, we now turn our
attention the specific case of field enhancement of an X-mode wave near the UHR. The
X-mode k2

0(x) given by Eq. (3.25) possesses transition points at locations where one of
the following conditions is satisfied, ωUH(x0) = ω0 (the UHR), [ω2

ce(x1)/4 + ω2
pe(x1)]1/2 +

|ωce(x1)|/2 = ω0 (the R-cutoff), or [ω2
ce(x2)/4 + ω2

pe(x2)]1/2 − |ωce(x2)|/2 = ω0 (the L-
cutoff). Here, we shall only be concerned with the case of k2

0(x) possessing a single reso-
nance at x0, where ωUH(x0) = ω0, and no cut-offs; we note that cases containing a single
resonance between the two cut-offs, as is appropriate in ionospheric studies, have been
treated by [133]. We assume the pole of k2

0(x) at x0 to be simple, k2
0(x→ x0) ∝ 1/(x−x0),

which requires dωUH(x)/dx|x=x0 6= 0, as is seen by a Taylor expansion of ωUH(x) around
x0 in Eq. (3.25). In this case, the simplest choice of Q(σ) mimicking k2

0(x) for |x| < ∞
is Q(σ) = 1/σ, which has a simple pole at σ = 0, meaning that x0 and σ(x0) = 0 are
equivalent points of k2

0(x) and Q(σ). Plugging the above results into Eq. (3.30), we obtain

√
σ(x) =

1

2

∫ x

x0

k0(x′) dx′,
dσ(x)

dx
=
k0(x)

2

∫ x

x0

k0(x′) dx′, (3.32)

from which

E0y(x) =
ϕ(σ(x))√
dσ(x)/dx

=

√
2

k0(x)
∫ x
x0
k0(x′) dx′

ϕ

(
1

4

[∫ x

x0

k0(x′) dx′
]2
)
. (3.33)

The general solution of Eq. (3.27) with Q(σ) = 1/σ is [133]

ϕ(σ) =
√
σ[K1H

(1)
1 (2

√
σ) +K2H

(2)
1 (2

√
σ)], (3.34)

where H(1)
1 is a Hankel function of the 1st kind of order 1, H(2)

1 is a Hankel function of
the 2nd kind of order 1, and K1, K2 are constants. We are interested in solutions which
are decaying on the evanescent side of the UHR. Such solutions will generally involve only
one kind of Hankel function, as seen from the asymptotic forms of these functions [113].
With

√
σ(x) given by Eq. (3.32), H(1)

1 is the appropriate Hankel function if the waves
are propagating for x < x0 (equivalent to k2

0(x > x0) < 0), while H(2)
1 is the appropriate

Hankel function if the waves are propagating for x > x0 (equivalent to k2
0(x > x0) > 0).

The above results may be written as

ϕ(σ) = K
√
σH1(2

√
σ), (3.35)

where

H1 =

{
H

(1)
1 for k2

0(x > x0) < 0

H
(2)
1 for k2

0(x > x0) > 0
(3.36)

and K is a constant. When Eq. (3.35) is plugged into Eq. (3.33) with
√
σ(x) from Eq.

(3.32), we finally obtain E0y(x) within the uniform approximation,

E0y(x) =
K√

2k0(x)

√∫ x

x0

k0(x′) dx′H1

[∫ x

x0

k0(x′) dx′
]
. (3.37)
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K is proportional to the electric field amplitude and may be related to the beam power, P ,
if we interpret E0y(x) as the y-component of the electric field at the centre of a Gaussian
beam of width W propagating along the x-direction. To do this, we note that, far from
the UHR, the asymptotic form of H1 [113] may be used to write

E0y(x) ≈ K√
πk0(x)

e
−i sign[k20(x>x0)][

∫ x
x0
k0(x′) dx′−3π/4]

for

∣∣∣∣ ∫ x

x0

k0(x′) dx′
∣∣∣∣� 1, (3.38)

which is similar to the WKBJ solution of [9] if

|K| =
√

4Pω0

ε0c2W 2
; (3.39)

note that our definition of W agrees with that of [125] rather than that of [9]. Setting
the phase angle of K to zero and allowing P and W to be slowly varying functions of x
determined from beam or ray tracing, we thus obtain

E0y(x) =

√
2P (x)

ε0cW 2(x)

ω0

ck0(x)

∫ x

x0

k0(x′) dx′H1

[∫ x

x0

k0(x′) dx′
]
. (3.40)

Far away from the UHR, the approximate version of E0y(x) then becomes

E0y(x) ≈

√
4P (x)

πε0cW 2(x)

ω0

ck0(x)
e
−i sign[k20(x>x0)][

∫ x
x0
k0(x′) dx′−3π/4]

for

∣∣∣∣ ∫ x

x0

k0(x′) dx′
∣∣∣∣� 1,

(3.41)
and if the point is further located in vacuo, where k0(xv) = ω0/c, this may be reduced to

E0y(xv) ≈

√
4P (xv)

πε0cW 2(xv)
e
−i sign[k20(x>x0)][

∫ xv
x0

k0(x′) dx′−3π/4]
for

∣∣∣∣ ∫ xv

x0

k0(x′) dx′
∣∣∣∣� 1.

(3.42)
In vacuo it also holds that E0x(xv) = 0, and taking the vacuum region to be located on
the side of x0 where a propagating wave exists, such that

∫ xv
x0
k0(x′) dx′ ∈ R, the electric

field amplitude becomes

|E(xv)|2 = |E0y(xv)|2 =
4P (xv)

πε0cW 2(xv)
, (3.43)

which is just the standard result at the centre of a Gaussian beam in vacuo [125]. To
estimate the field enhancement near the UHR, we use the small argument approximation
of H1 [113] to write Eq. (3.40) as

E0y(x) ≈ i sign[k2
0(x > x0)]

√
8P (x)

π2ε0cW 2(x)

ω0

ck0(x)
∫ x
x0
k0(x′) dx′

for

∣∣∣∣ ∫ x

x0

k0(x′) dx′
∣∣∣∣� 1.

(3.44)
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We also note that, by Taylor expanding ωUH(x) around x0, the lowest order approximation
of k0(x) near x0 is found to be

k0(x) ≈ K√
x− x0

, K =
|ωce(x0)|ωpe(x0)

c
√

2ω0 dωUH(x)/dx|x=x0

, (3.45)

and using this form of k0(x), we further have
∫ x
x0
k0(x′) dx′ ≈ 2K

√
x− x0, with which

E0y(x) ≈ i sign[k2
0(x > x0)]

√
8P (x)

π2ε0cW 2(x)

cω2
0 dωUH(x)/dx|x=x0

ω2
ce(x0)ω2

pe(x0)
for

∣∣∣∣ ∫ x

x0

k0(x′) dx′
∣∣∣∣� 1.

(3.46)
Eq. (3.46) becomes exact at x = x0, and we may thus evaluate the electric field amplitude
at x0, using Eqs. (3.26) and (3.46) together,

|E(x0)|2 = |E0x(x0)|2 + |E0y(x0)|2

=
8P (x0)

π2ε0cW 2(x0)

cω2
0|dωUH(x)/dx|x=x0 |
ω2
ce(x0)ω2

pe(x0)

{
ω2
ce(x0)

ν2
ei(x0)

ω4
pe(x0)

[2ω2
0 − ω2

pe(x0)]2
+ 1

}
.
(3.47)

The square field enhancement, F , is simply obtained as the ratio between Eqs. (3.47) and
(3.43),

F =
|E(x0)|2

|E(xv)|2
=

2

π

P (x0)

P (xv)

W 2(xv)

W 2(x0)

cω2
0|dωUH(x)/dx|x=x0 |
ω2
ce(x0)ω2

pe(x0)

{
ω2
ce(x0)

ν2
ei(x0)

ω4
pe(x0)

[2ω2
0 − ω2

pe(x0)]2
+ 1

}
.

(3.48)
In order to cast F in a more illuminating form, we evaluate dωUH(x)/dx in terms of the
density gradient scale length, Ln(x) = ne(x)/[dne(x)/dx], and the magnetic field strength
gradient scale length, LB(x) = B(x)/[dB(x)/dx],

dωUH(x)

dx
=

1

2ωUH(x)

[
dω2

pe(x)

dx
+

dω2
ce(x)

dx

]
=

1

2ωUH(x)

[
ω2
pe(x)

Ln(x)
+

2ω2
ce(x)

LB(x)

]
, (3.49)

and plug the above expression into Eq. (3.48), remembering that ωUH(x0) = ω0,

F =
1

π

P (x0)

P (xv)

W 2(xv)

W 2(x0)

∣∣∣∣ cω0

ω2
ce(x0)Ln(x0)

+
2cω0

ω2
pe(x0)LB(x0)

∣∣∣∣
{
ω2
ce(x0)

ν2
ei(x0)

ω4
pe(x0)

[2ω2
0 − ω2

pe(x0)]2
+ 1

}
.

(3.50)
This form of F clearly illustrates the dependence on P , W , νei, and the gradient length
scales of the basic plasma parameters: F scales with P (x0)/W 2(x0), i.e., F is propor-
tional to the central beam intensity at x0. Significant field amplification may arise from
the factor ω2

ce(x0)/ν2
ei(x0) � 1, which also shows the approximate proportionality of

F to 1/ν2
ei(x0). F is moderated by the fact that the fact that |cω0/[ω

2
ce(x0)Ln(x0)] +

2cω0/[ω
2
pe(x0)LB(x0)]| � 1 in cases where semi-classical methods, such as the uniform

approximation, are appropriate, and the proportionality to this factor additionally shows
that F will generally increase for larger gradients of ne(x) and B(x) at x0. Eq. (3.50) is
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also valid if the vacuum wave is in O-mode, as the X-mode and O-mode dispersion relations
are identical in vacuo. This fact allows us to express F for the case considered in Chapter
6, as well as [13, 14], with xv being located at the gyrotron launcher,

F ≈ F e−τ

π

W 2(xv)

W 2(x0)

∣∣∣∣ cω0

ω2
ce(x0)Ln(x0)

+
2cω0

ω2
pe(x0)LB(x0)

∣∣∣∣ω2
ce(x0)

ν2
ei(x0)

ω4
pe(x0)

[2ω2
0 − ω2

pe(x0)]2
; (3.51)

F is the fraction of power coupled to the plasma in X-mode upon the high-field side wall
reflection, τ is the total optical thickness from the gyrotron launcher to the UHR, and we
have neglected 1 in comparison with [ω2

ce(x0)/ν2
ei(x0)]{ω4

pe(x0)/[2ω2
0 −ω2

pe(x0)]2} � 1. For
typical parameters of 105 GHz CTS at ASDEX Upgrade, F ∼ 106 when F e−τ ∼ 1, which
is in agreement with maximum field enhancement found numerically in [13]. While the
above expression gives a well-defined answer to the question of field enhancement right at
the UHR, we note that the variation of |E(x)|2 is very rapid in this region, meaning that
questions related to PDIs are best addressed by considering the full electric field given by
the uniform approximation, or obtained from a numerical solution of the field enhancement
differential equations, as done in [13, 14], over the relevant PDI length scale.
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Chapter 4

Parametric Decay Theory

Having introduced the necessary basic concepts, we are now in a position to discuss PDIs. A
number of different, not always consistent, approaches to treating PDIs exist, e.g. [134, 135,
106, 136, 137, 55, 8, 13, 138], so a few remarks on the framework presented here are in order.
Our goal is to investigate PDIs near the UHR and the second-harmonic UHR in ASDEX
Upgrade. The PDIs near the UHR are treated within the dipole approximation using the
kinetic framework presented in [109, 13]. This framework has the advantage of delivering
the growth rate of PDIs directly from kinetic theory, and is thus capable of handling Landau
damping and other hot plasma effects which are important near the UHR. However, in its
basic form, it only considers electrostatic daughter waves, treats the pump wave within
the dipole approximation (k0 ≈ 0), and has no direct way of handling imhomogeneities.
The last point in particular makes it unsuitable for treating the PDIs near the second-
harmonic UHR which rely on trapping of the (approximately) half-frequency waves they
excite near a maximum of the UH frequency to reduce their threshold to a level accessible
for gyrotron radiation. For the PDIs near the second-harmonic UHR we therefore utilize the
framework of [8, 9, 12] where the nonlinear current or charge densities are calculated based
on fluid models and inserted on the right hand side of the generalized WKBJ equations
from Chapter 2. This framework has the advantage of allowing inhomogeneities to be
treated within a semi-classical setting, makes no dipole approximation when treating the
pump wave, and may easily be extended to electromagnetic daughter waves. However, the
calculation of the nonlinear current and charge densities relies on fluid models which are
only valid for cold plasmas, so no hot plasma effects are taken into account when computing
the coupling coefficients, and the cold plasma models used may not even reproduce the
results of kinetic theory in the low-temperature limit unless great care is taken [139, 140,
141]. There are thus advantages and drawbacks to both frameworks, with either one
treating cases which are not easily accessible to the other.

As the Author has already presented the kinetic framework in detail in [109, 13], the
latter of which is included in this work, we shall simply apply it in Chapter 6 and refer
to the aforementioned sources for the details. This Chapter is instead devoted to the
framework of [8, 9, 12], which could benefit from a more unified treatment than what is
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available in typical journal articles. In Section 4.1, we discuss the calculation of nonlinear
charge densities, which constitutes the basic component of this framework. In Section 4.2,
we demonstrate the occurrence of PDIs from the basic equations, covering homogeneous
media, where we derive the basic growth rate of PDIs, and inhomogeneous, monotonic
media, where we rederive the Piliya−Rosenbluth criterion with less reliance on complex
analysis than the original sources. In Section 4.3, we cover the more complicated case of
PDIs involving trapped daughter waves, which is of importance in Chapter 5. Finally,
Section 4.4 briefly discusses saturation of PDIs.

4.1 Calculation of Nonlinear Charge Densities

The fundamental process responsible for PDIs is nonlinear interaction between linear wave
modes induced by a large-amplitude pump wave. In this Section we hence compute the
nonlinear charge densities, which represent this coupling for electrostatic waves; for electro-
magnetic waves one can similarly compute nonlinear current densities [139, 140, 141, 9, 12].
To keep matters relatively simple, our calculations are carried out within cold plasma the-
ory. We note that accurate results may require the use of kinetic theory even in the
low-temperature limit [139, 140, 141], but as our treatment of the plasma is in any case
highly idealized, the cold plasma model is considered sufficient for the subsequent esti-
mates. The equations of motion of species σ in a cold plasma are Eqs. (2.15) and (2.16),
which are repeated below, ignoring collisions,

∂nσ(r, t)

∂t
+

∂

∂r
· [nσ(r, t)Vσ(r, t)] = 0, (4.1)

∂Vσ(r, t)

∂t
+ Vσ(r, t) · ∂Vσ(r, t)

∂r
=

qσ
mσ

[E(r, t) + Vσ(r, t)×B(r, t)]. (4.2)

PDIs originate from the quadratic terms, (∂/∂r) ·(nσVσ) and Vσ ·(∂Vσ/∂r), in Eqs. (4.1)
and (4.2). We now consider three-wave interactions in a homogeneous plasma (effects of
inhomogeneities are included in Section 4.2) by superposing three plane waves on top of
a plasma equilibrium with nσ(r, t) = n

(0)
σ , E(r, t) = Vσ(r, t) = 0, B(r, t) = B(0), which

gives

nσ(r, t) = n(0)
σ + Re

[
nσ0 ei(k0·r−ω0t) + nσ1 ei(k1·r−ω1t) + nσ2 ei(k2·r−ω2t)

]
, (4.3)

Vσ(r, t) = Re
[
Vσ0 ei(k0·r−ω0t) + Vσ1 ei(k1·r−ω1t) + Vσ2 ei(k2·r−ω2t)

]
, (4.4)

E(r, t) = Re
[
E0 ei(k0·r−ω0t) − ik1A1 ei(k1·r−ω1t) − ik2A2 ei(k2·r−ω2t)

]
; (4.5)

nσj and Vσj for j = 0, 1, 2 are the density perturbation and fluid velocity amplitudes
associated with the pump (subscript 0) and daughter waves (subscripts 1 and 2), E0 is the
electric field amplitude associated with the pump wave, which can be electromagnetic, Aj
for j = 1, 2 is the potential amplitude associated with the (electrostatic) daughter waves,
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and B(r, t) ≈ B(0) since we are dealing with a non-relativistic plasma. We further take
the plane waves to satisfy the selection rules ω0 = ω1 + ω2 and k0 = k1 + k2, allowing the
quadratic terms in Eqs. (4.1) and (4.2) to produce one of the waves from the two other
waves. To proceed we write nσj = nσj, l + nσj,nl and Vσj = Vσj, l + Vσj,nl, where nσj, l,
Vσj, l are the linear response of nσj , Vσj to Ej and nσj,nl, Vσj, nl are the nonlinear response
of nσj , Vσj ; as the waves are considered weakly nonlinear, we assume |nσj, l| � |nσj,nl| and
|Vσj, l| � |Vσj,nl|. The linear response within cold plasma theory was treated in Section
2.1, and repeating the same calculation here, noting that nσj and Vσj are essentially
Fourier−Laplace amplitudes, we find

nσj, l =
kj ·Vσj, l

ωj
n(0)
σ , (4.6)

Vσj, l =
qσ
mσ

Mσj ·Ej , Mσj =



iωj
ω2
j − ω2

cσ

− ωcσ
ω2
j − ω2

cσ

0

ωcσ
ω2
j − ω2

cσ

iωj
ω2
j − ω2

cσ

0

0 0
i

ωj

 . (4.7)

The nonlinear response is obtained by inserting Eqs. (4.3), (4.4), (4.5), and B(r, t) ≈ B(0)

in Eqs. (4.1) and (4.2), remembering the selection rules ω0 = ω1 + ω2 and k0 = k1 + k2.
For instance, collecting the terms varying as eik1·r−iω1t in Eq. (4.1) yields

nσ1,nl ≈
k1

ω1
·
[
n(0)
σ Vσ1, nl +

nσ0, lV
∗
σ2, l

2
+
n∗σ2, lVσ0, l

2

]
, (4.8)

where we have only included the nonlinear terms to 1st order, since |nσj, l| � |nσj, nl|
and |Vσj, l| � |Vσj,nl|. From Eqs. (4.6) and (4.7), Vσ0, l = qσMσ0 · E0/mσ, V∗σ2, l =

iqσM
∗
σ2 · k2A

∗
2/mσ, nσ0, l = n

(0)
σ k0 · Vσ0, l/ω0, and n∗σ2, l = n

(0)
σ k2 · V∗σ2, l/ω2. To find

Vσ1, nl, we collect the terms varying as eik1·r−iω1t in Eq. (4.2), again keeping only the 1st
order nonlinear terms,

− iω1Vσ1,nl −Vσ1, nl× ωcσ =
i(Vσ0,l · k2)V∗σ2, l

2
−

i(V∗σ2,l · k0)Vσ0, l

2
. (4.9)

Eq. (4.9) is equivalent to the equation governingVσ1, l if we letE1 → imσ[(Vσ0,l·k2)V∗σ2, l−
(V∗σ2,l · k0)Vσ0, l]/(2qσ), and its solution is hence given by Eq. (4.7) as

Vσ1,nl =
i

2
Mσ1 ·

[
(Vσ0,l · k2)V∗σ2, l − (V∗σ2,l · k0)Vσ0, l

]
. (4.10)

Plugging the above results into Eq. (4.8) finally gives

nσ1, nl ≈
k1

2ω1
·
{

iMσ1 ·
[
(Vσ0,l · k2)V∗σ2, l − (V∗σ2,l · k0)Vσ0, l

]
+

(k0 ·Vσ0, l)V
∗
σ2, l

ω0
+

(k2 ·V∗σ2, l)Vσ0, l

ω2

}
n(0)
σ ,

(4.11)
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which is an explicit expression for the nonlinear density amplitude of species σ for the
mode characterized by (k1, ω1) when Vσj, l from Eq. (4.7) is inserted. Further, using the
fact that the daughter wave indices may be interchanged (1↔ 2) and taking the complex
conjugate, we find

n∗σ2,nl ≈
k2

2ω2
·
{
− iM∗σ2 ·

[
(V∗σ0,l · k1)Vσ1, l − (Vσ1,l · k0)V∗σ0, l

]
+

(k0 ·V∗σ0, l)Vσ1, l

ω0
+

(k1 ·Vσ1, l)V
∗
σ0, l

ω1

}
n(0)
σ ,

(4.12)

providing us with the nonlinear density amplitudes for both daughter waves. Eqs. (4.11)
and (4.12), along with Eq. (4.7), show that nσ1,nl ∝ |E0|A∗2 and n∗σ2, nl ∝ |E∗0|A1, meaning
that the nonlinear current densities for (k1, ω1) and (k2, ω2) may be written as

ρ1,nl =
∑
σ

qσnσ1, nl = α12|E0|A∗2, ρ∗2,nl =
∑
σ

qσn
∗
σ2, nl = α∗21|E∗0|A1, (4.13)

where α12 and α∗21 are nonlinear coupling coefficients independent of the wave amplitudes.
The effect of the nonlinear charge density is thus to couple the two daughter wave ampli-
tudes to each other with a coupling strength proportional to the pump wave amplitude.
In the cases of interest in this work, we always have ω0 & |ωce|, making the ion response
to the pump wave negligible. We can thus approximate ρnl ≈ −ene, nl, from which

α12 ≈
ε0
2

ωce

B(0)
ω2
pe

k1

ω1
·
{
Me1 · [(k0 ·M∗e2 · k2)Me0 · e0 − (k2 ·Me0 · e0)M∗e2 · k2]

+
i(k0 ·Me0 · e0)M∗e2 · k2

ω0
+

i(k2 ·M∗e2 · k2)Me0 · e0

ω2

}
,

(4.14)

α∗21 ≈
ε0
2

ωce

B(0)
ω2
pe

k2

ω2
·
{
M∗e2 · [(k0 ·Me1 · k1)M∗e0 · e∗0 − (k1 ·M∗e0 · e∗0)Me1 · k1]

− i(k0 ·M∗e0 · e∗0)Me1 · k1

ω0
− i(k1 ·Me1 · k1)M∗e0 · e∗0

ω1

}
,

(4.15)

with e0 = E0/|E0| being the pump wave polarization unit vector.

While Eqs. (4.7), (4.13), (4.14), and (4.15) provide a full description of the nonlinear charge
density for the onset of PDIs, it is instructive to evaluate ρ1,nl and ρ∗2, nl explicitly in some
simple cases. To this end, we consider an X-mode pump wave propagating along the x-
direction (k0 = k0ex) decaying to two electrostatic waves, also propagating primarily along
the x-direction (k1 ≈ k1xex and k2 ≈ k2xex). If we further assume that ω1 ≈ ω2 ≈ ωUH ,
which is the case of interest in Chapter 5, it holds that ω0 ≈ 2ωUH , leading to |E0x| =
|{iωceω2

pe/[ω0(ω2
0 − ω2

UH)]}E0y| ≈ [|ωce|ω2
pe/(6ω

3
UH)]|E0y| ≤ |E0y|/35/2 ≈ 0.06415|E0y|; it

is thus permissible neglect E0x relative to E0y. With these simplifications and using the
selection rules, ρ1, nl and ρ∗2, nl may be evaluated, following some tedious but straightforward
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algebra,

ρ1, nl ≈ −
ε0
2

ω2
peω

2
ceω1k

2
1xk2x

(ω2
0 − ω2

ce)(ω
2
1 − ω2

ce)(ω
2
2 − ω2

ce)

{
ω2 − ω1

ω1

+
k0

k1x

[
1 +

ω0ω2

ω2
1

+
ω2

ω0

(
1− ω2

ce

ω2
1

)]}
E0y

B(0)
A∗2,

(4.16)

ρ∗2,nl ≈
ε0
2

ω2
peω

2
ceω2k

2
2xk1x

(ω2
0 − ω2

ce)(ω
2
1 − ω2

ce)(ω
2
2 − ω2

ce)

{
ω2 − ω1

ω2

− k0

k2x

[
1 +

ω0ω1

ω2
2

+
ω1

ω0

(
1− ω2

ce

ω2
2

)]}
E∗0y

B(0)
A1.

(4.17)

Eqs. (4.16) and (4.17) are equivalent to Eq. (A.7) from [8], except for the terms (ω2/ω0)(1−
ω2
ce/ω

2
1) and (ω1/ω0)(1− ω2

ce/ω
2
2). This may be seen by converting Eqs. (4.16) and (4.17)

to Gaussian units [96], noting that k1x = q1 and k2x = −q2 in [8], and remembering that
we have defined E and ρ in physical space in terms of the real part of the amplitudes,
while [8] uses complex conjugates without the factor 1/2 included when taking the real
part. The extra terms in Eqs. (4.16) and (4.17) relative to Eq. (A.7) from [8] originate
from the fact that we retain the electron density perturbation at (k0, ω0), ne0, l, which is
neglected in [8]. When ω1 ≈ ω2 ≈ ω0/2, Eqs. (4.16) and (4.17) recduce to

ρ1, nl ≈ −
ε0
2

ω2
peω

2
ceω1k0k1xk2x

(ω2
0 − ω2

ce)(ω
2
1 − ω2

ce)(ω
2
2 − ω2

ce)

[
3 +

1

2

(
1− ω2

ce

ω2
1

)]
E0y

B(0)
A∗2, (4.18)

ρ∗2, nl ≈ −
ε0
2

ω2
peω

2
ceω2k0k1xk2x

(ω2
0 − ω2

ce)(ω
2
1 − ω2

ce)(ω
2
2 − ω2

ce)

[
3 +

1

2

(
1− ω2

ce

ω2
2

)]
E∗0y

B(0)
A1. (4.19)

For ω1 ≈ ωUH , the extra terms in Eqs. (4.18) and (4.19), (1/2)(1−ω2
ce/ω

2
1) ≈ ω2

pe/(2ω
2
UH) <

1/2, are small compared with the dominant terms of value 3, which justifies neglecting them
in [8].

We also consider the case in which the pump wave is electrostatic and mainly propa-
gates along the x-direction; the daughter waves are assumed to propagate mainly along
the x-direction as well. As this case is relevant for the secondary PDI near the second-
harmonic UHR [9, 10, 11, 12], we refer to the pump wave as (k2 ≈ k2xex, ω2), the high-
frequency daughter wave as (k′2 ≈ k′2xex, ω

′
2), and the low-frequency daughter wave as

(kLF ≈ kLFxex, ωLF); the waves are assumed to satisfy the selection rules k2 = k′2 + kLF

and ω2 = ω′2 + ωLF. Inserting E2 ≈ −ik2xA2ex for the pump electric field and using the
kx selection rule yields

ρ′2, nl ≈ −
ε0
2

ω2
pe|ωce|
B(0)

k2xk
′
2xkLFxω2ω

′
2ωLF

(ω2
2 − ω2

ce)(ω
′2
2 − ω2

ce)(ω
2
LF − ω2

ce)

(
k2x

ω2
+
k′2x
ω′2

+
kLFx

ωLF

)
A2A

∗
LF,

(4.20)
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ρ∗LF, nl ≈ −
ε0
2

ω2
pe|ωce|
B(0)

k2xk
′
2xkLFxω2ω

′
2ωLF

(ω2
2 − ω2

ce)(ω
′2
2 − ω2

ce)(ω
2
LF − ω2

ce)

(
k2x

ω2
+
k′2x
ω′2

+
kLFx

ωLF

)
A∗2A

′
2.

(4.21)
Eq. (4.20) is equivalent to an expression from [9], when account is taken for the differences
in units and definitions between this work and [9]. As indicated by the nomenclature, we
take the daughter wave characterized by (kLF, ωLF) to be a low-frequency daughter wave
(in the LH frequency range), while (k2, ω2) and (k′2, ω

′
2) are both assumed to be EBWs with

frequencies near the UH frequency, i.e., we assume that ωLF � ω2 ≈ ω′2 ≈ ωUH ∼ |ωce|
and further set kLFx ∼ k2x ∼ k′2x. With these assumptions, Eqs. (4.20) and (4.21) may be
approximated as

ρ′2, nl ≈
ε0
2

k2xk
′
2xk

2
LFxω2ω

′
2

B(0)ω2
pe|ωce|

A2A
∗
LF, ρ∗LF,nl ≈

ε0
2

k2xk
′
2xk

2
LFxω2ω

′
2

B(0)ω2
pe|ωce|

A∗2A
′
2; (4.22)

just as Eq. (4.20), Eq. (4.22) is similar to expressions found in [9]. We finally note that
the nonlinear current at (k2, ω2) may be calculated by repeating the calculations in this
Section with the terms having the appropriate WKBJ phase variation and is found to be

ρ∗2,nl = −ε0
2

ω2
pe|ωce|
B(0)

k2xk
′
2xkLFxω2ω

′
2ωLF

(ω2
2 − ω2

ce)(ω
′2
2 − ω2

ce)(ω
2
LF − ω2

ce)

(
k2x

ω2
+
k′2x
ω′2

+
kLFx

ωLF

)
A′∗2 A

∗
LF

≈ ε0
2

k2xk
′
2xk

2
LFxω2ω

′
2

B(0)ω2
pe|ωce|

A′∗2 A
∗
LF.

(4.23)

Eq. (4.23) is of use when discussing saturation of PDIs in Section 4.4.

4.2 Onset of Parametric Decay Instabilities with Free Daugh-
ter Waves

Having accounted for both the linear and the nonlinear responses, we are now in a position
to discuss PDIs. To do this we insert ρnl(r, t) = Re{ρ1,nl ei[θ0(r,t)−θ2(r,t)]} in Eq. (3.21);
note that the WKBJ phase of ρ1,nl is not θ1(r, t) =

∫ x
k1x(x′) dx′+k1yy+k1‖z−ω1t exactly,

but rather θ0(r, t)−θ2(r, t) =
∫ x

[k0x(x′)−k2x(x′)] dx′+k1yy+k1‖z−ω1t. Introducing the
wave vector mismatch along the x-direction, ∆ = k0x − k1x − k2x, and considering waves
propagating along the x-direction, Eq. (3.21) may be recast as

iΓ1a1 + i
∂a1

∂t
+ iv1x

∂a1

∂x
= ν12 ei

∫ x ∆ dx′ |E0|a∗2, (4.24)

where Γ1 and v1x are Γ and vx evaluated at (k1, x, ω1), and

ν12 =
α12

ε0(∂D′1/∂ω)

√
∂D′1/∂kx

(
√
∂D′2/∂kx)∗

(4.25)
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is the nonlinear coupling factor, modified to account for the use of the conserved am-
plitude a = A

√
∂D′/∂kx and divided by ∂D′/∂ω. A similar calculation for ρnl(r, t) =

Re{ρ2, nl ei[θ0(r,t)−θ1(r,t)]} yields

− iΓ2a2 − i
∂a∗2
∂t
− iv2x

∂a∗2
∂x

= ν∗21 e−i
∫ x ∆ dx′ |E∗0|a1; (4.26)

Γ2 and v2x are Γ and vx evaluated at (k2, x, ω2), and

ν∗21 =
α∗21

ε0(∂D′2/∂ω)

(
√
∂D′2/∂kx)∗√
∂D′1/∂kx

, (4.27)

just as for the other daughter waves. While Eqs. (4.24) and (4.26) are inadequate for
describing PDIs involving trapped daughter waves, they provide an adequate description
of PDIs with free daughter waves which serve as a natural starting point. We particularly
consider such PDIs in homogeneous media and in monotonic, inhomogeneous media.

4.2.1 Onset of Parametric Decay Instabilities in Homogeneous Media

In a homogeneous medium, the selection rules may be satisfied everywhere, such that ∆ =
0. We further assume the daughter wave amplitudes to be homogeneous, i.e., ∂a1/∂x =
∂a∗2/∂x = 0, which reduces Eqs. (4.24) and (4.26) to

iΓ1a1 + i
∂a1

∂t
= ν12|E0|a∗2, −iΓ2a

∗
2 − i

∂a∗2
∂t

= ν∗21|E∗0|a1. (4.28)

Isolating a∗2 in the first part of Eq. (4.28), a∗2 = i[(∂a1/∂t) + Γ1a1]/(ν12|E0|), and substi-
tuting it into the second part, ignoring the the variation of E0 with t, yields

∂2a1

∂t2
+ (Γ1 + Γ2)

∂a1

∂t
+ (Γ1Γ2 − ν12ν

∗
21|E0|2)a1 = 0. (4.29)

Eq. (4.29) is a second-order, ordinary differential equation with constant coefficients. It
can be solved by assuming a1 ∝ eγt, which results in a quadratic equation for γ,

γ2 + (Γ1 + Γ2)γ + (Γ1Γ2 − ν12ν
∗
21|E0|2) = 0. (4.30)

This quadratic equation is solved using the usual method

γ = ±

√
ν12ν∗21|E0|2 +

(
Γ1 − Γ2

2

)2

− Γ1 + Γ2

2
. (4.31)

We note that this γ is similar in form to the ones from [106, 109, 13]. The solution of
Eq. (4.29) will grow exponentially if one of the roots has Re(γ) > 0. This initial behavior
is characteristic of absolute instabilities [95], and the occurrence of such instabilities will
inevitably couple pump wave power into the daughter waves until they reach a saturated
amplitude, to be discussed in Section 4.4. Assuming ν12ν

∗
21 > 0, which is at least true for
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EBW/X-mode wave daughters with the same frequency, leads to real γ in Eq. (4.31) and
further means that only the root with + in front of the square root has the possibility of
γ > 0 for linearly stable waves (Γ1, Γ2 > 0). A PDI (γ > 0) will occur once |E0| exceeds
a threshold, |Eth

0 |; the instability condition can be written as

|E0| > |Eth
0 | =

√
Γ1Γ2

ν12ν∗21

. (4.32)

Eq. (4.32) finally gives an explicit expression for the pump wave amplitude threshold
which must be exceeded to excite PDIs in a homogeneous medium. The threshold is seen
to increase with increasing daughter wave damping (Γ1Γ2) and decrease with increasing
nonlinear coupling strength (ν12ν

∗
21), in agreement with what is intuitively expected for

nonlinear excitation of weakly damped waves.

4.2.2 Onset of Parametric Decay Instabilities in Monotonic, Inhomoge-
neous Media

The PDI threshold given by Eq. (4.32) is mainly determined by collisional damping which
tends to be very weak in fusion plasmas. Naïvely applying Eq. (4.32) would thus imply
the occurrence of PDIs at very small pump wave amplitudes, at odds with the general
success of linear theories in describing high-power wave heating and current drive in fusion
plasmas. In order to obtain a realistic estimate of the impact of PDIs, it is thus necessary
to take inhomogeneities into account, as first noted by [89, 90, 91, 142]. To do this, we
return to Eqs. (4.24) and (4.26), ignoring the damping terms and considering only steady
state solutions with ∂a1/∂t = ∂a∗2/∂t = 0 (when considering saturation of PDIs for free
waves, non-stationary solutions have to be considered, as done in [91, 142]),

iv1x
∂a1

∂x
= ν12 ei

∫ x ∆ dx′ |E0|a∗2, −iv2x
∂a∗2
∂x

= ν∗12 e−i
∫ x ∆ dx′ |E∗0|a1. (4.33)

Just as in the homogeneous case, we isolate a∗2 in the first part of Eq. (4.33), a∗2 =
iv1x(∂a1/∂x) e−i

∫ x ∆dx′/(ν12|E0|), and insert this in the second part of Eq. (4.33), ne-
glecting the variation of v1x, ν12, and |E0| with x, since they are only assumed to vary
significantly on the geometrical optics length scale L. Additionally canceling out the ex-
ponential terms and rearranging, this yields

∂2a1

∂x2
− i∆

∂a1

∂x
− ν12ν

∗
21|E0|2

v1xv2x
a1 = 0. (4.34)

We now assume v1xv2x > 0 (as well as ν12ν
∗
21 > 0), which is the case for EBW/X-mode

wave daughters in underdense and moderately overdense plasmas, and approximately solve
Eq. (4.34) using the method applied find to convective instabilities of trapped waves in [8];
note that the final result regarding wave amplification also holds for v1xv2x < 0 [90]. The
method from [8] assumes a1 to have a WKBJ-like form, a1 = α1 e

∫ x κ dx′ , where α1 can be
considered constant and κ is a slowly varying spatial growth rate. Inserting this ansatz
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in Eq. (4.34) results in a quadratic equation for κ, κ2 − i∆κ − ν12ν
∗
21|E0|2/(v1xv2x) = 0,

which may be solved to give

κ =
i∆

2
±

√
ν12ν∗21|E0|2
v1xv2x

− ∆2

4
. (4.35)

We consider waves moving in the positive x-direction (v1x, v2x > 0); the argument is similar
for waves moving in the negative x-direction. As the waves move from x = −∞ to x =∞,
they should experience amplification due to the PDI, meaning that we should choose the
root of κ containing a potentially positive real part, i.e., the one with + in front of the
square root in Eq. (4.35). Based on this, the logarithm of the wave power (proportional
to |a1|2) at an arbitrary value of x relative to that at x = −∞ is

ln

[
|a1(x)|2

|a1(−∞)|2

]
= 2

∫ x

−∞
Re(κ) dx′ = 2

∫ x

−∞
Re

√ν12ν∗21|E0|2
v1xv2x

− ∆2

4

dx′. (4.36)

We note that Re(κ) 6= 0 requires |∆| < 2
√
ν12ν∗21|E0|2/v1xv2x, meaning that the integral in

Eq. (4.36) only has contributions from points where |∆| is small. Assuming the variation
of the plasma parameters to be monotonic, such that ∆ = 0 is only satisfied at one point
(x = xr), it is then acceptable to replace ∆ by its first-order Taylor expansion around x =
xr, ∆ ≈ d∆/dx|x=xr(x− xr), in the integrand of Eq. (4.36). After this, Eq. (4.36) can be
evaluated by substituting the integration variable (x′) with ξ = |d∆/dx|x=xr |

√
v1xv2x(x−

xr)/(2
√
ν12ν∗21|E0|2), noting that Re(κ) 6= 0 for |ξ| < 1, and using the indefinite integral∫ √

1− ξ2 dξ = [ξ
√

1− ξ2 + arcsin(ξ)]/2 [113],

ln

[
|a1(x)|2

|a1(−∞)|2

]
=


0 for ξ < −1,

2ν12ν
∗
21|E0|2

|d∆/dx|x=xr |v1xv2x

[
ξ
√

1− ξ2 + arcsin(ξ) +
π

2

]
for ξ ∈ [−1, 1],

2πν12ν
∗
21|E0|2

|d∆/dx|x=xr |v1xv2x
for ξ > 1;

(4.37)
an expression equivalent to Eq. (4.37) is found in [91]. Unlike the homogeneous case, PDIs
in inhomogeneous media do not possess an absolute threshold above which the daughter
amplitude grows exponentially in time. The instability is instead convective and charac-
terized by a finite spatial power gain G [95], which may be determined from Eq. (4.37),

G = ln

[
|a1(∞)|2

|a1(−∞)|2

]
=

2πν12ν
∗
21|E0|2

|d∆/dx|x=xr |v1xv2x
. (4.38)

Noting that ν12ν
∗
21|E0|2 = γ2 for an equivalent homogeneous medium (since we are ignoring

damping), defining lr = 1/
√
|d∆/dx| ∼

√
L/k as a length scale over which the kx selection

rule is approximately satisfied, and remembering that the same G is found for v1xv2x < 0
if we let v1xv2x → |v1xv2x| [90], Eq. (4.38) may be written in the more familiar form
[89, 90, 91, 106],

G =
2πγ2l2r
|v1xv2x|

. (4.39)
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Figure 4.1 – Amplification in a monotonic, inhomogeneous medium when v1x, v2x > 0.

Eq. (4.39) shows higher gains for larger PDI growth rates, longer distances with approxi-
mate satisfaction of the kx selection rule, and slower daughter waves, all which is in agree-
ment with what is intuitively expected for PDIs involving weakly damped daughter waves.
Returning to Eqs. (4.37) and (4.38), noting that ξ =

√
π/(2G)(x−xr)/lr, allows us to draw

the spatial daughter wave amplification profile seen in Fig. 4.1. From Fig. 4.1, it is clear
that amplification occurs for a small range of x-values, x ∈ [xr− lr

√
2G/π, xr+ lr

√
2G/π],

around xr. Inhomogeneities thus convert exponential growth everywhere in space into
growth around the point where the kx selection rule is satisfied; the growth rate is the
same as in the homogeneous case at x = xr, but decreases as ∆ increases, and vanishes
when |x− xr| > lr

√
2G/π.

As a final point of this Section, we discuss the problem of defining a PDI threshold in
an inhomogeneous medium. The above discussion indicates that G > 0 whenever γ >
0 in an equivalent homogeneous medium, and the PDI threshold in an inhomogeneous
medium is thus, in a strict sense, the same as that in a homogeneous medium. However,
the daughter waves entering the amplification region are essentially the ones excited by
thermal fluctuations, so the initial power which gets amplified is very small, meaning that
a significant positive G is required in order for the PDI to have observable consequences.
A simple way of capturing this is to define a threshold, Gth, and consider the PDI to occur
in an inhomogeneous medium when G > Gth. The standard choice, which we shall also
employ, is Gth = 2π [106], corresponding to |a1(∞)|2/|a1(−∞)|2 = eG

th
= e2π ≈ 535.5;

in Chapter 6, this choice is shown provide a good description of the PDI threshold near
the UHR. With the choice Gth = 2π, we can also define a pump wave amplitude condition
for PDIs in inhomogeneous media similar to Eq. (4.32), using G > Gth, Eq. (4.39), and
γ2 = ν12ν

∗
21|E0|2,

|E0| > |Eth
0 | =

√
|v1x/lr| |v2x/lr|

ν12ν∗21

. (4.40)

Eq. (4.40) has exactly the same form as Eq. (4.32) if the daughter wave damping rate,
Γ, is replaced by the convective loss rate from the region where the kx selection rule is
approximately satisfied, |vx/lr|, i.e., the inverse time it takes a daughter wave to pass
through this region. Lower thresholds are obtained for daughter waves spending more
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Figure 4.2 – Dispersion curves of a trapped wave.

time in the amplification region and for larger nonlinear coupling factors, as expected.

4.3 Onset of Parametric Decay Instabilities with Trapped
Daughter Waves

Our discussion of PDIs up to this point has assumed that the daughter waves are propagat-
ing freely through the plasma, allowing them to be described by a single WKBJ mode and
limiting them to passing through an amplification region in an inhomogeneous medium
a single time. It is simple enough to describe a wave passing through a finite number of
amplification regions though, one simply adds up the gains from each region to obtain the
overall gain. However, a new situation occurs when daughter waves, or a fraction of the
daughter wave power, are trapped around one or more amplification regions, since their
power can now be amplified an infinite number of times. In these cases, PDIs become
absolute if the daughter wave power experiences a net gain over one cycle through the
trapping region [88]. The case of most interest to us is that in which both daughter waves
are trapped around a maximum of the UH frequency, but we note that having fully trapped
daughter waves is a sufficient, rather than a necessary, condition for absolute PDIs of this
type. A scenario with absolute PDIs without fully trapped daughter waves is, for instance,
given in [143].

In the semi-classical region, trapped waves may be described as a superposition of two of
the WKBJ modes discussed in Section 3.2. The modes coalesce at the turning points of the
trapping region (xl and xr, where vx = 0), as seen in Fig. 4.2, indicating linear conversion
of one wave into the other at these locations. We consider the case in which the sign of
the wave vector component along the trapping direction, taken to be the x-direction, does
not change, i.e., a resonance of the cold waves. In this case, the two modes, characterized
by wave vector x-components k+

x and k−x , satisfy |k+
x | ≥ |k−x | everywhere in the trapping

region, with the equality being fulfilled at the turning points; the nomenclature is chosen
to be directly applicable to the EBWs and X-mode waves discussed in Section 2.2. In order
for a trapped wave to be a stationary state of the system, the + and − waves should carry
the same power and therefore have |a+| = |a−|. We shall assume such a stationary state,
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but allow the overall amplitude, C, to depend on y z, and t, which is acceptable if the
variation with respect to these variables is slow (adiabatic) compared with 1/kx and 1/ωj .
Thus, we write

φ(r, t) = Re

{
C(y, z, t)

[
eiθ+(x)√
∂D′+/∂kx

+
eiθ−(x)√
∂D′−/∂kx

]}
for x ∈ [xl, xr], (4.41)

where θ± =
∫ x

k±x dx′+kyy+k‖z−ωjt are WKBJ phases of the ± waves, which may have
a constant shift relative to each other due to mode conversion at the turning points, and
∂D′±/∂kx = ∂D′(k, x, ω)/∂kx|kx=k±x (x), ω=ωj

. In order to have a stationary state, we must
further require the phase acquired by the wave when going around the trapping region once
to be a multiple of 2π, as φ would be multi-valued otherwise. The phase shift associated
with wave propagation is

∮
k · dr =

∫ xr
xl
k+
x dx +

∫ xl
xr
k−x dx, while each mode conversion

is associated with a phase shift of ±π/2 and add up to ±π over a full cycle [126]. This
gives rise to the Bohr−Sommerfeld quantization rule, which may also be derived from more
formal WKBJ arguments [126, 130],∮

k · dr = (2l + 1)π, (4.42)

with l ∈ Z. Inserting
∮
k · dr =

∫ xr
xl
k+
x dx+

∫ xl
xr
k−x dx =

∫ xr
xl

(k+
x − k−x ) dx, noting that k+

x

and k−x have the same sign in the cases of interest to us (also remembering that |k+
x | ≥ |k−x |),

and realizing that the solutions with l = m ≥ 0 and l = −m − 1 are equivalent, simply
corresponding to an inversion of the x-axis (kx → −kx), we obtain a simplified version of
Eq. (4.42), also found in [126],∫ xr

xl

(|k+
x | − |k−x |) dx = (2m+ 1)π, (4.43)

where n ∈ N0. When discussing PDIs involving trapped daughter waves, two distinct pairs
of trapped waves, each satisfying Eq. (4.43), must be considered,∫ x1r

x1l

(|k+
1x| − |k

−
1x|) dx = (2m+ 1)π,

∫ x2r

x2l

(|k+
2x| − |k

−
2x|) dx = (2n+ 1)π. (4.44)

In addition to Eq. (4.44), k1, ω1 and k2, ω2 should also satisfy the PDI selection rules,
k1y = k0y − k2y, k1‖ = k0‖ − k2‖, and ω1 = ω0 − ω2, as well as the selection rule k±1x(x) =

k0x(x)−k±2x(x) for at least one combination of ± at some x; if the daughter waves belong to
the same dispersion relation and have ω1 = ω2 = ω0/2, which is the case of most interest in
this work, it will hold that |k+

1x(x)| = |k0x(x)|+ |k−2x(x)| for (at least) two x-values, so long
as |k0x| < max(|k+

1x|) −min(|k−1x|), as we shall generally assume. We particularly analyze
the case of trapped EBW and X-mode daughters with an X-mode pump wave propagating
along the x-direction and additionally take k‖ = 0 for the daughters to minimize convective
losses along B(0). In this case, we can evaluate Eq. (4.44) using Eq. (2.60),

|k±jx| =

√√√√− Sj
2`2Te,j

(
1±

√
1 +

4ω2
j `

2
Te,j

c2

S2
j −D2

j

S2
j

)
− k2

jy, (4.45)
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where j = 1, 2, and we note that k1y = −k2y, ω1 = ω0 − ω2.

To derive the threshold of PDIs with trapped daughter waves, we apply Eq. (3.24) to each
of the WKBJ modes in Eq. (4.41), yielding

i

 D′′+j eiθ+j√
∂D′+j /∂kx

+
D′′−j eiθ−j√
∂D′−j /∂kx

Cj + i

(∂D′+j /∂ω) eiθ+j√
∂D′+j /∂kx

+
(∂D′−j /∂ω) eiθ−j√

∂D′−j /∂kx

 ∂Cj
∂t

−
∑
i=y,z

i

(∂D′+j /∂ki) eiθ+j√
∂D′+j /∂kx

+
(∂D′−j /∂ki) eiθ−j√

∂D′−j /∂kx

 ∂Cj
∂i

+

(∂2D′+j /∂k2
i ) eiθ+j

2
√
∂D′+j /∂kx

+
(∂2D′−j /∂k2

i ) eiθ−j

2
√
∂D′−j /∂kx

 ∂2Cj
∂i2

 =
ρ+
j,nl + ρ−j,nl

ε0
;

(4.46)

the subscript j = 1, 2 again signifies that the quantities are related to one of the trapped
daughter waves, and ρ+

j,nl, ρ
−
j,nl are the components of the nonlinear charge density which

may satisfy the kx selection for the +, − branches of the dispersion relation, respectively.
Eq. (4.46) is now multiplied by e−θ

+
j /(
√
∂D′+j /∂kx)∗+e−θ

−
j /(
√
∂D′−j /∂kx)∗ and integrated

over the trapping region. Neglecting the terms with a fast WKBJ phase variation, as these
are assumed to mix to zero when integrated over the trapping region, Eq. (4.46) may be
written as

i〈D′′j 〉Cj + i

〈
∂D′j
∂ω

〉
∂Cj
∂t
− i

〈
∂D′j
∂ky

〉
∂Cj
∂y
− i

〈
∂D′j
∂k‖

〉
∂Cj
∂z

− 1

2

〈
∂2D′j
∂k2

y

〉
∂2Cj
∂y2

− 1

2

〈
∂2D′j
∂k2
‖

〉
∂2Cj
∂z2

= Pj,nl,

(4.47)

where

〈gj〉 =
1

Nj

∫ xjr

xjl

[
g+
j (x)

|∂D′+j /∂kx|
+

g−j (x)

|∂D′−j /∂kx|

]
dx (4.48)

is the average of a function g over the trapping region weighted by the (norm squared)
daughter wave amplitude,

Pj,nl =
1

ε0Nj

∫ xjr

xjl

 ρ+
j,nl(x) e−iθ+j (x)(√
∂D′+j /∂kx

)∗ +
ρ−j,nl(x) e−iθ−j (x)(√

∂D′−j /∂kx
)∗
dx (4.49)

is a nonlinear coupling factor, and

Nj =

∫ xjr

xjl

(
1

|∂D′+j /∂kx|
+

1

|∂D′−j /∂kx|

)
dx (4.50)
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is a normalization constant. Dividing Eq. (4.47) by 〈∂D′j/∂ω〉, we obtain an equation
which is very similar to those governing PDIs involving free daughter waves,

iΓjCj + i
∂Cj
∂t

+ ivjy
∂Cj
∂y

+ ivjz
∂Cj
∂z
− Λjy

∂2Cj
∂y2

− Λjz
∂2Cj
∂z2

=
Pj,nl

〈∂Dj/∂ω〉
, (4.51)

with Γj = 〈D′′j 〉/〈∂D′j/∂ω〉 being a damping rate, vjy,z = −〈∂D′j/∂ky,‖〉/〈∂D′j/∂ω〉 being
group velocities along the y- and z-directions, and Λjy,z = (1/2)〈∂2D′j/∂k2

y,‖〉/〈∂D
′
j/∂ω〉

being diffraction coefficients along the y- and z-directions. As in the case with free daughter
waves, Pj,nl can generally be written as a product of the complex conjugate amplitude of
the other daughter wave, the pump wave amplitude, and an amplitude-independent factor
determining the nonlinear coupling strength. The general case is rather complicated, so
we focus on the particular case of interest in this work, where ω1 ≈ ω2 ≈ ω0/2 ≈ ωUH . We
take the X-mode pump wave to propagate along the x-direction with k0 > 0, and further
assume that k1x > 0 and k2x < 0. In this case, the kx selection rule can be satisfied for
k+

1x and k−2x (k0 = k+
1x + k−2x at some x), and further utilizing the approximate nonlinear

charge densities from Eqs. (4.18) and (4.19), we find

P1, nl ≈
1

ε0N1

∫ x1r

x1l

ρ1, nl ei
∫ x(k0−k+1x−k

−
2x) dx′(√

∂D′+1 /∂kx

)∗ dx

≈ −ω1C
∗
2

2N1

[∫ xr

xl

E0y

B(0)

ω2
peω

2
cek0k

+
1xk
−
2x

(ω2
0 − ω2

ce)(ω
2
1 − ω2

ce)(ω
2
2 − ω2

ce)

× 3 + (1− ω2
ce/ω

2
1)/2(√

∂D′+1 /∂kx

)∗(√
∂D′−2 /∂kx

)∗ ei
∫ x(k0−k+1x−k

−
2x) dx′dx

 ,
(4.52)

P∗2, nl ≈
1

ε0N2

∫ x2r

x2l

ρ∗2, nl e−i
∫ x(k0−k+1x−k

−
2x) dx′√

∂D′−2 /∂kx

dx

≈ −ω2C1

2N2

[∫ xr

xl

E∗0y

B(0)

ω2
peω

2
cek0k

+
1xk
−
2x

(ω2
0 − ω2

ce)(ω
2
1 − ω2

ce)(ω
2
2 − ω2

ce)

× 3 + (1− ω2
ce/ω

2
2)/2√

∂D′+1 /∂kx

√
∂D′−2 /∂kx

e−i
∫ x(k0−k+1x−k

−
2x) dx′dx

 ,
(4.53)

where xl = max(x1l, x2l) and xr = min(x1r, x2r) mark the limits of the region in which
both trapped daughter waves are propagating. If the integrals in Eqs. (4.52) and (4.53)
are evaluated using the stationary phase approximation [97], only the regions around the
points where the kx selection rule (k0 = k+

1x + k−2x) is satisfied are found to contribute,
and expressions for the nonlinear coupling factors similar to the ones from [8, 9] are found.
However, even with the stationary phase approximation, the nonlinear coupling factors
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can only be evaluated numerically for realistic plasma profiles, so we shall simply keep the
integral forms from Eqs. (4.52) and (4.53) and evaluate the integrals numerically. Plugging
Eqs. (4.52) and (4.53) into Eq. (4.51) and its complex conjugate, also factoring out C∗2
and C1 from Eqs. (4.52) and (4.53), yields the equations describing the onset of PDIs with
trapped daughter waves for ω1 ≈ ω2 ≈ ω0/2 ≈ ωUH ,

iΓ1C1 + i
∂C1

∂t
+ iv1y

∂C1

∂y
+ iv1z

∂C1

∂z
− Λ1y

∂2C1

∂y2
− Λ1z

∂2C1

∂z2
= γ12(y, z)C∗2 , (4.54)

− iΓ2C
∗
2 − i

∂C∗2
∂t
− iv2y

∂C∗2
∂y
− iv2z

∂C∗2
∂z
− Λ2y

∂2C∗2
∂y2

− Λ2z
∂2C∗2
∂z2

= γ∗21(y, z)C1; (4.55)

here,

γ12(y, z) ≈ − ω1

2N1〈∂D′1/∂ω〉

[∫ xr

xl

E0y(x, y, z)

B(0)

ω2
peω

2
cek0k

+
1xk
−
2x

(ω2
0 − ω2

ce)(ω
2
1 − ω2

ce)(ω
2
2 − ω2

ce)

× 3 + (1− ω2
ce/ω

2
1)/2(√

∂D′+1 /∂kx

)∗(√
∂D′−2 /∂kx

)∗ ei
∫ x(k0−k+1x−k

−
2x) dx′dx

 ,
(4.56)

γ∗21(y, z) ≈ − ω2

2N2〈∂D′2/∂ω〉

[∫ xr

xl

E∗0y(x, y, z)

B(0)

ω2
peω

2
cek0k

+
1xk
−
2x

(ω2
0 − ω2

ce)(ω
2
1 − ω2

ce)(ω
2
2 − ω2

ce)

× 3 + (1− ω2
ce/ω

2
2)/2√

∂D′+1 /∂kx

√
∂D′−2 /∂kx

e−i
∫ x(k0−k+1x−k

−
2x) dx′dx

 (4.57)

are nonlinear coupling coefficients proportional to the pump wave amplitude. Apart from
some differences in the sign conventions, which are ultimately unimportant when dis-
cussing PDIs, and the inclusion v1,2z, Eqs. (4.54) and (4.55) are equivalent to Eq. (20)
from [8]. When discussing PDIs of the ECRH beams in ASDEX Upgrades, it can gen-
erally be assumed that the ECRH beams have a Gaussian field distribution [123] with
a width, W , that is essentially constant in the trapping region, allowing us to write
γ12(y, z) = γ12(0, 0)e−(y2+z2)/W 2 and γ∗21(y, z) = γ∗21(0, 0)e−(y2+z2)/W 2 . W can be obtained
by assuming free space-like beam propagation [125], or by using a beam tracing code such
as TORBEAM [123] or WKBeam [124]; since our results are in any case highly simpli-
fied, we generally employ the former. We further set v1z = v2z = 0 in order to minimize
convective losses along the z-direction, with which Eqs. (4.54) and (4.55) become

iΓ1C1 + i
∂C1

∂t
+ iv1y

∂C1

∂y
− Λ1y

∂2C1

∂y2
− Λ1z

∂2C1

∂z2
= γ12(0, 0) e−(y2+z2)/W 2

C∗2 , (4.58)

− iΓ2C
∗
2 − i

∂C∗2
∂t
− iv2y

∂C∗2
∂y
− Λ2y

∂2C∗2
∂y2

− Λ2z
∂2C∗2
∂z2

= γ∗21(0, 0) e−(y2+z2)/W 2
C1. (4.59)

If |E0| is assumed to be unaffected by the PDI, which is reasonable during the onset of the
instability, Eqs. (4.58) and (4.59) are a pair of coupled, linear, partial differential equations.
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These can be solved numerically, subject to the boundary conditions discsussed in [8, 9],
in order to obtain the threshold of the trapped wave PDI. In principle, Eqs. (4.58) and
(4.59) should be solved for all the permissible combinations of modes given by Eq. (4.44),
with |k±jx| from Eq. (4.45), and the PDI threshold given as the threshold for the mode
combination with the lowest threshold; note that γ12 and γ∗21 may take different forms
than those in Eqs. (4.56) and (4.57), depending on the directions of k1x and k2x for the
daughter wave modes capable of satisfying the kx selection rule. As previously mentioned,
we shall mainly consider the case of ω1 = ω2 = ω0/2, where Eqs. (4.56) and (4.57) provide
the correct γ12 and γ∗21, and since this will already reduce the accuracy of our threshold to
a rough estimate, we shall also be content with using approximate analytical solutions of
Eqs. (4.58) and (4.59); these solutions also provide additional insight into the physics.

We are interested in absolute instabilities and therefore investigate solutions of Eqs. (4.58)
and (4.59) varying as C1, C

∗
2 ∝ eγt. If we additionally ignore diffraction losses along the

y-direction (set Λ1,2y = 0), since these are generally small compared with the convection
losses, we obtain

i(Γ1 + γ)C1 + iv1y
∂C1

∂y
− Λ1z

∂2C1

∂z2
= γ12(0, 0) e−(y2+z2)/W 2

C∗2 , (4.60)

− i(Γ2 + γ)C∗2 − iv2y
∂C∗2
∂y
− Λ2z

∂2C∗2
∂z2

= γ∗21(0, 0) e−(y2+z2)/W 2
C1. (4.61)

While simpler than Eqs. (4.58) and (4.59), Eqs. (4.60) and (4.61) are still non-separable
partial differential equations without a simple analytical solution. To simplify the prob-
lem, we follow [8] and replace the Gaussian |E0|-distribution by a rectangular uniform one,
e−(y2+z2)/W 2 → Θ(y)Θ(2Ly−y)Θ(z+Lz)Θ(Lz−z), where Θ is the Heaviside step function
and Ly, Lz are the (half) beam widths in the y-, z-directions (the beam is translated in
the y-direction to simplify the subsequent calculations). The choice Ly = Lz =

√
π/8W

will cause the beam to carry the same power as the Gaussian one, but in order to al-
low a non-slab geometry to be taken at least approximately into account, we shall keep
them arbitrary for now. Unfortunately, even the above simplification does not lead to
a tractable solution, so we shall additionally assume that either diffraction losses along
the z-direction or convection losses along the y-direction dominate, i.e., that the ratio
|vy∂C/∂y|/|Λz∂2C/∂z2| ∼ (Lz/Ly)(|vy|Lz/|Λz|) is either very small (diffraction losses
along z dominate) or very large (convection losses along y dominate).

In the case where |vy∂C/∂y|/|Λz∂2C/∂z2| � 1, we can neglect the terms proportional to
v1,2y and arrive at a set of equations which only depends on z,

i(Γ1 + γ)C1 − Λ1z
∂2C1

∂z2
= γ12(0, 0)Θ(z + Lz) Θ(Lz − z)C∗2 (4.62)

− i(Γ2 + γ)C∗2 − Λ2z
∂2C∗2
∂z2

= γ∗21(0, 0)Θ(z + Lz) Θ(Lz − z)C1. (4.63)

For |z| > Lz, Eqs. (4.62) and (4.63) are just independent, homogeneous, ordinary differ-
ential equations with constant coefficients for C1 and C∗2 . Their solutions are found by the
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usual method, C1 = A1 ez
√

i(γ+Γ1)/Λ1z +B1 e−z
√

i(γ+Γ1)/Λ1z and C∗2 = A∗2 ez
√
−i(γ+Γ2)/Λ2z +

B∗2 ez
√
−i(γ+Γ2)/Λ2z , where A1,2 and B1,2 are constants determined by the boundary condi-

tions. For |z| < Lz the right hand sides of Eqs. (4.62) and (4.63) are non-zero due to the
coupling induced by the nonlinear current density. Isolating C∗2 in Eq. (4.62) and plugging
the result into Eq. (4.63) in this region yields

∂4C1

∂z4
+ i

(
γ + Γ2

Λ2z
− γ + Γ1

Λ1z

)
∂2C1

∂z2
+
γ12(0, 0)γ21(0, 0)− (γ + Γ1)(γ + Γ2)

Λ1zΛ2z
C1 = 0. (4.64)

Eq. (4.62) may be solved by the standard method, i.e., by assuming C1 ∝ eQzz and solving
for Q2

z,

Q2
z = i

(
γ + Γ1

2Λ1z
− γ + Γ2

2Λ2z

)
±

√
γ12(0, 0)γ∗21(0, 0)

Λ1zΛ2z
−
(
γ + Γ1

2Λ1z
+
γ + Γ2

2Λ2z

)2

. (4.65)

The generally complex Qz-values obtained from Eq. (4.65) are somewhat difficult to in-
terpret, but in the special case where ω1 = ω2 = ω0/2, it holds that Λ1z = Λ2z = Λz and
Γ1 = Γ2 = Γ, reducing Eq. (4.65) to

Q2
z = ±

√
γ12(0, 0)γ∗21(0, 0)− (γ + Γ)2

|Λz|
. (4.66)

Defining Qz = [γ12(0, 0)γ∗21(0, 0) − (γ + Γ)2]1/4/
√
|Λz|, we then have Qz = ±Qz and

Qz = ±iQz, meaning that the solution of Eq. (4.64) can be written as linear combination of
the regular and hyperbolic cosine and sine functions, i.e., C1 = C1 cos(Qzz)+E1 sin(Qzz)+
G1 cosh(Qzz) +H1 sinh(Qzz), where C1, E1, G1, and H1 are constants determined by the
boundary conditions (C∗2 may be expressed in a similar way). In order to determine the
appropriate boundary conditions, we write Eq. (4.64) with Γ1 = Γ2 = Γ and Λ1z = Λ2z =
Λz,

∂4C1

∂z4
+
γ12(0, 0)γ∗21(0, 0)− (γ + Γ)2

Λ2
z

C1 = 0 for |z| < Lz, (4.67)

while also noting that Eq. (4.62) yields

∂4C1

∂z4
+

(γ + Γ)2

Λ2
z

C1 = 0 for |z| > Lz, (4.68)

when differentiated twice. Eqs. (4.67) and (4.68) may be combined to read

∂4C1

∂z4
+

[γ12(0, 0)γ∗21(0, 0)− 2(γ + Γ)2]Θ(z + Lz)Θ(Lz − z) + (γ + Γ)2

Λ2
z

C1 = 0, (4.69)

showing that the problem is effectively equivalent to a finite potential well. Integrating
Eq. (4.69) from z = L−z to z = L+

z and from z = −L−z to z = −L+
z , yields the boundary

conditions that C1, ∂C1/∂z, ∂2C1/∂z
2, and ∂3C1/∂z

3 be continuous at z = ±Lz. We
additionally require that C1 → 0 as |z| → ∞ in order for the daughter wave energy to be
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finite. Taking Re[
√

i(γ + Γ)/Λz] > 0, C1 → 0 for |z| → ∞ requires A1 = 0 for z > Lz and
B1 = 0 for z < −Lz. Due to the symmetry of the problem, we further know that C1 will be
either an even or an odd function of z, i.e., we can write C1 = C1 cos(Qzz) + G1 cosh(Qzz)
for |z| < Lz with A1(z < −Lz) = B1(z > Lz), or C1 = E1 sin(Qzz) + H1 sinh(Qzz) for
|z| < Lz with A1(z < −Lz) = −B1(z > Lz). The even solutions have the lowest PDI
threshold, since they can have a maximum of |C1| at the beam center, and are therefore
the ones considered in detail. The requirements of continuity at z = ±Lz will be fulfilled
if continuity is satisfied at z = Lz for an even (and odd) solution. The requirement of
continuity of C1, ∂C1/∂z, ∂2C1/∂z

2, and ∂3C1/∂z
3 at z = Lz for an even solution may be

expressed as
C1 cos(QzLz) + G1 cosh(QzLz) = B1 e−Lz

√
i(γ+Γ)/Λz , (4.70)

−QzC1 sin(QzLz) +QzG1 sinh(QzLz) = −

√
i(γ + Γ)

Λz
B1 e−Lz

√
i(γ+Γ)/Λz , (4.71)

−Q2
zC1 cos(QzLz) +Q2

zG1 cosh(QzLz) = i
γ + Γ

Λz
B1 e−Lz

√
i(γ+Γ)/Λz , (4.72)

Q3
zC1 sin(QzLz) +Q3

zG1 sinh(QzLz) = −
[

i(γ + Γ)

Λz

]3/2

B1 e−Lz

√
i(γ+Γ)/Λz . (4.73)

With C1 6= 0, which is necessary to have a maximum of |C1| at the beam center, Eqs.
(4.70), (4.71), (4.72), and (4.73) will have a solution when

QzLz tan(QzLz) =

√
i(γ + Γ)

Λz
Lz. (4.74)

Eq. (4.74) is a transcendental equation determining the bound states of the finite potential
well, just as in the well-known quantum mechanical problem [128]. We are interested in
the solution with the lowest threshold, for which we can assume |QzLz| � 1 and use the
approximation tan(QzLz) ≈ QzLz. Inserting this in Eq. (4.74) yields a quadratic equation
for γ + Γ, which can be solved using the standard method,

γ = −i
Λz
2L2

z

±

√
γ12(0, 0)γ∗21(0, 0)−

(
Λz
2L2

z

)2

− Γ. (4.75)

Apart from the sign of the leading imaginary term, which is unimportant for the PDI
threshold, Eq. (4.75) is equivalent to an expression from [8]. From Eqs. (4.56) and (4.57),
we note that

γ12(0, 0)γ∗21(0, 0) =
ω2

1

4N 2
1 〈∂D′1/∂ω〉2

∣∣∣∣ ∫ xr
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2
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2
1)/2√
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e
i
∫ x
xl
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(4.76)

67



for ω1 = ω2 = ω0/2, meaning that the argument of the square root in Eq. (4.75) will be
positive when the + root has Re(γ) > 0, which is the condition for an absolute PDI to
occur. The PDI condition can thus be expressed as

γ12(0, 0)γ∗21(0, 0) > Γ2 +

(
Λz
2L2

z

)2

. (4.77)

Remembering that γ12(0, 0)γ∗21(0, 0) is proportional to the injected beam power, P0 (since
it proportional to the squared pump wave amplitude), we can rewrite Eq. (4.77) as a
condition for P0,

P0 > P th
0 =

Γ2 + [Λz/(2L
2
z)]

2

γref
12 (0, 0)γref∗

21 (0, 0)
P ref

0 , (4.78)

where P th
0 is the PDI threshold in terms of the injected beam power and P ref

0 is a reference
injected beam power used when calculating γref

12 (0, 0)γref∗
21 (0, 0). As expected, the threshold

decreases with decreasing damping, Γ, decreasing diffraction losses along the z-direction,
Λz/(2L

2
z), and increasing nonlinear coupling, γref

12 (0, 0)γref∗
21 (0, 0)/P ref

0 .

We now turn our attention to the case of |vy∂C/∂y|/|Λz∂2C/∂z2| � 1 where we can
neglect the terms proportional to Λ1,2z and arrive at a set of equations which only depends
on y,

i(Γ1 + γ)C1 + iv1y
∂C1

∂y
= γ12(0, 0)Θ(y) Θ(2Ly − y)C∗2 , (4.79)

− i(Γ2 + γ)C∗2 − iv2y
∂C∗2
∂y

= γ∗21(0, 0)Θ(y) Θ(2Ly − y)C1. (4.80)

For y < 0 and y > 2Ly, Eqs. (4.79) and (4.80) are independent, first-order ordinary
differential equations with the solutions C1 = A1 e−(Γ1+γ)y/v1y and C∗2 = A∗2 e−(Γ2+γ)y/v2y ,
where A1,2 are again constant coefficients determined by the boundary conditions. Just as
in the case where diffraction losses along z dominated, we find the solution for y ∈]0, 2Ly[
by isolating C∗2 in Eq. (4.79) and inserting the resulting expression in Eq. (4.80), from
which

∂2C1

∂y2
+

(
γ + Γ1

v1y
+
γ + Γ2

v2y

)
∂C1

∂y
− γ12(0, 0)γ∗21(0, 0)− (Γ1 + γ)(Γ2 + γ)

v1yv2y
C1 = 0. (4.81)

Seeking a solution C1 ∝ eQyy of Eq. (4.81) yields

Qy = −γ + Γ1

2v1y
− γ + Γ2

2v2y
±

√
γ12(0, 0)γ∗21(0, 0)

v1yv2y
+

(
γ + Γ1

2v1y
− γ + Γ2

2v2y

)2

. (4.82)

As earlier, we shall simplify Eq. (4.82) by assuming ω1 = ω2 = ω0/2. This again leads
to Γ1 = Γ2 = Γ, but since D′ is an even function of ky, its derivative ∂D′/∂ky is an odd
function of ky, and remembering that k1y = −k2y, along with vjy = 〈∂D′j/∂ky〉/〈∂D′j/∂ω〉,
thus gives v1y = −v2y. We take v1y = vy > 0, which recasts Eq. (4.82) as

Qy = ±i

√
γ12(0, 0)γ∗21(0, 0)− (γ + Γ)2

vy
. (4.83)
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Just as before, we define Qy =
√
γ12(0, 0)γ∗21(0, 0)− (γ + Γ)2/vy, allowing us to write

C1 = B1 cos(Qyy)+C1 sin(Qyy), where B1 and C1 are constants determined by the boundary
conditions (C∗2 can be expressed in a similar manner). Again, we require C1, C∗2 → 0 for
|y| → ∞ to have finite daughter wave energy, and integrating Eqs. (4.79) and (4.80) from
y = 0− to y = 0+ and from y = 2L−y to y = 2L+

y further requires C1 and C∗2 to be
continuous across these points. Taking Re(γ + Γ) > 0, C1 → 0 for y → −∞ means that
A1 = 0 for y < 0, and continuity of C1 at y = 0 thus implies that C1 = B1 sin(Qyy). For
y ∈]0, 2Ly[, Eq. (4.79) therefore gives

C∗2 =
iB1

γ12(0, 0)
[(γ + Γ) sin(Qyy) + vyQy cos(Qyy)], (4.84)

and C∗2 → 0 for y →∞ requires that A∗2 = 0 for y > 2Ly, so continuity of C∗2 at y = 2Ly
for B1 6= 0 implies that

2QyLy cot (2QyLy) = −2(γ + Γ)Ly
vy

. (4.85)

Eq. (4.85) is a transcendental equation determining the allowed forms of C1 and C∗2 . It is
somewhat similar to Eq. (4.74), but we note that due to the presence of a cotangent on
the left hand side, Eq. (4.85) does not allow an approximate solution for |QyLy| � 1 by
means of Taylor expansion. Instead, we may assume that 2|γ + Γ|Ly/vy � 1, such that
the zeros of the cotangent, 2QyLy ≈ π(s+ 1/2) with s ∈ N0, can be taken as approximate
solutions. Doing this yields

γ ≈

√
γ12(0, 0)γ∗21(0, 0)−

π2v2
y

4L2
y

(
s+

1

2

)2

− Γ. (4.86)

The lowest threshold is evidently obtained for s = 0, and the PDI condition may thus be
expressed as

γ12(0, 0)γ∗21(0, 0) > Γ2 +

(
πvy
4Ly

)2

. (4.87)

This PDI condition gives a different threshold than the analytical estimate in Eq. (34) of
[8]. We note that a threshold similar to the one in [8] can be obtained if vy is allowed to
switch sign at the beam center; this does, however, seem inconsistent with the assumption
that the WKBJ-modes are quasi-independent of one another. Further, the ratio between
the analytical thresholds given by convection losses along y and diffraction losses along z
in [8] is of a different order than the ratio between the associated terms in Eqs. (4.60) and
(4.61), i.e., one can find a higher threshold due to diffraction losses along z than convection
losses along y even though |vy∂C1/∂y|/|Λz∂2C1/∂z

2| � 1, particularly at low Γ. The
threshold implied by Eq. (4.87) does not have this shortcoming and is additionally shown
to approximately match the PDI threshold during ELMs at ASDEX Upgrade in Chapter 5.
We now convert Eq. (4.87) to a condition on P0, again using that γ12(0, 0)γ21(0, 0) ∝ P0,

P0 > P th
0 ≈

Γ2 + [πvy/(4Ly)]
2

γref
12 (0, 0)γref∗

21 (0, 0)
P ref

0 ; (4.88)
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P th
0 is seen to decrease with decreasing damping, Γ, decreasing convective losses along

the y-direction, πvy/(4Ly), and increasing nonlinear coupling, γref
12 (0, 0)γref∗

21 (0, 0)/P ref
0 , as

expected.

4.3.1 Algorithm for Computing the Power Threshold of Parametric De-
cay Instabilities Involving Trapped Waves

As the pieces needed for calculating P th
0 are somewhat scattered throughout this Thesis,

we add this Subsection to allow for more easy reference. First of all, we assume that
ω1 = ω2 = ω0/2, which reduces the initial problem to finding the parameters of a single
trapped mode. Given that a profile allowing trapping of the ω0/2-waves has been identified,
this may be done using Eqs. (4.44) and (4.45),∫ x1r

x1l

(|k+
1x| − |k

−
1x|) dx = (2m+ 1)π, (4.89)

|k±1x| =

√√√√√− S1

2`2Te,1

1±

√
1 +

4ω2
1`

2
Te,1

c2

S2
1 −D2

1

S2
1

− k2
1y. (4.90)

m is found by computing the integral in Eq. (4.89) for k1y = 0 and picking the largest
integer leading to a right hand side of Eq. (4.89) below this value. Minimizing the difference
between the right and left hand sides numerically yields k1y of the trapped mode, and
the above choice of m should result in the smallest possible |k1y|, leading to the lowest
convection losses along the y-direction. Once the mode is identified, the necessary averaged
parameters in the trapping region should be calculated using Eqs. (2.44) and (4.48). In
order to find γ12(0, 0)γ∗21(0, 0), it is necessary to obtain E0y of the pump wave from Eq.
(3.7), the unit polarization vector from Chapter 2, and P (s) = P ref

0 e−τ(s), after which the
integral in Eq. (4.76) is performed. Once the above steps have been completed, P th

0 is
obtained from the maximum of the values in Eqs. (4.78) and (4.88), using appropriate
values of Ly and Lz. If there are no special conditions, we set Ly = Lz =

√
π/8W , with

W being the pump beam width in the trapping region.

4.4 Saturation of Parametric Decay Instabilities

So far, we have presented the theory of the onset of PDIs, determining the pump am-
plitude/power threshold above which PDIs occur. When PDIs are observed, they will,
however, usually have reached a nonlinearly saturated state. We therefore briefly discuss
the properties of such saturated states and the processes which may lead to saturation in
this Section.

If we confine ourselves to the WKBJ PDI equations valid during of the onset in an inhomo-
geneous medium with free daughter waves, the saturated regime is described by [91, 142].
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However, ordinarily, additional nonlinear processes will become important during the sat-
uration phase. These include secondary PDIs of the excited daughter waves [9, 10] and
depletion of the pump wave [11, 12]. Both of the aforementioned processes reduce the
growth rate of the primary instability and may lead to a saturated state, in which the
nonlinear wave generation is balanced by the losses [9, 10, 11, 12]. To keep the discussion
relevant for the trapped daughter wave PDIs considered in this work, we consider a spe-
cific example in which a primary EBW daughter, characterized by (k2, ω2), decays to a
secondary EBW daughter, characterized by (k′2, ω

′
2), and a low-frequency daughter wave,

characterized by (kLF, ωLF). It is assumed that a further decay involving a low-frequency
daughter wave would cause the (tertiary) EBW to be free and thus increase the threshold
of the instability to a level above what is accessible with ECRH, allowing us to focus on a
single secondary PDI. The low-frequency daughter wave is taken as free and propagating
mainly along the x-direction, so it can be described by Eq. (3.24) where only the convective
term along the x-direction is retained,

∂a∗LF

∂x
= −

iρ∗LF, nl eiθLF

ε0
(√

∂D′LF/∂kx
)∗ . (4.91)

Inserting ρLF,nl from Eq. (4.22), accounting for the fact that (k2, ω2) and (k′2, ω
′
2) are

trapped, Eq. (4.91) can be integrated to yield

a∗LF = −iC∗2C
′
2

∫ x

x2l

ν∗LF2′(x
′) dx′, (4.92)

where

ν∗LF2′(x
′) =

k2xk
′
2xk

2
LFxω2ω
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2

2B(0)|ωce|ω2
pe

ei
∫ x′ kLFx dx′′(√
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)∗
 e−i

∫ x′ k+2x dx′′(√
∂D′+2 /∂kx

)∗ +
e−i

∫ x′ k−2x dx′′(√
∂D′−2 /∂kx

)∗


×

 ei
∫ x′ k′+2x dx′′√
∂D′+2′ /∂kx

+
ei

∫ x′ k′−2x dx′′√
∂D′−2′ /∂kx


(4.93)

is a nonlinear coupling factor. Inserting Eq. (4.92) in ρ′2, nl from Eq. (4.22) and repeating
the calculations from Section 4.3 then yields

iΓ′2C
′
2 + i

∂C ′2
∂t

+ iv′2y
∂C ′2
∂y
− Λ′2y

∂2C ′2
∂y2

− Λ′2z
∂2C ′2
∂z2

= −iν2′2|C2|2C ′2, (4.94)

with
ν2′2 =

1

N ′2〈∂D′2′/∂ω〉

∫ x2r

x2l

νLF2′(x)

[∫ x

x2l

ν∗LF2′(x
′) dx′

]
dx (4.95)

being the nonlinear coupling factor describing the full effect of the secondary PDI on the
EBW. In order to obtain an approximate saturation value of |C2|, we ignore the time deriva-
tive, damping, and y diffraction losses on the left hand side of Eq. (4.94). Then the magni-
tude of the left hand side can be estimated as |C ′2|/τ ′, where τ ′ = min(Ly/|v′2y|, L2

z/|Λ′2z|),
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which should balance the right hand side, giving [10]

|C2|2 ≈
1

|ν2′2|τ ′
. (4.96)

The saturation amplitudes of the other daughter wave amplitudes can also be found. This
is done by using Eq. (4.54),

iΓC1 + i
∂C1

∂t
+ iv1y

∂C1

∂y
− Λ1y

∂2C1

∂y2
− Λ1z

∂2C1

∂z2
= γ12C

∗
2 , (4.97)

and Eq. (4.55), where we also include the nonlinear charge density from Eq. (4.23) with
a∗LF from Eq. (4.92),

− iΓ2C
∗
2 − i

∂C∗2
∂t
− iv2y

∂C∗2
∂y
− Λ2y

∂2C∗2
∂y2

− Λ2z
∂2C∗2
∂z2

= γ∗21C1 − iν∗22′ |C ′2|2C∗2 ; (4.98)

here,

ν∗22′ =
1

N2〈∂D′2/∂ω〉

∫ x2r

x2l

νLF2′(x)

[∫ x

x2l

ν∗LF2′(x
′) dx′

]
dx. (4.99)

Setting ω1 = ω2 = ω0/2 (|γ12| = |γ∗21| =
√
γ12γ∗21) and introducing c1 = |

√
N1〈∂D′1/∂ω〉C1|,

c2 = |(
√
N2〈∂D′2/∂ω〉)∗C∗2 |, c′2 = |

√
N ′2〈∂D′2′/∂ω〉C

′
2|, allows Eqs. (4.94), (4.97), and

(4.98) to be written in a symmetric form where
√
γ12γ∗21 characterizes the strength of the

primary PDI and
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∣∣∣∣ (4.100)

characterizes the strength of the secondary PDI. In this form, c1, c2, and c′2 are further
proxies for the square root of the daughter plasmon numbers of each wave [9, 10], and
assuming that the secondary PDI has consumed the majority of the (k2, ω2)-plasmons, we
may set c1 ≈ c′2. Requiring the absolute values of the terms on the right hand side of Eq.
(4.98) to balance each other then yields the saturation amplitudes,

c1 ≈ c′2 ≈

√
γ12γ∗21τ

′

ν ′2
. (4.101)

A model similar to the one presented here is found in [10], which shows good agreement
between the estimated saturation amplitudes and numerical modeling. [10] finds that up
to 6 % of the injected ECRH power can be coupled into the daughter waves by the above
mechanism for the investigated TEXTOR-like parameters; taking pump depletion into
account changes this fraction to 10 % [12]. We note that the fraction of pump power
coupled to the daughter waves depends strongly on the number of secondary PDIs allowed
by the plasma profile. In [9], for instance, three secondary PDIs are possible, leading to up
to 24 % of the pump power being transferred to the daughter waves. When an even number
of secondary decays occur, pump depletion must be taken into account for saturation to
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occur [93] and very high fractions of the pump power, up to 60 %, may be coupled to
the daughter waves. While PDI-mediated absorption of 45 % of the power of an injected
X-mode beam has recently been reported in a low-temperature plasma filament [94], the
fraction of ECRH power that can be coupled to electrostatic daughter waves through PDIs
in a tokamak remains uncertain, as the wave trapping is usually a highly intermittent
phenomenon; this is, however, an obvious point of interest for future investigations.

As a final point of this Section, we note that the primary and secondary daughter waves,
(k2, ω2) and (k′2, ω

′
2), may combine to produce electromagnetic waves with a frequency

ω′0 = ω2 + ω′2 = 2ω2 − ωLF ≈ ω0 − ωLF [9]. These waves can escape the plasma and be
observed by the CTS diagnostic; this is the mechanism through which the trapped wave
PDI was originally detected [144]. The spectral power of the electromagnetic waves from
combination was found to agree with the observed spectral power during PDI experiments
at TEXTOR [9]. The CTS system at ASDEX Upgrade is now additionally equipped with
a channel detecting electromagnetic waves near ω0/2, for which the spectral power can also
be compared with theoretical predictions [92].
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Chapter 5

Parametric Decay Instabilities near
the Second-Harmonic Upper Hybrid
Resonance

Now that the theoretical background for parametric decay of an X-mode pump wave into
EBWs and X-mode waves with ω1 ≈ ω2 ≈ ω0/2 has been established, the time has come to
investigate scenarios in which such PDIs come into play at ASDEX Upgrade. We remind
the reader that these PDIs require wave trapping in order to reduce their power threshold
to a level attainable with the gyrotron sources installed at ASDEX Upgrade (. 1 MW)
[64, 65]. In underdense and moderately overdense plasmas (where `2Te1,2 > 0), e.g., found in
ASDEX Upgrade and other conventional tokamaks, the daughter waves (both EBWs and
X-mode waves) propagate for ω1,2 < ωUH in the cold limit; at finite Te the propagation
criterion is given by Eq. (2.66). The daughter waves can thus be trapped around a
maximum of the UH frequency, where they will have ω1 ≈ ω2 ≈ ωUH . The decay condition
for the pump wave is hence ω0 ≈ 2ωUH , so the PDI may occur when ωUH has maximum
near the second-harmonic UH frequency of the pump wave. Since ω2

UH = ω2
pe+ω2

ce, such a
maximum can occur due to a maximum of ne, B, or both. In conventional tokamaks, the
magnetic pressure, ε0c2B2/2, is generally much larger than the kinetic (electron) pressure,
neTe, meaning that B is mainly determined by the externally generated toroidal magnetic
field, which is proportional to 1/R [42]. Any maximum of ωUH can therefore be taken to
be due to a maximum of ne along the propagation direction of an ECRH beam, and we are
hence led to investigate situations in which non-monotonic ne-profiles occur in tokamaks,
with the additional restriction that ω0 ≈ 2ωUH should be true near a local maximum.

As mentioned in Chapter 1, non-monotonic ne-profiles occur in connection with MHD
activity, such as ELMs and magnetic islands; PDIs during ELMs are investigated in Section
5.1 and PDIs during rotating magnetic islands are investigated in Section 5.2. Another
case where non-monotonic ne-profiles may lead to PDIs occurs during pellet fueling of the
plasma, which is considered in Section 5.3. Finally, a non-monotonic ne-profile is always
present around the plasma center, and PDIs in this region are treated in Section 5.4; such
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Figure 5.1 – nce at different Bt for a 140 GHz pump wave in ASDEX Upgrade (R0 = 1.65 m
and a = 0.5 m). The solid lines mark nce, the dashed vertical lines mark the second-harmonic
ECR, and the dotted vertical line marks the third-harmonic ECR for |Bt| = 1.8 T.

PDIs may also be relevant for other configurations with fixed non-monotonic ne-profiles,
e.g., the island divertors in Wendelstein 7-X [145].

In this Chapter, all gyrotrons are operated in X-mode at the standard heating frequency,
ω0 ≈ 2π × 140 GHz, used in ASDEX Upgrade. Investigating the condition ω0 = 2ωUH ,
which gives the minimum value of ne at a local maximum allowing trapping of daughter
waves with ω1 = ω2 = ω0/2 for a given B and Te = 0, nce, permits us to draw some rough
conclusions about the plasma scenarios where PDIs can be expected in connection with
different phenomena leading to non-monotonic ne-profiles. Taking B to be determined by
the externally generated toroidal field, B ≈ |Bt|R0/R, with Bt being the toroidal magnetic
field at the plasma center (R = R0), allows us to write

nce =
ε0me

e2

(
ω2

0

4
− ω2

ce

)
≈ ε0me

e2

(
ω2

0

4
− e2B2

tR
2
0

m2
eR

2

)
. (5.1)

Plots of nce for a 140 GHz pump wave in ASDEX Upgrade (R0 = 1.65 m and a = 0.5 m) at
the |Bt|-values of relevance in this work (1.8 T, 2.2 T, and 2.5 T), along with the second-
and third-harmonic ECRs, are seen in Fig. 5.1. As is clear from Eq. (5.1), a higher
|Bt| leads to a lower nce, and for B ≈ BtR0/R above that of the second-harmonic ECR,
ω0 = 2|ωce|, nce becomes negative, making it impossible to trap the daughter waves. At the
standard magnetic field of ASDEX Upgrade, |Bt| = 2.5 T, which leads to a central second-
harmonic ECR, the PDI can thus only be excited on the low-field side of the torus and
additionally requires ne < 2.5× 1019 m−3. While ne < 2.5× 1019 m−3 may be achieved in
the bulk of an L-mode plasma, the usual H-mode scenarios at ASDEX Upgrade will exceed
this value in the density pedestal, meaning that PDIs may occur in connection with ELMs,
but generally not during magnetic islands, at the standard |Bt|. When |Bt| is reduced to
2.2 T, the situation is qualitatively similar to that at 2.5 T; the second-harmonic ECR is
moved somewhat to the high-field side and nce is slightly larger, making it more feasible to
observe PDIs in connection with magnetic islands, particularly in L-mode plasmas. The
greatest possibility of PDIs occurring in the bulk plasma, e.g., during magnetic islands,
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during pellet injection, and near the plasma center, is, however, achieved at |Bt| = 1.8 T,
which is the lowest |Bt| permitting reliable 140 GHz X-mode ECRH at ASDEX Upgrade.
At this field, ECRH power is first absorbed at the third-harmonic ECR close to the plasma
center, while the second-harmonic ECR is located far on the high-field side and acts as a
beam dump for the power not absorbed at the third-harmonic ECR. If the third harmonic
ECR is optically thick, PDIs can only occur on the low-field side of the torus, but since
τ ∝ [Te/(mec

2)]2 for the third-harmonic X-mode ECR [62, 63], its absorption depends
strongly on Te and must be checked by ray/beam tracing (a rule of thumb is that the
third-harmonic ECR will be optically thick when Te > 2 keV at its location in ASDEX
Upgrade). Even at |Bt| = 1.8 ,T, daughter wave trapping requires ne < 4.25× 1019 m−3,
which usually requires H-mode discharges to be performed close to a boronization [47] or a
boron drop [48] with density pump out due to resonant magnetic perturbations [49] in order
to have wave trapping in the bulk plasma; such discharges are, for instance, performed to
study ELM suppression and the ITER baseline scenario at ASDEX Upgrade.

5.1 Parametric Decay Instabilities in Connection with Edge
Localized Modes

We now turn our attention to PDIs during ELMs, which, following the reasoning presented
above, are investigated in discharges with |Bt| = 2.5 T. As seen in Fig. 5.2 and expected
from Fig. 5.1, all discharges considered in this Section have central second-harmonic ECRs
and warm second-harmonic UHRs, obtained from Eq. (2.66) for 70 GHz waves, near the
plasma edge; in the discharges, B is determined using the CLISTE code [82], while ne and
Te are determined using IDA [76].

It is noted that PDIs during ELMs have already been observed through the occurrence of
side bands of the gyrotron lines at ASDEX Upgrade [21, 20] (some of the material presented
here is based on [20]), and that somewhat similar PDIs were investigated theoretically in
[112]. Additionally, there are several other mechanisms than PDIs that allow the generation
of strong microwave signals during ELMs. These include ECE from fast electrons in the
core due to reduction of the optical thickness of the plasma edge during ELMs [146, 147,
148, 149, 150] and ECE from fast electrons generated during the ELM crashes themselves
[147, 150, 151, 152, 153]. Such mechanisms can, however, not explain signals near the
gyrotron frequency when |Bt| = 2.5 T, as these frequencies correspond to cyclotron emission
from electrons near the plasma center which are virtually unaffected by ELMs. Strong
signals related to scattering of the ECRH beam by waves in the ICRH or LH frequency
range generated by fast ions might explain the strong signals near the ECRH frequency
by regular three-wave mixing, but can be excluded by the fact that the observed signal
depends nonlinearly on the ECRH power, as will be shown. We finally note that that the
fact that the signals below the ECRH frequency are consistently seen to be stronger than
those above the ECRH frequency is a general indication that the signals shown in this,
and subsequent, Sections may be attributed to PDIs. Apart from the evidence for the
PDI-origin of the signals near the ECRH frequency provided below, we also show that the
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Figure 5.2 – Plasma scenarios with spikes during ELMs in ASDEX Upgrade: #35676 (a),
#36583 (b), and #33616 (c). Green lines are the 140 GHz second-harmonic ECR, magenta
lines are gyrotron beams, and purple lines are the 70 GHz warm UHR. Pane (a) and (c)
appeared in [20].

PDIs generate microwave emissions near half the gyrotron frequency (70 GHz), as expected
theoretically [92].

Fig. 5.3 shows the slow (filter bank) CTS signal from a channel just below the ECRH
frequency along with the divertor current, where the spikes indicate the occurrence of
ELMs, in ASDEX Upgrade #35676 and #36583. The correlation of the microwave bursts
with the ELMs during the ELMy phase is very clear, but it is also evident that quasi-
continuous strong microwave signals occur before the start of the ELMy phase in both
#35676 and #36583. The fact that the strong signals are followed by a quiescent phase
before the start of the ELMy phase suggests that they are related to PDIs in the turbulent
structures present at the edge of L-mode discharges [16]. In #35676, the signal is seen
to develop in a continuous fashion, while the signal in #36583 is inherently bursty, even
before the start of the ELMs. This is due to the probe gyrotron being operated in a pulsed
mode, visible in pane (a) of Fig. 5.4, from 1.59 − 1.8 s in #36583, unlike the continuous
wave ECRH beam which is used as a probe in #35676 and later in #36583. The differences
in background (ECE) levels in Fig. 5.3 are due to a more central CTS view in #35676
compared with #36583, and the background level in #36583 is essentially the intrinsic
noise of the CTS channel. Pane (a) of Fig. 5.4 also shows that the signal in #36583
originates from the probe gyrotron beam near the plasma edge, which is viewed by the
CTS radiometer, as expected for PDI-generated signals. Strong microwave signals only
occur when the probe gyrotron is turned on, and the ECRH power is kept constant by
pulses from another gyrotron, which has no overlap with the CTS view, when the probe
gyrotron is off, eliminating the possibility of the different microwave signals being due to
differences in electron heating. The probe gyrotron pulses in #36583 additionally include
analog modulation, seen in the zoom in on pulse #1 in pane (b) of Fig. 5.4, allowing
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Figure 5.3 – Slow CTS signal at 139.55 GHz and divertor current versus time in ASDEX
Upgrade #35676 (a) and #36583 (b). A strong correlation is visible.

the dependence of the CTS signal on the probe gyrotron power, P0, to be investigated;
this is done in Fig. 5.5. The microwave signal depends nonlinearly on P0, both in the
pulses before the ELMy phase and during the ELMs themselves, as expected for PDIs.
For the pulses before the ELMy phase, the PDI gyrotron power threshold, inferred from
the P0-value where the CTS signal starts deviating from the background level, is seen to
increase from 200 − 250 kW in pulse #1 to 350 − 400 kW in pulse #4. This indicates a
strong dependence of the threshold on ne at the edge, which is increasing rapidly during
this phase. During the pulses where ELMs occur, a PDI gyrotron power threshold of
220 − 225 kW is observed in both cases, though the bursty nature of the signal in these
pulses makes it unclear if the actual threshold is lower.

As in the pre-ELM phase, the maximum CTS signal during ELMs, recorded in the periods
with constant P0 in #35676 (0.8−4.0 s) and #36583 (1.8−7.5 s), has a strong dependence
on ne at the pedestal top. This is shown in Fig. 5.6 by plotting the maximum CTS signal
during the ELMs versus ne at ρpol = 0.92, which is close to the pedestal top in all cases; the
unclear dependence in #36583 is due to the variation of ne being within the uncertainty of
the IDA profiles. Evidently, the strongest signals occur at low ne. In order to investigate
nature of the difference, we select two ELMs in #35676, one with low ne at 0.99 s and one
with high ne at 3.129 s; the ne and Te profiles at these time points are seen in panes (a)
and (b) of Fig. 5.7. Fig. 5.8 shows signals from the fast CTS system during the selected
ELMs, both the ones near 140 GHz, in panes (1a) and (1b), and the ones near 70 GHz, in
panes (2a) and (2b), along with the divertor current in panes (3a) and (3b); the signals in
#36583 are similar to those at low ne. In both panes (1a) and (1b) of Fig. 5.8, the ELM
crash is associated with the spikes extending from the low-frequency edge of the notch
filter to the lowest frequency covered by the radiometer. The quasi-continuous lines from
138.5− 139 GHz before and after the ELM crash in pane (1a) of Fig. 5.8 are likely related
to PDIs in the ne-structures set up by inter-ELM modes, which is consistent with their
character changing as a result of the ELM crash. At the higher ne in pane (1b) of Fig.
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Figure 5.4 – P0 pulses with analog modulations and CTS signal in ASDEX Upgrade
#36583. Pane (a) shows an overview of the pulses and the beginning of the continuous
wave phase after the pulses; pane (b) shows the signals during pulse #1.

Figure 5.5 – Plot of P0 versus the CTS signal at 139.55 GHz to determine P th
0 in ASDEX

Upgrade #36583. Pane (a) shows pulses before the start of the ELMy phase, while pane
(b) shows pulses in which ELM crashes occur.
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Figure 5.6 – Maximum CTS signal at 139.55 GHz during ELMs versus ne at the pedestal
top (ρpol = 0.92) in ASDEX Upgrade #35676 (a) and #36583 (b).

5.8, the quasi-continuous lines disappear, except for a small amount of activity just before
the ELM crash. The fast signals near 70 GHz are seen in panes (2a) and (2b) of Fig.
5.8. Since the LO frequency is 70.5 GHz, it is clear that strong microwave signals occur in
both cases around the time of the ELMs, as expected for PDIs near the second-harmonic
UHR [92], but we also note significant bursts just before the ELM crashes are observed
in the divertor currents; whether these are related to the ELM or its precursor is unclear
as of yet. Further, the setup used for detection of 70 GHz waves is still in a preliminary
state, since it does not permit signals up- and down-shifted with respect to the LO to be
distinguished and may also show interference with signals near 140 GHz, so the 70 GHz
signals have not been analyzed in detail.

In order to characterize the spikes near the ECRH frequency during ELMs, histograms of
their duration based on the observations from the fast CTS system throughout #35676
and #36583 are shown in Fig. 5.9. The histograms are constructed by integrating the
fast CTS data in the frequency range 139.25− 139.65 GHz, where the strong signals occur
during ELMs, smoothing the data, and extracting the duration of spikes with prominences
exceeding a set level to exclude non-PDI-related signals. The majority of the spikes last
2 − 5 µs and no spike lasts more than 12 µs; the mean duration in #36583 is somewhat
larger than in #35676 (4.6µs versus 3.1 µs), but the distributions are similar overall.
The spike duration distributions found in Fig. 5.9 is consistent with the passage time of
the ne-structures allowing trapping during an ELM crash through an ECRH beam. This
is demonstrated in Fig. 5.10, which shows the evolution of ne and the warm 70 GHz
UHR according to a JOREK simulation [154] of an ELM in ASDEX Upgrade [155]. The
simulated discharge is ASDEX Upgrade #33616 at 7.200 s, for which the plasma scenario
is seen in Fig. 5.2; #33616 is very similar to #36583 and also reasonably similar to the
early phase of #35676. In the snapshots shown in Fig. 5.10, the simulation time, t, runs
from 52.1 − 60.5 µs and during this time interval (8.4 µs), a region allowing trapping of
two 70 GHz UH plasmons, which is necessary for PDIs to generate microwave bursts,
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Figure 5.7 – IDA ne- and Te-profiles during ELMs in ASDEX Upgrade #35676. Pane (a)
is associated with the ELM at 0.990 s and has a low ne = 3.6 × 1019 m−3 at the pedestal
top (ρpol = 0.92); pane (b) is associated with the ELM at 3.129 s and has a high ne =
7.9× 1019 m−3 at the pedestal top.

passes through the lower set of beams. 8.4 µs thus represents an upper bound of the
burst duration which is similar to the experimental value of 12 µs. We can further use
the theory developed in Chapter 4 to estimate the ECRH power threshold which must be
exceeded to excite PDIs when the trapping region crosses the central rays of the beams;
the plasma and beam parameters used for these calculations are extracted along the lower
beams in Fig. 5.10 at t = 55.4 µs and shown in Fig. 5.11. Fig. 5.11 shows k±1x = |k±1x|
and k0 − k±2x = k0 + |k±1x|; the points at which these curves overlap satisfy the kx-selection
rule of the PDI. Convective losses along y dominate, and threshold values of 133 kW and
136 kW are found for the two beams following the steps in Subsection 4.3.1, if we set
Ly = 1 cm based on the size of the trapping region in the simulation (Lz =

√
π/8W and

W = 2.873 cm are also used here). Use of the estimates from [8] give significantly lower
thresholds, 891 W and 938 W, respectively [20], with the threshold due to diffraction losses
along z being higher than that due to convection losses along y, despite the domination of
the y-loss terms. The threshold values of 133−136 kW are similar to the experimentally
estimated threshold in #36583 (220−225 kW based on Fig. 5.5), providing further evidence
in favor of the second-harmonic UHR PDI theory of the microwave bursts. The lack of a
perfect agreement between theory and experiment is expected due to the highly simplified
theoretical model, the MHD nature of the ELM simulation, and the fact that the simulation
is of a different, albeit very similar, discharge.
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Figure 5.8 – ELM signals during an ELM at low ne and one at high ne in ASDEX Upgrade
#35676. Panes (a) are related to the ELM at low ne, while panes (b) are related to the
ELM at high ne. Panes (1a) and (1b) show the fast CTS signal near 140 GHz (the white
lines mark the edges of the notch filter around the ECRH frequencies); panes (2a) and (2b)
show the fast singals near 70 GHz; panes (3a) and (3b) show the divertor current. Pane
(1a) appeared in [20].
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Figure 5.9 – Histogram of the duration of the spikes from 139.25−139.65 GHz during
ELMs in ASDEX Upgrade #35676 (a) and #36583. In #35676, the mean duration is 3.1µs
and the standard deviation of the duration is 1.3µs; in #36583, the mean duration is 4.6µs
and the standard deviation of the duration is 1.8µs. A figure similar to pane (a) appeared
in [20].

Figure 5.10 – Evolution of ne and the warm 70 GHz UHR (purple line) in the JOREK
simulation of ASDEX Upgrade #33616. The solid magenta lines mark the gyrotron central
beam rays; the dashed lines mark the beam widths. This figure appeared with some minor
modifications in [20].
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Figure 5.11 – Plasma and wave parameters in the trapping regions of the lower beams at
t = 55.4µs in the JOREK simulation of ASDEX Upgrade #33616 (see Fig. 5.10). Pane
(a) shows the situation for the beam with a PDI threshold of 133 kW; pane (b) shows the
situation for the beam with a PDI threshold of 136 kW.

5.2 Parametric Decay Instabilities in Connection with Ro-
tating Magnetic Islands

We now consider PDIs during rotating magnetic islands. A magnetic island may possess
a local maximum of ne near its O-point, allowing trapping of the EBWs/X-mode waves
when ω0 ≈ 2ωUH is additionally satisfied at the island position. Rotating magnetic islands
with ω0 ≈ 2ωUH at the O-point are thus expected to give rise to PDI-generated microwave
bursts when the O-point crosses an ECRH beam, i.e., the bursts occur quasi-periodically
at rate determined by the island rotation frequency. Microwave bursts near ω0 with the
above phenomenology were first observed by the CTS system during second-harmonic X-
mode ECRH at TEXTOR [144, 156]. The explanation of these microwave bursts was what
originally prompted the development of the trapped-wave PDI theory described in Section
4.4 [8, 9, 10, 11, 12]. We note that PDIs during rotating magnetic islands with ω0 ≈ ωUH
may also occur for O-mode ECRH [157], although the experimental evidence related to
tokamaks is still inconclusive [158].

At TEXTOR, magnetic islands rotating with a frequency of 974 Hz could be triggered
through magnetic perturbations generated by the dynamic ergodic divertor [144, 156]. The
magnetic perturbation coils at ASDEX Upgrade are capable of generating slowly rotating
(0.5 Hz) magnetic islands in low-density L-mode discharges, but rather than pursuing
this route, our focus was on natural magnetic islands, e.g., occurring during neoclassical
tearing modes (NTMs), as these are the islands of potential concern in future devices such
as ITER. Despite several attempts, no reliable setup for generating such islands with strong
PDI signals was found, likely due to the several criteria, relying on quasi-random factors
such as NTM-generation, which needed to be satisfied simultaneously. Nevertheless, strong
PDI-like signals related to rotating magnetic islands were observed in several discharges,
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the plasma scenarios of which are seen in the top row of Fig. 5.12; we additionally show
plasma scenarios from two discharges for which no strong signals related to the islands were
observed, despite the island intersecting the second-harmonic UHR very close to the ECRH
beams, in the lower row of Fig. 5.12. Four of the discharges in Fig. 5.12 (#35939, #35527,
#35185, and #35355) were H-mode ELM suppression discharges with |Bt| = 1.8 T (third-
harmonic X-mode ECRH) and resonant magnetic perturbations, which brings ne to a range
where the 140 GHz second-harmonic UHR occurs in the bulk plasma, as expected from
Fig. 5.1. We note that the strong signals in #35939 and #35527 both occurred at times
with limited power absorption at the third-harmonic ECR (52 % and 12 %, respectively)
due to low Te, which left sufficient power in ECRH beams to drive PDIs at the island
locations on the high-field side. The remaining discharge in Fig. 5.12 (#35186) was a
limiter L-mode discharge with |Bt| = 2.2 T heated by a single gyrotron (second-harmonic
X-mode ECRH on the high-field side), designed to allow comparison between turbulence
measurements and simulations, but fortunately for us also very close to the scenarios in
which PDI-generated microwave bursts were observed at TEXTOR [144, 156]. In all cases,
the occurrence of a rotating magnetic island has been identified by quasi-periodic signals
in the soft X-ray, magnetic diagnostic, and ECE systems; the ρpol-locations of the islands
are determined using the ECE system [75]. As seen in Fig. 5.12, the warm 70 GHz UHR
is located close to the islands at the shown time points in all the discharges, and as we
shall see, strong microwave bursts with a PDI-origin occur at all the time points shown
in the top row of Fig. 5.12. In #35527, it appears that wave trapping may also occur
near the plasma center. However, the diagnostics used in the IDA reconstruction of ne
have essentially no coverage at the plasma center, so this should not attributed too much
significance; in spite of this, PDIs near the plasma center may account for strong microwave
signals at another point in #35527, as discussed in Section 5.4.

The strong microwave signals in #35939 were observed by the ECE system and are of
particular interest, as they lead to a permanent degradation of one of the ECE mixers. Both
the strong microwave signals and the mixer degradation are shown in Fig. 5.13. The strong
microwave signals occur near half the gyrotron frequency, as expected theoretically [92],
and have a repetition rate matching that of the rotating island (around 2 kHz), as identified
by the soft X-ray and magnetic diagnostics. ECE mixer degradation occurs after the second
microwave spike and leads to a permanent reduction of the radiation temperature measured
by the channels using the low-frequency ECE mixer by approximately 25 %, necessitating
a recalibration.

In #35186 and #35527, strong microwave signals near the gyrotron frequencies were ob-
served using the CTS system and their consequences were less dire. The fast CTS system
allowed the detailed behavior of the microwave signals near the gyrotron frequency during
island rotation to be identified, as seen in Figs. 5.14 and 5.15 (the fast 70 GHz system was
not operational at the time #35186 and #35527 were performed). In #35186 (Fig. 5.14),
the island rotates with a frequency around 1 kHz and during each rotation, lines chirping
down (and up) from the gyrotron frequency occur, followed by lines chirping back to the
gyrotron frequency; these signals resemble the ones observed at TEXTOR [144, 156]. In
#35527 (Fig. 5.15), the island rotation is faster, approximately 5 kHz, but the qualitative
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Figure 5.12 – Plasma scenarios with rotating magnetic islands near the warm 70 GHz
UHR in ASDEX Upgrade: (a) #35939, (b) #35186, (c) #35527, (d) #35185, (e) #35355.
In scenarios (a), (b), and (c), strong microwave bursts occur at a rate determined by the
island rotation frequency, while no such signals are observed in scenarios (d) and (e). Green
lines are ECR harmonics, orange lines indicate the ρpol-position of the island, magenta lines
are gyrotron beams, and purple lines are the 70 GHz warm UHR.
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Figure 5.13 – Degradation of ECE mixer during a rotating magnetic island in ASDEX
Upgrade #35939. Pane (a) shows the signal from a channel around 75.5 GHz; pane (b)
shows the signal from a channel around 87.9 GHz.

Figure 5.14 – Fast CTS signal near 140
GHz during a rotating magnetic island
in ASDEX Upgrade #35186. The white
lines mark the edges of the notch filter
around the gyrotron line. Spikes occur
with a repetition rate determined by the
mode frequency.

Figure 5.15 – Fast CTS signal near 140
GHz during a rotating magnetic island
in ASDEX Upgrade #35527. The white
lines mark the edges of the notch filter
around the gyrotron lines. Spikes occur
with a repetition rate determined by the
mode frequency.
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Figure 5.16 – Spectrogram of the CTS
channel from 139.0−139.1 GHz during
the rotating island in ASDEX Upgrade
#35186.

Figure 5.17 – Spectrogram of the CTS
channel from 139.4−139.5 GHz during
the rotating island in ASDEX Upgrade
#35527.

development of the gyrotron side bands during island rotation appears similar to #35186.
Using the slow CTS system, it is possible to track the development of the island rotation
frequency over a longer period of time. This may be done by creating spectrograms of the
signal from a channel affected by the periodic bursts associated with the rotation of the
island; for #35186 and #35527, such spectrograms are seen in Figs. 5.16 and 5.17, re-
spectively. Particularly, in #35186 it is possible to follow the island rotation and eventual
locking through the spikes in the slow CTS system, and the resulting spectrograms appear
very similar to the ones obtained from the soft X-ray and magnetic diagnostics (though
with different strength of the various harmonics), supporting that the signal is related to
the island rotation. The spectrogram for #35527 also matches up with soft X-ray and
magnetic diagnostics, but the much shorter duration of the island-related signals in this
discharge does not allow a thorough comparison.

While no detailed ne-profiles in the islands at ASDEX Upgrade during the microwave
bursts could be obtained due to the lack of a reliable setup, B, ne, and Te at the overlap
between the island and the ECRH beams from CLISTE and IDA could still be compared
with proximity to the 70 GHz warm UHR given by Eq. (2.66), which is necessary to allow
trapping with a relatively small ne-bump. As seen in Fig. 5.18, and also indicated in Fig.
5.12, all points at which the strong microwave signals are observed occur close to the warm
70 GHz UHR, as expected for PDI-generated bursts. It is, however, noted that islands
with parameters close to the warm 70 GHz UHR without strong microwave signals also
occur, as indicated by the purple dots from #35185 and #35355 in Fig. 5.18. We note that
the islands in #35185 and #35355 are present during a period of increasing ne, displacing
the second-harmonic UHR from inside to outside mode location at the intersection with
the ECRH beam, which evident from the existence of purple dots on both sides of the
T ce -surface in Fig. 5.18. This mean that a PDI signal related to these islands should have
occurred at some point if the ne-bumb around the island O-points were sufficiently large to
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Figure 5.18 – Observations of PDIs during rotating magnetic islands in ASDEX Upgrade.
The orange dots indicate plasma parameters at the intersection of the island center and a
central ECRH beam ray when island-related PDIs have been observed, purple dots indicate
the same parameters where no island-related PDIs were observed, and the surface marks
T c
e for 70 GHz UH waves (propagating 70 GHz UH waves exist below the surface).

allow trapping of 70 GHz daughter waves. Thus, the simple condition of having a rotating
island near the warm second-harmonic UHR appears to be necessary, but insufficient, for
the generation of strong PDI-related microwave bursts. In order to obtain a more solid
criterion, more detailed knowledge of the island ne-profiles, which can, for instance, be
obtained by properly timed Thomson scattering measurements [159], is required.

5.3 Parametric Decay Instabilities in Connection with Pellet
Injection

Another situation in which the non-monotonic ne-profiles required for trapped-wave PDIs
near the second-harmonic UHR may occur is when the plasma is fueled by pellet injec-
tion. The pellets consist of frozen hydrogen isotopes, deuterium in the ASDEX Upgrade
discharges discussed here, injected into and ablated by the plasma; pellet fueling is an
alternative to more convention gas fueling. In future devices, such as ITER, gas fueling is
predicted to provide poor penetration of the hydrogen isotopes to the plasma core which is
not an issue for pellet fueling [53]. Additionally, pellet fueling allows core plasma densities
well above the Greenwald limit to be obtained [52]. Both these factors make pellet fueling
the expected main fueling scheme of a magnetic confinement fusion reactor. Ordinarily,
pellet fueled discharges at ASDEX Upgrade have high densities, placing them outside the
region where PDIs near the second-harmonic UHR of the gyrotron radiation are expected.
However, by combining pellet fueling, magnetic perturbations, and a low magnetic field
(|Bt| = 1.8 T), it is possible to obtain profiles allowing such PDIs [54].

An example of the microwave signal recorded by the slow CTS system just below the
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Figure 5.19 – Slow CTS signal from
139.6−139.7 GHz and line-averaged edge
density versus time in ASDEX Upgrade
#35554. Pellets are injected from 3.0−3.5
s. A strong CTS signal is observed during
the edge density spike at 4.8 s.

Figure 5.20 – Thomson scattering
plasma scenario with PDIs during
edge density spike in ASDEX Upgrade
#35554. Green lines are ECR harmonics,
magenta lines are gyrotron beams, and
purple lines are the 70 GHz warm UHR.

gyrotron frequency in such a discharge, along with the line-averaged edge density from an
interferometer channel near the plasma edge, n̄e H-4, in an ASDEX Upgrade discharge of
this type (#35554) is seen in Fig. 5.19. In #35554, pellets are injected from 3.0−3.5 s,
where they are observed as spikes in n̄e H-4. The injection of the pellets is not associated
with any strong microwave signal, and while this may be attributed to the edge density
being too low in #35554, a similar discharge with an edge density scan by pellet injection
passing 4.25 × 1019 m−3 (#35866), where trapped-wave PDIs are expected according to
Fig. 5.1, also showed a lack of strong microwave signals in connection with pellet injection.
However, another n̄e H-4 spike, which is associated with a strong microwave signal, occurs
in #35554 around 4.8 s due to a locked mode.

The ne-profiles associated with this edge density spike do allow trapping of 70 GHz
EBWs/X-mode waves if only Thomson scattering is taken into account (the full IDA-
profiles are flatter and do not allow trapping), as seen in Figs. 5.20 and 5.21. The PDI
threshold, P th

0 , determined by the theory of Section 4.3, is again dominated by losses along
the y-direction. With Ly = Lz =

√
π/8W and W = 2.64 cm, it becomes 250 kW for the

plasma and wave parameters shown in Fig. 5.21. It is possible to determine P th
0 for the

Thomson scattering equilibria allowing trapping around 4.8 s in #35554; the resulting time
trace is shown in Fig. 5.22. Clearly, P th

0 has a large spread, with the main determining
factor being the size of the amplification regions compared with the trapping region; the
threshold is, however, consistently below P0 from 4.813−4.817 s, indicating that PDIs may
occur at some time points. The accuracy of P th

0 is clearly limited by the spatial resolution
of the Thomson scattering data, as is evident from the almost piece-wise linear behavior
of the wave numbers in Fig. 5.21. There is also the issue of interpolation in time between
the actual Thomson scattering measurements in Fig. 5.22, which is further corroborated
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Figure 5.21 – Plasma and wave param-
eters in the trapping region of the lower
beam at 4.814 s for the Thomson scat-
tering equilibrium in ASDEX Upgrade
#35554. A power threshold of 250 kW
is obtained for the shown parameters.

Figure 5.22 – P th
0 during the edge den-

sity spike in ASDEX Upgrade #35554.
Large fluctuations are observed, but from
4.813 − 4.817 s, thresholds below P0,
marked by the dashed black line, are
found consistently.

by the fact that the predicted times with low thresholds do no line up with the microwave
bursts in the CTS system. Fig. 5.22 is, nevertheless, qualitatively correct, and the above
analysis illustrates the possible applications of the theory from Section 4.3.

Overall, it thus seems that PDIs can occur in the ECRH beams during edge density spikes,
but that they do not occur during pellet injection at ASDEX Upgrade. The most likely
explanation for this is that the ECRH system is switched off for a short period (∼ 1 ms)
around the injection of a pellet in order to avoid the possibility of encountering a cutoff
during the initial density spike. While wave trapping requires a far smaller density spike
than what is necessary to reach the X-mode cutoff, it appears that the safety precautions
implemented to avoid the cutoff are also sufficient to avoid PDIs during pellet injection at
ASDEX Upgrade.

5.4 Parametric Decay Instabilities near the Plasma Center

The final case of PDIs near the second-harmonic UHR considered in this work involves
daughter waves trapped in the non-monotonic ne-profile near the plasma center. Such
PDIs were used to provide an explanation of strong microwave signals near the gyrotron
frequency observed using CTS at low ne in TEXTOR [156]. They have additionally been
observed in low-temperature plasma filaments [160, 94], and recent studies of such systems
further indicate that they occur for O-mode radiation with ω0 ≈ ωUH at the plasma center
[161], making them potentially relevant for ITER.

As seen in pane (c) of Fig. 5.12, the ne-profile in #35527 may allow trapping of 70 GHz
EBWs/X-mode waves near the plasma center. While this does not appear to be the case at
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Figure 5.23 – Fast CTS signal near 140
GHz during central PDI in ASDEX Up-
grade #35527. The white lines mark the
edges of the notch filter around the gy-
rotron lines.

Figure 5.24 – Plasma scenario with cen-
tral PDIs in ASDEX Upgrade #36149.
Green lines are ECR harmonics, magenta
lines are gyrotron beams, and purple lines
are the 70 GHz warm UHR.

the time point shown in Section 5.2, it is consistent with the spectrum observed near the
gyrotron frequencies by the fast CTS system at an earlier time point, shown in Fig. 5.23.
As for the point with island-related PDIs in #35527, the plasma has degraded confinement
at the time points shown in Fig. 5.23, meaning that only around 14 % of the ECRH power
is absorbed at the third-harmonic ECR for each of the beams, leaving sufficient power to
drive PDIs near the plasma center. Unlike the case with island-related PDIs, the signal
in Fig. 5.23 is quasi-continuous, as expected for a signal generated by PDIs in the quasi-
permanent cavity around the plasma center.

Another discharge with PDIs near the plasma center is identified by ECE mixer degradation
in ASDEX Upgrade #36149. This ITER-baseline plasma scenario is seen in Fig. 5.24, from
which it is clear that the second-harmonic UHR is located very close to the plasma center.
The plasma confinement is not significantly degraded at the time of the strong microwave
signals near half the gyrotron frequency, seen in pane (a) of Fig. 5.25, meaning that
approximately 73 % of the ECRH power is absorbed before reaching the plasma center.
However, since the gyrotrons are operated at high power in the discharges, this still leaves
around 200 kW from each of the beams to drive PDIs. The strong microwave signals in
Fig. 5.25 have a quasi-continuous structure with intermittent quiescent phases, matching
what is expected if the second-harmonic UHR fluctuates around the plasma center. The
strong microwave signals lead to a permanent ECE radiation temperature reduction of
approximately 45 % for the channels covered by the low-frequency mixer, necessitating a
recalibration.
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Figure 5.25 – Degradation of ECE mixer during central PDI in ASDEX Upgrade #36149.
Pane (a) shows the signal from a channel around 75.5 GHz; pane (b) shows the signal from
a channel around 87.9 GHz.

93



Chapter 6

Parametric Decay Instabilities near
the Upper Hybrid Resonance

With the PDI of trapped waves for a pump wave near the second-harmonic UHR consid-
ered, we now return to the more classical case of PDIs in which the pump wave is itself close
to the UHR. As was noted in Chapter 2, the UHR is a resonance for cold X-mode waves,
and such waves therefore undergo strong field enhancement near the UHR. A relatively
simple model of this field enhancement, based on the uniform approximation, was pre-
sented in Section 3.3 and found to be in qualitative agreement with a numerical 1D model
of the enhancement of cold X-mode waves near the UHR, which is utilized in the present
Chapter. While the field enhancement of X-mode waves near the UHR means that the PDI
threshold can be exceeded for relatively low beam powers (∼ 10 kW in ASDEX Upgrade),
the UHR is not directly accessible to X-mode radiation launched from the low-field side of
the torus, since such radiation will encounter the R-cutoff before reaching the UHR (see
Fig. 2.1). If the evanescence region between the R-cutoff and the UHR is small, it is
possible for the X-mode radiation to tunnel through it and reach the UHR [129]. However,
in medium-sized and large tokamaks, the evanescence region is too broad for tunneling
to be effective. In order for X-mode radiation to reach the UHR and drive PDIs, it is
thus necessary to either launch X-mode radiation from the high-field side [162, 163, 164] or
inject O-mode radiation from the low-field side which is subsequently converted to X-mode
radiation [165, 164, 166, 167, 168, 169, 170, 109, 15, 13, 19, 14]. When X-mode radiation is
launched from the high-field side, it must pass through the ECR before reaching the UHR
(see Fig. 2.1), imposing the additional constraint that the ECR should not be optically
thick for the X-mode radiation if PDIs are to occur, which was the case in the relatively
small tokamaks where such experiments have been performed [162, 163, 164]. Two main
schemes for converting O-mode radiation to X-mode radiation capable of reaching the UHR
exist: reflection from the high-field side vessel wall (or a polarizing mirror on the high-field
side vessel wall) and O-X-B heating.

O-X-B heating is a scheme for heating overdense plasmas (ωpe > |ωce| at the plasma center),
which are particularly prevalent in stellarators and spherical tokamaks. It involves injecting
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O-mode radiation at a particular angle, such that the maximal fraction of the injected
radiation is converted to X-mode upon reflection from the O-mode cutoff (ω0 = ωpe). The
reflected X-mode radiation then reaches the UHR without passing the ECR, resulting in
PDIs [166, 167, 168], although the bulk of the X-mode power is converted linearly to EBWs,
which are not limited by the electromagnetic cutoffs, allowing them to be absorbed at the
ECR or one of its harmonics.

The ASDEX Upgrade plasmas considered in this work are underdense, so no O-X-B heating
has been performed to study PDIs at the UHR. The standard 105 GHz O-mode CTS
scenario does, however, operate with the ECR far on the high-field side (and none of its
harmonics in the plasma) to minimize the ECE background. This allows a significant
fraction of the injected O-mode radiation to reach the high-field side wall, where it is
reflected and partially converted to X-mode. If a significant fraction of the reflected X-
mode radiation is transmitted by the ECR, the X-mode power reaching the UHR can be
sufficient to drive PDIs [15, 18, 13, 19, 14]. The above mechanism is responsible for the
generation of strong signals hampering CTS at ASDEX Upgrade and is hence studied in
detail in the present Chapter. We note that a similar mechanism may be responsible for
hampering CTS at the LHD stellarator [170], and that PDIs at the UHR for reflected
ECRH radiation were observed at the Wendelstein VII-A stellarator [165] and the TCA
tokamak [164]. Before discussing the specific PDIs of interest in this Chapter, we also note
that (oblique) O-mode radiation may itself drive PDIs at the UHR in the presence of a
non-monotonic density profile allowing trapping of an EBW/X-mode wave pair [157]. Such
PDIs have recently been observed to cause anomalous absorption of 20 % of the injected
O-mode ECRH power in a low-temperature plasma filament [161]. Since such PDIs occur
during O-mode ECRH at the fundamental ECR, they could potentially have a significant
impact on the ECRH performance during NTMs at ITER; present experiments at the FTU
tokamak have, however, yielded few conclusive results regarding this concern [158].

The primary PDI at the UHR is expected to be decay of the X-mode pump wave to an
EBW and a (low-frequency) LH wave based on theoretical considerations [137, 171, 143,
138, 18, 13]. This is in agreement with the experimental evidence [162, 165, 163, 164, 166,
167, 168, 170, 15, 18, 13, 14] and numerical simulations [172, 173, 174, 17]. The threshold
of the primary PDI expected theoretically [13] is further found to be in agreement with the
experimental threshold obtained by analog modulation of the gyrotron power at ASDEX
Upgrade [14], and recent particle-in-cell simulations of a plasma with parameters similar to
those of an ASDEX Upgrade plasma [17] are also found to yield a primary PDI threshold
in agreement with [13]. Secondary PDIs occurring near the UHR at ASDEX Upgrade
are indicated to be decay of the primary daughter EBWs to secondary daughter EBWs
and second-order IBWs based on the gyrotron modulation experiments [14], which further
indicate a tertiary PDI in the form of decay of the X-mode pump wave to EBWs and
arbitrary-order IBWs.

Since the results described above have been presented in detail in [13, 14] as a part of the
present PhD project and are based on a somewhat different PDI framework than the one
presented in this work, we include [13, 14] in their entirety below. As indicated by the above
discussion, [13] mainly deals with the theoretical background and a preliminary experiment
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(#28286) at ASDEX Upgrade, while [14] demonstrates the experimental validity of the
theoretical thresholds and the occurrence of secondary and tertiary PDIs in an ASDEX
Upgrade discharge (#34575) with a sweep of Bt and analog modulation of the gyrotron
power.
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Abstract
In this paper we investigate parametric decay of an electromagnetic pump wave into two
electrostatic daughter waves, particularly an X-mode pump wave decaying into a warm upper
hybrid wave (a limit of an electron Bernstein wave) and a warm lower hybrid wave. We describe
the general theory of the above parametric decay instability (PDI), unifying earlier treatments,
and show that it may occur in underdense and weakly overdense plasmas. The PDI theory is used
to explain anomalous sidebands observed in collective Thomson scattering (CTS) spectra at the
ASDEX Upgrade tokamak. The theory may also account for similar observations during CTS
experiments in stellarators, as well as in some 1st harmonic electron cyclotron resonance and
O-X-B heating experiments.

Keywords: PDI, UHR, UH, LH, CTS, ECRH, electron Bernstein wave

(Some figures may appear in colour only in the online journal)

1. Introduction

A parametric decay instability (PDI) is the result of three-
wave interactions by which an incident (pump) wave decays
to two daughter waves. PDIs may occur in some media
under the influence of pump radiation with sufficiently high
energy density, e.g. in plasmas heated/diagnosed by gyrotron
radiation. Energy and momentum conservation in the three-
wave processes impose the selection rules that the sum of the
daughter wave frequencies and wave vectors should be that of
the pump wave, resulting in frequency-shifted radiation which
interferes with millimetre-wave diagnostics such as electron
cyclotron (EC) emission and collective Thomson scattering
(CTS). This is of particular concern in future fusion reactors
which cannot be easily diagnosed by other means. In this
work we focus on parametric decay of an electromagnetic
pump wave into two electrostatic daughter waves, specifically
the case of an X-mode pump wave decaying into a warm
upper hybrid (UH) wave (a limiting form of an electron
Bernstein wave) and a warm lower hybrid (LH) wave near the

upper hybrid resonance (UHR) of the pump wave. We gen-
eralise the results of [1–3] and discuss their relation to other
treatments [4, 5]. The main motivation is observations of
strong PDI-like sidebands during CTS experiments at the
ASDEX Upgrade tokamak [6] and the LHD stellarator [7, 8].

Early PDI theory for unmagnetised and magnetised
plasmas was pioneered by [9, 10] and extended to include
collisional effects, which usually determine the PDI threshold
in homogeneous plasmas, by [11]. Piliya and Rosenbluth
separately showed that the PDI threshold could be sig-
nificantly higher for an inhomogeneous plasma due to con-
vective losses of the daughter waves from the region where
the PDI selection rules are satisfied [12–14]. The above
results indicate that PDIs are only likely to occur near reso-
nances, e.g. the UHR, and cut-offs of the pump radiation at
the gyrotron powers available in typical experiments, due to
field enhancement effects in these regions [15]. An important
exception to this rule, which has received some attention
recently, occurs in regions of non-monotonic plasma profiles
where the daughter waves may become trapped, reducing the

Plasma Physics and Controlled Fusion

Plasma Phys. Control. Fusion 59 (2017) 105006 (21pp) https://doi.org/10.1088/1361-6587/aa7978

0741-3335/17/105006+21$33.00 © 2017 Max-Planck-Institut fur Plasmaphysik Printed in the UK1



PDI threshold to a level closer to that of a homogeneous
plasma [16]; the backscattering instability is another example
of this type [17].

PDIs near the UHR have been studied theoretically by a
number of authors. The first work on direct parametric decay of
an electromagnetic pump wave into warm UH waves and LH
waves was [4], which found the growth rate of this PDI in the
limit of long daughter wave wavelengths relative to the ion
Larmor radius, a condition rarely satisfied in magnetically
confined fusion plasmas. Direct parametric decay of an
electromagnetic pump wave into a warm UH wave and a
strongly damped low-frequency electrostatic quasi-mode,
which is particularly relevant in tokamaks, was first considered
by Ott, Hui and Chu [18] who concluded that it would be
unlikely to occur for gyrotron radiation. However, their treat-
ment neglected field enhancement effects and used a non-
standard parametric dispersion relation. Using the standard
parametric dispersion relation, and accounting roughly for field
enhancement near the UHR, Porkolab [2] showed that the PDI
in which an X-mode pump wave decays into a warm UH wave
and an LH quasi-mode could occur during 1st harmonic
X-mode EC resonance heating (ECRH) on the Versator II
tokamak, as later confirmed experimentally [3]. The theoretical
part of the present paper mainly deals with generalising the
results from [1–3]. Further theoretical work on direct para-
metric decay of electromagnetic pump waves to electrostatic
daughter waves near the UHR is presented in [5, 19, 20]. Other
theoretical papers focus on parametric decay of warm UH
waves, generated by linear mode conversion, into other warm
UH waves and electrostatic low-frequency waves [17, 21] or
into electromagnetic high-frequency waves and electrostatic
low-frequency (LH) waves [22, 23]. Many of the theoretical
results have been reproduced in numerical simulations [24–27].

A PDI at the UHR was first observed in mercury vapour
tube discharges through the excitation of LH oscillations by
sufficiently strong microwave radiation [28]. Similar obser-
vations were reported for linear hot-cathode helium dis-
charges [29] and the FM-I spherator [30]. This type of PDI
was also observed in connection with 1st harmonic ECRH of
optically thin plasmas in the Versator II, FT-1 and TCA
tokamaks [3, 31, 32], as well as in the Wendelstein 7-A
stellarator [33, 34]. These results were reviewed by [35, 36].
In ionospheric modification experiments, the presence of a so-
called down-shifted maximum feature in the stimulated
electromagnetic emission spectra has been attributed to a
related PDI [23]. PDIs near the UHR involving LH daughter
waves have additionally been used to confirm the occurrence
of O-X-B heating in overdense plasmas of the Wendelstein
7-AS stellarator [37, 38] and the MAST spherical toka-
mak [39].

This paper is arranged as follows. In section 2, we review
the general theory of PDIs for electromagnetic pump waves
decaying into electrostatic daughter waves in a homogeneous
plasma and its generalisation to weakly inhomogeneous
plasmas, providing a unified treatment and re-examining the
existing literature. In section 3, we specialise to PDIs near the
UHR, investigating the conditions under which these may
occur and generalising the theories of parametric decay into

warm UH and warm LH waves of [1–3]. Finally, we inves-
tigate the above PDI in ASDEX Upgrade and compare the
theoretical predictions with experimentally observed CTS
spectra in section 4.

2. PDI theory

In this section we present the basic theory of parametric decay
of an electromagnetic pump wave to electrostatic daughter
waves in a magnetised plasma. Apart from allowing us to
introduce the concepts needed when discussing PDIs near the
UHR, this is motivated by the existence of large number of
different, not always consistent, treatments in the literature,
e.g. [4, 5, 10, 11, 18–20, 35, 40], which seem to warrant some
discussion and clarification. Our treatment follows that of [1]
quite closely.

The main parametric three-wave processes are decay of
the pump wave into two daughter waves and scattering of the
pump wave by one of the daughter waves, as illustrated in
figure 1; PDIs are associated with the decay process, but in
order to interpret PDI spectra, and to have a complete theory,
it is necessary to consider the scattering process as well.
Processes involving more than three waves may also occur,
but these represent higher-order effects. Energy and
momentum conservation in the three-wave processes impose
selection rules for the frequencies, ω, and wave vectors, k, of
the involved waves,

w w w
w w w

= - = -
= + = + ( )

k k k
k k k

, ,
, , 1

2 0 1 2 0 1

3 0 1 3 0 1

where subscript 0 refers to the pump wave, subscript 1 refers
to the low-frequency daughter wave, and subscripts 2 and 3
refer to the down- and up-shifted high-frequency daughter

Figure 1. Diagrams showing the most important parametric three-
wave processes; to the left, decay of the pump wave (w k,0 0) into a
low-frequency wave (w k,1 1) and a down-shifted high-frequency
wave (w w w= - = -k k k,2 0 1 2 0 1); to the right, scattering of the
pump wave by a low-frequency wave exciting an up-shifted high-
frequency wave (w w w= + = +k k k,3 0 1 3 0 1).
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waves, respectively. A PDI will generally only occur if the
selection rules can be satisfied by linear modes of the plasma,
as the pump power necessary for a PDI to occur under normal
circumstances increases with the damping rate of the daughter
waves; however, in some cases the low-frequency daughter
wave may be a heavily damped quasi-mode. The above
considerations lead to an idealised PDI frequency spectrum,
seen in figure 2, which is a hallmark of PDIs.

2.1. Motion of an electromagnetically driven plasma particle

To describe the PDI of interest we first consider the motion of
a single plasma particle with mass mσ and charge qσ, located
at position ( )tr and moving with a velocity =( ) ( )t t tv rd d at
time t. The particle is acted on by a steady homogeneous
magnetic field B and a plane electromagnetic pump wave with
an electric field w-[ ]· ( )ERe e t tk r

0
i 0 0 and a magnetic field

w-[ ]· ( )BRe e t tk r
0

i 0 0 . We assume the particle to be non-relati-
vistic and invoke the dipole approximation for the electro-
magnetic pump wave, »k 00 , which allows us to neglect the
effect of the wave magnetic field and to write the wave
electric field as w-( )ERe e ;t

0
i 0 the dipole approximation is

generally permissible due to the high phase velocity (long
wavelength) of the electromagnetic pump wave compared
with the electrostatic daughter waves, but may be relaxed if
necessary [19]. Taking the background magnetic field along
the z-axis, = BB ez, the equation of motion becomes

w= ´ +s
s

s

w-
⎛
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t
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v
v e
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where w =s s sq B mc is the cyclotron frequency (with sign)
of species σ. (2) is a set of inhomogeneous, linear, ordinary
differential equations, the general solution of which is a given
by a particular solution of the inhomogeneous problem and a
general solution of the homogeneous problem. The general
homogeneous solution is cyclotron motion of the particle in

a constant magnetic field, i.e. the characteristics used for
determining the linear response of a collisionless plasma.
PDIs originate from the particular inhomogeneous solution
which can be found by substituting the ansatz

=s s
w-( ) ( )tv vRe ep p

t
0

i 0 into (2), solving for svp0 , and inte-
grating once more with respect to t, looking for a solution of
the form =s s

w-( ) ( )tr rRe ep p
t

0
i 0 ,
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The free energy responsible for driving PDIs is the kinetic
energy associated with this motion. The complex displace-
ment vector, w=s sr vip p0 0 0, agrees with the one given in (3)
of [19] for electrons.

2.2. Kinetic theory of PDIs in homogeneous plasmas

The goal of this section is to derive the temporal PDI growth
rate, γ, for the case of small amplitude electrostatic daughter
waves in a homogeneous, charge neutral plasma. This pro-
blem has previously been considered by a number of authors,
e.g. in [4, 5, 10, 11, 18, 35, 40], and we shall point out when
our results agree/disagree with some this earlier work. PDIs
with electrostatic daughter waves are governed by the
Boltzmann–Poisson system with external fields = BB ez and
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where s ( )f tr v, , is the distribution function of species σ,

ò=s s( ) ( )n t f tr r v v, , , d
vall

is the number density of spe-
cies σ, f ( )tr, is the electrostatic potential associated with the
daughter waves, ¶ ¶s[ ( ) ]f t tr v, , col is the collision operator
of species σ, and 0 is the vacuum permittivity. Evidently, the
pump wave introduces an explicit dependence on t which
makes the above equations more complicated than the usual
Boltzmann–Poisson system in a magnetised plasma. How-
ever, by going into frames oscillating with the velocity
induced by the pump wave for each species σ, s( )tvp , inertial
forces will cancel the explicitly t-dependent pump term,

s s
w-[( ) ]q mERe e t

0
i 0 . In these frames the position is defined

as = - s( )tx r rp , the velocity is defined as = - s( )tu v vp ,
and the Boltzmann equation becomes

Figure 2. Idealised frequency power spectrum excited by a PDI.
Apart from the pump peak (w0), a low-frequency daughter peak (w1)
and high-frequency daughter peaks, one down-shifted (w2) and one
up-shifted (w3), occur. Peaks are generally observed when w1, w2 and
w3 coincide with linear modes.
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where =s s( ) ( )F t f tx u r v, , , , is the distribution function,
fF =s( ) ( )t tx r, , is the electrostatic potential associated

with the daughter waves, and ¶ ¶s[ ( ) ]F t tx u, , col

= ¶ ¶s[ ( ) ]f t tr v, , col is the collision operator, all in the frame
of species σ. This is a standard form of the Boltzmann
equation used in the kinetic description of electrostatic waves.
Since we are assuming the amplitude of the daughter waves to
be small and the unperturbed plasma to be homogeneous
and charge neutral, we can carry through an order 1 pertur-
bation analysis for electrostatic waves in which we take

= +s s s( ) ( ) ( )( ) ( )F t F F tx u u x u, , , ,0 1 , Fs( )tx, = Fs ( )( ) tx,1 ,
and neglect products of the perturbation terms with super-
script (1). The general result of this procedure is a local, linear
relation between the Fourier–Laplace transforms of the
perturbed number density ò=s s( ) ( )( ) ( )N t F tx x u u, , , d

u
1

all
1

and Fs( )tx, . Defining the Fourier–Laplace transform as
w˜( )g k, ò ò= w¥ -[ ( ) ]·g t tx x, e d dt

x
k x

all 0
i i , with k being a

real wave vector and ω being a complex frequency related to a
particular daughter wave mode, we may thus write

w c w w= - Fs s s s˜ ( ) ( ) ˜ ( ) ( )( )
q N kk k k, , , , 7

1
0

2

where c ws ( )k, is the linear susceptibility of species σ for the
mode characterised by w( )k, ; in writing this, we have set the
perturbations to zero at t=0. The temporal growth rate of
the PDI in a homogeneous plasma is given by the imaginary
part of ω, g w= ( )Im , and is the quantity in which we are
ultimately interested. c ws ( )k, is determined by s ( )( )F u0 and
¶ ¶s[ ( ) ]F t tx u, , col, which are considered to be a Maxwellian
distribution and a particle conserving Krook collision opera-
tor in this paper:
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where s
( )N 0 is the unperturbed number density of species σ,

=s s sv T m2T is the thermal velocity of species σ, with
temperature Tσ, and ns is a phenomenological collision fre-
quency of species σ, which we shall equate with the Coulomb
collision frequency of species σ, as is customary [41]. For the
above s ( )( )F u0 and ¶ ¶s[ ( ) ]F t tx u, , col, c ws ( )k, becomes
[11],
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with = +k̂ k kx y
2 2 2 being the wave number perpendicular to

B, w =s s s s( )( )q N mp
2 2 0

0 being the plasma frequency of

species σ, w=s s s( ∣ ∣)r v 2 cL T defining the Larmor radius of
species σ, In being the order n modified Bessel function of the
1st kind, and Z being the Fried–Conte plasma dispersion
function. In case of the ions we shall also employ c ws ( )k,
for an unmagnetised plasma with the same s ( )( )F u0 and
¶ ¶s[ ( ) ]F t tx u, , col [41],
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the justification for this is discussed in section 3.2.

The problem now is to express wFs˜ ( )k, , which is eval-
uated in a different frame for each species, in terms of the
potential in the lab frame. This may be done by using the
definition of the Fourier–Laplace transform to write,
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which reduces the problem to evaluating s· ( )e tk ri p and the
Fourier–Laplace integrals. Evaluation of s· ( )e tk ri p is facilitated
by noting that, from (3) and the fact that k is real,

w m w b= = -s s
w

s s
-· ( ) [ ( · ) ] ( )t tk r k vRe i e sinp p

t
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where ms and bs are the amplitude and phase angle
of ws·k vp0 0, respectively. Using a Fourier series identity,
we then find m= = åm w b
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w b- s( )e n ti 0 , where Jn is the order n Bessel function of the 1st
kind. With this, the Fourier–Laplace integrals of (11) may be
evaluated, and (7) written as
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By Fourier–Laplace transforming the Poisson equation with a
charge neutral unperturbed plasma, ¶ ¶( )r f¶ ¶·[ ( ) ]tr r,

= - ås s s( ) (( )q N r1 0
1 - s( ) )t tr ,p , we similarly find
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(12) and (13) constitute a set of linear equations describing the
coupling between various electrostatic Fourier–Laplace modes
due to the pump wave. These equations form a general basis
for the theory of PDIs with small amplitude electrostatic
daughter waves in a homogeneous plasma within the dipole
approximation. They were also derived or used as a starting
point by [11, 35, 40]; [11] generalised the result to inhomo-
geneous plasmas. m w=s s∣ · ∣k vp0 0 describes the coupling
strength between different Fourier–Laplace modes and is a
central quantity in PDI theory; inserting svp0 from (3),
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which shows the general proportionality to ws s∣ ∣ ( )q E k m0 0
2 , as

well as the dependence on polarisation of the pump wave, the
direction of k and w wsc 0, for the coupling between electrostatic
Fourier–Laplace modes at different frequencies in the presence of
the pump wave. bs in (12) and (13) does not have any particular
physical significance and may be changed by shifting point at
which t=0. It is clear from (12) and (13) that only modes
differing by integer multiples of w0 interact. This is a
manifestation of the frequency selection rule for parametric
processes; in particular, the three-wave interactions are related to
the = n 1 terms. No coupling between modes with different k
exists due to the dipole approximation, »k 00 . To recover the
selection rules of (1) from the above equations, we use the fact
that the requirement of real f ( )tr, and s ( )( )N tx,1 results in

* *f w f w= - -˜ ( ) ˜ ( )k k, , , * *w w= - -s s
˜ ( ) ˜ ( )( ) ( )N Nk k, ,1 1 and

* *c w c w= - -s s( ) ( )k k, , , allowing the signs of k and w( )Re
to be changed for any given mode.

Specialising (12) and (13) to the case of an electron
(s = e) and ion (s = i) plasma, when w w » 1ci 0 for any
ionic species, we find m m ( )m mO 1i e e i which allows
us assume a linear ion response, m » 0i , for moderate
values of me. With this, m d =( )Jn i n0, and (12) and (13)
become
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where e is the elementary charge, =Z q ei i is the charge
number of the ionic species i, and all ionic terms of (12) have
been summed. As the unknown quantities in the above

equations are w wå +˜ ( )( )Z N nk,i i i
1

0 , w w+˜ ( )( )N nk,e
1

0 and
f w w+˜ ( )nk, 0 , the addition of multiple ionic species does not
complicate the problem with a linear ion response, provided that
c w( )k,i e, may still be determined. Substituting (17) into (15)
and (16), and using Neumann’s addition theorem to simplify the
double sum in (16), m må å -=-¥
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These equations constitute the general basis for describing PDIs
with electrostatic daughter waves in electron–ion plasmas within
the dipole approximation when w w»ci 0. Similar equations
were derived by [4, 11, 40]; the expressions in [11] additionally
contain terms related to plasma inhomogeneities, and the double
sum in (11) of [40] vanishes by Neumann’s addition theorem.

In the limit of weak coupling, m  1e , (18) and (19) may
be solved by considering only the = ( )n 0, 1 -terms, giving
a general parametric dispersion relation found in [4, 35, 40];
[4] only considers the = -( )n 0, 1 -terms. However, since we
are interested in a gyrotron pump wave, which satisfies
w w w w~ ∣ ∣ ,ce pi ci0 , we can ignore the ion response at
frequencies comparable to w0, as was done by [10, 11].
Associating ω with the low-frequency daughter wave, we can
thus write w w w då + » å˜ ( ) ˜ ( )( ) ( )Z N n Z Nk k, ,i i i i i i n

1
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with which (19) becomes
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Plugging this into (18), remembering that m m- =-( ) ( )J Jn e n e

m( )Jn e
2 , we arrive at a dispersion relation describing PDIs for

pump waves of arbitrary amplitude in the EC frequency
range,
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also found in [10]. In the weak coupling limit, generally
relevant to gyrotron radiation (which has power levels
 1 MW) [42], the Bessel functions may be Taylor expanded
to order me
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remaining terms are negligible), yielding
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c w w c w+  = +[ ( )] [ ( )]k k1 , 1 1 ,e e0 c- +[ (k1 1 ,e

w w )]0 has been used to rewrite the terms in the bracket
on the right hand side. Introducing the dielectric function
 w c w c w= + å +( ) ( ) ( )k k k, 1 , ,i i e , noting that  w(k,
w c w w» + ) ( )k1 ,e0 0 , and neglecting the first term in the
bracket on the right hand side of (22), we arrive at the weak
coupling parametric dispersion relation,
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This form illustrates the coupling between the low-frequency
daughter wave, characterised by w w g= +( )k, i1 , the
down-shifted high-frequency daughter wave, characterised by

w w w g- = - +( )k, i0 2 , and the up-shifted high-frequency
daughter wave, characterised by w w w g+ = +( )k, i0 3 , due
to the finite amplitude of the pump wave (through me

2). The
coupling will be extremely small, and the low-frequency
daughter wave response almost linear ( w »( )k, 0), for the
usual case of m  1e , unless  w w »( )k, 00 . Thus, the
high-frequency modes should correspond (almost) to linear
plasma modes, which also justifies neglecting the first term in
the bracket on the right hand side of (22). If  w »( )k, 0
remains valid, a PDI (g > 0 in a homogeneous plasma) may
occur for m  1e , confirming the correctness of the simplified
picture in figure 2.

Parametric dispersion relations equivalent to (23) are
found in [20, 40]; note that the one given by [40] is derived

assuming an LH pump wave, and thus based on some rather
different assumptions. The parametric dispersion relation from
[19] agrees with (23) within the dipole approximation. The
general weak coupling parametric dispersion relation in (28a)
of [35] agrees with our (23) for c w w »( )k, 0i 0 and
c w w » -( )k, 1e 0 , as we have assumed. However, in
going from (28a) to (28b), [35] assumes c w ∣ ( )∣k,e i,
c w w∣ ( )∣k,e i, 0 , which causes c w c w+ ( ) ( )k k1 , ,e e in

its version of (23), generally reducing the validity of the sub-
sequent formulae to PDIs with low-frequency daughter waves
satisfying the quasi-neutrality condition c w ∣ ( )∣k, 1;e this is
particularly not satisfied by warm LH wave propagating nearly
perpendicularly to B, which is the case of interest in the present
paper. The parametric dispersion relation from [4] also agrees
with (23) for c w w »( )k, 0i 0 and c w w » -( )k, 1e 0 if
only the down-shifted high-frequency daughter wave is con-
sidered. Ott, Hui and Chu [18] derive their parametric
dispersion relation from rather different arguments about
the ponderomotive force acting on the electrons and the
related density perturbations experienced by the ions. The
final result does, however, resemble (23) if the substitu-
tions c w c w+ ( ) ( )k k1 , ,e e and c wå  +( )k, 1i i

c wå ( )k,i i are made; the variational approach of [5] appears
to produce the same result in the weak coupling and dipole
limit, as shown in section 3.2. The results of [5, 18] do not
agree with the previous ones, and thus a re-examination of
these and related expressions, e.g. the one in [43], may be of
interest. We note that all expressions agree for low-frequency
daughter waves satisfying the quasi-neutrality conditions
c w ∣ ( )∣k, 1i e, , but that (23) is preferable for pump waves in
the EC frequency range where this condition may not be
satisfied.

(23) does still not give γ explicitly and must in general be
solved numerically. However, by using the earlier results we
can obtain relatively simple expressions for the limiting cases
of most interest. We consider the down-shifted high-fre-
quency mode to be on resonance,  w g- + »( )k, i 02 , and
neglect the contribution of the up-shifted high-frequency
mode, which is permissible if the damping rates of the high-
frequency modes are small compared to w1. In this case we
can take  w- =[ ( )]kRe , 02 and expand  w g- +( )k, i2

around w-( )k, 2 , using * w w- = -( ) ( )k k, ,2 2 , to
find  w w-( )k, 0  w w» - ¶ - ¶ w w={ [ ( )] }∣ki Re , 2

g +[
wG -( )]k, 2 , where the linear damping rate of the down-

shifted high-frequency mode is w wG - = -( ) [ ( )]k k, Im ,2 2

 w w¶ - ¶ w w={ [ ( )] }∣kRe , 2
. Plugging the above results into

(23), and isolating g w+ G -( )k, 2 , gives

The above equations lead to two different expressions for γ

depending on the conditions satisfied by the low-frequency
mode. The two cases are known as resonant and non-resonant
PDIs, respectively. For resonant PDIs, the low-frequency mode
is also weakly damped, w wG ( )k,1 1 , and we can take
 w =[ ( )]kRe , 01 and expand  w g+( )k, i1 around w( )k, 1 to

find  w w w g w» ¶ ¶ + Gw w=( ) { [ ( )] }∣ [ ( )]k k k, i Re , , 11
,

with which (24) may be rewritten as

 

 

å

å å

g w
m c w c w

w w w

m c w c w c w c w

w w w

+ G - = -
+

¶ - ¶

=
+ +

¶ - ¶

w w

w w

=

=

⎪

⎪

⎪

⎪

⎧
⎨
⎩

⎫
⎬
⎭( ) ( )[ ( )]

( ){ [ ( )] }∣
( ) [ ( )] ∣ ( )∣ [ ( )]

∣ ( )∣ { [ ( )] }∣ ( )

k
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k k

k k k k

k k

,
4
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4

, Im , 1 , Im ,

, Re ,
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e i i e
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2
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where the order 0 expressions, c w c w»( ) [ ( )]k k, Re ,e e 1 and
c w c w»( ) [ ( )]k k, Re ,i i 1 , have been used in the numerator;
(25) is similar to (A2) from [4] for c w- »( )k, 0i 2 and
c w- » -( )k, 1e 2 . This quadratic equation for γ is easily
solved (showing only the possibly positive root),

and the PDI threshold (g > 0) in a homogeneous plasma may
be expressed as the condition

 

å
m

w w
c w c w

> -
-

+
[ ( )] [ ( )]

[ ( )]{ [ ( )]} ( )k k
k k

4 Im , Im ,

Re , 1 Re ,
. 27e

i i e

2 1 2

1 1

For non-resonant PDIs, the low-frequency mode is not
weakly damped ( w »( )k, 01 ), and the right hand side of
(24) may be approximated by its value at w w= 1 without the
assumption of small c w[ ( )]kIm ,e and c w[ ( )]kIm ,i ,

an equation similar to (28) is used as a starting point by [2].
(28) yields the homogeneous plasma PDI threshold,

It is seen that both the resonant and the non-resonant PDIs in
a homogeneous plasma need the pump wave amplitude
( mµ∣ ∣E e0 ) to exceed a certain threshold, principally deter-
mined by the daughter wave damping, in order to occur.
However, while the resonant PDI threshold increases with
both the low- and high-frequency daughter wave damping,
through  w[ ( )]kIm , 1 and  w-[ ( )]kIm , 2 , the non-resonant
PDI threshold increases with damping of the high-frequency
daughter wave, but does not occur without damping of the
low-frequency daughter wave. The above observations
point to an important difference between the resonant and

non-resonant PDIs. The resonant PDI can be seen as a pure
wave-wave interaction, in which the beating of one daughter
wave with the pump wave amplifies the other daughter wave
and vice versa [44]. This results in a fairly symmetric
treatment of the two daughter waves, which is generally

adequately described by fluid models. The non-resonant PDI
can rather be seen as a wave-particle interaction, in which
energy is transferred from the pump wave to the high-
frequency daughter wave through nonlinear Landau damping
of the low-frequency daughter wave [45]. This results in a
treatment of the high-frequency daughter wave which is
virtually independent of the low-frequency daughter wave
and generally requires a kinetic description.

2.3. PDIs in inhomogeneous plasmas

Although we have now derived thresholds for PDIs in homo-
geneous plasmas, these are generally far below the thresholds
observed in real inhomogeneous plasmas. The main reason for
this is that the k selection rule for the waves involved in a PDI is
only approximately satisfied in a small region through which a
significant amplification of the thermal background daughter
waves has to occur in order for the PDI to have measurable
consequences. Within the geometric optics approximation, we
may convert the temporal growth rate in a homogeneous medium

 
å

g w g w
m c w c w

w w w w
+ G + G - = -

+
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into a local spatial growth rate g w( )v k,g along the ray, where
 w w w w= ¶ ¶ ¶ ¶( ) ∣{ [ ( )] } { [ ( )] }∣v k k k k, Re , Re ,g is

the magnitude of the group velocity (the speed of energy trans-
port along the ray). From this, the power gain of the high-
frequency daughter waves in the case of non-resonant PDIs,

= ( )G P Pln out in , may be calculated as [18, 46],

ò
g w w

w
=

-
( ( ) ( ) )
( ( ) ( ) ) ( )G

s s

v s s
s

r k
r k

2 , , ,

, ,
d , 30

gray

1 2

2

where the integral is over a segment of the ray of the high-
frequency daughter wave for given initial conditions and s is a
parameter characterising length along the ray. Assuming that γ is
only significant in a small region around the point =s sr, at
which the selection rule is exactly satisfied for a particular low-
frequency quasi-mode, and that the ray only traverses this region
once, we can write

g w w
w

»
-

( ( ) ( ) ) ( )
( ( ) ( ) ) ( )G
s s ℓ s

v s s

r k
r k

2 , , ,

, ,
, 31r r r

g r r

1 2

2

with ( )ℓ sr being the length along the ray around sr with sig-
nificant γ. A threshold is obtained by requiring G to be suffi-
ciently large. For instance, [13] defines the threshold to be

p>G 2 , corresponding to >P P 535out in , which we shall also
use, keeping in mind that PDIs may be observable for slightly
lower values of G. Note that the threshold may be significantly
reduced if the amplification region is traversed several times by
the ray of the high-frequency daughter wave without significant
damping between the individual passes. This may happen if the
high-frequency daughter wave is trapped due to a non-monotonic
plasma profile around the amplification region [16] or in the case
of a backscattering instability [17]. However, g > 0 represents
the lowest possible threshold in all cases.

For the case of a resonant PDI in a plasma slab with
monotonically varying parameters along the x-direction and
daughter waves propagating along the x-direction, [12–14]
showed that, within the WKB approximation,

pg w w w w
w w

=
-

( ( ) ) ( )
( ( ) ) ( ( ) ) ( )G

x k x l x

v x k x v x k x

2 , , , , ,

, , , ,
. 32r x r r

g r x r g r x r

2
1 2

2
1 2

1 2

Here, =x xr is the x-value at which the selection rules are
exactly satisfied, w w w= ¶ ¶ =( ) ∣{[ ( ) ]∣l x k x x, , 1 ,r x x x

2
1 2 1 r

w- ¶ ¶ =[ ( ) ]∣ }∣k x x,x x x2 r
is the length scale over which the

kx(x)-selection rule is well satisfied, and we have retained the
dipole approximation, »( )k x 00 . This G is seen to be quite
similar to the one for non-resonant decay from (31); the main
difference is that the high-frequency and low-frequency
daughter waves enter G in a symmetric fashion, as expected for
the resonant PDI, and that ( )l xr , unlike ( )ℓ sr , is not arbitrary.
While the application of (32) to a realistic 3D plasma may not
provide the actual threshold, since it only addresses wave
propagation along a gradient with a constant direction, it
should still provide an order of magnitude estimate of the
resonant PDI threshold in a non-monotonic plasma. For the
non-resonant PDI, a similar estimate may be obtained by
only considering propagation along the x-direction and
setting w w»( ) ( )ℓ s l x , ,r r 1 2 , such that (31) becomes

g w w w w» ( ( ) ) ( )G x k x l x2 , , , , ,r r r1 2 1 2 w-( ( ) )v x k x, ,g r x r 2 .

3. PDIs near the UHR

So far, PDIs involving gyrotron radiation with w w~ ∣ ∣ce0

have been discussed in a rather general fashion; we now
specialise to the case of PDIs near the UHR. As is known
from the theory of cold electromagnetic plasma waves,
X-mode radiation has a principal resonance (  ¥k0 ,
or w ( )v k , 0g 0 0 , for ^k B0 ) at the UH frequency,
w w w= +ce peUH

2 2 2 , with a propagating X-mode only existing
on the side where w w<0 UH. Under normal circumstances,
X-mode radiation encountering the UHR is converted linearly
into an electron Bernstein/warm UH wave [38], the disper-
sion relation of which we derive below. However, PDIs are
also likely to occur near the UHR because ∣ ∣E0 (and hence me)
of the X-mode radiation becomes significantly enhanced
compared with its normal value for gyrotron radiation, due to
a low group velocity and full-wave effects [15] combined
with the fact that linear Landau and cyclotron damping
remains small, unless w w» ∣ ∣n ceUH for În [38]. In this
paper we focus on direct parametric decay of the X-mode
radiation into electrostatic daughter waves before the linear
mode conversion to warm UH waves takes place, as was done
by [1–5]; this requires propagating daughter waves to exist in
the region where w w<0 UH. For PDIs of the linearly con-
verted warm UH waves see [17, 21, 22].

This work is, as previously mentioned, primarily moti-
vated by the observation of strong anomalous scattering
during some CTS experiments at the ASDEX Upgrade tok-
amak [6]; observations resembling the ones from ASDEX
Upgrade have also been made during CTS experiments at the
LHD stellarator [7, 8]. The CTS spectral power density
obtained in one of these experiments (ASDEX Upgrade dis-
charge 28286) is seen in figure 3. The figure shows peaks
with frequency shifts of approximately 850MHz relative to
the gyrotron frequency (w p =( )2 104.93 GHz0 ) developing
at =t 2.100 s and becoming well separated from the strong
signal at small frequency shifts for t 2.500 s. The fre-
quency shift slightly exceeds the LH frequency of approxi-
mately 700MHz at the UHR of the gyrotron radiation in
the experiment (for reference, the plasma parameters are

» ´ -( )N 2.8 10 me
0 19 3, »T 300 eVe and »B 3.35 T at

this location), and the occurrence of the peaks is additionally
strongly correlated with a significant amount of power
reaching the UHR in X-mode. The latter point is illustrated in
figure 4 (the details of which are discussed below) through
traces of the CTS probe rays, done using a code based on
analytical approximations to the relativistic dispersion rela-
tion developed in [47, 48], at various times in the discharge:
virtually no X-mode radiation reaches the UHR in the main
plasma at the early time point, =t 1.300 s, while a smaller
fraction of the X-mode beam may reach it at the intermediate
time point, =t 2.100 s, and a significant fraction of the
X-mode beam will reach it at the late time points, t 2.500 s.
Note, however, that the traced CTS probe ray does not reach
the UHR in the main plasma before =t 2.900 s.

As seen in figure 4, the UHR is only accessible to
X-mode radiation launched from its high-field side in
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tokamak plasmas due to the location of the R cut-off. For CTS
applications, access to the entire plasma volume is desired, so
the 105 GHz gyrotron radiation is launched in O-mode from
the low-field side. Thus, in order for power to reach the UHR,
a reflection of the injected O-mode radiation from the high-
field side wall, in which the reflected radiation is at least
partially converted to X-mode, is necessary; a similar mech-
anism was invoked by [32] to explain generation of fast ions

during 1st harmonic O-mode ECRH, with a low-field side
launch, at the TCA tokamak.

To understand the trajectories of the rays in figure 4, as
well as the characteristics of the PDIs later on, we plot the
development of the ( )Ne

0 - and Te-profiles obtained from inte-
grated data analysis (IDA) [49] versus the normalised poloidal
flux coordinate, rpol (r = 0pol at the plasma centre and r = 1pol

at the last closed flux surface, magnetic equilibria are calculated

Figure 3. CTS spectral power density (in eV, as is customary [6]) around the gyrotron frequency w p =( )2 104.93 GHz0 , marked by the full
line, in ASDEX Upgrade discharge 28286. At the early time point, =t 1.300 s, no peaks are observed; at the intermediate time point,
=t 2.100 s, peaks with frequency shifts of approximately 850 MHz, marked by dashed lines, start developing; at late time points,
t 2.500 s, these peaks become well-separated from the signal at small frequency shifts.
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using the CLISTE code [50]), for = { }t 2.900, 3.300, 3.700 s
in figure 5. Evidently, ( )Ne

0 is peaked around the plasma centre,
resulting in the large refraction taking place here. However, the
central peaking of ( )Ne

0 is an extrapolation, as no measurements
of the plasma parameters for r < 0.2pol were possible in the
discharge. In order to address this issue, rays have also been
traced for flat central ( )Ne

0 - and Te-profiles, marked by dotted
lines in figure 5. These rays differ from the ones shown in
figure 4 by suffering virtually no refraction at the plasma centre,
but the PDI relevant conclusions, and the plasma parameters at
the UHR (encountered at r » 0.8pol ), remain the same; the only
difference is that the CTS probe ray encounters the UHR in the
main plasma for t 2.500 s with the flat profiles. To have a
rough estimate of the experimental uncertainty of the PDI
threshold and frequency shift, all subsequent calculations are

carried out for both the peaked and the flat profiles shown in
figure 5; analyses are only performed for t 2.900 s.

For PDIs to occur near the UHR by the mechanism
described above, a non-negligible fraction of the reflected
power,  , should be coupled into the main plasma in X-mode
and, additionally, absorption at the EC resonance (ECR) should
not be excessive. These points are also addressed by the ray
traces, since the evolution of the wave polarisation along the
O-mode and X-mode rays, as well as during the high-field side
wall reflection, determines , while the total optical thickness of
the O-mode and X-mode rays, t = -G, determines the fraction
of power transmitted through the ECR, t-e . The total power
reaching the UHR is approximately = t-P Pe 0, with P0
being the gyrotron power. Figure 6 shows  , t-e and  t-e for
the CTS probe rays reaching the UHR in the main plasma

Figure 4. Traces of the central rays of the 105 GHz O-mode radiation injected from the low-field side (blue line) and the 105 GHz X-mode
radiation reflected from the high-field side vessel wall (red line), projected into the (R, z)-plane of the cylindrical tokamak coordinate system,
in ASDEX Upgrade discharge 28286 at = { }t 1.300, 2.100, 2.500, 2.900, 3.300, 3.700 s . The green, purple, and orange lines indicate the
locations of the UHR, the ECR, and the R cut-off, respectively; no propagating X-mode exists in the shaded areas; the background contours
are closed magnetic flux surfaces indicating the position of the main plasma. At =t 1.300 s, virtually none of the reflected X-mode radiation
reaches the UHR, while part of the reflected X-mode radiation may reach it at =t 2.100 s. For t 2.500 s, most of the reflected X-mode
radiation reaches the UHR, although the traced central beam ray does not reach it in the main plasma before =t 2.900 s. These observations
are consistent with the 850 MHz shifted peaks in figure 3 being caused by a PDI occurring at the UHR. Rays have been traced using a code
based on analytical approximations to the relativistic dispersion relation developed in [47, 48]. The ( )Ne

0 - and Te-profiles have been generated
using IDA [49] and the magnetic ASDEX Upgrade equilibria obtained using the CLISTE code [50].
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( t 2.900 s).  is calculated as the square norm of the pro-
jection of the reflected ray polarisation vector along the X-mode
polarisation vector at the ECR or the last closed flux surface,
depending on which of these is encountered first; the high-field
side wall is treated as a locally plane, perfectly reflecting mirror.
As seen in figure 6,  » 0.1 in all cases where the CTS probe
ray reaches the UHR in the main plasma. τ is calculated using a
relativistic model and is found to have moderate values,

=t-( )min e 0.265, meaning that absorption at the ECR is non-
excessive in all cases. Accounting for both τ and  , the amount
of gyrotron power reaching the UHR in X-mode is

= »t-P P Pe 0.040 0, corresponding to »P 8 kW for the

nominal gyrotron power, =P 200 kW0 , in the experiment. This
power level is of an order of magnitude where PDIs may be
expected to occur near the UHR in a tokamak [3], allowing
them to account for the CTS spectrum in figure 3. We note that
both  and t-e are quite sensitive functions of the toroidal
gyrotron injection angle in the ASDEX Upgrade equilibria
considered: when the gyrotron radiation is injected poloidally,
virtually none of the reflected radiation is coupled to the plasma
in X-mode,  » 0, but the ECR is optically thin, ~t-e 1; as
the toroidal gyrotron injection angle increases,  grows while

t-e decays, and when the numerical value of the toroidal
gyrotron injection angle exceeds approximately 10°, the ECR
becomes optically thick, »t-e 0. The combination of these
effects results in  »t-( )max e 0.04 which coincides with the
toroidal gyrotron injection angle of approximately - 5 used
throughout the discharge. The above observations provide
simple experimental prescriptions for suppressing PDIs at the
UHR in 105 GHz O-mode CTS experiments at ASDEX
Upgrade. However, it is noted that PDI suppression by a
completely poloidal injection requires both the width of the
gyrotron beam and its angular divergence to be very small,
while PDI suppression by a large toroidal injection angle
requires B to be large enough for the ECR to occur between the
high-field side wall and the UHR, ideally inside the last closed
flux surface; the latter prescription has successfully suppressed
PDIs in 105 GHz O-mode CTS experiments at ASDEX
Upgrade [6].

3.1. Electrostatic daughter waves at the UHR

To study PDIs near the UHR we derive dispersion relations for
the electrostatic daughter waves likely to be involved in such
instabilities. First, we note that, when w w-∣( ( ) )nRe ce

>( )∣k v 2z eT (i.e. w w»( ) nRe ce, for all În ),
= ^ b k r 1e e

2
L
2 , ^ k k 1z

2 2 , and n w ( )Re 1e , the electron

Figure 5. Development of ( )Ne
0 and Te versus the normalised poloidal flux coordinate, rpol, in ASDEX Upgrade discharge 28286. The IDA

profiles are marked by full lines, while the dotted lines represent the flat central profiles used to estimate the uncertainty resulting from the
poorly diagnosed plasma centre.

Figure 6. Fraction of reflected power coupled to the plasma in
X-mode,  , fraction of power transmitted by the plasma, t-e , and
fraction of power reaching the UHR in X-mode,  t-e , versus t in
ASDEX Upgrade discharge 28286.
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c ws ( )k, in (9) may be approximated by [1]
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For the high-frequency daughter waves, the ion response is
negligible and the dispersion relation,  w- » +[ ( )]kRe , 12

c w- =[ ( )]kRe , 0e 2 , may be written as
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This is a cubic equation for w2
2 in terms of k and the plasma

parameters which can be solved using standard algebraic
techniques. However, for the cases of interest the terms
involving be and ^k kz

2 2 are small. Ignoring these, the order 0
dispersion relation becomes w w»2

2
UH
2 , i.e. the dispersion

relation gives a non-propagating oscillation at the UH fre-
quency. Expanding (34) to order 1 in be and ^k kz

2 2 around
w w=2 UH, we find
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The above dispersion relation describes the previously men-
tioned limiting form of electron Bernstein waves known as
warm UH waves, since w2 is close to wUH and depends on Te
through be, which are the principal high-frequency daughter
waves in PDIs near the UHR. It is similar to the dispersion
relation used by [1, 21, 22] to study PDIs near the UHR, and
reduces to the one used by [4] for kz = 0 and the one used by
[2] for w wpe ce

2 2 . The dispersion relation has a cut-off
(k = 0) at w w=2 UH, and propagating waves only exist for
w w<2 UH when w w< 3pe ce

2 2 , while they exist for w w>2 UH

when w w> 3pe ce
2 2 and kz = 0. Thus, we see that a PDI in which

the X-mode pump wave (with w w<0 UH) decays directly to
two electrostatic daughter waves, as we are considering, will
only be feasible when w w< 3pe ce

2 2 , limiting our theory to

underdense and weakly overdense plasmas (w w <∣ ∣ 3pe ce ),

which are found in conventional tokamaks, as well as many
stellarator experiments. When w w> 3pe ce

2 2 , as in spherical
tokamaks or most ionospheric studies, it is necessary to

consider PDIs for the linearly converted warm UH waves
themselves which requires consideration of the backscattering
type of instability [17]. The above dispersion relation is invalid
when w w» 3pe ce

2 2 , where the UHR coincides with the 2nd
harmonic ECR, w w w» » ∣ ∣2 ce2 UH , violating the assumptions
used for deriving (35); in fact, PDIs may be inhibited in a narrow
band around w w= ∣ ∣n ceUH for all În due to bandgap effects,
as observed in ionospheric modification experiments [23].

For reference we note that the group velocity of the warm
UH waves, given by w w w= ¶ ¶( ) [ ( ) ] ( )v k k k, 2g 2 2

2
2 , may

be found by exploiting the azimuthal symmetry of (35) in
k-space,
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where =^ ^ k̂e k . The relatively small value of w-( )v k,g 2 ,
especially for kz = 0, is important for reducing the PDI
threshold in inhomogeneous plasmas. Note also that, even
though ^ k k 1z

2 2 , w-( )v k,g 2 may have a significant
z-component for ¹k 0z . Finally, we calculate wG -( )k, 2

c w c w w» - ¶ - ¶ w w=[ ( )] { [ ( )] }∣k kIm , Re ,e e2 2
using the

lowest order approximation, c w¶ [ ( )]kRe ,e w ww¶ » 2 pe
2

w w-( )ce
2 2 2, from (33),
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the last approximation follows from the fact that w ( )k vz e2
2 2

T
2 is

generally a large quantity, making the first (Landau damping)
term extremely small and showing that warm UH waves are
mainly damped by collisions; Landau damping is included due
to its possible importance in damping the low-frequency
daughter waves discussed below.

There is a larger number of possible low-frequency
electrostatic daughter waves which may be excited by PDIs
near the UHR, since the bulk of the frequency shift necessary
to satisfy the selection rule is provided by the warm UH wave.
However, because the low-frequency daughter waves should
also be able to satisfy the k-selection rules, we confine our
attention to the cases where (33) is still a valid approximation
for c w( )k,e , taking the limit w w∣ ∣ ce

2 2 ,

Note that this expression imposes a very strict condition on the
smallness of ^k kz

2 2 (since generally w w ∣ ∣ 1pe
2 2 ) and that it

does not satisfy the low-frequency quasi-neutrality condition,
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c w ∣ ( )∣k, 1e 1 , which is assumed by [35]. In general,
c w( )k,i should be determined from an expression like (9),
but n n = ( )m mO 1i e e i [51], so we can ignore collisions
completely for the ions. It is, however, not possible to expand
c w( )k,i in = ^b r ki iL

2 2, as was done for c w( )k,e in be, since
= ( )r r m T Z m T 1i e i i i e eL

2
L
2 2 , which implies that  b bi e

1, not imposing any particular restriction on bi. One can assume
bi to be small, as was done by [4], but generally it is necessary to
evaluate (9), with n » 0i and ^ k k 1z

2 2 , including a large
number of terms from the sum over n due to the potentially large
value of bi, in order to obtain c w( )k,i . If this is combined with
c w( )k,e from (38), the dispersion relation for pure ion
Bernstein waves, which has a root between each integer value
of wci, is obtained. The present paper is mainly concerned with
high-order pure ion Bernstein waves, leading to frequency shifts
on the order of wpi (~ 1GHz in the ASDEX Upgrade main
plasma), where c w( )k,i may be evaluated in the limit
of w w( )Re ci and b 1;i remember that w w =pi ci

2 2

w w[ ( )]m Z mi i e pe ce
2 2 in a simple plasma, so w wci pi for

w w~ ∣ ∣pe ce . Here, the basic behaviour can be obtained by
considering the ions to be unmagnetised, since their trajectories
are essentially straight lines on the relevant temporal and spatial
scales (respectively, w w~ ~1 1 200 pspi1 and ~k̂ r1 eL

m~b 30 me near the UHR in the considered ASDEX
Upgrade discharge), although the details at integer values of
wci and interpretation of the Landau damping involve some
subtleties [51, 52]. For unmagnetised ions we may insert
c ws ( )k, from (10) with n »s 0, and find

c w
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where the first approximation follows from an asymptotic
expansion of Z, valid for w >( ) ( )kvRe 2eT [1], and the
second approximation follows from setting » ^k k , which is
permissible due to the requirement  w w^ k k 1z pi pe

2 2 2 2 ,
imposed by the use of c w( )k,e from (38) for w w~∣ ∣ pi. Note
that w w w~∣ ∣ce ci pi

2 for w w~ ∣ ∣pe ce , ensuring that the be-term in
(39) is indeed of order b 1e , unless w w ∣ ∣pe ce or
T Z Ti i e. We now obtain the dispersion relation of the

low-frequency daughter waves in a simple plasma,
 w c w c w= + + =[ ( )] [ ( )] [ ( )]k k kRe , 1 Re , Re , 0i e1 1 1 ,

by inserting c w( )k,e from (38) and c w( )k,i from (39),
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This quadratic equation for w1
2 in terms of be and ^k kz

2 2 can be
solved by the standard approach. However, just as for the high-
frequency daughter waves, we note that the be- and

^k kz
2 2-terms represent corrections, and that, ignoring these,

the order 0 solution is w w w w w» =ce pi1
2 2 2

UH
2

LH
2 , i.e. a non-

propagating oscillation at the LH frequency, wLH, which is a
resonance for cold electromagnetic plasma waves. Now,
expanding (40) to order 1 in be and ^k kz

2 2 around w w=1 LH,
also using the simple plasma identities w w = ( )m Z mpe pi i i e

2 2

and w w w w w=∣ ∣ce ci peLH
2

UH
2 2 , the dispersion relation of the

low-frequency daughter waves is found to be,
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which describes so-called warm LH waves. The above
dispersion relation was obtained in [1] and is similar to the
one used by [2] for w wpe ce

2 2 and the electrostatic version

given by [52] for w wpe ce
2 2 . Evidently, the warm LH waves

have a cut-off at w w=1 LH and propagating waves only exist
for w w>1 LH, meaning that the frequency shift of the high-
frequency daughter waves for PDIs with warm LH low-
frequency daughter waves should always exceed wLH. It is
also clear that the above dispersion relation requires

^ k k Z m m 1z i e i
2 2 , which is a strict requirement on the

smallness of ^k kz
2 2 indeed. Following [1–3], we shall employ

(41) when discussing both the resonant and the non-resonant
PDIs. However, in the non-resonant case the mode leading to
the largest γ, or the largest G, may deviate somewhat from the
one given by the above dispersion relation, as the underlying
assumption of  w w∣ [ ( )]∣ ∣ [ ( )]∣k kIm , Re ,1 1 is not gen-
erally satisfied here. This effect should not significantly change
the results of the following analysis, and we further note that
finding an unstable mode, even if it is not the most unstable
one, will still imply the existence of a PDI, thus giving an
upper bound of the PDI threshold. Nevertheless, a detailed
study of the dispersion relation in the non-resonant case, and its
consequences for the predicted w1, may be of some interest for
future work.

As was done for the warm UH waves, we compute the
group velocity, w w w= ¶ ¶( ) [ ( ) ] ( )v k k k, 2g 1 1

2
1 , of the warm

LH waves,
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Similar to w-( )v k,g 2 , w( )v k,g 1 is relatively small for kz = 0,
resulting in a low resonant PDI threshold in inhomogeneous
plasmas, but acquires a significant z-component for ¹k 0z , even
when ^ k k Z m mz i e i

2 2 . Note also that w( )v k,g 1 and -(v k,g

w )2 are parallel for kz = 0 and w w< 3pe ce
2 2 , making the back-

scattering instability impossible in this case. We finally calculate
 w w w wG = ¶ ¶ w w=( ) [ ( )] { [ ( )] }∣k k k, Im , Re ,1 1 1

, using
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that  w w c w w w w¶ ¶ » ¶ ¶ »[ ( )] [ ( )]k kRe , Re , 2i pi
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which shows that warm LH waves are subject to ion Landau
damping (first term), electron Landau damping (second term),
and electron collisional damping (third term).

3.2. Parametric decay into warm UH and warm LH waves

We now have all the ingredients necessary for studying PDIs in
which the X-mode pump wave decays into a warm UH wave
and a warm LH wave near the UHR. We restrict our attention
to cases with kz = 0 since a small, but finite, ^k kz

2 2 will rapidly
increase convective losses parallel to B without altering the
propagation perpendicular to B appreciably; a discussion
including finite kz within the dipole approximation is found in
[1]; if the dipole approximation is abandoned, at least one of
the daughter waves must have finite ~ -∣ ∣ ∣ ∣k k 3 cmz z0

1

( ^
-k k 10z

2 2 4) to satisfy the selection rules in the ASDEX
Upgrade discharge under consideration, but this should not
significantly alter the results of the following analysis in the
non-resonant case [2] or in the resonant case, if »k kz z0 for
the warm UH wave here. Our goal is first to evaluate be from
the selection rules, to determine the conditions under which the
PDI is resonant and non-resonant, and the limits of validity for
this analytical approach. In order to allow easier manipulation,
we rewrite (41) and (35) as w w w= + »A b1 e1 LH 1 LH

+( )A b1 2e1 and w w w= - A bpe e2
2

UH
2 2

2 , with w= {A 3 pe1
2

w w w+( ) [ ( )] }T Z T4 i i e peUH
2

UH
2 2 and w= -[A 1 1 pe2

2

w( )]3 ce
2 , respectively. Then, from the selection rules, w =2

2

w w w w w w w- » - - -( ) ( ) ( )A be0 1
2
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1 0 LH LH , and we
find

w w w
w w w w

w w w w
w w w

»
- -

- -
»

- +
-

( )
( )

( )
b

A A A A

2
,

44

e
pe pe

UH
2

0 LH
2

2
2

1 0 LH LH

UH
2

0
2

0 LH

2
2

1 0 LH

where the last approximation follows by neglecting the
wLH

2 -terms, since w w w , peLH 0 . Clearly, the assumption that
b 1e is only valid for w w»0

2
UH
2 , i.e. near the UHR of the

gyrotron, where (44) gives w w w= ( )b O 1;e pe0 LH
2 how-

ever, even here problems arise for w wpe ce
2 2 , as w w pe0

and  ( )A T Z Ti i e1 in this case. To quantify the limits of
validity of the above theory, as well as the conditions under
which the resonant and non-resonant PDIs occur, we calculate,
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since this parameter determines the relative importance of
the real and imaginary parts of the ion susceptibility,
c w w w z z» - - +( ) ( )[ ( ) ( )]Lk, 1 3 2 ii pi i i1

2
1
2 2 with z =( )L i

p z z-2 ei
3

i
2
, and the limit of the validity of this approximate

form through the requirement z > 2;i
2 the non-resonant PDI

occurs for z ~( )L 1i , while the resonant PDI occurs for
z ( )L 1i . A simple expression for z i

2 in terms of the plasma
parameters is obtained by setting w w»0 UH in (45),
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the last approximation follows from the identity w pe
2

w w w w=( ) ( ) ∣ ∣m Z mi i e pe ceUH LH and neglect of the first
term of w w= +{ ( )A 3 4pe1

2
UH
2 w w[ ( )] }T Z Ti i e peUH

2 2 in com-

parison with w w w( )A pe2
2

UH LH , while the second term of A1 is
kept due to its importance at small w w∣ ∣pe ce . A contour plot of
z( )L i and the line at which z = 2i

2 for a deuterium-like plasma,
= ´( )m Z m 3.67 10i i e

3, versus w w∣ ∣pe ce and Z T Ti e i is
seen in figure 7. From the figure, it is clear that the PDI will be
non-resonant for moderate values of w w∣ ∣pe ce and Z T Ti e i,
resonant for large values, and that the analytical approximation
breaks down for sufficiently small values. For t 2.900 s in
ASDEX Upgrade discharge 28286, the UHR is encountered at
w w »∣ ∣ 0.5pe ce by the CTS probe rays, and the plasma is
further modelled as a pure deuterium plasma (Zi = 1,

= ´m m 3.67 10i e
3) with Ti = Te, placing the expected PDI

in the non-resonant region of figure 7.
Now that the basic questions related to the selection rules

have been answered, we turn our attention to the problem of
determining γ and the PDI threshold conditions for the non-
resonant and resonant cases. Except when determining be and

Figure 7. Contour plot of z( )L i and the black line at which z = 2i
2

versus w w∣ ∣pe ce and Z T Ti e i, with zi
2 from (46) for a deuterium-like

plasma, = ´( )m Z m 3.67 10i i e
3. Areas where the PDI is

resonant and non-resonant are marked with text boxes. The
analytical approximation breaks down below the z = 2i

2 line. In the
experiment w w »∣ ∣ 0.5pe ce and »Z T T 1i e i , placing the PDI in the
non-resonant region.
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zi, the lowest order approximations (w w»1 LH and
w w»2 UH) are used and the be-terms neglected, resulting in
the following approximate expressions,
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where w w n w= ( )C 1e pe e
2
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LH . Note that  w∣ ( )∣k, 1 is
indeed small in the resonant case, z ( )L 1i , and non-neg-
ligible in the non-resonant case, z ~( )L 1i . An approximate
version of me

2 may also be obtained from (14) by noting that
the X-mode is a quasi-electrostatic cold UH wave, and thus
linearly polarised, near the UHR (w w»0 UH). From this it
follows that all components of E0 have the same phase, and
further taking = k̂k ex, we find
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which is similar to the me
2 given by [2]. (48) shows that me

2 is
generally a small quantity of order b 1e , as assumed when
deriving the parametric dispersion relation; exceptions occur
when w wpe ce

2 2 or when the pump wave energy density
~( ∣ ∣ )E0 0

2 is much larger than the thermal energy density
(~ ( )N Te e

0 ), and the weak coupling approximation breaks
down, at the UHR. The above expression is clearly max-
imised for = ^∣ ∣ ∣ ∣E Ex0 0 , i.e. µ^E k0 , giving us the follow-
ing me

2, useful for deriving the maximum γ,
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With (37), (47) and (49), we are now in a position to deter-
mine γ for the non-resonant PDI from (28),
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where z~ ( )C L1e i has been used in the last approx-
imation. From this we may easily determine the non-resonant
PDI threshold in a homogeneous plasma (g > 0),
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which is the generalisation of the expression given by [3] to
finite w w∣ ∣pe ce and z ¹( )L 1i obtained in [1] (the non-

resonant γ, which is the one of relevance, is approximately
-3 ns 1 near the UHR in the considered ASDEX Upgrade

discharge).
Noting that w z w w w nG » +( ) [ ( ) ( ) ]Lk, 2i pe e1 LH
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we can also determine γ for the resonant PDI from (26),
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and the corresponding resonant PDI threshold in a homo-
geneous plasma,


z w w n

w
>

+ +
^∣ ∣ [ ( ) ] ( ) ( )

( )
E

L C

b

N T4
, 53i e

e

ce e e e
0

2 UH
2 2

UH
3

0

0

which is very similar to that of the non-resonant PDI, but
since we are now in the region of z ( )L 1i , its value is
generally much smaller. For negligible damping, (52)
becomes


g w w» ^∣ ∣ ( )( )b
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N T
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4
, 54e

e e

0 0
2

0 UH LH

which is similar to the γ obtained by [4] for w wci pi, while
being w w peUH

2 2 times that reported by [5, 27] within the weak
coupling and dipole approximations, indicating that their
approach reproduces a parametric dispersion relation similar
to that of [18] here.

While the homogeneous PDI thresholds are of some
interest, the actual thresholds are generally determined by
inhomogeneities. For the resonant PDI well above the
homogeneous threshold we can ignore damping and use γ

from (54), while the magnitudes of the group velocities of the
daughter waves for ^k B become w w» ^( )v A b kk,g e1 1 LH

and w w w- » ^( ) ( )v A b kk,g e pe2 2
2

UH , such that (32) gives
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the threshold is determined by the condition p>G 2 , and all
quantities are to be evaluated at =x xr. Before an exact
threshold can be obtained from the above expression, we need
to determine
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where the last equality follows from = =^k k b rx e eL (for
= k̂k ex) and the fact that the selection rules are exactly

satisfied at =x xr . The x-derivatives of w =( )b x,e 1

w w w-[ ( )] [ ( ) ( )]x A x x1
2

LH
2

1 LH
2 and w w= -( ) [ ( )b x x,e 2 UH

2
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2 may be evaluated, neglecting terms
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and = ( ) [ ( ) ]L B x B x xd dB are the density and magnetic
field strength gradient scale lengths, respectively. Plugging
these expressions into (56), we find
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and thus the resonant PDI threshold in an inhomogeneous
plasma is
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For the non-resonant PDI well above the homogeneous
threshold, we may neglect collisional damping and
find g z w» ^{ [ ( )]}[ ∣ ∣ ( )]( )b L E N T8e i e e0 0

2 0
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UH still holds, such that (31)
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where the threshold is again determined by the condition
p>G 2 . This is the generalisation of the non-resonant inho-

mogeneous PDI thresholds given by [2, 3] obtained in [1].
By setting »ℓ l, we obtain an explicit expression for the

non-resonant PDI threshold in an inhomogeneous plasma,
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Now that theoretical electric field PDI thresholds for decay of
the cold X-mode pump wave into warm UH and LH daughter
waves have been determined for both the resonant and non-
resonant cases, we may determine the gyrotron power threshold
near the UHR in the ASDEX Upgrade discharge considered
earlier.

4. Investigation of PDIs near the UHR in ASDEX
Upgrade

4.1. Field enhancement near the UHR

The main problem in going from the electric field thresholds
to gyrotron power thresholds is to connect ∣ ∣E0 to P0 for
various gyrotron settings at various points in the plasma.
Away from the UHR, this may be done relatively simply if we
assume the beam to have a narrow Gaussian profile around
the CTS probe ray. With this assumption, we can evaluate all
wave propagation related quantities on the CTS probe ray,
and E0 may be written as,

r w= r-( ) ∣ ( )∣ ( ( ) ( ) ) ( )( )s E s s sE e r k, 0, e , , , 62W s
0 0 0 0 0

2 2

where ρ is the shortest distance to the CTS probe ray, occurring
at the point s along the CTS probe ray, while W(s) and

w( ( ) ( ) )s se r k, ,0 0 define the beam width and the geometric
optics (X-mode) unit polarisation vector at the point on the CTS
probe ray characterised by s, respectively. The relation between
∣ ( )∣E s0,0 and P0 is found by first taking the wave energy
at a given s to propagate at the group velocity of the corresp-
onding point on the CTS probe ray, w( ( ) ( ) )s sv r k, ,g 0 0 .
The total wave energy density, r( )U s, , is determined in a
similar manner: r w r=( ) ( ( ) ( ) )∣ ( )∣U s s s E sr k, , , ,0 0 0

2,
where * w w w w= ¶ ¶( ) ( ) · [ ( ) ]r k e r k M r k, , , , , ,0 · e0

w( )r k, , , with M being the Maxwell operator from
[51]. Now, the intensity of the beam is r =( )I s,

r w( ) ( ( ) ( ) )U s v s sr k, , ,g 0 0  w= ( ( ) ( ) ) ( ( )s s v sr k r k, , ,g0 0 0

w r-( ) )∣ ( )∣ ( )s E s, 0, e W s
0 0

2 2 2 2
and the total total power at a

given s, = t-( ) ( )P s Pe s
0, is found by the integral
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0
, assuming a large radius of curva-
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For electromagnetic waves in a vacuum, =v cg and
 = 20 , (63) coincides with the well-known expression

for a Gaussian beam; (63) also agrees with the result of [16]
for propagation of a Gaussian beam parallel to the density
gradient (and perpendicular to B) in a plasma slab, using vg
and for cold X-mode radiation. W(s) is undetermined by
the above discussion, but since we are only interested in an
estimate of E0, we take it to be that of a free-space Gaussian
beam, w= + -( ) ( ) ( )W s W c s s W42

0
2 2

0
2

0 0
2, with =W0

2.29 cm and =s 85.4 cm0 (for s = 0 at the gyrotron launch
point) characterising the beam waist and focal point of the
ASDEX Upgrade gyrotrons, respectively; more accurate
values of W(s), as well as E0 itself, away from the UHR
may be obtained using beam tracing codes such as
TORBEAM [53] or WKBeam [54]. Note that the beam
parameters are unchanged by the reflection from the high-
field side wall, as it is modelled by a locally plane mirror.

(63) clearly shows field amplification at points with low
group velocity, e.g. near the UHR, and ∣ ∣E0 is additionally
seen to be proportional to  t- ( )( )P W se s

0 , which is phy-
sically sensible. It does, however, just as clearly break down
at the exact UHR, where v 0g and  ¥∣ ( )∣E s0,0 , due to
the failure of the geometric optics approximations at this
point. Very close to the UHR we are thus forced to implement
a full-wave solution in order to obtain meaningful results; this
paper uses a simple 1D model, also used in [1], to estimate
the field enhancement in the above region. The model,
inspired by [15], is based on the cold plasma fluid equations,
but includes collisional damping to limit ∣ ∣E0 at the UHR.

The procedure used for determining the field enhance-
ment is as follows: first, the CTS probe ray is traced, from
which  , τ, and ( )sE 0,0 (away from the UHR) are calcu-
lated. At a point close to the UHR, ( )sr f , the ray tracing is
stopped and the plasma parameters used in the 1D full-wave
treatment are extracted along a line parallel to ( )sk f0 . Finally,

( )sE 0,0 is calculated close to the UHR by solving the 1D
full-wave equations for an X-mode wave and equating the

amplitude to that obtained from ray tracing at ( )sr f . Details of
the implementation are found in [1]. Once the above quan-
tities have been calculated, r( )sE ,0 may be found from
(62): r = r-( ) ( ) ( )s sE E, 0, e W s

0 0
2 2

.
It is clear that the above procedure contains a somewhat

arbitrary step, namely the selection of the point at which the
switch from ray tracing to the 1D full-wave solution is made
and the length of the domain in which the 1D full-wave
equations are solved. The choice of the transition point has
some influence on the precise field profile near the UHR, but
the exact domain length appears to be unimportant, so long as
the UHR is present within the domain. The CTS probe ray
may change direction rather abruptly at the transition between
the ray tracing and the 1D full-wave regions, and no account
can be made of the precise geometry and resulting refractive
effects in the 1D full-wave model. Despite these short-
comings, the method is sufficient for obtaining the estimates
in which we are interested. In the following, the transition
between ray tracing and the 1D full-wave treatment is made at
the same grid point of the X-mode ray (only changed for the
peaked profile at =t 3.600 s) and the length of the 1D full-
wave domain is 3 cm (except at = { }t 3.600, 3.700 s for the
peaked profiles, where it is 2.5 cm). These parameters are
chosen to ensure that the UHR is encountered and that the
results are physically reasonable, i.e. avoiding artificial infi-
nite field enhancements resulting from fast decay of the
amplitude in the evanescent region and limited numerical
accuracy.

Figure 8 contains logarithmic plots of ^∣ ( )∣E s0,0

∣ ( )∣E 0, 00 , calculated using the method described above, along
the reflected X-mode ray at =t 2.900 s shown in figure 4
(s = 0 on the high-field side wall); these plots are illustrative
of the field enhancement obtained in all cases. The left pane of
figure 8 displays ^∣ ( )∣ ∣ ( )∣E s E0, 0, 00 0 along the entire ray;
apart from field enhancement near the UHR at »s 20 cm, it
also shows the behaviour around the ECR at »s 7 cm. The
right pane of figure 8 displays ^∣ ( )∣ ∣ ( )∣E s E0, 0, 00 0 close to

Figure 8. Logarithmic plots of the field enhancement along the ray of the reflected X-mode radiation for the peaked ( )Ne
0 - and Te-profiles at

=t 2.900 s in ASDEX Upgrade discharge 28286.
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the UHR, and particularly shows the reduction of the pump
wavelength (increase of k0) as the UHR is approached,
expected from cold plasma theory. A similar effect was not
observed by [1] due to an error in the association of ^∣ ∣E0 with s
in the 1D full-wave code used in that work. The transition
between ray tracing and the 1D full-wave model is clearly
visible in both panes, since the plane wave-like variation on the
scale of the wavelength along the ray is factored out of E0 in
the geometric optics approximation, while such a factorisation
is generally not possible in the full-wave case and therefore not
carried out; the amplitude of ^∣ ( )∣E s0,0 does, however, vary
relatively smoothly across the transition, as it should. A very
large field enhancement, » ´^∣ ( )∣ ∣ ( )∣E s E0, 0, 0 2 100 0

3,
is obtained at the UHR (just before the evanescence region)
in all cases, pointing to this being the maximum field

enhancement allowed by collisions, which is confirmed by its
reduction when the collision frequency increased keeping all
other quantities constant.

4.2. PDI thresholds and frequency shifts

Now that we have a model for ^∣ ( )∣E s0,0 as a function of P0
around the UHR, we proceed to determine the homogeneous
and inhomogeneous thresholds for resonant and non-resonant
PDIs using (51), (53), (59), and (61), with be and zi given by
(44) and (45), respectively. The calculation is only carried out
along the CTS probe ray, as the lowest thresholds are expected
to occur along it. Since (51) and (53) are essentially identical in
the region z ~( )L 1i , where equation (51) is valid, only the
homogeneous threshold given by (53) is plotted, where ne is
identified with the electron(-ion) Coulomb collision frequency
in a simple plasma given by [51]. LN and LB are calculated
from the variation along the CTS probe ray, taking the angle
between k0 and B into account, consistent with the treatment of
the plasma parameter gradients in the 1D full-wave model [1].
The value of ^∣ ∣E0 used in (53), (59) and (61) also needs some
consideration due to the rapid variation of ^∣ ∣E0 close to the
UHR. We are modelling the PDI as occurring over a distance
( )l sr around the point sr at which the selection rules are exactly
satisfied, and since µ ^∣ ∣G E0

2 for both the resonant and non-
resonant PDI in an inhomogeneous plasma, it is therefore
appropriate use ^∣ ∣E0

2 averaged over an interval of length ( )l sr

around sr, denoted by á ñ^∣ ∣E0
2 , in (59) and (61); á ñ^∣ ∣E0

2 is also
used in (53), as this threshold is mainly included to assess the
importance of collisional damping on the PDI threshold.
For simplicity, á ñ^∣ ∣E0

2 is calculated in an interval
Î - +[ ( ) ( ) ]s s l s s l s2, 2r r r r at each sr along the CTS

probe ray. Once á ñ^∣ ∣E0
2 is known for a given P0, the gyrotron

power threshold, P0
th, is easily obtained using the fact that

á ñ µ^∣ ∣E P0
2

0: = á ñ á ñ^ ^[ ∣ ∣ ∣ ∣ ]P E E P0
th

0
th 2

0
2

0, with á ñ^∣ ∣E0
th 2

representing the right hand sides of (53) (homogeneous), (59)
(inhomogeneous resonant) and (61) (inhomogeneous non-
resonant); the resulting gyrotron power thresholds are denoted
P0

th,hom, P0
th,res and P0

th,nonres, respectively.
Figure 9 shows logarithmic plots of P0

th,nonres, P0
th,res and

P0
th,hom in watt, as well as á ñ^∣ ( )∣ ∣ ( )∣E s E0, 0, 00

2
0 , close to

the UHR at =t 2.900 s for the ray in figure 4; it is illustrative
of all cases. Evidently, P0

th,hom is always much lower than
P0

th,nonres and P0
th,res, which is necessary for the neglect of

collisions in the calculation of these. As expected from the
discussion of figure 7, the PDI is non-resonant in the
considered ASDEX Upgrade equilibrium, with P0

th,nonres

being almost two orders of magnitude larger than P0
th,res.

Further, P0
th,nonres, P0

th,res and P0
th,hom increase slightly, while

á ñ^∣ ( )∣ ∣ ( )∣E s E0, 0, 00
2

0 decreases slightly, at the trans-
ition from ray tracing to the 1D full-wave model due to the
inclusion of wave lobes (compare with figure 8) and all
quantities display a flat region around the point of maximum
field enhancement at the UHR; the lengths of the above
features indicate that ~l 1 mm near the UHR. The minimum
non-resonant gyrotron power threshold in figure 9 is

»P 100 kW0
th , which is on the order of the nominal exper-

imental gyrotron power of 200 kW. We thus expect the PDI

Figure 9. Logarithmic plots of the power thresholds and root mean
square field enhancement along the ray of the reflected X-mode
radiation for the peaked profile in ASDEX Upgrade discharge 28286
at =t 2.900 s.

Figure 10. Gyrotron power threshold, P0
th, versus t in ASDEX

Upgrade discharge 28286. ~P 100 kW0
th in the shown part of the

discharge and generally below the nominal gyrotron
power, =P 200 kW0 .
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to occur for the peaked ( )Ne
0 - and Te-profiles at =t 2.900 s,

allowing it to account for the peaks observed in figure 3 at this
time point.

Figure 10 shows P0
th, determined in a manner similar to

that from figure 9, for t 2.900 s. Clearly, ~P 100 kW0
th in

all cases, and the presented theory thus predicts the occur-
rence of a PDI in the analysed part of the discharge where
peaks are also observed in figure 3. In order to assess if
it is reasonable to associate the observed peaks with the

aforementioned PDI, we plot the predicted high-frequency
daughter wave frequencies, w w w w = 0 1 0 LH

+ A b1 e1 , along with the observed CTS spectra, for
t 2.900 s in figure 11; the LH frequencies at the points of

P0
th are also plotted for reference. Evidently, the dipole

PDI theory overestimates the peak frequency shift of
approximately 850MHz, giving values in the range

( )1.18 0.03 GHz, while the simple estimate of the LH
frequency underestimates it, giving values in the range

Figure 11. Predicted high-frequency daughter wave frequencies (orange dashed lines) and the gyrotron frequency shifted by the LH
frequencies at the points of P0

th (green dashed lines), along with the experimental CTS power spectra for t 2.900 s in ASDEX Upgrade
discharge 28286.
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( )695 8 MHz. The dipole PDI theory does, however, pro-
vide an upper bound on the frequency shift of the peak, and
the LH frequency a lower bound. The latter point may be
understood from the fact that warm LH waves have w w1 LH

according to their dispersion relation, (41), while the former
may be understood if we assume the warm UH wave to be
forward scattered by the pump wave, following a line of
inquiry similar to that of [5], such that = -∣ ∣k k k1 2 0 (and
hence the relevant be) is maximised in the dipole limit, where

=k 00 , assuming >k k2 0. The above considerations indicate
that it is reasonable to associate the observed peaks with
parametric decay of the (reflected) X-mode pump wave into a
warm UH wave and a warm LH wave. Additionally, the
upper and lower bounds on the frequency shift of the PDI
peaks are important for the design of notch filters to protect
millimetre-wave diagnostics against these. However, in order
to determine the precise frequency shift of the peak top, a
theory of the above PDI taking non-zero k0, as well as pos-
sible deviations from the resonant warm LH wave dispersion
relation, into account is necessary.

5. Conclusions and outlook

In this paper we have investigated parametric decay of an
electromagnetic pump wave into two electrostatic daughter
waves, particularly an X-mode pump wave decaying into a
warm UH wave and a warm LH wave. This PDI has
been shown to occur for w w< ∣ ∣3pe ce , and analytical

^∣ ∣E0
2-thresholds have been derived for homogeneous and

inhomogeneous plasmas in the resonant and non-resonant
cases. The theory has been applied to CTS experiments at
ASDEX Upgrade where 105 GHz O-mode radiation is
injected from the low-field side, reflected by the high-field
side wall, and part of the reflected radiation is coupled back
into the plasma in X-mode, reaching the UHR where the
above PDI may occur. The gyrotron power threshold of the
above PDI is estimated to be ~100 kW, and is generally
below the nominal gyrotron power of 200 kW used in the
CTS experiment, indicating that the above PDI does indeed
occur. This is further supported by the fact that the frequency
shifts of the observed sidebands are reasonably close to the
LH frequency and the value predicted by dipole PDI theory,
which serve as lower and upper bounds of the frequency
shifts, respectively. We note that the fraction of power
reaching the UHR in X-mode in the experiment is a rather
strong function of the toroidal gyrotron injection angle,
peaking at approximately 0.04 close to the experimental value
of- 5 , and falling to virtually zero for poloidal injection and
toroidal injection angles numerically greater than 10°; both
these regimes allow the PDI to be suppressed. PDI suppres-
sion at virtually poloidal injection is caused by a negligible
fraction of reflected power being coupled to the plasma in
X-mode, meaning that it should in principle always be pos-
sible to achieve PDI suppression by this method, but also that
the method will only be applicable to narrow gyrotron beams
of small angular divergence. PDI suppression at large toroidal
injection angles relies on the ECR becoming optically thick,

which requires B to be large enough for the ECR to be located
between the high-field side wall and the UHR, ideally inside
the last closed flux surface. The latter method sets fewer
restrictions on the gyrotron beam and has been successfully
applied to suppress the PDI in 105 GHz O-mode CTS at
ASDEX Upgrade; it does, however, restrict the B operation
space. It is stressed that the PDI only occurs at the modest
power levels of the reflected X-mode radiation (~10 kW) due
to strong field enhancement close to the UHR which may be
determined by a full-wave calculation.

There are several lines of inquiry which warrant further
investigation. We have employed the dipole approximation,

»k 00 , in deriving the PDI growth rates, which appears to be
the cause of the discrepancy between the predicted and
observed PDI frequency shifts, and an investigation involving
non-zero k0 is thus of interest; related to this, a treatment
accounting for the deviation from the resonant LH dispersion
relation (41) in the non-resonant case is also of interest.
Further, it is of interest to repeat the PDI analysis for mag-
netised ions, with c ws ( )k, from (9) and n »s 0, corresp-
onding to general pure ion Bernstein low-frequency daughter
waves. Another point of interest is to investigate the side-
bands observed during CTS experiments at LHD [7, 8] in
order to determine whether or not they may be explained by
the theory employed to explain the sidebands during CTS
experiments at ASDEX Upgrade. Additionally, confirmation
of a gyrotron power threshold and the existence of warm LH
daughter waves, along with ion heating generated by these
[31–34], during CTS experiments at ASDEX Upgrade would
provide further evidence for the theory; experiments of this
type are planned for the 2017/2018 ASDEX Upgrade
experimental campaign. The geometric optics and 1D full-
wave models used to estimate E0 should also be compared
with a full-wave solution taking the real geometry into
account in order to assess their validity; such a full-wave
solution would further allow us to investigate the cases in
which the CTS probe ray does not reach to UHR in the main
plasma, but where a significant fraction of the beam power
may still do so. Finally, it would be of interest to perform
fully nonlinear simulations of an X-mode beam encountering
the UHR, e.g. using a particle-in-cell code like EPOCH [55],
as done by [27] for a piecewise linear slab geometry, but
employing a more realistic plasma profile in order to assess
the actual frequency shift, growth rate and saturation level of
the PDI in different experiments.
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ABSTRACT

Parametric decay instabilities (PDIs) occur for large-amplitude waves in quadratically nonlinear media, where they provide a limit of validity of lin-
ear theories and allow efficient coupling between different, well-defined wave modes. We investigate PDIs near the upper hybrid resonance in plas-
mas by injection of high-power electron cyclotron (EC) waves at the ASDEX Upgrade tokamak. Our measurements of PDIs have an
unprecedented frequency resolution, far below the ion cyclotron frequency, allowing the first observations of secondary and tertiary PDIs during
the saturation phase in a controlled laboratory setting. Furthermore, we are for the first time able to systematically compare theoretical predictions
of the EC wave power thresholds, which must be exceeded to excite such PDIs, with experimental observations, validating the theory. Our findings
are relevant for EC wave heating and current drive in tokamaks and stellarators, including future fusion power plants, as well as in low-
temperature laboratory and industrial plasmas, inertial confinement fusion, and ionospheric modification experiments.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5091659

I. INTRODUCTION

In a parametric decay instability (PDI), a large-amplitude pump
wave decays to two daughter waves once its amplitude exceeds a non-
linear threshold. PDIs are ubiquitous in quadratically nonlinear media,
including optical crystals,1 mechanical systems,2 fluids,3 and plasmas.4

The PDI threshold indicates the limit of validity of linear theories and
should consequently not be exceeded in applications relying on a lin-
ear medium response. On the other hand, the nonlinear response
above the PDI threshold allows efficient coupling of the pump wave to
different, well-defined daughter wave modes, which is crucial for
applications such as telecommunications1 and ionospheric modifica-
tion experiments.5–11 It is thus of great importance to understand the
PDI threshold, and the nonlinear response beyond it, to avoid the del-
eterious effects of an undesired nonlinear response and to exploit the
nonlinear response for novel applications.

We consider PDIs occurring in connection with electron cyclo-
tron resonance (ECR) heating of plasmas, which is widely applied for
ionospheric modification experiments,5–11 as well as for generating
and sustaining laboratory and industrial plasmas.12–14 A number of
electromagnetic emission features in the electron cyclotron (EC)

frequency range have been attributed to particular PDIs occurring in
connection with ECR heating. As the dispersion relations of the
involved waves are known, this has allowed investigation of various
properties of the ionosphere, such as the magnetic field,6 conditions
for electron acceleration,7 the electron temperature,8 the ion composi-
tion,9 and pump-generated plasma layers.10 PDIs in the EC frequency
range have also been observed in a number of laboratory plasmas,
including low-temperature experiments,15–18 inertial confinement
fusion experiments,4 and magnetic confinement fusion experiments
both in tokamaks19–26 and in stellarators.27–31

PDIs in laboratory plasmas have been used to demonstrate the
occurrence of O-X-B heating,22,28,29 to provide direct heat-
ing,4,16–18,20,21,27,30 and can also deliver information about the plasma
parameters15,19,23–26,31 but have generally been ignored when comput-
ing ECR heating and current drive characteristics.32 The occurrence of
PDIs hampers, and may damage, laboratory EC wave diagnostics.23,24

Present theories even suggest that PDIs can lead to significantly differ-
ent ECR heating and current drive characteristics than those expected
from linear theories in some cases.33 The detailed study of PDIs in the
EC frequency range of a laboratory plasma presented here is thus of
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significant interest, considering the increasing importance of ECR
heating and current drive in present and future large-scale fusion
experiments and the possibility of validating PDI models used for ion-
ospheric modification experiments in laboratory plasmas, where the
plasma parameters can be controlled and monitored to a much larger
extent.

We specifically investigate PDIs occurring for X-mode polarized
radiation near the upper hybrid resonance (UHR), where the pump
wave frequency, f0, equals fUH ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f 2pe þ f 2ce

q
; fpe and fce are the electron

plasma and cyclotron frequencies, respectively. Strong enhancement
of the electric field of the X-mode pump wave near the UHR26,34

allows the thresholds of various PDIs to be exceeded. PDIs for
X-mode radiation near the UHR are relevant for fundamental ECR
heating both with the X-mode19–21,30,35 and the O-mode21,27 (O-mode
can be converted to X-mode by reflections21,26,27) for O-X-B
heating,22,28,29,36–38 for collective Thomson scattering,24–26,31 and for
ionospheric modification experiments;39 similar PDIs also enter as sec-
ondary instabilities in the saturation phase of two-plasmon decay
instabilities occurring for harmonic X-mode ECR heating23,33 and
direct-drive inertial confinement fusion.4,40 Particular cases where
such PDIs may occur in future experiments include ECR start-up at
ITER, MAST-U, NSTX-U, and future fusion reactors,41–43 O-X-B
heating at W7-X, and ionospheric modification experiments with sig-
nificant O-X-conversion at the O-mode cutoff.

Energy conservation in the decay process imposes the selection
rule that the daughter wave frequencies, f1;2, should add up to the
pump frequency, i.e., f1 þ f2 ¼ f0. A number of theories have pre-
dicted the PDI near the UHR with the lowest threshold to be decay of
the X-mode pump wave to a low-frequency lower hybrid (LH) wave
and a high-frequency electron Bernstein wave (EBW);26,35–37,39 the LH
wave frequency is f1 � fLH � fpe, where fLH is the cold LH frequency
and the EBW frequency is f2 ¼ f0 � f1 � fUH � fLH . The occurrence
of this instability is corroborated by experiments19–22,24–29,31 and
simulations.38,44,45

Here, we report an experiment from the ASDEX Upgrade (AUG)
tokamak which allows the first systematic comparison between experi-
mental observations and theoretical predictions26 of the threshold of
the above PDI. The unprecedented frequency resolution of the
reported experiment additionally allows the first observations of the
fine structure of spectra excited by PDIs near the UHR in a controlled
laboratory setting. The fine structure consists of variations on the order
of the ion cyclotron frequency, fci � fLH , and is crucial for describing
secondary and tertiary PDIs, involving coupling of the daughter waves
excited by the primary instability or the pump wave itself to EBWs and
ion Bernstein waves (IBWs), which eventually lead to saturation.

This paper is arranged as follows: Sec. II describes the experimen-
tal setup, Sec. III presents the experimental results, Sec. IV discusses
the interpretation of the experimental results, and, finally, Sec. V pro-
vides our conclusions.

II. EXPERIMENTAL SETUP

A schematic of the experimental setup is shown in Fig. 1. In the
experiment, 105GHz O-mode radiation is injected from the low-field
side of AUG at a toroidal angle of �4:8� , using a gyrotron from
the system described in Ref. 46. The O-mode fraction of the scattered
radiation near 105GHz is picked up by a steerable radiometer on the
low-field side, which includes a fast acquisition system47 capable of

resolving the fine structure of the PDI spectra. The ECR (f0 ¼ jfcej) of
the 105GHz radiation is located far on the high-field side and is opti-
cally thin for O-mode radiation. A significant fraction of the incident
radiation can thus reflect off the high-field side wall and re-enter the
plasma in the X-mode. When the ECR is not optically thick for the
X-mode radiation, the electric field near the UHR may become suffi-
ciently large to excite PDIs. The experimental setup is similar to the
ones used for fundamental O-mode ECR heating,20,21,27 collective
Thomson scattering,24–26,31 and EBW start-up;41–43 it also has much
in common with the setups used for O-X-B heating22,28,29 and iono-
spheric modification experiments,5–11 the main difference being that
O-X-conversion occurs at the O-mode cutoff (f0¼ fpe) in these setups.

The analyzed experiment is an H-mode,48 deuterium discharge
during which the toroidal magnetic field, Bt, is swept from –2.66T to
–2.43T over 3.5 s. For us, the most important effect of the sweep is the
displacement of the ECR toward the high-field side, reducing its
absorption by an order of magnitude. This is seen in Fig. 2; the spread
in the data is due to uncertainties in the experimental equilibria.

To assess the development of the PDIs during the Bt-sweep, 200
evenly spaced 2ms pulses are generated by the gyrotron. For a com-
parison of the experimental and theoretical26 PDI thresholds, the gyro-
tron power, P0, is varied from 0 to 300 kW during each pulse. The
variation of P0 during a pulse is seen in Fig. 3. The scattered signal
is recorded in 1ms measurement pulses around the center of
each gyrotron pulse. Power spectra are obtained by performing fast
Fourier transforms on 655ns windows of the recorded signal for all
measurement pulses, giving a frequency resolution of 1.53MHz, well
below fci of deuterium in the experiment (�30MHz).

III. EXPERIMENTAL RESULTS

The mean spectra recorded during three measurement pulses at
different points in the Bt-sweep are seen in Fig. 4. All spectra are taken
from the part of the Bt-sweep where PDI peaks are consistently visible
and illustrate the qualitative development of these peaks. The gyrotron
line is visible slightly below 105GHz (f0 ¼ 104.93GHz) in all spectra.
The smaller peaks, separated by 0.7–1.1GHz (slightly more than fLH at
the UHR) from the gyrotron peak, originate from the daughter waves
excited by PDIs; the mechanisms through which they are generated
are discussed in Sec. IV. As seen in Fig. 4, the PDI peaks start out as a

FIG. 1. Schematic of the experimental setup in AUG discharge 34575. No propa-
gating X-mode exists in the shaded region.
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few well-defined lines in pulse (a) and develop an increasingly com-
plex structure, visible in pulses (b) and (c), as Bt is swept. The fine
structure in pulses (b) and (c) indicates that secondary and tertiary
PDIs occur during the saturation phase. In pulse (b), peaks separated
by approximately 50MHz (roughly 2fci at the UHR) occur around the
primary peaks, indicating decay of the primary daughter waves to
EBWs and second-order IBWs as the secondary PDI. In pulse (c),
additional peaks separated by approximately 25MHz (roughly fci at
the UHR) appear throughout the frequency range covered by the radi-
ometer, indicating decay of the pump wave to EBWs and arbitrary-
order IBWs as the tertiary PDI. For reference, we plot the theoretical
frequency of the most unstable up- and down-shifted primary daugh-
ter waves from Ref. 26, along with f0 6 fLH , in Fig. 4. The theoretical
frequency shift represents an upper bound on the true shift, while fLH
represents a lower bound. This may be explained by use of the dipole
approximation in Ref. 26 and finite temperature effects, respectively.

To extract information about the P0-dependence of the PDI
peaks, we calculate the spectral power, S, in the frequency ranges
103.8–104.2GHz and 105.6–106.0GHz for all spectra obtained during

a measurement pulse. The frequency ranges are chosen such that they
contain the primary PDI peaks, but not the gyrotron peak, and chang-
ing their precise limits does not change the subsequent conclusions if
this remains the case. We derive S(P0) using P0-waveforms similar to
that in Fig. 3. Figure 5 shows S vs P0 for the measurement pulses
whose mean spectra were shown in Fig. 4. Evidently, S depends nonli-
nearly on P0, as expected for PDI-generated peaks. In pulse (a), S only
deviates appreciably from the background level for P0> 250 kW while
in pulses (b) and (c), S increases roughly linearly with P0 until 100 kW
and 50 kW, respectively, but supra-linearly beyond these values. We
note that S saturates for P0 > 200 kW in pulse (b), while in pulse (c),
some saturation occurs for P0 2 ½100 kW; 250 kW�, followed by more
rapid growth for P0 > 250 kW. This corroborates that the secondary
instability involves the primary daughter waves, stabilizing S in the
PDI region, while the tertiary instability involves the pump wave,
opening additional channels through which power can flow into the
PDI region, as stated above.

FIG. 2. Fraction of reflected power coupled to the plasma in X-mode (�), fraction
of injected power not absorbed at the ECR (�), and total fraction of injected power
reaching the UHR in X-mode (þ) vs Bt in AUG discharge 34575, based on the the-
ory of Ref. 26.

FIG. 3. Modulation of P0 during a gyrotron pulse. The spectrum of the scattered
radiation is measured using the steerable radiometer in the shaded interval during
all gyrotron pulses.

FIG. 4. Mean spectra recorded by the steerable radiometer in AUG discharge
34575 at Bt ¼ –2.53 T (a), Bt ¼ –2.48 T (b), and Bt ¼ –2.44 T (c). The shaded
areas indicate the stopband of the notch filter near f0, where the calibration is
uncertain. The dashed lines indicate the most unstable modes according to Ref. 26;
the dotted lines indicate f06fLH .
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To compare the experimental S(P0) with the dependence
expected from Ref. 26, we introduce a physical model. First, S contains
a thermal background contribution, S0, independent of P0. Second,
S contains a P0-dependent contribution of the form SD e2pP0=P

th
0 from

the waves amplified by the primary PDI; SD is the thermal background
signal due to these waves, e2pP0=P

th
0 is the convective PDI amplification

factor in the absence of collisions and saturation, and Pth
0 is the con-

vective PDI threshold defined in Refs. 49–51. Finally, S contains a con-
tribution linear in P0, written as CP0, due to collective Thomson
scattering of the gyrotron radiation24,52 and increased emission due to
absorption at the ECR. Addition of the contributions yields

S ¼ S0 þ SD e
2pP0=Pth

0 þ CP0: (1)

Least-square fits of the logarithm of the measured S to the logarithm
of Eq. (1) are shown in Fig. 5. In the fits, we require all parameters
to be non-negative and only include data up to a P0-value where

saturation sets in, as this effect is not included in the model. The cutoff
power used is 1:4Pth

0 , provided that this value is smaller than maxðP0Þ,
and represents a rough experimental estimate of the gyrotron power
threshold of the secondary instability.

To facilitate a comparison with theory,26 the fitted Pth
0 -values are

indicated in Fig. 5. As expected, they are close to the points where the
supra-linear increase in S with P0 begins. Figure 6 shows the experi-
mental values of Pth

0 , obtained from fits similar to those in Fig. 5, and
the theoretical predictions as functions of Bt. Note that we have only
included fitted Pth

0 -values from measurement pulses with a clear non-
linear phase and that we have only included theoretical Pth

0 -values for
equilibria where the UHR was reached by the reflected X-mode ray.
The theoretical Pth

0 -values show a spread due to uncertainties in the
experimental equilibria used for their calculation. The experimental
Pth
0 -values lie within this spread throughout the Bt-sweep, albeit with a

small bias toward higher Pth
0 -values. We also remark that PDI peaks

are only observed for jBt j < 2:56T in the experiment, which coincides
closely with the point where the theoretical Pth

0 drops below maxðP0Þ,
as seen in Fig. 6.

IV. DISCUSSION

Having presented the main results of the experiment, we now
discuss their interpretation in more detail. First of all, the waves excited
by the PDIs under consideration are electrostatic in nature, meaning
that they cannot be detected directly by the steerable radiometer used
in the experiment. More specifically, the waves must somehow give
rise to O-mode waves propagating toward the detector, owing to the
cutoff region of the X-mode radiation (see Fig. 1) and the settings of
the steerable radiometer polarizers.

For the primary PDI, a feasible mechanism is always provided by
mixing of the injected waves with the low-frequency LH daughter
waves excited by the PDI, which should lead to the observed down-
and up-shifted peaks at the beat frequencies (f07f1). As long as the
power of the injected waves remains large compared with that of the
daughter waves, which should at least hold until saturation sets in, this
signal will be proportional to the daughter wave power and thus pro-
vide a reliable measure of the PDI threshold. An alternative mecha-
nism is provided by linear conversion of the high-frequency daughter
waves to O-mode radiation. The efficiency of this mechanism is highly
dependent on the direction of propagation of the high-frequency

FIG. 5. S vs P0 in AUG discharge 34575 at Bt ¼ –2.53 T (a), Bt ¼ –2.48 T (b), and
Bt ¼ –2.44 T (c). The experimental data (�) are fitted using Eq. (1); the fits are
marked by solid lines. The dashed lines indicate the fitted Pth

0 -values.

FIG. 6. Experimental (�) and theoretical ð�ÞPth
0 vs Bt in AUG discharge 34575.

The dashed line marks maxðP0Þ in the experiment.
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daughter waves, as EBWs undergo linear conversion to X-mode waves
at the UHR.29 These X-mode waves may then be converted to O-
mode waves by a wall reflection. On the other hand, EBWs going
directly to the ECR will be almost completely absorbed for all reason-
able conditions.29 As the EBWs are backward propagating under the
conditions in AUG (fpe <

ffiffiffi
3
p
jfcej),26 high-frequency waves which are

forwardscattered with respect to the pump wave vector will go directly
to the ECR, while backscattered waves may undergo the conversion
process described above. As the theory of Ref. 26 is based on the dipole
approximation, which ignores the pump wave vector relative to those
of the daughter waves, it does not provide direct information about
the direction in which the high-frequency daughter waves propagate.
However, the fact that the observed frequency shift of the daughter
waves relative to the pump wave is smaller than what is expected theo-
retically (see Fig. 4) indicates forward scattering, as already noted in
Ref. 26; this is also in agreement with recent numerical simulations.45

Within the 1D-picture presented here, it thus seems that linear conver-
sion of the high-frequency daughter waves to O-mode waves will not
be efficient. This may additionally explain why the observed signal
only rises two orders of magnitude above the linear background even
at the highest power levels in the cases with the lowest ECR absorption.

For the secondary PDI, we postulated decay of the primary
daughter waves into secondary EBWs and second-order IBWs, based
on the observation of peaks separated by approximately 2fci around
the primary PDI peaks. While we have not explicitly computed the
threshold for this process, we have confirmed the possibility of satisfy-
ing the selection rules when the secondary EBW is forwardscattered
with respect to the primary one; the details are given in the Appendix.
The main mechanism through which O-mode radiation may be gen-
erated by this instability is mixing of the waves near the primary
daughter frequencies (f07f1) with the second-order IBWs, generating
waves at approximately f07f172nfci, where n 2N. For the tertiary
instability, similar mixing involving the injected waves and arbitrary-
order IBWs is expected to explain the generation of O-mode radiation.

We note that there are still several points deserving further inves-
tigation. First, it would be of interest to extend the theory of Ref. 26
beyond the dipole approximation. This would allow us to obtain theo-
retical frequency shifts closer to the experimental values (see Fig. 4), as
well as to investigate the directions of propagation of the daughter
waves and the possibility of absolute PDIs, e.g., considered by Ref. 36,
in greater detail. Second, the secondary and tertiary PDIs indicated by
the experiment should be investigated theoretically. From this, we
could obtain secondary and tertiary PDI thresholds for comparison
with the experimental observations and construct a model describing
the saturation phase of PDIs near the UHR. Finally, the experiment
itself could be improved by investigating the low-frequency waves
excited by the PDIs directly. Future experiments at AUG will be capa-
ble of this, using a B-dot probe53 connected to the second channel of
the fast acquisition system employed in the present Paper.47

V. CONCLUSION

We have performed the first experimental investigation of PDIs
near the UHR in a laboratory plasma capable of resolving the fine
structure of the spectra excited by the PDIs and providing a compari-
son of the pump power necessary to excite the primary instability with
the theory.

The recorded spectra showed initial development of PDI peaks
separated by slightly more than fLH from the pump peak, followed
by development of peaks separated by 2fci from the primary PDI
peaks, and finally development of peaks separated by fci throughout
the frequency region covered by the radiometer. This indicates ini-
tial decay of the pump wave to EBWs and LH waves, followed by
decay of the primary EBWs to other EBWs and second-order
IBWs, and finally decay of the pump wave to EBWs and arbitrary-
order IBWs.

By modulating the gyrotron power, we were able to obtain exper-
imental PDI thresholds which corroborated the theoretical predictions
from Ref. 26. These findings indicate that the possibility of PDIs occur-
ring near the UHR during ECR start-up at ITER, MAST-U, NSTX-U,
and future fusion reactors may be assessed using existing theories. The
theory tested here is also applicable to O-X-B heating, planned for
W7-X, and ionospheric modification experiments with significant O-
X-conversion at the O-mode cutoff, provided that the plasma is only
moderately overdense, fpe <

ffiffiffi
3
p
jfcej, at the UHR. For fpe >

ffiffiffi
3
p
jfcej,

the theory of Ref. 36 is applicable.
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APPENDIX: THE SECONDARY INSTABILITY

Here, we show the possibility of satisfying the selection rules
for decay of a primary EBW daughter into secondary EBW and
second-order IBW daughters near the UHR when fpe <

ffiffiffi
3
p
jfcej. We

use the EBW dispersion relation from Ref. 26 for propagation per-
pendicular to the background magnetic field

f2 ¼ fUH �
f 2pe
2fUH

r2Lek
2
2

1� f 2pe=ð3f 2ceÞ
; f 02 ¼ fUH �

f 2pe
2fUH

r2Leðk02Þ
2

1� f 2pe=ð3f 2ceÞ
;

(A1)

where f2 and f 02 are the primary and secondary EBW frequencies, k2
and k02 are the primary and secondary EBW wave numbers, rLe is
the thermal electron Larmor radius defined in Ref. 26, and we have
expanded the dispersion relation from Ref. 26 to first order in
r2Lek

2
2 � 1 and r2Leðk02Þ

2 � 1. Using the frequency selection rule of
the primary PDI, f2 ¼ f0 � f1 � fUH � fLH , we obtain

jk2j �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2fLHfUH 1� f 2pe=ð3f 2ceÞ

h ir
fperLe

; (A2)

which does indeed satisfy r2Lek
2
2 � 1 for the usual ordering

(fLH � fpe � fUH). The dispersion relation of the second-order IBW
for propagation perpendicular to the background magnetic field in
a simple plasma is given by Eq. (4.275) of Ref. 54,
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f 01 ¼ 2fci 1� 3r2Liðk01Þ
2

8ð1� 3v2A=c
2Þ

" #
; (A3)

where f 01 is the IBW frequency, k01 is the IBW wave number, rLi
is the thermal ion Larmor radius, c is the vacuum speed of light,

vA ¼ c
. ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ f 2pi=f
2
ci

q
� c (since the ion plasma frequency,

fpi > fLH 	 fci) is the Alfv�en speed, and the expression is valid to

first order in r2Liðk01Þ
2 � 1. Note that generally rLi 	 rLe, so jk01j

should be significantly smaller than jk2j and jk02j. Now, using the
frequency selection rule of the secondary PDI, f 02 ¼ f2 � f 01 � fUH
�fLH � 2fci, Eq. (A1) yields

jk02j �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðfLH þ 2fciÞfUH 1� f 2pe=ð3f 2ceÞ

h ir
fperLe

� jk2j 1þ fci
fLH

� �
; (A4)

the last approximation follows by expansion to first order in
fci=fLH � 1. Taking k2 and k02 to point in the same direction, the
wave vector selection rule26 of the secondary PDI gives

k01 ¼ k2 � k02 � �
fci
fLH

k2; (A5)

with the negative sign indicating that k01 points in the opposite
direction of k2 and k02. Plugging Eq. (A2) into Eq. (A5), we find

r2Liðk01Þ
2 �

2f 2ci fUH 1� f 2pe=ð3f 2ceÞ
h i
fLHf 2pe

r2Li
r2Le

¼ 2

ffiffiffiffiffiffiffiffiffiffi
Zime

mi

r
Ti

ZiTe

jfcejf 2UH
f 3pe

1�
f 2pe
3f 2ce

 !
; (A6)

where Zi is the ion charge number, me and mi are the electron and
ion masses, and Te and Ti are the electron and ion temperatures.
If fpe and jfcej have similar orders of magnitude, r2Liðk01Þ

2

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Zime=mi

p
½Ti=ðZiTeÞ� � 1, as assumed in Eq. (A3). Particularly,

typical conditions near the UHR of 105GHz radiation in AUG dis-
charge 34575 are Zi ¼ 1, mi=me ¼ 3:67� 103, electron density
�3.1� 1019 m�3, background magnetic field � 3.3 T, and Te � Ti,
giving r2Lek

2
2 � 0:055; r2Leðk02Þ

2 � 0:059, and r2Liðk01Þ
2 � 0:24. It is

thus possible to satisfy the selection rules of the secondary PDI in
the region of validity of the dispersion relations.
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Chapter 7

Conclusion

In this Thesis, we have investigated PDIs in the ECRH beams at ASDEX Upgrade, both
theoretically and experimentally. We have provided a detailed introduction to the theory
of PDIs, deriving some new expressions along with a number of known ones; it is our hope
that this can serve as a more gentle introduction to the subject than pure journal articles for
future researchers. On the experimental side, strong microwave signals generated by PDIs
were found in scenarios involving the injection of 140 GHz X-mode radiation for ECRH
and 105 GHz O-mode radiation for CTS. We have particularly obtained the first clear
indication of PDIs during ELMs for second-harmonic 140 GHz X-mode ECRH, identified
PDIs damaging ECE radiometers for third-harmonic 140 GHz X-mode ECRH, and carried
out the first detailed comparison of experimental and theoretical PDI thresholds near the
UHR in a controlled laboratory setting.

In the 140 GHz X-mode ECRH scenarios, the initial PDI involves decay of the injected
X-mode pump wave to daughter EBWs and X-mode waves near half the pump frequency.
This process takes place in the vicinity of the second-harmonic UHR of the pump wave
and requires the excited daughter waves to be trapped in this region to reduce the power
threshold of the initial PDI to a level attainable by the ECRH beams. Such trapping may
occur if the electron density profile has a maximum near the second-harmonic UHR of the
pump wave, e.g., during ELMs, rotating magnetic islands, edge density spikes, and near
the plasma center.

At the standard magnetic field used for central second-harmonic ECRH at ASDEX Up-
grade, |Bt| = 2.5 T, the second-harmonic UHR of 140 GHz radiation occurs at low electron
densities, meaning that it will almost universally appear in the pedestal region for H-mode
plasmas. This gives rise to microwave bursts in connection with ELMs, which may be
detected by a radiometer observing an ECRH beam near the plasma edge. As observed
by the CTS system, microwave bursts occur near half the ECRH frequency, as well as
near the ECRH frequency itself; the latter bursts may be explained by a primary daughter
wave decaying to a secondary daughter wave near its own frequency and a low-frequency
daughter wave, followed by combination of the primary and secondary daughter waves to
create a microwave near the pump frequency (cf. Fig. 1.4). The power threshold of the
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bursts near the ECRH frequency are in rough agreement with the power threshold of the
primary PDI from an analytical theory, which we have developed based on the results of
[8, 10] with some modifications. Additionally, the duration of the microwave spikes ob-
served near the ECRH frequency with the fast CTS system (∼ 3µs) is in agreement with
the passage time of the regions allowing daughter wave trapping through an ECRH beam
according to a nonlinear MHD simulation of the ELM crash, performed using the JOREK
code [154, 155]; the electron density and temperature profiles used in the theoretical cal-
culation of the PDI threshold were also obtained from this simulation. We further note
that quasi-continuous PDI-generated signals are observed just below the ECRH frequency
while the plasma is still in L-mode. These signals are likely related to PDIs due to trapping
in the non-monotonic density profiles associated with L-mode turbulence. Finally, quasi-
continuous strong signals with a larger shift relative to the ECRH frequency also occur in
the inter-ELM phases at low edge densities. These are likely related to PDIs in the density
structures set up by inter-ELM modes. The PDI-related microwave signals observed in
connection with ELMs, edge turbulence, and inter-ELM modes are generally not at a level
which poses any danger to microwave diagnostics, and in order to reliably observe them,
it is generally necessary for the view of a radiometer to overlap with an ECRH beam near
the plasma edge. They do, however, present the possibility of creating a new type edge
diagnostic, which would be able to measure the passage of ELM filaments, changes in the
character of the edge turbulence, and inter-ELM modes in the localized region of an ECRH
beam with high temporal resolution.

When the magnetic field is reduced, either to a level with the second-harmonic ECR on the
high-field side (|Bt| ≈ 2.2 T) or to a level with a central third-harmonic ECR (|Bt| ≈ 1.8 T)
for 140 GHz ECRH, the second-harmonic UHR may be present in the bulk plasma, al-
though electron densities below 4.25×1019 m−3 are necessary even at |Bt| = 1.8 T, meaning
that this generally only occurs in L-mode plasmas or H-mode plasmas with fresh boroniza-
tion/boron drop and density pump out from resonant magnetic perturbations. In these
cases, PDIs with trapped daughter waves may occur in connection with rotating magnetic
islands, edge density spikes, and near the plasma center. PDIs during rotating magnetic
islands have been observed through quasi-periodic microwave bursts, whose rate of oc-
currence follow the rotation frequency of the magnetic island, near the ECRH frequency
by the CTS system. Our results are similar to the original observations from TEXTOR
[144, 156] and extend these to third-harmonic ECRH of X-mode plasmas. We do, however,
note that the mere occurrence of a rotating magnetic island in the vicinity of a point at
which the second-harmonic UHR surface is intersected by an ECRH beam is insufficient
to guarantee that PDI-related microwave bursts will be observed. This is presumably due
to the electron density bump associated with the magnetic island being too small to allow
trapping of the daughter waves, although reliable electron density profiles in the islands
will need to be obtained to confirm this hypothesis. More worryingly, the strong sig-
nals observed in connection with rotating magnetic islands near half the ECRH frequency
were capable of permanently degrading an ECE mixer, necessitating a recalibration of
the ECE system and reducing the sensitivity of the affected channels. A similar degra-
dation of an ECE mixer was observed in connection with strong quasi-continuous signals,
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attributed to PDIs occurring near the plasma center. These results point to a potential
danger for third-harmonic X-mode ECRH at ITER, which will be used to allow H-mode
access with relatively low (ECRH-dominated) heating power during the early operation
phase. We particularly note that the ECE channels viewing the second-harmonic ECR in
X-mode near the plasma edge in ITER will have frequencies close to half that used for cen-
tral third-harmonic ECRH, just as in ASDEX Upgrade, due to the near 1/R-dependence
of the magnetic field in a tokamak and the similar aspect ratios of ITER and ASDEX
Upgrade. One scheme to prevent such degradation of the ECE mixers in ITER during
third-harmonic ECRH would be to minimize the possibility of the ECE system picking up
signals originating from ECRH beams, e.g., by focusing the ECRH power in sectors well
removed from the ECE radiometers and orienting the closer beams away from the ECE
views; the efficiency of such a scheme is indicated by the fact that ECE mixer degradation
at ASDEX Upgrade was only observed after the commissioning of the ECRH3 system and
seems to be particularly associated with operation of the gyrotron located closest to the
ECE radiometers. The simple method of operating at high ne in order to avoid the PDIs is
not possible in the third-harmonic ECRH scenarios planned for ITER, which will have an
ECRH frequency of 170 GHz, |Bt| = 1.8 T, and a plasma current of 5 MA [39], as the edge
electron density required for the second-harmonic UHR to not occur in the bulk plasma
(7.1× 1019 m−3) is well above the Greenwald edge density limit [50, 51] in these scenarios
(4.0× 1019 m−3).

During injection of 105 GHz O-mode radiation for CTS, a primary PDI, involving decay
of the electromagnetic pump wave to an EBW and a low-frequency LH wave near the
UHR, may occur. While current theories [157] and low-temperature experiments [161]
suggest that such a PDI, or a closely related one, may occur for the O-mode radiation
itself in cases where the EBW is trapped, e.g., in connection with a magnetic island, the
experimental evidence of such PDIs in tokamaks is less conclusive [158]; if such PDIs were
shown to be important for (fundamental) O-mode ECRH in tokamaks, they would be of
considerable concern for ITER. The PDIs at the UHR in ASDEX Upgrade, as well as
other tokamaks and stellarators, seem to require conversion of a fraction of the O-mode
radiation to X-mode radiation, or direct injection of X-mode radiation from the high-field
side. When a sufficiently large amount of X-mode power (∼ 10 kW in ASDEX Upgrade)
reaches the UHR, the primary PDI will occur; the low PDI power threshold is a result
of the enhancement of the electric field associated with the X-mode pump wave near the
UHR. The 105 GHz ECR is located far on the high-field side for the standard magnetic
field at ASDEX Upgrade, |Bt| = 2.5 T, reducing its optical thickness and consequently
also the ECE background in the CTS spectra. This does, however, also allow a significant
fraction of the injected O-mode radiation to reflect off the high-field side wall, be partially
converted to X-mode and pass the ECR once more, after which it finally reaches the UHR
where it may drive PDIs. The amount of X-mode power reaching the UHR may be varied
by sweeping |Bt|, as this will change the optical thickness of the ECR. Combining such a
sweep with ECRH power modulations on a much faster time scale made it possible to verify
that the primary PDI power threshold derived theoretically for ASDEX Upgrade, taking
the above conversion steps, as well as PDI physics, into account, by the Author [13] does
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in fact agree with the experimentally observed PDI power threshold [14]. Additionally, the
theoretical primary PDI threshold has recently been shown to agree with particle-in-cell
simulations for ASDEX Upgrade-like parameters [17]. A shortcoming of the developed
theory is its reliance on the dipole approximation, which limits its ability to predict the
frequency of the daughter waves beyond upper and lower bounds. A point of further interest
is the occurrence of secondary PDIs, involving decay of the primary EBW daughters to
secondary EBW daughters and second-order IBWs, as well as tertiary PDIs involving decay
of the pump wave to EBWs and arbitrary-order IBWs [14]. The continued investigation of
PDIs for X-mode radiation near the UHR is of interest since they are expected to occur
during O-X-B heating, planned for Wendelstein 7-X, and have already been used to indicate
the occurrence of O-X-B heating at Wendstein 7-AS [166].

The above results indicate a number of topics deserving further study. First, the capabil-
ities of an edge diagnostic based on the ELM-related PDIs have only been explored very
tentatively and should be investigated in a wider range of scenarios, e.g., in small-ELM
regimes and I-modes. Second, a more reliable setup for the island-related PDIs and better
characterization of the island electron density profiles are highly desirable, as this would
allow the conclusions regarding the occurrence and non-occurrence of such PDIs to be more
firmly established and their consequences for future devices to be more reliably assessed.
A more detailed investigation of PDIs in connection with edge density spikes and near
the plasma center is also warranted. Finally, an extension of the theory used to describe
the primary PDI near the UHR beyond the dipole approximation is desired, possibly by
expanding the results of [143] to underdense plasmas, along with theoretical descriptions
of the secondary and tertiary PDIs near the UHR.
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