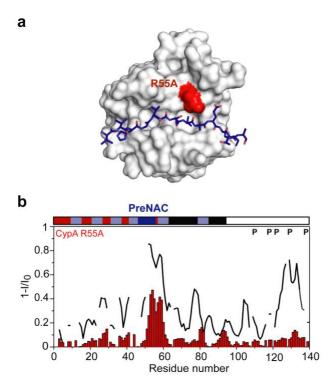

Supporting Information

The Molecular Basis of the Interaction of Cyclophilin A with $\alpha\textsc{-Synuclein}$


Filippo Favretto, Jeremy D. Baker, Timo Strohäker, Loren B. Andreas, Laura J. Blair, Stefan Becker,* and Markus Zweckstetter*

ange_201914878_sm_miscellaneous_information.pdf

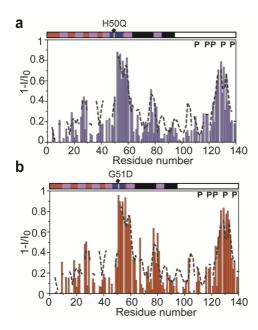

Supplementary Figures

Figure S1. Residue-specific chemical shift perturbation in CypA upon binding to aSyn. **a**) Residue-specific chemical shift changes in CypA upon addition of a 5-fold excess of aSyn. Regions undergoing chemical shift changes are mapped in Fig. 2b onto the 3D structure of CypA from grey (Δδ1H-15N < 0.026 ppm) to red (Δδ1H-15N > 0.05 ppm). CypA secondary structure elements are shown on top. **b-e**) Intensity changes (green bars) and chemical shift changes Δδ1H-15N (purple line) in 1H-15N HSQC spectra of CypA in presence of 8-fold molar excess of the peptides aSynPreNAC (b,c) and aSyn118-136 (d,e). CypA residues, which were broadened beyond detection in presence of aSynPreNAC, are shown in blue in (c). **f**) Changes in signal intensities of selected CypA residues at increasing concentrations of the peptide aSynPreNAC. **g**) Changes in chemical shifts of selected CypA residues at increasing concentrations of the peptide aSynPreNAC. **g**) Changes in chemical shifts of

Figure S2. Mutation of the catalytic CypA residue R55 attenuates binding to aSyn. **a)** Location of the CypA mutation R55A in the 3D structure of the CypA/aSynPreNAC complex. **b)** Residue-specific intensity changes in aSyn upon addition of a 5-fold excess of CypAR55A (red bars). Io and I are the intensities of 1H-15N HSQC cross-peaks in the absence and presence of CypAR55A, respectively. For comparison, the black line displays the intensity broadening profile induced by wild-type CypA at the same molar ratio.

Figure S3. Binding of CypA to aSyn containing PD-associated mutations H50Q (a) and G51D (b). Residue-specific intensity changes upon addition of a 5-fold excess of CypA. The CypA-induced intensity broadening profile of wild-type aSyn is shown as dashed line.

Table S1. X-ray data collection statistics.

PreNac/CypA-complex
1.0 Å
SLS-X10SA
PILATUS 6M
P43212
61.034 Å
61.034 Å
129.152 Å
1.38 Å (1.40-1.38 Å)
1,231,308
51,144
24.01 (12.56)
99.7 (92.6)
27.39 (1.16)
2.92 (68.9)

a Values in parentheses are outer-resolution shell.

$$^{b}R_{rim} = \sum_{hkl} \left[N / (N-1) \right]^{1/2} \sum_{i} \left| I_{i}(hkl) - \left\langle I(hkl) \right\rangle \right| / \sum_{hkl} \sum_{i} I_{i}(hkl), \text{ where N is the}$$

redundancy and $I_i(hkl)$ is the ith observation of reflection hkl and $\langle I(hkl) \rangle$ is the weighted average intensity for all observations i of reflection hkl.

Table S2. X-ray structure refinement statistics CypA/αSynPreNAC-complex.

R-factor _a	16.3%
Rfreeb	17.8%
Solvent	60.6%
Mean B-value (Å2)	
chain A	24.26
chain B	32.01
waters	37.5
No. of protein residues	177
No. of water residues	248
Root mean square deviations	S
from ideal geometry	
Bond lengths	0.019 Å
Bond angles	2.18°
Ramachandran plot (%)	
Favoured	95.1
Allowed	4.9
Outliers	0

 $_{a}R = \sum_{hkl} ||F_{obs}| - |F_{calc}|| / \sum_{hkl} |F_{obs}|$, where F_{obs} and F_{calc} are the observed and calculated structure factors, respectively.

Supplementary Experimental Section

Protein expression and purification of aSyn proteins was performed as described previously.[17] aSyn peptides were synthesized by solid-phase peptide synthesis. The gene of human CypA was cloned into a modified pET28a vector (Addgene) and site-directed mutagenesis was carried out using a QuikChange kit (Qiagen). CypA and its R55A variant were recombinantly expressed in *Escherichia coli* BL21(DE3) cells (Novagen) as described in [18]. Proteins were dialyzed against the NMR buffer containing 100 mM NaCl, 50 mM HEPES, 0.02 % NaN3, pH 7.4.

NMR experiments were recorded on 600, 700, 800, 900, 950 MHz Bruker NMR spectrometers. For backbone resonance assignment of 15N/13C-labeled CypA, 3D HNCA, HNCACB, HNCO, HNCACO and 15N-edited NOESY-HSQC (NOESY

b Rfree was determined using 5% of the data 1.

mixing time: 120 ms) experiments were recorded. NMR-based interaction studies were acquired at 15 °C and the combined $_1H/_15N$ chemical shift perturbation (((δ_H)₂+ ($\delta_N/_5$)₂)/2)_{1/2} was calculated. The intensities were fitted assuming a simple two state exchange model and the K_d was calculated according to:

$$\left(1 - \frac{I}{I_0}\right) = I_{max} \left[\frac{(P_0 + x + K_d) - \sqrt{(P_0 + x + K_d)^2 - 4P_0x}}{2P_0} \right]$$

where I is the intensity value along the titration, I_0 is the intensity value of the free state, P_0 is the total amount of protein, K_d is the dissociation constant and x the concentration of CypA in μ M along the titration. Errors were estimated by evaluating the standard deviation of the intensity according to:

$$\sigma_I = \left(\frac{I}{I_0}\right) \sqrt{\left(\frac{\sigma I}{I}\right)^2 + \left(\frac{\sigma I_0}{I_0}\right)^2}$$

where σI and σI_0 are the standard deviations of the noise in the spectra. To identify the *cis*-proline conformers, aSyn (600 μ M) was resuspended in 20 mM phosphate buffer (0.02% NaN₃, 2 mM DTT, pH 6.0).

For crystallization, the aSyn(E46-Q62) peptide was added in 4-fold molar excess to CypA. Total protein concentration was adjusted in NMR buffer to 20 mg/ml. Crystals were obtained at 20 °C by sitting drop vapor diffusion using 1.93 M tri-ammonium citrate, pH 7.0, as precipitant. For data collection crystals were soaked for 1 minute in 2.5 M tri-ammonium citrate, pH 7.0, as cryoprotectant. Data collection was performed at SLS Villigen, Switzerland (beamline PXII, Pilatus 6M detector [19]). Data were processed with XDS.[20] Space group determination and statistical analysis was performed with XPREP (Bruker AXS, Madison, Wisconsin, USA). The structure was solved by molecular replacement with PHASER [21] using the crystal structure of CypA (PDB code: 5KUL [22]) as search model. Refinement was performed with Refmac[23] alternating with manual model building in Coot.[24]