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Abstract1

The multi-type birth-death model with sampling is a phylodynamic model which enables2

quantification of past population dynamics in structured populations, based on phylogenetic3

trees. The BEAST 2 package bdmm implements an algorithm for numerically computing the4

probability density of a phylogenetic tree given the population dynamic parameters under5

this model. In the initial release of bdmm, analyses were limited to trees consisting of up to6

approximately 250 genetic samples for numerical reasons. We implemented important7

algorithmic changes to bdmm which dramatically increase the number of genetic samples8

that can be analyzed, and improve the numerical robustness and efficiency of the9

calculations. Being able to use bigger datasets leads to improved precision of parameter10

estimates. Furthermore, we report on several model extensions to bdmm, inspired by11

properties common to empirical datasets. We apply this improved algorithm to two partly12

overlapping datasets of Influenza A virus HA sequences sampled around the world, one with13

500 samples, the other with only 175, for comparison. We report and compare the global14

migration patterns and seasonal dynamics inferred from each dataset.15

Availability: The latest release with our updates, bdmm 0.3.5, is freely available as an16

open access package of BEAST 2. The source code can be accessed at17

https://github.com/denisekuehnert/bdmm.18

Keywords: phylogenetics, Bayesian inference, phylodynamics, population structure19

Introduction20

Genetic sequencing data taken from a measurably evolving population contain fingerprints of21

past population dynamics [Felsenstein, 1992]. In particular, the phylogeny spanning the sampled22

genetic data contains information about the mixing pattern of different populations and thus23
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contains information beyond what is encoded in classic occurrence data, see e.g. Hey and24

Machado [2003], Stadler and Bonhoeffer [2013b]. Phylodynamic methods [Grenfell et al., 2004,25

Kühnert et al., 2011] aim at quantifying past population dynamic parameters, such as migration26

rates, from genetic sequencing data. Such tools have been widely used to study the spread of27

infectious diseases in structured populations, see e.g. Dudas et al. [2017], Faria et al. [2018] as28

examples for analyses of recent epidemic outbreaks. Both the host population and the pathogen29

population may be structured, e.g. the host population may be geographically structured, and the30

pathogen population may consist of a drug-sensitive and a drug-resistant subpopulation.31

Understanding how these subpopulations interact with one another, whether they are separated by32

geographic distance, lifestyles of the hosts, or other barriers, is a key determinant in33

understanding how an epidemic spreads. In macroevolution, different species may also be34

structured into different “subpopulations”, e.g. due to their geographic distribution or to trait35

variations, see e.g. Hodges [1997]. Phylodynamic tools aim at quantifying the rates at which36

species migrate or traits are gained or lost, and the rates of speciation and extinction within the37

“subpopulations”, see e.g. Goldberg et al. [2010], Mayrose et al. [2011], Goldberg et al. [2011].38

The phylodynamic analysis of structured populations can be performed using two classes of39

models, namely coalescent-based and birth-death-based approaches. Both have their unique40

advantages and disadvantages [Volz and Frost, 2014, Boskova et al., 2014]. Here, we report on41

improvements to a multi-type birth-death-based approach.42

A multi-type birth-death model is a linear birth-death model accounting for structured43

populations. Under this model, the probability density of a phylogenetic tree can be calculated by44

numerically integrating a system of differential equations. The use of this model within a45

phylodynamic setting and the associated computational approach were initially proposed for46

analyzing species phylogenies [Maddison et al., 2007] and later for analyzing pathogen47

phylogenies [Stadler and Bonhoeffer, 2013a, Volz and Frost, 2014]. The package bdmm within48

the Bayesian phylodynamic inference framework BEAST2 [Bouckaert et al., 2014] generalizes49

the assumptions of these two initial approaches [Kühnert et al., 2016]. It further allows for50

co-inferring phylogenetic trees together with the model parameters and thus takes phylogenetic51

uncertainty explicitly into account. Datasets containing more than 250 genetic sequences could52

not be analysed using the original bdmm package [Kühnert et al., 2016] due to numerical53
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instability. This limitation was a strong impediment to obtaining reliable results, particularly for54

analysis of structured populations, as quantifying parameters which characterize each55

subpopulation requires a significant amount of samples from each of them. The instability was56

due to numerical underflow in the probability density calculations, meaning that probability57

values extremely close to zero could not be accurately calculated and stored. We have solved the58

numerical instability issue of bdmm, thereby lifting the hard limit on the number of samples that59

can be analysed. In addition, the practical usefulness of the bdmm package was previously60

restricted by the amount of computation time required to carry out analyses. We report here on61

significant improvements in computation efficiency. As a result, bdmm can now handle datasets62

containing several hundred genetic samples. Finally, we made the multi-type birth-death model63

more general in several ways: homochronous sampling events can now occur at multiple times64

(not only the present), individuals are no longer necessarily removed upon sampling, and the65

migration rate specification has been made more flexible by allowing for piecewise-constant66

changes through time.67

Overall, these model generalizations and implementation improvements enable more reliable and68

ambitious empirical data analyses. Below, we use the new release of bdmm to quantify Influenza69

A virus spread around the globe as an example application, and compare the results obtained with70

those from the reduced dataset analysed in [Kühnert et al., 2016].71

Methods72

Description of the extended multi-type birth-death model73

First, we formally define the multi-type birth-death model on d types [Kühnert et al., 2016]74

including the generalizations introduced in this work. The process starts at time 0 with one75

individual, this is also called the origin of the process and the origin of the resulting tree. This76

individual is of type i ∈ {1 . . . d}, with probability hi (where
∑d

i=1 hi = 1). The process ends77

after T time units (at present). The time interval (0, T ) is partitioned into n intervals through78

0 < t1 < . . . < tn−1 < T , and we define t0 := 0 and tn := T . Each individual at time t,79

tk−1 ≤ t < tk, k ∈ {1 . . . n} of type i ∈ {1 . . . d}, gives rise to an additional individual of type80
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j ∈ {1 . . . d}, with birth rate λij,k, migrates to type j with rate mij,k (with mii,k = 0), dies with81

rate µi,k, and is sampled with rate ψi,k. At time tk, each individual of type i is sampled with82

probability ρi,k. Upon sampling (either with rate ψi,k or probability ρi,k), the individual is83

removed from the infectious pool with probability ri,k. We summarize all birth-rates λij,k in λ,84

migration rates mij,k inm, death rates µi,k in µ, sampling rates ψi,k in ψ, sampling probabilities85

ρi,k in ρ and removal probabilities ri,k in r, i, j ∈ {1, . . . , d}, k ∈ {1, . . . , n}. The model86

described in Kühnert et al. [2016] is a special case of the above, assuming that migration rates are87

constant through time (i.e. do not depend on k), removal probabilities are constant through time88

and across types (i.e. do not depend on k and i), and that ρi,k = 0 for k < n and i ∈ {1 . . . d}.89

This process gives rise to complete trees on sampled and non-sampled individuals with types90

being assigned to all branches at all times (Figure 1, left). Following each branching event, one91

offspring is assigned to be the “left” offspring, and one the “right” offspring, each assignment has92

probability 1
2
. In the figure, we draw the branch with assignment “left” on the left and the branch93

with assignment “right” on the right. Such trees are called oriented trees, and considering94

oriented trees will facilitate calculations of probability densities of trees. Pruning all lineages95

without sampled descendants leads to the sampled phylogeny (Figure 1, middle and right). The96

orientation of a branch in the sampled phylogeny is the orientation of the corresponding branch97

descending the common branching event in the complete tree. When the sampled phylogeny is98

annotated with the types along each branch, we refer to it as a branch-typed tree (Figure 1,99

middle). On the other hand, if we discard these annotations but keep the types of the sampled100

individuals, we call the resulting object a sample-typed (or tip-typed) tree (Figure 1, right).101

Below, we state the probability density of the sampled tree (i.e. the sample-typed or branch-typed102

tree) given the multi-type birth–death parameters λ,m, µ, ψ, ρ, r, T . This probability density is103

obtained by integrating probability densities g from the leaf nodes (or “tips”), backwards along104

all edges (or “branches”), to the origin of the tree. Our notation here is based on previous work105

[Kühnert et al., 2016, Stadler et al., 2013], and the probabilities pi,k(t) and gei,k(t) relate to E and106

D in Maddison et al. [2007], Stadler and Bonhoeffer [2013a], respectively.107

Every branching event in the sampled tree gives rise to a node with degree 3 (i.e. 3 branches are108

attached). Every sampling event gives rise to a node of degree 2 (called “sampled ancestor”) or 1109

(called “tip”, as defined above). A sampling event at time t = tk, k ∈ {1, . . . , n}, is referred to as110
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Complete tree Branch-typed tree Sample-typed tree
T

0

tim
e

t1

Figure 1: Complete tree (left) and sampled trees (middle and right) obtained from a multi-type
birth-death process with two types. The orange and blue dots on the trees represent sampled
individuals and are coloured according to the type these individuals belong to. A ρ-sampling
event happens at time t1. The grey squares represent degree-2 nodes added to branches crossing
this event. ρ-sampling also happens at present (time T ). As seen in the complete tree, the first
three individuals who were sampled were not removed from the population upon sampling, while
the four individuals giving rise to the later samples were removed upon sampling.

a ρ-sampled node. All other nodes corresponding to samples are referred to as ψ-sampled nodes.111

Further, degree-2 nodes are put at time tk on all lineages crossing time tk, k = 1, . . . , n− 1 as112

shown at time t1 in Figure 1. In a branch-typed tree, a node of degree 2 also occurs on a lineage at113

a time point when a type-change occurs. Such type changes may be the result of either migrations114

or birth events in which one of the descendant subtrees is unsampled (Figure 1, middle).115

We highlight that in bdmm, we assume that the most recent sampling event happens at time T .116

This is equivalent to assuming that the sampling effort was terminated directly after the last117

sample was collected, and overcomes the necessity for users to specify the time between the last118

sample and the termination of the sampling effort at time T .119

The derivation of the probability density of a sampled tree under the extended multi-type120

birth-death model is developped in Supplementary Information (SI) (section S1).121

Implementation improvements122

The computation of probability densities of sampled trees under the multi-type birth-death model123

require numerically solving Ordinary Differential Equations (ODEs) along each tree branch. We124

significantly improved the robustness of the original bdmm implementation, which suffered from125

instabilities caused by underflow of these numerical calculations. Compared to the original126

implementation, we prevent underflow by implementing an extended precision floating point127
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Figure 2: Comparison between the original and updated implementation of the multi-type birth-
death model. A: Speed comparison. Only successful calculations were taken into account i.e.
calculations where the log-probability density was different from −∞. B: Success in calculating
probability density values plotted against tree size. The values presented in this panel correspond
to the same set of calculations as the one in panel A.

representation (EPFP) for storing intermediary calculation results. Additional to this128

improvement in stability, we improved the efficiency of the probability density calculations, by 1)129

using an adaptive-step-size integrator for numerical integration, 2) performing preliminary130

calculations and storing the results for use during the main calculation step and 3) distributing131

calculations among threads running in parallel. Details can be found in SI section S2.132

Results133

Evaluation of numerical improvements134

We compared the robustness and efficiency of the improved bdmm package against its original135

version. We considered varying tree sizes, between 10 and 1000 samples. For each tree size, we136

simulated 50 branch-typed and 50 sample-typed trees under the multi-type birth-death model137

using randomly-drawn parameter values from the distributions shown in SI Table S1. For each138

simulated tree, we measured the time taken to perform the calculation of the probability density139

given the parameter values under which the tree was simulated, using the updated and the140

original bdmm implementation. We report the wall-clock time taken to perform this calculation141

5000 times (Fig. 2). All computations are performed on a MacBook Pro with a dual-core 2.3142
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GHz Intel Core i5 processor. The new implementation of bdmm is on average 9 times faster than143

the original (Fig. 2A). The robustness of the updated implementation is demonstrated by144

reporting how often the implementations return −∞ for the probability density in log space. We145

call these calculations “failures”, the most likely cause of error being underflow. Our new146

implementation shows no calculation failure for trees with up to 1000 samples, while in the147

original implementation calculations often fail for trees with more than 250 samples (Fig. 2B).148

Influenza A virus (H3N2) analysis149

As an example of a biological question which can be investigated with bdmm, we analysed 500150

H3N2 influenza virus HA sequences sampled around the globe from 2000 to 2006 and aim to151

recover the seasonal dynamics of the global epidemics. The dataset is a subset of the data152

analysed by Vaughan et al. [2014], taken from three different regions around the globe: New153

York (North, n = 167), New Zealand (South, n = 215) and Hong Kong (Tropics, n = 118). As a154

comparison, we performed an identical analysis with the H3N2 influenza dataset of 175155

sequences sampled between 2003 and 2006 used in [Kühnert et al., 2016]. This dataset of 175156

sequences was also a subset of the data by Vaughan et al. [2014], and it also groups samples from157

3 locations denoted as North (for northern hemisphere), South (for southern hemisphere) and158

Tropic (for tropical regions). Note that the latter dataset comes from more geographically-spread159

samples and thus we do not expect results from both analysis to be perfectly comparable. As we160

deal with pathogen sequence data, we adopt the epidemiological parametrization of the161

multi-type birth-death model as detailed in Kühnert et al. [2016]. The epidemiological162

parametrization substitutes birth, death and sampling rates with effective reproduction numbers163

within types, rate at which hosts become noninfectious and sampling proportions. To study the164

seasonal dynamics of the global epidemic, we allow the effective reproduction number Re to vary165

through time. To do so, we subdivide time into six-month intervals (starting April 1st and166

October 1st) and we constrain effective reproduction number values corresponding to the same167

season across different years to be equal for each particular location. Further details on the data168

analysis configuration can be found in Supplementary section S3.169

The analysis of the larger dataset (500 samples) allows for the reconstruction of the evolutionary170

tree encompassing a longer time period, and therefore gives a more long-term and detailed view171

7

.CC-BY 4.0 International licenseIt is made available under a 
perpetuity.

this preprint (which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in 
The copyright holder for. http://dx.doi.org/10.1101/2020.01.06.895532doi: bioRxiv preprint first posted online Jan. 6, 2020; 

http://dx.doi.org/10.1101/2020.01.06.895532
http://creativecommons.org/licenses/by/4.0/


●

●

●

North

South

Tropics

●

●

●
●●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●
●

●●
● ●

●
●

●●●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●●

●
●

●

●

●

●
●

●

●

●

●

●

● ●
●

●

●

●

●●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

● ●

●

●

●
●

●●

●

●

●

●

●

●

●

●●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●
●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●
●

●

●

●●
●

●

●●●

●●

●

●

●

●

●

●
●
●
●

●
●
●

●

●

●●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●
●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●
●

●●

●

●

●

●

●

●
●

●
●
●

●
●

●

●●

●

●

●

●

●

●
●

●

●

●
●
●

●
●

●
●

●

●●
●

●
●

●

●

●

●

●

●

●

●

●

●●
●

●

●
●
●

●

●

●

● ●
●●

●

●
● ●

●

●

●
●

●

●●

●
● ●

●

●

●

●

●

●

●

●●

●

●●●
●

●●

●

●
●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●●
●●

●

2004 200620022000

a

b

Figure 3: Maximum-Clade Credibility (MCC) trees for analyses with 175 samples (a) and 500
samples (b).

of the evolution of the global epidemic (see Fig 3 for the Maximum-Clade Credibility trees).172

As can be expected for the tropical location, in both analyses, effective reproduction numbers for173

H3N2 influenza A are inferred to be close to one year-round (Fig 4A). Conversely, strong174

seasonal variations can be observed in Northern and Southern hemisphere locations. There, the175

effective reproduction number is close to one in winter, while it is much lower in summer.176

Inferences from the small and large datasets are mostly in agreement. A subtle difference177

appears: in the larger dataset, the effective reproduction number in winter seasons and in the178

tropical location are closer to one, with less variation across estimates. This seems to indicate179

that the variations between estimates observed with the smaller dataset including samples from180

2003 to 2006 (for instance Re in winter in the North compared to Re in winter in the South) are181

due to stochastic fluctations which are averaged out when considering a longer period of182

transmission dynamics in the larger dataset covering the years 2000 to 2006.183

Precise inference of migration rates is more difficult, as is reflected by the significant uncertainty184

we obtain on the estimates (Fig 4B). Still, we observe in general that the uncertainty is reduced185

for the inference performed with the larger dataset, as expected. A significant difference between186
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Figure 4: A: Seasonal effective reproduction numbers for each sample location, for both datasets.
B: Migration rates inferred for each dataset. N, T and S refer respectively to North, South and
Tropics. For instance, “Mig. rate N-T” represents the migration rate from the Northern location to
the Tropical one.

the migration rates inferred from the Southern to Tropical locations arises between the two187

analysis. With the larger dataset, the estimated rate is much lower than with the smaller one, and188

more in range with the other migration rate estimates. Detailed results of all the parameter189

estimates for both analyses are available in Table S3. Most notably, estimates of root locations190

for both datasets are very similar. In both cases, the tropical location is the most likely location191

for the root; however, neither of the two other locations can be entirely excluded.192

Discussion193

The multi-type birth-death model with its updated implementation in the bdmm package for194

BEAST 2 provides a flexible method for taking into account the effect of population structure195

when performing phylodynamic genetic sequence analysis. Compared to the original196

implementation, we now prevent underflow of numerical calculations and speed up calculations197

by almost an order of magnitude. The size limit of around 250 samples for datasets which could198

be handled by bdmm is thus lifted and significantly larger datasets can now be analysed. We199

demonstrate this improvement by analysing two datasets of Influenza A virus H3N2 genetic data200

from around the globe. One dataset has 500 samples and could not have been analyzed with the201

original version of bdmm, the other one contains 175 samples and is the original example dataset202
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analyzed in [Kühnert et al., 2016]. Overall, we observe, as could be expected, that analysing a203

dataset with more samples gives a more long-term picture of the global transmission patterns and204

reduces the general uncertainty on parameter estimates.205

With the addition of so-called ρ-sampling events in the past, intense sampling efforts limited to206

short periods of time (leading to many samples being taken nearly simultaneously) can be easily207

modelled as instantaneous sampling events across the entire population (or sub-population),208

rather than as non-instantaneous sampling over small sampling intervals. This simplifies the209

modelling of intense pathogen sequencing efforts in very short time windows. When using a210

multi-type birth-death model in the macroevolutionary framework, ρ-sampling can be used to211

model fossil samples originating from the same rock layer. By allowing the removal probability r212

(the probability for an individual to be removed from the infectious population upon sampling) to213

be type-dependent and to vary across time intervals, as well as allowing migration rates between214

types to vary across time intervals, we further increase the generality and flexibility of the215

multi-type birth-death model.216

We focused on an epidemiological application of bdmm, where we co-infer the phylogenetic trees217

to take into account the phylogenetic uncertainty. However, the bdmm modelling assumptions are218

equally applicable to the analysis of macroevolutionary data, in which context bdmm allows for219

the joint inference of trees with fossil samples under structured models. In the context of the220

exploration of trait-dependent speciation, structured birth-death models such as the binary-state221

speciation and extinction model (BiSSE) [Maddison, 2006, FitzJohn, 2012] have been shown to222

possibly produce spurious associations between character state and speciation rate when applied223

to empirical phylogenies [Rabosky and Goldberg, 2015]. When used in this fashion, users of224

bdmm should assess the propensity for Type I errors with their dataset through neutral trait225

simulations, as suggested by Rabosky and Goldberg [2015].226

In summary, we expect the new release of bdmm to become a standard tool for phylodynamic227

analysis of sequencing data and phylogenetic trees from structured populations.228
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