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Zussamenfassung:

In dieser Arbeit untersuchen wir die lokal skaleninvarianten Theorien der konfor-
men und Weyl quadratischen Gravitation und die Beziehungen zwischen ihnen.
Mithilfe einer Yang-Mills inspirierten Eichtheorie leiten wir die Wirkungen ab, die
diese Theorien beschreiben, und diskutieren ihre Phänomenologien. Besonderes
Augenmerk wird auf die physikalischen propagierenden Freiheitsgrade in jeder
Theorie gelegt, sowie auf die kosmologischen Implikationen der konformen Gravi-
tation und die dimensionale Transmutation, die in der quadratischen Gravitation
von Weyl auftritt. Das Problem der Ostrogradsky Instabilitäten, die aufgrund
von Ableitungen vierter Ordnung auftreten, die in beiden Theorien vorhanden
sind, wird ebenfalls diskutiert. Schlieÿlich, mithilfe des Verfahrens der sogenan-
nten Ricci-Eichung stellen wir fest, dass die konforme Gravitation als geeichte
quadratische Weyl-Schwerkraft angesehen werden kann, und wir spekulieren über
die Existenz einer alternativen Wahl der Eichung, die zu einer neuen Theorie
führt, die dual zur konformen Gravitation ist.

Abstract:

In this thesis we investigate the locally scale-invariant theories of conformal and
Weyl quadratic gravity, and the ensuing relationship between them. Using a
Yang-Mills inspired gauge theory perspective, we derive the actions describing
these theories and discuss their phenomenologies. Particular focus is put on the
physically propagating degrees of freedom in each theory, as well as the cosmo-
logical implications of conformal gravity and the dimensional transmutation that
occurs naturally in Weyl quadratic gravity. The issue of Ostrogradsky instabil-
ities that arise from the fourth-order derivatives present in both theories is also
discussed. Finally, using a process known as Ricci gauging, we �nd that conformal
gravity can be viewed as gauged-�xed Weyl quadratic gravity, and we speculate
on the existence of an alternative gauge �xing procedure that leads to a new
theory which is dual to conformal gravity.
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Part I

Locally Weyl-Invariant

Theories of Gravity
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1 Introduction

Despite the countless incredible predictions of modern theoretical physics, there
are still many important things that we do not understand about our universe. Per-
haps chief among them is gravity's relationship with the quantum world. Over the
last couple of centuries, we have steadily gained deeper and deeper insights into the
workings of our world at the smallest scales. Indeed, it is not an exaggeration to say
that modern particle physics written in the language of quantum �eld theory is the
most well-tested theory ever laid out by humankind. However, the Standard Model
of particle physics has absolutely nothing to say about the workings of gravity. Of
course that is not to say that we lack an understanding of gravitation in general.
Einstein put forth his famous theory of General Relativity over one hundred years
ago and we have yet to �nd any signi�cant deviations from its predictions. As re-
cently as 2012, gravitational waves were detected in precisely the way his theory said
they would appear. The fact remains however, that serious theoretical inconsisten-
cies arise when General Relativity is viewed in conjunction with quantum mechanics.
When we extrapolate our established understanding of gravity to the smallest scales,
contradictions such as physical singularities and in�nite probabilities abound. One
of the key tenants of quantum �eld theory is the notion of renormalization, by which
we are able to extract meaningful predictions out of a theory that would otherwise
exhibit divergences. The trouble is that Einstein's theory as it stands is fundamen-
tally non-renormalizable. It resists description in the language of particle physics,
which tells us that our current description is incomplete. We have come to learn
that our world is quantized and we have yet to �nd a description of gravity that
re�ects this.

As theoretical physicists have always done, we will attempt to remedy our mis-
understanding by following the guiding light of symmetry. When we understand
the dynamics of a system in one regime then an appropriate symmetry transforma-
tion can tell us how it behaves in another. It is our belief that the fundamental
symmetries of spacetime itself are not yet properly understood and that we must
enlarge the currently known group of acceptable transformations. It was through
the strict enforcement of general coordinate invariance that Einstein was able to
derive General Relativity, and through the notion of internal SU(N) symmetries
that we gained an understanding of the other fundamental forces. It is quite nat-
ural to assume that invariance under some additional symmetry will provide the
answers that we seek, and since what we seek is a description of all the forces at
every scale, symmetry under a change of scale is where we will base our investiga-
tions. Of course, while General Relativity has its theoretical problems, it also has
many testable predictions that the theory which replaces it must reproduce in the
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appropriate limits. Fortunately for us, there are many theoretical and experimental
bounds imposed by General Relativity and quantum �eld theory that will allow us
to narrow our search for a full description of quantum gravity.

In the �rst part of this thesis, we will investigate two candidates for an improved
description of gravity that are both based on the principle of invariance under local
scale transformations. Before getting into the speci�cs of these theories, we will
�rst present a review of the important aspects of General Relativity and Yang-
Mills gauge theory in Sections 1.2 and 1.3. Next, we will go through derivations of
our two theories, and discuss their phenomenologies in Chapters 2 and 3. In the
second part of this thesis, we will identify a connection between these two theories in
Section 4.1 and show in Chapter 5 that they have the potential to work together to
further our understanding of gravitation. We will use natural units throughout this
work unless speci�ed otherwise. We will also use the metric signature {+,−,−,−},
and de�ne the Riemann and Ricci tensors �positive� as Rα

βµν ≡ +∂µΓαβν + ... and
Rµν ≡ +Rα

µαν . Now let us begin by clearly stating our reasons to expect that the
universe is insensitive to changes of scale at the fundamental level.

1.1 Motivations

It is an established fact in the world of particle physics that any theory with
dimensionless couplings, such as the Standard Model, becomes insensitive to the
energy scales imposed by the mass of the particles at high energies. When the
momenta of any massive particle becomes very large the mass term in the propagator
becomes negligible and the particle in question can be treated as massless.

i

p2 −m2 + iε

p�m−→ i

p2 + iε
(1.1)

As we move into the high energy regime in such a theory, our calculations become
immune to the e�ects of any inherent mass scale - we pick up scale symmetry.
However, this process only indicates the presence of an approximate symmetry that
becomes stronger as we move into the UV, so why should we expect scale invariance
to be exact? We certainly don't see scale invariance in the world around us that
is �lled with massive particles! If scale invariance is to be realized in nature then
it must be spontaneously broken below some threshold energy. This e�ect is well
known to exist in many areas of physics and there is no reason it cannot apply to
theories involving gravity as well.

From a theoretical point of view, a local scale symmetry is much more attractive
than a global one. Gauged local symmetries are the backbone of modern particle
physics where they are used to describe interactions between fundamental forces
and matter. On the other hand, global symmetries tend to arise as approximate
symmetries of a model, and while they can certainly lead to important predictions,
by themselves they do not share quite the same power to describe physical processes
on the fundamental level. Their true descriptive power only comes about when we
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promote them to local symmetries by introducing redundant degrees of freedom in
the form of gauge �elds.

Since we are already discussing the di�erence between global and local symme-
try, we would be remiss if we didn't mention the complicated relationship between
gravity and global charge conservation. Though it is still a �ercely debated topic, it
is becoming common knowledge among experts that global symmetries are always
violated in the presence of gravity. There are plenty of formal arguments invoking
the holographic principle, explicit wormhole metrics, etc., that support this seem-
ingly strange claim, but it is perhaps easier to understand by example. Consider a
classic global symmetry such as baryon number and a star with B ≈ 1048 that has
collapsed into a black hole. We need only a semi-classical theory interpretation of
gravity to show that the black hole will decay through thermal Hawking radiation.
Since all of the baryon number charge is concentrated at the singularity and is non-
local to everything outside the horizon, the thermal radiation has no way to receive
information about the charge and emits with an average of B = 0. Eventually the
the black hole will decay in this fashion until it is no longer massive enough to
emit 1048 baryons, regardless of any theory of quantum gravity that may apply on
small scales. Clearly the same logic holds for any type of globally conserved charge.
Gauge symmetries on the other hand appear to be safe from this e�ect since they
correspond to �elds that exist outside of the event horizon which allow them keep
track of the total charge. A formal justi�cation of this statement rapidly gets quite
technical, and since that is not the topic of this thesis, su�ce to say for now that
the experts agree that symmetries must be local in the presence of gravity. We refer
the curious reader to works such as [Kallosh et al., 1995] for more information.

Given the powerful descriptive capabilities of local gauge symmetry and nature's
apparent predilection towards scale invariance at high energies, we choose to use local
scale symmetry as the guiding principle in our search for a complete description of
gravity and its interactions with quantum �elds. Let us now proceed by establishing
what is formally meant by scale symmetry.

1.1.1 Scale, conformal, and Weyl symmetry

The terms scale-, conformal-, and Weyl-symmetric are often used interchangeably
throughout the literature, but it is important to be precise about what each of these
concepts means. Even if the community at large often con�ates these terms without
remorse, we can at least di�erentiate between them in this work.

A local scale transformation is simply the rescaling of the spacetime coordinates
xµ by the local factor λ(x).

xµ → x′µ = λ(x)xµ (1.2)

This transformation is also often referred to as a dilation and its corresponding
Abelian symmetry group is usually named D(1). We usually consider quantum
�eld theories that are invariant under the Poincaré group of spacetime symmetries
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ISO(1, 3) i.e. invariant under translations, and Lorentz transformations, so it would
seem natural to extend this symmetry to G = ISO(1, 3) × D(1). Interestingly
however, in all but a few special cases (ex. the theory of elasticity in two dimensions
[Riva and Cardy, 2005]), QFTs that are invariant under G are also invariant under
the full conformal group SO(2, 4). It turns out that the only requirements for a G-
invariant theory to also be invariant under the conformal group are that the theory
is unitary and that it is possible to write the trace of the energy momentum tensor
T µ
µ = ∂µ∂νL

µν for some operator Lµν [Polchinski, 1988]. The conformal group is
special for a number of reasons, but most notably because it represents the largest
group of spacetime symmetries that leave both the Maxwell equations and the light
cone ds2 = 0 invariant. In some sense, conformal symmetry is the �maximal� amount
of spacetime symmetry that we can expect to see in a realistic quantum �eld theory.
Prior to symmetry breaking and the introduction of a Higgs vacuum expectation
value, even the Standard Model is conformally invariant at the classical level (up
to the Higgs mass term). This means that all of the other forces in nature that
we know of are at least classically conformal, so it makes sense that gravity would
follow the same pattern.

Conformal transformations can be written as the in�nitesimal coordinate trans-
formation xµ → xµ + εξµ, where ε is an in�nitesimal parameter and ξµ is a solution
to the conformal Killing equations

∂µξν + ∂νξµ =
1

2
ηµν∂

λξλ . (1.3)

There are �fteen solutions to these equations which generate the conformal algebra
so(2, 4). The �rst ten, which generate the Poincaré algebra, are ξµ = αµ for trans-
lations and ξµ = βµνx

ν for Lorentz transformations. The remaining �ve correspond
to the conformal extension; one generator ξµ = γxµ of dilations, and four generators
ξµ = δν(η

µνx2 − 2xµxν) of special conformal transformations. αµ, βµν , γ, and δµ

are arbitrary constants. Special conformal transformations are the extra operations
that make the conformal group distinct from G. They can be understood as an in-
version, followed by a translation, followed by another inversion of the coordinates.
With a bit of hand-waving one can picture that this composition of transformations
represents a unique conformally invariant operation in the limit δa → 0. With all of
this, we can write the in�nitesimal conformal transformation of coordinates as

xµ → x′µ = xµ + ε
(
αµ + βµνx

ν + γxµ + δν
(
ηµνx2 − 2xµxν

))
. (1.4)

When we perform this operation on a vector, its physical direction will be conserved,
but not its length. This di�ers from the standard Poincaré transformations where
both are conserved.

Next, we address the notion of Weyl symmetry. While scale and conformal sym-
metries are described by fundamental coordinate transformations (transformations
that act directly on xµ) Weyl symmetry acts as a point-wise rescaling of the �elds
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themselves. For some �eld Ψ(x), a Weyl transformation is de�ned as

Ψ(x) → eq[Ψ]ω(x)Ψ(x) . (1.5)

Here, ω(x) is the local scale factor and q[Ψ] is the Weyl weight of the �eld Ψ. Weyl
weight is related to mass dimension in the way that it di�ers for di�erent �elds, but
constants (even dimensionful constants) do not transform, so they carry a weight of
zero. For the metric this transformation looks like

gµν(x) → g′µν(x) = e2ω(x)gµν(x) . (1.6)

Operator (Ψ) Weyl Weight (q[Ψ])√
|g| +4
gµν +2
gµν -2
eµa +1
eµa -1
∂µ 0
〈φ〉 0
φ -1
ψ -3/2
Aµ 0

Table 1.1: Weyl weights of common operators

In theories where there is also a gauge boson associated with the symmetry then
that boson will also transform in the adjoint representation of D(1) as part of the
Weyl transformation, but we will get to that in Section 3.2. It is important to
note that Weyl-invariant theories of curved spacetime are only de�ned up to some
conformal class of metrics since they are insensitive to the replacement gµν → g′µν .
In other words, while a theory in standard pseudo-Riemannian space may have a
unique metric solution, a Weyl-invariant metric solution is only unique up to the
choice of conformal factor ω(x).

There is an obvious correlation between conformal and Weyl symmetry that can
be seen if we perform a conformal transformation on the metric. Since conformal
transformations are nothing more than a certain type of di�eomorphism, we can use
(1.4) to write them as

g′µν(x
′) =

∂xµ

∂x′µ
∂xν

∂x′ν
gµν(x) = γ2

(
1− 2δµx

′µ + δµδ
µx′νx

′ν)2
gµν(x

′)

= Ω2(x′)gµν(x
′) , Ω(x′) ≡ γ

(
1− 2δµx

′µ + δµδ
µx′νx

′ν) . (1.7)
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Since we now have g′µν(x
′) = Ω2(x′)gµν(x

′) we can just rename x′ to x and make the

identi�cation e2ω(x) = Ω2(x). With this it is easy to see that conformal invariance
is just a particular case of Weyl invariance, since Weyl invariance is de�ned for
arbitrary ω(x) and conformal invariance is only de�ned for the particular form of
Ω(x) in (1.7). The converse of this statement is not always true, though in practice,
many conformal �eld theories are also Weyl-invariant1.

The di�erence between scale, conformal, and Weyl invariance is subtle, but can
occasionally be very important. To brie�y restate the distinction, scale and con-
formal transformations are di�eomorphisms that act directly on the coordinates
with conformal transformations being the full group of scale, special conformal, and
Poincaré transformations. Weyl invariance is not a coordinate transformation, but a
transformation that acts directly on the �elds. However, conformal transformations
can be expressed as Weyl transformations for a certain form of Ω(x). Thus, Weyl
symmetry always implies conformal symmetry.

Now that we have laid out some important de�nitions and established our moti-
vations for describing a locally scale-invariant theory of gravity, we will take a step
back and take a look at some well-established theories that will form the backbone
of our work. The �rst of these will be the most well-tested description of gravity we
have to date - General Relativity.

1.2 Overview of General Relativity

For approximately one hundred years, Einstein's theory of General Relativity
has been the only widely accepted theory of gravitational interactions. Despite
its theoretical drawbacks that we discussed in the previous section, it has been
instrumental in our understanding of physics at large scales and has contributed
many predictions from the scale of our solar system up to the extra-galactic scales of
cosmology. Since we have yet to �nd any signi�cant deviations from the predictions
of GR, it is necessary for any more complicated theory of gravitation to reproduce
these predictions in the appropriate limits. For this reason, we present the following
overview of the basic principles of General Relativity. We will mostly follow the
introductory texts by Amendola [2018] and Zee [2013].

General Relativity is a theory of gravity based around the concept of invariance
of physical laws under general coordinate transformations. It is written in the lan-
guage of di�erential geometry, so we begin by de�ning the notion of a di�erentiable
manifold. An n-dimensional manifoldM is nothing more than a set of in�nitesimal
coordinate patches Ui that are stuck together to form a global structure.⋃

i

Ui =M (1.8)

1See Karananas and Monin [2016] for speci�c examples of conformal theories that are not Weyl-
invariant.
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We require that each local patch is �at Ui ∼= R
n, but the whole manifold is allowed to

have more a more complicated, �curved�, structure whereM � R
n. We also de�ne

transition functions that tell us how overlapping patches relate to one another and
when the whole collection of these functions is di�erentiable, we have a di�erentiable
manifold. Given a set of coordinates onM in some basis xα and some other set of
coordinates on the sameM in another basis x′β, we can transform operators living on
M from one basis to another using the Jacobian matrix Λα

β = ∂xα

∂x′β
or its inverse Λβ

α.
We also require that these coordinate transformations be di�erentiable, in which case
they are known as di�eomorphisms. An object that transforms covariantly under
di�eomorphisms is called a tensor. For a rank-1 tensor this looks like

V ′α = Λα
βV

β . (1.9)

While some basis may be more convenient than another when it comes to calcu-
lations, we require that physical observables be independent of the choice of co-
ordinates. All physical laws that we derive using this framework must be written
in terms of invariant quantities that do not change under a change of coordinate
system. Now, if we assign unit vectors ~eα to each coordinate in some basis (basis

vectors), then the standard de�nition of a vector can be written as ~V ≡ V α~eα.

This is a convenient point to introduce one of the most important objects in GR
- the symmetric metric tensor gµν . The metric is a rank-2 tensor de�ned as the
inner product of basis vectors, and as such, it allows us compute the inner product
of general vectors.

gµν = g(~eµ, ~eν) ≡ ~eµ · ~eν ~A · ~B =
(
AµBν

)(
~eµ · ~eν

)
= AµBνgµν (1.10)

The metric (and its inverse gµν) is a very powerful object because its components
fully categorize a given basis and it allows us to lower (and raise) indices.

Aµ = gµνA
ν (1.11)

We de�ne the inner product of two vectors in a given basis as the contraction of
indices using the metric that describes that basis.

gµνA
µBν = AνB

ν = ~A · ~B (1.12)

Manifolds that are equipped with a metric are known as pseudo-Riemannian man-
ifolds and they are completely described by the metric itself. In the language of
di�erential forms, we say that the metric is a (0, 2) tensor, or 2-form, which means
that it serves as a function that maps two vectors onto the real number line. It is
a covariant tensor while it's inverse gµν is a contravariant (2, 0) tensor that serves
as the inverse map. With the metric and inner product we can construct quantities
that are basis independent i.e. invariant under coordinate transformations. A par-
ticularly important example of an invariant quantity is the line element ds2 which
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describes the length of the in�nitesimal interval of spacetime. If we include special
relativity in the picture, the line element for �at Minkowski space is

ds2 = gµνdx
µdxν = dt2 − dx2 − dy2 − dz2 xλ = {t, x, y, z} ,

= Λµ
αΛν

βgµνΛ
α
ρdx

ρΛβ
σdx

σ = g′µνdx
′µdx′ν x′λ = {t, r, θ, φ} ,

= dt2 − dr2 − r2dθ2 − r2 sin2 θdφ2 . (1.13)

In the �rst line above we expressed the metric and coordinates in the Cartesian
basis and in the subsequent lines we performed coordinate transformations on the
metric and coordinates to the spherical basis. The transformation matrices commute
and drop out since Λµ

αΛα
ρ = δµρ , so ds

2 is una�ected. This is easy to anticipate
if we notice that ds2 has no free un-contracted indices. It is a scalar quantity and
has no indices to be primed or un-primed so it is una�ected by the coordinate
transformation. Any operator that has no free indices is invariant under a change
of coordinates and is known as a Lorentz scalar.

Moving forward, we investigate the fact that whenever we take the derivative of
a vector the derivative of the basis vectors appears as a result of the chain rule.

∂~V

∂xα
=

∂

∂xα
V β~eβ =

∂V β

∂xα
~eβ + V β ∂~eβ

∂xα
(1.14)

The derivative of a basis vector can be nonzero and is itself a vector. For example,
consider polar coordinates where α = {r, θ}. It is easy to check that

∂~er
∂r

= 0 ,
∂~eθ
∂θ

= −r~er ,
∂~er
∂θ

=
1

r
~eθ ,

∂~eθ
∂r

=
1

r
~eθ . (1.15)

We write this in a general form as

∂~eα
∂xβ

= Γµαβ~eµ , (1.16)

where Γµαβ are called the Christo�el symbols. This object does not transform co-
variantly so it is not a tensor. It represents the µ component of the vector ∂α~eβ. We
can use the Christo�el symbols to de�ne a very important operation known as the

covariant derivative which gives us the components of the (1, 1) tensor ∂~V
∂xα

.

∇αV
β ≡ ∂αV

β + V µΓβµα (1.17)

∇αV
β transforms as a tensor as a result of its Christo�el term accounting for the

non-covariant part of ∂αV
β. To be more speci�c, the Christo�el symbols serve

as the connection coe�cients that de�ne the Levi-Cevita connection. This is the
special torsion-free case of the more general a�ne connection that exists on any
tangent manifold. In the next section we will dig a bit deeper into the concept of a
connection. For now it is su�cient to understand that the covariant derivative/Levi-
Cevita connection generalizes to tensors of any rank and allows us to create more
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invariant quantities that contain gradients, divergences, etc. In GR we assume the
Christo�el symbols to be metric-compatible which means that

∇µgαβ = ∂µgαβ − Γναµgνβ − Γνβµgαν = 0 . (1.18)

This is also known as the metric-compatibility condition. It is straightforward to
derive this result using the de�nitions provided above, but it is also possible to de�ne
a theory of gravity via more general means that is not metric-compatible. In fact,
we will see just such a theory in Chapter 3.

It is actually possible to write the Christo�el symbols entirely in terms of the
metric if we also assume that the Christo�el symbols are symmetric in their lower
indices i.e. assume that Γµαβ−Γµβα = 0. This is known as the torsion-free condition,
and just like the metric-compatibility condition, it is merely an assumption that we
make in order to simplify calculations. So far, these assumptions �t our observable
data but there are plenty of interesting alternative theories of gravity that have
metric-incompatible and/or torsionful Christo�el symbols. Using these assumptions
it is possible to show that

Γµαβ =
1

2
gλµ
(
∂µgλα + ∂αgλβ − ∂λgαβ

)
. (1.19)

In theories with torsion, Γµαβ and gµν are independent of each other, but in GR
we can write the Christo�el symbols as functions of the metric. Now that we have
constructed all of the important mathematical ingredients, let's use them to describe
curved spacetime and the motion of objects in a gravitational �eld. To do this we
�rst need the notion of parallel transport.

Figure 1.1: Parallel transport of a vector tangent to a curve and the deviation that arises
when a vector is transported along a closed path embedded in a manifold
with intrinsic curvature [Zee, 2013] [Carroll, 1997]

Parallel transport is the action of continuously transporting a vector along a curve
embedded in some manifold in such a way that all of its components remain constant
in a locally inertial (�at) frame. An important postulate of GR is that there always
exists a transformation to a locally inertial coordinate system. In other words, we
can always zoom in on a curved space until the local patch appears to be �at even
though globally the manifold may have complicated curvature. On a �at manifold, a
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vector that is parallel-transported along a closed path will obviously not be a�ected
when it returns to its original position, but this is not the case when the closed path
is embedded in a manifold with intrinsic curvature. In this case intrinsic refers to
the curvature being an inherent quality of the manifold meaning we don't need to
refer to a higher-dimensional space to describe it. If we choose to parallel transport
a vector that is tangent to the manifold, then it traces out a particular curve called
a geodesic. This is the equivalent of a �straight� line on a curved manifold and is
precisely the line in which the tangent vectors are all parallel to each other. This
curve is special because, by de�nition, it represents the shortest path between two
points on a manifold. If the manifold is �at then the geodesic is globally a straight
line, but it will be something more complicated on a curved manifold.

The concepts of parallel transport and the geodesic equation are important to
understand on a deeper level if one wants to do a full treatment of gravitational
physics, but we will not be dealing with them directly in this work so we refer the
curious reader to the literature mentioned at the beginning of this section for more
details. Now, what does all of this have to do with the motion of objects under
the in�uence of gravity? We know from the Principle of Least Action that objects
in motion will always choose the unique path that minimizes the di�erence of their
kinetic and potential energy - it turns out that this path is precisely the geodesic
on the manifold the object is moving on. Thus we identify spacetime itself as our
manifold in question and allow it to have curvature, which allows us to describe the
motion of objects under the in�uence of gravity as motion along a geodesic in an
intrinsically curved spacetime. In this language, objects move under the force of
gravity in the way they do because it is energetically favorable to move along the
geodesic determined by the curvature of spacetime.

At this point we need to quantify the notion of curvature, speci�cally the curvature
at any local point on a manifold. Fortunately for us, there is an object that does
precisely this - the Riemann tensor Rα

βµν . Forgoing a rigorous derivation for the
sake of brevity, we follow Carroll [1997] and simply ask, what precisely do we expect
this object to measure? We know that a vector that is parallel-transported around a
closed loop on a curved manifold will have altered components. We also know that
the covariant derivative of a vector in some direction is a measure of the in�nitesimal
change to that vector relative to the change of the same vector after being parallel
transported. Now, if we take the di�erence of covariant derivatives of a vector that
is parallel transported around an in�nitesimal closed loop in both directions, then
the result should be a value that depends entirely on the local curvature and is
independent of the derivative's direction. What we have just described is nothing
more than the commutator of two covariant derivatives. Applying this idea to an
arbitrary test vector V α, we de�ne the Riemann tensor as follows.

[
∇µ,∇ν

]
V α = ∇µ∇νV

α −∇ν∇µV
α

=
(
∂µΓαβν − ∂νΓαβµ + ΓαλµΓλνβ − ΓανλΓ

λ
βµ

)
V β (1.20)
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Rα
βµν ≡ ∂µΓαβν − ∂νΓαβµ + ΓαλµΓλνβ − ΓανλΓ

λ
βµ (1.21)

The Riemann tensor provides a description of the local intrinsic curvature and
Rα

βµν = 0 is a su�cient condition for con�rming that a given manifold is �at.
Since it is de�ned entirely in terms of the Christo�el symbols, we can also write it
in terms of metric which we know is symmetric in its indices. In this formulation
is straight forward to derive the following symmetries2 which often come in handy
when doing calculations.

Rαβµν = Rνµβα Rαβµν = −Rβανµ Rα(βµν) = 0 (1.22)

The Riemann tensor is also subject to the Bianchi identities

∇λRαβµν +∇αRβλµν +∇βRλαµν = 0 , (1.23)

which actually apply to curvature de�ned on any type of smooth manifold, not
just the pseudo-Riemannian case we are investigating here. Contracting the �rst
and third indices of the Riemann tensor de�nes a convenient rank-two symmetric
measure of curvature called the Ricci tensor.

Rµν ≡ Rα
µαν R[µν] = 0 (1.24)

If we perform a contraction of the Ricci tensor using the metric, then we arrive at
R, the Ricci scalar.

R ≡ gµνRµν (1.25)

This object is a Lorentz scalar built from the Riemann tensor and metric and it
serves as a coordinate invariant measure of curvature all on its own.

Finally we have all the machinery we need to arrive at an expression describing
gravitational dynamics. In modern physics, we use the Principle of Least Action to
determine equations of motion. Einstein and his contemporaries chose the simplest
action that can be created from curvature invariants, which refer to as the Einstein-
Hilbert action. De�ned in a canonical fashion whereMpl is the Planck mass, it looks
like

SEH = −
ˆ
d4x
√
|g|Mpl

2
R . (1.26)

Of course we are free to add an arbitrary constant Λ to this expression as Einstein
did - this is the infamous cosmological constant Λ. If we also include an arbitrary
matter Lagrangian Lm then the full action for General Relativity is

SGR =

ˆ
d4x
√
|g|
(
− Mpl

2
R + Λ + Lmatter

)
. (1.27)

2We will use standard index symmetry notation throughout this work where parentheses (...) in-
dicate total symmetrization and brackets [...] indicate total anti-symmetrization. For example,
T(µν) =

1
2 (Tµν + Tνµ) and T[µν] =

1
2 (Tµν − Tνµ).
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As usual, setting δSGR = 0 yields the equations of motion via Noether's theorem
and if we de�ne the energy momentum tensor as

Tµν ≡
−2

Mpl

√
|g|
∂
(√
|g|Lmatter

)
∂gµν

, (1.28)

then we �nally arrive at the celebrated Einstein equations.

Gµν ≡ Rµν −
1

2
Rgµν + Λgµν = Tµν (1.29)

For a given energy-momentum tensor, solutions to these equations are nothing more
than explicit forms of the metric, or in other words, complete descriptions of the
spacetime manifold. On the left side of (1.29) we have the Einstein tensor Gµν which
describes the energy stored in curvature and the intrinsic energy of spacetime (Λ),
while on the right we see the energy contributions from the matter sector encoded
in the energy momentum tensor Tµν . In the words of Wheeler, Space tells matter
how to move; matter tells space how to curve.

The two most important solutions to the Einstein equations that we will discuss
here describe the e�ects of gravity around a localized mass and on large scales in an
expanding universe. The �rst of these is known as the Schwarzschild solution.

ds2 = g(S)
µν dx

µdxν =

(
1− 2M

r

)
dt2 −

(
1− 2M

r

)−1

dr2 − r2
(
dθ2 + sin2 θdφ2

)
(1.30)

This metric describes the gravitational e�ects of a slowly rotating, uncharged mass
M for distant observers and can be used to reproduce the kinematics of orbital
motion experienced by planets, stars, and even galaxies. It also predicts the existence
of black holes and the singularity that appears as r → 0. From this metric we
can de�ne the notion of a Schwarzchild radius rs ≡ 2M where this metric clearly
becomes ill-de�ned. The spherical shell de�ned at r = rs is called an event horizon
and it marks where any object whose mass is concentrated entirely inside of it will
inevitably experience gravitational collapse into a black hole. While it is possible to
remove the apparent singularity at r = rs with a change of coordinates, this point
still marks where the spatial coordinates become time-like and the time coordinate
becomes space-like, leading to some very interesting physics. More details on black
holes and gravitational collapse can be found in any textbook on GR, for example,
the classic book by Wald [1984].

There also exists a metric solution to Einstein's equations that forms the backbone
of modern cosmology; the Friedmann�Lemaître�Robertson�Walker (FLRW) metric

ds2 = g(FLRW )
µν dxµdxν = dt2 − a2(t)

(
dr2

1− kr2
+ r2

(
dθ2 + sin2 θdφ2

))
, (1.31)
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where a(t) is the global scale factor at time t and k is the curvature at a(t) = 1. This
metric describes the gravitational in�uence of a homogeneous and isotropic perfect
�uid, which has the well-known energy momentum tensor

Tµν =
(
ρ+ p

)
UµUν + pgµν , (1.32)

where ρ is the energy density, p is the pressure, and Uµ is the four-velocity of the �uid.
Inserting the previous two equations into (1.29) gives us the Friedmann equations,
which can be conveniently formulated as(

H

H0

)2

= ΩΛ + Ωka
−2 + ΩMa

−3 + ΩRa
−4 , (1.33)

where H ≡ ȧ/a is the Hubble parameter, H0 is the present day Hubble parameter,
and ΩΛ, Ωk, ΩM , and ΩR are the current energy densities of the vacuum energy,
spatial curvature, matter (dark and baryonic), and radiation respectively, such that
1 = ΩΛ+Ωk+ΩM+ΩR. From this equation cosmologists construct the ΛCDMmodel,
which predicts/describes the Big Bang, cosmic in�ation (for ΩΛ < 0), structure
formation, and many other important features of the large scale universe. We will
get into some more speci�cs of cosmology with respect to other theories of gravity
later on, but we recommend the textbook by Weinberg [2008] for more details on
the standard treatment of cosmology.

1.3 Overview of Yang-Mills gauge theory

Modern theoretical physics is built around the formal notion of symmetry, written
in the language of group theory and di�erential geometry. In this section we will
give a short overview of how we use symmetry groups and their de�ning algebras
to understand the behavior and interactions of �elds, whether they be the quan-
tum �elds of the Standard Model, or the classical �elds that describe gravitational
interactions. This will come in very handy later on because it is only through the
lens of these mathematical tools that we are able to discuss theories of gravitation
and particle interactions on the same footing. We follow the works by Weigand and
Fuchs and Schweigert [2003].

In particle physics, the �elds that appear in an action or equation of motion
always transform as representations of a Lie algebra. Take for example some generic
fermionic matter �eld ψ(x) whose dynamics are described by the Lagrangian

L = ψ̄(x)
(
i/∂ −mψ

)
ψ(x) . (1.34)

This Lagrangian is invariant under the transformation ψ(x) → Uψ(x) where U =
e−iqα is an element of the Lie group H, q ∈ R, and α is a member of the Lie algebra
h. If we de�ne α ≡ αaTa where α

a are constant parameters and Ta are the generators
of h, then we say that L has a global H symmetry. As we discussed in Section 1.1,

19



we expect that all symmetries of a theory containing gravity should be local, so our
next step is to promote αa → αa(x). L as it stands is not invariant under this local
version of the symmetry since

∂µψ(x) → ∂µ
(
U(x)ψ(x)

)
= U(x)

(
∂µψ(x)− iq∂µα(x)

)
. (1.35)

If we enforce invariance then we must also introduce a �eld that transforms in such a
way that it cancels out the ∂µα(x) term in the equation above. This is accomplished
by introducing new degrees of freedom in the form of an h-valued connection and
the ensuing covariant derivative

∂µψ(x) → Dµψ(x) =
(
∂µ + iqAµ(x)

)
ψ(x) , (1.36)

where Aµ(x) = A a
µ (x)Ta is a gauge potential that transforms as

Aµ(x) → U(x)Aµ(x)U−1(x) +
i

q
∂µU(x)U−1(x)

= Aµ(x) + ∂µα
a(x)Ta − iqαa(x)

[
Ta, Aµ(x)

]
+O

(
α(x)2

)
. (1.37)

With the introduction of this new �eld it is easy to check that, for small αa(x),
Dµψ(x)→ U(x)Dµψ(x) and thus, ψ̄(x)

(
i /D−mψ

)
ψ(x) is locally invariant under the

gauge group H. The h-valued gauge potential Aµ de�nes the connection Dµ just as
the Christo�el symbols de�ned the connection ∇µ that we saw in the last section.
So, in the same way that we de�ned the Riemann tensor as the curvature associated
with di�eomorphism invariance in (1.21), we can de�ne the curvature (often called
the �eld strength) associated with local H invariance using the a commutator of
connections.

Fµν = F a
µν Ta ≡

1

iq

[
Dµ, Dν ] = ∂µAν − ∂νAµ + iq

[
Aµ, Aν

]
(1.38)

Fµν transforms in the adjoint representation of H i.e. Fµν → UFµνU
−1, so we can

construct a new invariant operator by squaring it, which yields a Lorentz scalar, and
by taking the trace whose cyclicity allows the transformations to drop out. Taking
the trace also removes the generators since Tr[TaTb] = 1

2
δab.

Tr
[
FµνF

µν
]

= Tr
[
F a
µν TaF

µνbTb
]

→ Tr
[
UF a

µν TaU
−1UF µνbTbU

−1
]

=
1

2
F a
µν F µν

a = Tr
[
FµνF

µν
]

(1.39)

After a canonical normalization we can add this term to L where it serves as a kinetic
term for the gauge �elds A a

µ and yields our complete gauge-invariant Lagrangian.

L = −1

2
Tr
[
FµνF

µν
]

+ ψ̄
(
i /D −mψ

)
ψ

= −1

4
F a
µν F µν

a + ψ̄
(
i/∂ −mψ

)
ψ − qψ̄ /AaTaψ (1.40)
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This is precisely the Yang-Mills-plus-matter Lagrangian that describes the interac-
tions of all the particles and forces in the Standard Model. In this way, the Standard
Model is a gauge theory based on the gauge group SU(3)C×SU(2)L×U(1)Y where
the interactions of quarks and leptons are mediated by dynamical gauge bosons as-
sociated with the generators of these Lie groups. Using this same logic it is also
possible to go in the other direction. Without considering matter contributions
from the start, we can arrive at a Lagrangian that describes the dynamics of a force-
carrying boson by specifying its symmetry group, assigning a connection/gauge �eld
to each of the generators, and computing the curvature as a commutator of the con-
nections. Thus if we know a priori, or at least have an educated guess, what the
de�ning symmetry of a force should be then we can describe its dynamics with an
action composed solely from the associated curvature.

The strong and electro-weak forces are very well described in these terms, but
things get signi�cantly more complicated when we try to include gravity in the
same framework. The issue with viewing gravity as a gauge theory is due to the
fact that its structure group H is directly related to the spacetime manifold. The
structure groups of the standard model are �internal�, they are compact unitary
groups that we add on after the spacetime manifold has been established. Standard
Model gauge theories are formulated in a �at spacetime which is una�ected by their
connection, and the curvature F a

µν that describes their dynamics is the curvature
on an abstract manifold de�ned by H. However, since gravity is described via
the curvature of spacetime, the structure group corresponds to the tangent space
of M. In this case h is non-compact and is already de�ned as soon as we de�ne
M; dependence on this type of symmetry group is referred to as a spacetime or
�external� symmetry. Gravitational curvature Rµνρσ is the curvature onM, which
is not a separate abstract manifold, but physical spacetime itself.

This self-referenital nature of gravity makes viewing it in the gauge theory picture
tricky, but not impossible. Kibble [1961] was among the �rst to show that one can
arrive at a theory of gravity that is at least very similar to General Relativity by
gauging the Poincaré group. This is a natural choice for a structure group since
it dictates the symmetries of �at Minkowski space that underlies all theories which
respect Special Relativity. The generators of the Poincaré algebra are Jab and Pa
which correspond to Lorentz transformations and translations i.e. the full set of
operations that leave Minkowski space invariant. In order to assign gauge �elds
to these generators like we did in (1.37), it becomes necessary to change up our
formalism a bit since the �elds describing gravity in our current formulation, gµν
and Γλµν , do not carry any structure group indices. We replace them with the
vierbein (sometimes called the tetrad) eaµ and spin connection χabµ via the following
relationships.

gµν = e a
µ e

b
ν ηab

√
|g| = e Γλµν = eλa∂µe

a
ν + eλae

b
ν χ

a
µ b (1.41)

The use of these Yang-Mills-style �elds is known as the vierbein formalism and we
refer the reader to appendix A for more details on its construction. The vierbein
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formalism allows us to describe gravity via the interaction of the Poincaré gauge
�elds e a

µ and χ ab
µ , but we will not go through a full derivation of the resulting

theory here since many of the details will be repeated in the next chapter. Su�ce
to say that Poincaré-gauged theories of gravity reduce to GR in the appropriate
limits, though they can deviate when coupled to fermions for example [Karananas,
2016]. However, this is not always considered to be a problem and PGT theories
have been studied in great detail. Indeed, many may consider it a mark against GR
that it resists a �clean� gauge-theoretical representation. Let us now see if we can
use the gauge theory principles discussed here to describe gravitation in a consistent
manner with the added requirement that our theory also be conformally invariant.
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2 Conformal Gravity

As we discussed in Section 1.1, there is good reason to believe that gravity should
be conformally symmetric, at least at the classical level. Since we are now well
equipped to describe physical forces as dynamical gauge bosons that correspond to
Lie-algebra-valued connections, let's see if we can apply this knowledge to describe
gravity. There are actually a few di�erent ways to arrive at the conformal gravity
action, but a direct gauging of the Lie group corresponding to conformal symmetry
is the most enlightening route in our present context.

2.1 Gauge-theoretical derivation

We begin this section by writing the in�nitesimal generators ξµ de�ned in (1.4)
as di�erential operators.

Pa = ∂a Jab =
(
xa∂b − xb∂a

)
D = xa∂

a Ka =
(
ηabx

2 − 2xaxb
)
∂b (2.1)

Here, Pa corresponds to translations, Jab to Lorentz transformations (rotations), D
to dilations, and Ka to special conformal transformations. We use Latin indices
to indicate that xa is a coordinate on the �at tangent manifold. These operators
generate the conformal algebra as de�ned by the following commutation relations.[

Pa, Pb
]

= 0
[
Jab, Jcd

]
= −ηacJbd − ηbdJac + ηbcJad + ηbcJad[

D,D
]

= 0
[
Ka, Kb

]
= 0[

Pa, Jcd
]

= ηabPc − ηacPb
[
Pa, D

]
= Pa[

Pa, Kb

]
= −2

(
Jab + ηabD

) [
Jab, D

]
= 0[

Jab, Kc

]
= −ηacKb + ηbcKa

[
D,Ka

]
= Ka (2.2)

With this, we may proceed with the Yang-Mills-style procedure presented in the
last chapter. To start, we must assign gauge �elds to to each generator so that we
may de�ne a gauge potential and the resulting curvature. In line with standard
Poincaré gauge theory we let the vierbein e a

µ and spin connection χ ab
µ account for

translations and rotations respectively. Next we de�ne the new �elds κµ and ζ a
µ

which will accompany the dilation and SCT generators. With this, the potential for
our conformal gauge theory is

Aµ = e a
µ Pa +

1

2
χ ab
µ Jab + κµD + ζ a

µ Ka , (2.3)
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where the 1
2
is inserted as a normalization convention. Now we can de�ne our

conformal curvature in the usual way.

Fµν = ∂µAν − ∂νAµ − i
[
Aµ,Aν

]
(2.4)

Expanding this expression and grouping the result in terms of the generators yields

Fµν ≡ P a
µν Pa +

1

2
J ab
µν Jab +DµνD +K a

µν Ka , (2.5)

where we have de�ned the following curvatures corresponding to each generator
[Manolakos et al., 2019].

P a
µν = −

(
∂µe

a
ν − χ a

µb e
b
ν

)
+
(
∂νe

a
µ − χ a

νb e
b
µ

)
+
(
e a
µ κν − e a

ν κµ
)

(2.6)

J ab
µν = −∂µχ ab

ν + ∂νχ
ab
µ + χ a

µc χ
cb
ν − χ a

νc χ
cb
µ

− 2
(
e a
µ ζ

b
ν − e b

µ ζ
a

ν

)
+ 2
(
e a
ν ζ

b
µ − e b

ν ζ
a

µ

)
(2.7)

Dµν = −∂µκν + ∂νκµ + 2
(
eµaζ

a
ν − eνaζ a

µ

)
(2.8)

K a
µν = −

(
∂µζ

a
ν − χ a

µb ζ
b

ν

)
+
(
∂νζ

a
µ − χ a

νb ζ
b

µ

)
+
(
ζ a
µ κν − ζ a

ν κµ
)

(2.9)

Now the procedure dictates that we construct a Lagrangian from Lorentz scalars
built from of these curvature tensors. We must restrict ourselves to quadratic terms
in order to avoid introducing any dimensionful coupling constants (which would
break the global symmetry), and if we also enforce parity conservation by neglecting
the pseudo-tensor options [Kaku et al., 1977], then it turns out that the only possible
action is

SCG =
α

4

ˆ
d4x|e|εµνρσεabcdJ ab

µν J cd
ρσ , (2.10)

where α is a dimensionless constant and ε is the totally anti-symmetric Levi-Cevita
symbol. We can recognize the �rst line of (2.7) is just the Riemann tensor written
in the vierbein formalism [Yepez, 2011] which we de�ne here as R ab

µν ≡ ∂µχ
ab
ν −

∂νχ
ab
µ +χ a

µc χ
cb
ν −χ a

νc χ
cb
µ . After expanding out all the terms and dropping a total

derivative1, we arrive at the following.

SCG = 16α

ˆ
d4x|e|

(
−Rµλabeλa

(
eνbζµce

νc − 1

2
eµbζνce

νc
)

+ 2ζµa
(
eµaζνbe

νb − eνaζνbeµb
))

= 16α

ˆ
d4x|e|

(
−Rµνζµν −

1

2
Rζ ν

ν + 2
(
ζ µ
µ ζ ν

ν − ζµν ζµν
))

(2.11)

1This term is in fact the Gauss-Bonnet invariant. See Section 3.1 for more details.
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This expression is a bit unattractive, but we can simplify it by enforcing invariance
under the gauge transformations. Kaku et al. [1977] showed that we can only achieve
invariance under the full conformal group if we are able write χ ab

µ in terms of e a
µ

and κµ by setting P a
µν = 0. Solving this constraint for χ ab

µ yields

χ ab
µ =− 1

2

(
eνa
(
∂µe

b
ν − ∂νe b

µ

)
+ eλaeνb(∂νeλc)e

c
µ

)
− 1

2

(
a↔ b

)
−
(
e a
µ κ

b − e b
µ κ

a
)
. (2.12)

Setting the translation curvature P a
µν to zero is well motivated by considering other

gauge theories of gravity where it appears naturally as the equation of motion for
χ ab
µ . It makes sense to consider this a necessary condition if our theory is to resemble

Einstein gravity in the low energy limit. Next, we note that while e a
µ has a kinetic

term buried inside of χ ab
µ , there is no kinetic term for ζ a

µ present in the action.
No derivatives of it were introduced because quadratic K a

µν terms generate pseudo-
scalars which do not respect parity. In reality, these constraints perhaps make
even more sense if we follow the logic in the opposite direction. This theory would
presumably have a hard time reducing to Einstein gravity in any limit if it contained
an extra gauge boson in the spectrum. For this reason we could assume that ζ a

µ

is non-dynamical and pick up parity invariance as a bonus. In any case, this all
boils down to the fact that in this theory we can solve for ζ a

µ algebraically using its
equation of motion and eliminate it from the action.

δζSCG =ζµa +
1

8

(
Rµνbae

νb − 1

6
Rνλbce

λbeνceµa
)

= 0 (2.13)

⇒ ζ a
µ = −1

8

(
R a
µ −

1

6
Re a

µ

)
(2.14)

If we integrate ζ a
µ out by inserting this expression back into the action (2.11), we

see a dramatic simpli�cation.

SCG = 2α

ˆ
d4x|e|

(
RµνRµν − 4

(
∂µκν∂

µκν − ∂µκν∂νκµ
)
− 1

3
R2
)

= 2α

ˆ
d4x|e|

(
RµνRνµ − 1

3
R2
)

=
α

4

ˆ
d4x|e|εµνρσεabcdC ab

µν C cd
ρσ (2.15)

Here we have de�ned C ab
µν to be the vierbein-language-version of the famous Weyl

tensor Cµνρσ which is de�ned in the metric formalism as

Cµνρσ = Rµνρσ −
(
gµ[ρRν]σ − gµ[σRν]ρ

)
+

1

3

(
gµ[ρgν]σ

)
R . (2.16)
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The Weyl tensor is essentially just the Riemann tensor with all of its contractions
subtracted out. It has all the same index symmetries as the Riemann tensor, but
its trace with respect to any index vanishes. Most importantly though, it is the
only combination of the standard curvature tensors that is totally invariant under
conformal transformations, thus it should not be a surprise to see it appear in our
theory.

Now, the Rµν in (2.15) is obviously not symmetric, but we can make it so with
the convenient gauge �xing condition κµ = 0 [Manolakos et al., 2019]. If we also
assume a torsionless connection, then it is straightforward to show that not only
does Rµν become symmetric, but also that R ab

µν = Rµνρσe
ρaeσb, R a

µ = Rµνe
νa,

R = R, and C ab
µν = Cµνρσe

ρaeσb. Putting everything together back in the standard
metric formulation, we see that our gauge theory of the conformal group is described
simply by the square of the Weyl tensor.

SCG =
α

4

ˆ
d4x|e|εµνρσεαβγδCµναβCρσγδ

= −α
ˆ
d4x
√
|g|CµναβCµναβ (2.17)

We have �nally succeeded in creating a conformally (and thus also Weyl) invariant
description of gravity using gauge theory and the mathematical notion of symmetry,
but since we are physicists and not mathematicians, the job is not done. We must
now investigate the physical implications of our theory.

2.2 Phenomenology of CG

We begin this section by considering the cosmological rami�cations that arise
from coupling matter to our theory of conformal gravity. Assuming we do not wish
to include and non-Standard Model �elds, the matter portion of our total action
STotal = SCG + SM must look like

SM =

ˆ
d4x
√
|g|
(
− 1

2
∇µΦ†∇µΦ +

1

12
Φ†ΦR− λ

(
Φ†Φ

)2

− ψ̄i
(
δij /D − YijΦ

)
ψj

)
, (2.18)

where Φ is the Higgs �eld, R is the Ricci scalar, λ is the Higgs self-coupling, ψi is
a fermion of generation i, and Yij are the Yukawa couplings. There is no Higgs-
Ricci scalar coupling constant because the exact factor of 1

12
is necessary to ensure

conformal invariance. Indeed, the whole action STotal is conformally invariant.

Now, in order to make a comparison with standard cosmology, we need the equiv-
alent of the Einstein equations for conformal gravity. In this case the variation of the
gravitational sector yields not the Einstein tensor, but the traceless and conformally
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invariant Bach tensor Bµν .

1√
|g|
δSCG
δgµν

= 4α
(
∇α∇βCµανβ +

1

2
CµανβR

αβ
)
≡ 4αBµν (2.19)

Just as we do in GR, we de�ne the energy momentum tensor as the variation of the
matter action

Tµν ≡ −
1√
|g|
δSM
δgµν

=
2

3
∇µΦ†∇νΦ−

1

3
Φ†∇µ∇νΦ−

1

6
gµν∇λΦ

†∇λΦ +
1

3
gµνΦ

†∇λ∇λΦ

− 1

6
Φ†Φ

(
Rµν −

1

2
gµνR

)
− λgµν

(
Φ†Φ

)2
+ iψ̄iγµDνψi , (2.20)

where we have eliminated the Yukawa term by inserting the fermion equation of
motion /Dψi = YijΦψj in the same way as Roberts et al. [2017]. This expression
can be greatly simpli�ed by a conformal transformation to unitary gauge where
Φ = 〈Φ〉 = const and by recognizing the Einstein tensor Gµν in the second line.

Tµν = −1

6
〈Φ〉2Gµν − gµνλ〈Φ〉4 + iψ̄iγµDνψi (2.21)

Finally, we arrive at the Bach equation by using the fact that δSTotal = 0.

4αBµν = Tµν (2.22)

Now, if we want to use this equation to build a cosmological model, then we need to
make the crucial assumption that the fermionic matter can be modeled as a perfect
�uid on cosmological scales. Mannheim [1990] presents a convincing argument as
to why this is justi�ed. It essentially boils down to the requirement that fermion
masses are only generated dynamically via spontaneous symmetry breaking, which
we already know to be a feature of the Standard Model. This allows us to perform
an incoherent averaging over the directions of the fermion momentum and exchange
the fermion term for the energy-momentum of a perfect �uid as in (1.32) and write

4αBµν = −1

6
〈Φ〉2Gµν − λ〈Φ〉4gµν +

(
ρ+ p

)
UµUν + pgµν . (2.23)

Since we now have a homogeneous and isotropic universe on our hands, we would
like to implement the FLRW metric as a solution. It is in fact easy to check that it is
a solution by noting that g

(FLRW )
µν is a conformally �at metric. Under the coordinate

transformation

t→ τ(t) =

ˆ
dt

a(t)
, (2.24)
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we get dt = a(t)dτ (provided that a(t) is well-behaved) and

g′(FLRW )
µν dx′µdx′ν = a2(τ)

(
dτ 2 − dr2

1− kr2
− r2

(
dθ2 − sin2 θdφ2

))
. (2.25)

Here, a(τ) serves as the conformal factor Ω(x) proving that g
(FLRW )
µν is indeed con-

formally �at. Since the Bach tensor is conformally invariant, it disappears when
computed with a conformally �at metric Bµν(g

(FLRW )
µν ) = 0. This allows us to

reformulate the Bach equations as

Gµν =
6

〈Φ〉2

((
ρ+ p

)
UµUν +

(
p− λ〈Φ〉4

)
gµν

)
, (2.26)

which is nothing more than a modi�ed version of the Einstein equations with Λ =
λ〈Φ〉4 and 6/〈Φ〉2 as a gravitational coupling constant. There is no need to insert a
cosmological constant by hand as in GR - it has been generated directly from the
Higgs vacuum energy. However, even though we get Λ for free in this cosmology
(after including the Higgs), we are unfortunately not exempt from a �ne-tuning
problem. Instead of setting Λ ≈ 10−120 by hand order to �t known data, here we
are forced to set λ ≈ −10−176 [Roberts et al., 2017].

Our next step is to insert Gµν(g
(FLRW )
µν ) and �nd the corresponding equivalent

to the Friedmann equations. After normalizing them to the standard Friedmann
equations, we �nd(

H

H0

)2

= − 3

4πG〈Φ〉2

(
ΩΦ0 + ΩMa

−3 + ΩRa
−4

)
+ Ωka

−2 . (2.27)

This equation shares many of the same features as (1.33), but has some key di�er-
ences. In this cosmological model, the gravitational e�ects of matter and radiation
become repulsive at large scales and essentially remove the need to invoke dark en-
ergy by hand. Additionally, if we solve this equation for a(t) and trace it backwards,
we �nd that the scale factor has a minimum non-zero (though very small) value,
indicating that there is no initial singularity present at t = 0 [Mannheim, 2006].

Another very attractive feature of conformal gravity is that it appears to negate
the need for dark matter, at least on the level of galaxies. The reason for this
stems from the fact that the Bach equation (2.22) contains four derivatives of the
metric instead of just the two present in the Einstein equation. While the Bach
equation admits the standard Schwarzschild solution (1.30), this is actually just a
simpli�ed limit in a broader class of solutions for the case where Tµν represents a
static, spherically symmetric (and possibly slowly rotating) matter source.

ds2 = B(r)dt2 −B−1dr2 − r2
(
dθ2 + sin2 θdφ2

)
(2.28)

B(r) is in general a complicated function that depends on the matter distribution
ρ(r) as

∇4B(r) =
3

4αB(r)

(
T 0

0 − T rr
)
≡ ρ(r) . (2.29)
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When we solve this di�erential equation for r > R where R is the radius of our
matter distribution, we �nd

B(r > R) = 1− β

r
+ γr , β =

1

6

ˆ R

0

dr′r′4ρ(r′) γ = −1

2

ˆ R

0

dr′r′2ρ(r′) ,

(2.30)

and so the gravitational potential in conformal gravity picks up an additional term
[Mannheim and O'Brien, 2013].

VCG(r > R) = −MG

r
+
γr

2
(2.31)

This extra term means that Newton's shell theorem is no longer valid in conformal
gravity. An object in orbit around a spherical mass M now experiences di�erent
gravitational �elds for di�erent distributions of M . The e�ects of external homoge-
neous gravitational sources also no longer cancel out, which means that the energy
distribution of the whole universe now contributes to the gravitational �eld felt by
orbiting objects. When r is small, the linear term becomes negligible and we recover
the Schwarzschild solution, Newtonian potential, and all of our familiar solar-system-
scale orbital mechanics. However, for processes such as galactic structure formation
where r is large, this term becomes very important.

Figure 2.1: Rotation curves for four di�erent galaxies with velocity (km/s) on the y-axis
and distance from the galactic center (R/R0 normalized for each galaxy) on
the x. The solid line represents the full conformal gravity prediction, while the
dashed and dot-dashed lines represent the Newtonian and linear correction
terms respectively [Mannheim, 1997].

In standard cosmology, we are usually forced to invoke the existence of dark
matter in order to match experimental data with the predicted rotation curves for
stars in orbit around a galactic center. The extra mass present in a dark matter
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halo is a nice way to explain the higher-than-expected orbital velocity of stars that
would normally be moving too quickly to be constrained by conventional gravity.
However, when we �t experimental data to the predictions of conformal gravity, we
�nd that the second term in equation (2.31) ends up performing the same function
as dark matter, without the need to introduce any new particles. There have been
many studies on conformal gravity's potential to replace our need for dark matter
and dark energy. Indeed, it seems that the type of �ts shown in Figure 2.1 tend to
hold for most, if not all, of the available experimental data [O'Brien et al., 2018].
However, there has also been criticism regarding conformal cosmology. Apparently,
the model presented here does not always outperform ΛCDM when it comes to
cosmic expansion [Roberts et al., 2017]. Additionally, it is not clear at this point
what the conformal gravity has to say regarding gravitational waves, the CMB power
spectrum, or nucleosynthesis. Many aspects of this theory are still up for debate;
this is a very active �eld of research and there is a lot more work that needs to be
done.

Now, enough about cosmology, how does conformal gravity �t into the particle
physics framework? The short answer is, despite some long-held reservations it has
recently begun to show extreme promise. Due to its lack of dimensionful coupling
constants, conformal gravity appears to be power-counting renormalizable, just like
the Standard Model. This of course means that even though super�cially divergent
diagrams can be drawn at any loop-order, they can always be canceled by a �nite
amount of counter terms. When attempting to quantize Einstein gravity we run into
a power series of the metric in powers of the dimensionful gravitational constant,
which inevitably leads to an in�nite amount of divergent diagrams at every order.
In conformal gravity, we can choose to instead expand the metric in powers of ~,
just as we do for quantum �elds in the Standard Model. In fact, it is thought to be
the quantization process itself that leads to the spontaneous breaking of conformal
symmetry. There is no way to de�ne curvature in a theory of free conformal gravity,
since all of the metric solutions are conformally �at; there are no length scales to
de�ne a curvature with. Length scales are inevitably introduced by commutation
relations of the form [φ(x, t), π(x′, t)] = i~δ3(x − x′), and so the presence of such a
commutator naturally generates commutators of a similar form on the gravitational
side, which in turn allows for the presence of non-zero curvature. In the conformal
gravity picture, only through the coupling to quantized matter �elds does the curva-
ture become non-zero [Mannheim, 2006]. As we might expect from the well-known
conformal anomaly, only the classical theory is conformally invariant - the quantized
version cannot be. Now, while all of this seems to indicate that conformal gravity
could serve as a UV-complete theory of quantum gravity, there are also some sig-
ni�cant theoretical challenges that arise when we attempt to quantize a theory that
contains fourth-order derivatives.
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2.2.1 The ghost problem

It is well-known that theories with higher time derivative (such as conformal
gravity) will propagate more than the two degrees of freedom (DOFs) corresponding
to the massless spin-2 graviton in standard Einstein gravity. There are a few ways
to go about counting the extra DOFs in a higher derivative theory, but the following
method laid out by Riegert [1984] is particularly enlightening.

We begin by writing the metric in terms of small perturbation hµν on a �at
background ηµν as

gµν = ηµν + hµν , (2.32)

in order to arrive at the linearized conformal gravity Lagrangian

LCG = α
(
− 2

3
hµν∂µ∂ν∂ρ∂σh

ρσ + 2hµν∂ν∂ρ∂σ∂
σh ρ

µ −
2

3
hµµ∂ν∂ρ∂σ∂

σhνρ

− hµν∂ρ∂ρ∂σ∂σhµν +
1

3
hµµ∂ρ∂

ρ∂σ∂
σhνν

)
. (2.33)

Next, we make another decomposition and write hµν in terms of its trace h µ
µ and

traceless part h̄µν .

hµν = h̄µν −
1

4
h µ
µ , h̄ µ

µ = 0 (2.34)

Interestingly, when we compute the variation of LCG, it turns out that all of the h µ
µ

terms end up canceling.

δSCG = ∂4h̄µν + 2∂(µVν) −
1

2
ηµν∂λV

λ = 0 , Vµ ≡
1

3
∂µ∂

α∂βh̄αβ − ∂2∂λh̄µλ

(2.35)

It is not di�cult to show that this whole equation of motion is traceless, which is in
fact a feature of any conformal �eld theory at the classical level. We can simplify
this expression by exploiting its invariance under di�eomorphisms xµ → xµ + ξµ(x).
Performing this transformation on V µ yields

V µ → V ′µ = V µ − ∂4ξµ , (2.36)

and if we �x our gauge freedom by selecting ξµ such that V ′µ = 0, our equation of
motion becomes simply

∂4h̄′µν = 0 . (2.37)

The choice V ′µ = 0 is known as the conformal gauge and it is essentially just the
higher-derivative analogue of the harmonic gauge, which is the standard choice used
when describing gravitational radiation in Einstein gravity. From here on out we
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will drop the primes in our notation for the sake of clarity, but we should remember
that we are in a gauge-�xed scenario.

The general solution to (2.37) is

h̄µν =
(
Aµν +Bµνnαx

α
)
eikβx

β

+ c.c. , (2.38)

where Aµν and Bµν are polarization tensors, and nα and kβ are a time-like unit vector
and a null momentum vector respectively. Performing the analogous calculation
for Einstein gravity yields the Poisson equation ∂2hµν = 0 which has the well-
known plane wave solutions corresponding to Aµν . Here we have arrived at a higher-
derivative version of the Poisson equation which has the additional Bµν solutions;
this is the origin of our extra degrees of freedom. Aµν and Bµν are both symmetric
and traceless which gives eighteen total DOFs. By imposing our gauge constraints
on (2.38), we can show that only six of these are independent. By further enforcing
that the polarization tensors are transverse, the rather lengthy calculation performed
by Riegert [1984] shows that their components are arranged as

A =


0 a3 a4 0
a3 a1 a2 0
a4 a2 −a1 0
0 0 0 0

 B =


0 0 0 0
0 b1 b2 0
0 b2 −b1 0
0 0 0 0

 . (2.39)

In this form it is easy to read o� that the Aµν solution propagates the familiar spin-2

state from GR (a1 ± ia2)ei
~k·~x as well as an additional spin-1 state (a3 ± ia4)ei

~k·~x,

while the Bµν solution propagates just the spin-2 state (b1 ± ib2)~n · ~xei~k·~x. The Aµν
waves �t the standard well-behaved form that we expect from massless radiation,
but the same cannot be said for the the Bµν wave. The factor of x it carries in
front of the exponential will cause the wave amplitude to grow linearly with time
or distance from the origin. A wave that gets stronger the longer it propagates all
on its own is obviously unphysical; we call this type of poorly-behaved solution a
ghost.

It is very interesting that the plane wave of radiation in conformal gravity corre-
sponds not to a single massless particle, but to three - a spin-2 graviton, a spin-1
boson, and a spin-2 ghost. However, the presence of a ghost is a major theoreti-
cal issue for a quantum theory, since in general this type of solution corresponds
to states with negative energy in the Hamiltonian. A state with negative energy
means that the Hamiltonian can no longer be bounded from below, thus spoiling
the unitarity of the theory. This e�ect has been known for some time and is known
as the Ostrogradsky instability. To see how it arises, we consider a general La-
grangian L(q, q̇, q̈) that depends on second derivatives of time (as ours does). The
Euler-Lagrange equation of such a theory is then

∂L

∂q
− d

dt

∂L

∂q̇
+
d2

dt2
∂L

∂q̈
= 0 . (2.40)
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Now as usual, we choose canonical variables Q1 = q and Q2 = q̇, de�ne the conjugate
momenta as

P1 =
∂L

∂q̇
− d

dt

∂L

∂q̇
P2 =

∂L

∂q̈
, (2.41)

and perform the usual Legendre transform to arrive at the Hamiltonian.

H =
∑
i

PiQ̇i − L = P1Q2 + P2q̈(Q1, Q2, P2)− L(Q1, Q2, q̈) (2.42)

We should immediately recognize that the �rst term is atypical when compared to
theories with only �rst time derivatives in their Lagrangian. P1 can take any value
and be arbitrarily negative, and since here H is only linearly dependent on P1, it can
also be arbitrarily negative and is thus unbounded from below [Salvio, 2018]. Since
H represents the total energy of our theory this would seem to imply that there is
always available energy to create new positive energy states and this represents an
unstable vacuum for any quantum theory.

The apparent presence of Ostrogradsky ghosts is what many would consider to
be the main theoretical issue with conformal gravity, in fact this is the main reason
why conformal gravity has not historically been considered a viable physical the-
ory. However, even though Ostrogradsky's theorem holds in general, there appear
to be clever ways around it. It has been shown only very recently that fourth-
order theories whose Hamiltonians are anti-Hermitian and PT-symmetric produce
strictly positive real eigenvalues and thus do not su�er from Ostrogradsky instabil-
ities. By carefully de�ning the dressed propagator and associated Feynman rules,
it is apparently possible to show that all unstable resonances associated with neg-
ative energy quantum states disappear from the asymptotic spectrum [Mannheim,
2018],[Donoghue and Menezes, 2019]. It should be noted that the proofs in these
papers are complicated and not yet fully accepted by the community. However, this
is the norm in physics; any new theory must be appropriately tested and needs to
stand up to intense scrutiny. At the very least, we can say that conformal gravity is
showing renewed theoretical promise and certainly warrants further study, especially
due its potential to unify gravity with the other fundamental forces.
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3 Weyl Quadratic Gravity

It is also possible to arrive at a locally scale-invariant theory of gravity without
starting from scratch and gauging the full conformal group like we did to derive the
action for conformal gravity in the last chapter. If we begin instead with a theory of
gravity derived in the style of GR that is globally Weyl-invariant, we should be able
to gauge just this global symmetry to arrive at a theory with our desired property
of local Weyl (and thus also conformal) invariance. To see how this might work,
we begin by taking a small detour to discuss a class of theories known as quadratic
gravity.

3.1 Standard quadratic gravity

Quadratic gravity has been popular among theorists for quite some time. It is
power-counting renormalizable due to its lack of dimensionful couplings, and so it
serves as a candidate for a combined theory of gravity and particle interactions that
is valid to in�nite energies. Of course this is only true if the gravitational part of the
theory also �ows to something UV-complete (such as conformal gravity). We will
not discuss the phenomenology here, but rather refer the reader to the reviews on
quadratic gravity by Alvarez-Gaume et al. [2016] and Salvio [2018], among others.

While traditional general relativity has only one power of curvature in the action
(1.27), it has been known for some time that higher powers of curvature appear
as quantum corrections in any quantum theory that is coupled to gravity, even if
gravity itself is not quantized [Utiyama and DeWitt, 1962]. Since it is not possible to
avoid these terms in a relativistic quantum theory, it makes sense to insert them at
the classical level to study their e�ects directly. Besides R2, we must also consider
the full basis of Lorentz-invariant combinations which also includes RµνR

µν and
RµνρσR

µνρσ. If λi are arbitrary dimensionless constants, the most general action for
a theory of quadratic gravity given by

SQG =

ˆ
d4x
√
|g|
(
λ1RµνρσR

µνρσ + λ2RµνR
µν + λ3R

2 −
M2

pl

2
R− Λ

)
. (3.1)

This action is also well-motivated by gauge theory [Benisty et al., 2018], but we will
not go through the details of another gauge-theoretical derivation here. Instead we
will take this as a starting point and proceed with other calculations.

We can simplify SQG by taking advantage of the existence of the well-known
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Gauss-Bonnet term, which is a topological invariant in four dimensions.

IGB =

ˆ
d4x
√
|g|εµνρσεαβγδR αβ

µν R γδ
ρσ

= −2

ˆ
d4x
√
|g|
(
RµνρσR

µνρσ − 4RµνR
µν +R2

)
→ TD (3.2)

This term can be written as a total derivative so, provided that we do not consider
any non-trivial topological solutions, it will not contribute to the equations of motion
in four dimensions. This means that we are free to set it to zero at the level of the
action and use it to eliminate the Riemann tensor term. Doing this yields

SQG =

ˆ
d4x
√
|g|
(

(λ2 + 4λ3)RµνR
µν + (λ1 − λ3)R2 −

M2
pl

2
R− Λ

)
. (3.3)

In anticipation of the work to come, we can also rewrite the Ricci tensor term using
the Weyl tensor de�ned in (2.16) as RµνR

µν = 1
2
CµνρσC

µνρσ + 1
3
R2, where we have

again eliminated a Riemann tensor term using the Gauss-Bonnet invariant. After
introducing the Weyl tensor and reparameterizing in terms of the positive arbitrary
constants α and β, we have

SQG =

ˆ
d4x
√
|g|
(
− αCµνρσCµνρσ + βR2 −

M2
pl

2
R− Λ

)
. (3.4)

We can immediately recognize that the last two terms in this action are not scale-
invariant, and that the R2 term is not conformally invariant. So, let us now see
if we can modify this theory of quadratic gravity so that it achieves our goal of a
locally scale-symmetric theory of gravity. To do so, we need to gauge the global
scale symmetry and de�ne the notion of a Weyl-invariant spacetime.

3.2 Weyl space

Simply put, Weyl-invariant spacetime (or Weyl space) is the same as the pseudo-
Riemannian space familiar from GR, but with an added gauge �eld that ensures
the covariance of the curvature tensors under a Weyl transformation. This inherent
Weyl symmetry means that a Weyl manifold is actually an equivalence class of
conformally related pseudo-Riemannian manifolds, just like the setup we saw in
conformal gravity. It is equipped with the same metric tensor gµν that we see in
GR as well the familiar gauge boson κµ associated with the generator of dilation
symmetry.

As we saw in Section 1.1.1, a Weyl transformation is de�ned as the local scale
transformation of the general �eld Ψ(x) and, in cases where we have gauged the
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symmetry, the gauge transformation of the Weyl gauge �eld1 κµ(x).

Ψ(x) → eq[Ψ]ω(x)Ψ(x) κµ(x) → κµ(x)− ∂µω(x) (3.5)

Here, ω(x) is the local scale factor and q[Ψ] is the Weyl weight of the �eld Ψ.
Similarly to a standard Abelian gauge group, the covariant derivative associated
with this symmetry is de�ned as

DµΨ =
(
∂µ + q[Ψ]κµ

)
Ψ . (3.6)

Of course, DµΨ transforms covariantly. One may notice that there is no factor
of i in the covariant derivative or in the exponent of the group element like there
would be for a U(1) symmetry for example. This is related to the fact that Weyl
symmetry is a spacetime symmetry - its group of generators is non-compact. As
a spacetime symmetry, it naturally has an e�ect on the a�ne connection present
in standard Riemannian geometry. Curvature in Weyl space is de�ned using the
familiar symmetric metric tensor gµν and the symmetric (i.e. torsionless) Weyl
connection Γ̃λµν .

Γ̃λµν ≡
1

2
gλρ
(
Dµgρν +Dνgµρ −Dρgµν

)
= Γλµν + κµδ

λ
ν + κνδ

λ
µ − κλgµν , (3.7)

where Γλµν is the standard Christo�el connection de�ned with the metric that we see
in GR. One can easily see here how the addition of a new gauge �eld has contributed
extra terms to the connection. These additions to the Christo�el symbols lead to
one of the most notable di�erences between Weyl and Riemannian geometry. If ∇λ

is the covariant derivative in Riemannian space and ∇̃λ is the covariant derivative
in Weyl space, then we have

∇λgµν = ∂λgµν − Γρλµgρν − Γρλνgµρ = 0 (3.8)

∇̃λgµν = ∂λgµν − Γ̃ρλµgρν − Γ̃ρλνgµρ = −2κλgµν . (3.9)

This lack of metric-compatibility that we �nd in Weyl space is a direct consequence
of the κµ terms we have introduced into the connection.

Now we use the Weyl connection to de�ne the Weyl space analogues of the Rie-
mann, Ricci, and Weyl tensors. Starting with the Riemann tensor de�ned as a �eld

1The conventions for de�ning κµ and its transformation rule di�er throughout the literature and
we have chosen to follow Iorio et al. [1997] and Oda [2019]. One might also include a coupling
constant, but we have set it to 1 here for brevity.
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strength in the usual way, we have

R̃ σ
µνρ ≡ ∂νΓ̃

σ
µρ − ∂µΓ̃σνρ + Γ̃αµρΓ̃

σ
αν − Γ̃ανρΓ̃

σ
αµ

= R σ
µνρ + δσ[µ∇ν]κρ − δσρ∇[µκν] − gρ[µ∇ν]κ

σ

+ κ[µδ
σ
ν]κρ − κ[µgν]ρκ

σ + δσ[µgν]ρκακ
α , (3.10)

R̃µν ≡ R̃ α
µαν

= Rµν − 2∇µκν − Fµν − gµν∇ακ
α + 2

(
κµκν − gµνκακα

)
, (3.11)

R̃ ≡ R̃ µ
µ

= R− 6∇µκ
µ − 6κµκ

µ , (3.12)

where Fµν ≡ ∇µκν − ∇νκµ = ∂µκν − ∂νκµ is the �eld strength tensor for κµ. The
Weyl tensor is de�ned using these three tensors in the same way that it is de�ned
in Riemann space.

C̃µνρσ ≡ R̃µνρσ −
1

2

(
gµρR̃νσ + gνσR̃µρ − gµσR̃νρ − gνρR̃µσ

)
+

1

6

(
gµρgνσ − gµσgνρ

)
R̃

= Cµνρσ − gρσFµν +
1

2

(
gµρFνσ + gνσFµρ − gµσFνρ − gνρFµσ

)
(3.13)

Luckily for us, its square simpli�es quite nicely.

C̃µνρσC̃
µνρσ = CµνρσC

µνρσ + 3FµνF
µν (3.14)

Using Table 1.1 and (3.10 - 3.13) it is easy to derive the following behaviors under
a Weyl transformation.

C̃µνρσ → e2ωC̃µνρσ R̃µνρσ → e2ωR̃µνρσ

R̃µν → R̃µν Γ̃λµν → Γ̃λµν

R̃ → e−2ωR̃ (3.15)

These tensors also enjoy some of the same symmetries as their Riemann space coun-
terparts.

C̃µνρσ = −C̃νµρσ C̃ ν
µνρ = 0

R̃ σ
µνρ = −R̃ σ

νµρ R̃ σ
[µνρ] = 0 ∇̃[λR̃

σ
µν]ρ = 0 (3.16)

However, a couple of their index symmetries show the e�ects of including κµ terms
in the connection.

C̃ ρ
µνρ = −4Fµν R̃[µν] = −4Fµν (3.17)

37



3.3 Weyl-gauged quadratic gravity

We can use the same logic as we did in Section 3.1 to construct a quadratic
Lagrangian in Weyl space that has all the bene�ts of standard quadratic gravity
with the added bene�t of being invariant under a local Weyl transformation. This
time we use the Weyl space version of the Gauss-Bonnet invariant [Wheeler, 2018]

IGB = − 1

32π2

ˆ
d4x
√
|g|εµνρσεαβγδR̃ αβ

µν R̃ γδ
ρσ

= − 1

32π2

ˆ
d4x
√
|g|
(
R̃µνρσR̃

ρσµν − 4R̃µνR̃
νµ + R̃2

)
→ TD , (3.18)

to simplify a general action constructed from the squares of our Weyl space tensors
(3.10 - 3.12).

SWQG =

ˆ
d4x
√
|g|
(
λ1R̃µνρσR̃

µνρσ + λ2R̃µνR̃
µν + λ3R̃

2
)

=

ˆ
d4x
√
|g|
(
− αC̃µνρσC̃µνρσ + βR̃2

)
(3.19)

We are forced to drop the Einstein gravity and cosmological constant terms present
in standard quadratic gravity because they are not globally scale-symmetric and
cannot be Weyl-gauged. It is well known (see for example [Quiros, 2019]) that the
R̃2 term in this type of setup propagates an extra scalar degree of freedom and we
can extract it via the introduction of an auxiliary dilaton we will call φ. To see how
this works, consider the Lagrangian L = −

√
|g|(2φ2R̃ + φ4) where the equation of

motion for φ is φ2 = −R̃. We can integrate φ out of this Lagrangian using this
equation of motion which takes us back to the original R̃2. This tells us that (3.19)
is classically equivalent to the following, provided of course that the new φ terms
obey all of the necessary symmetries and φ does not appear anywhere else in the
Lagrangian.

LWQG =
√
|g|
[
− αC̃µνρσC̃µνρσ − β

(
2φ2R̃ + φ4

)]
(3.20)

Our next step is to convert this expression to the Riemannian picture using the
relations we derived in (3.10 - 3.14). These conversions yield

LWQG =
√
|g|
[
− αCµνρσCµνρσ − 3αFµνF

µν

− β
(

2φ2R− 12φ2
(
∇µκ

µ + κµκ
µ
)

+ φ4
)]

. (3.21)

It may not be obvious at this stage, but the dilaton is in fact a dynamical �eld
[Ghilencea, 2019b]. To see this we use the fact that

√
|g|∇µκ

µ = ∂µ(
√
|g|κµ) and
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we drop a total derivative after integrating by parts, adding ∂µφ∂
µφ− ∂µφ∂µφ = 0,

and completing a square.√
|g|φ2

(
∇µκ

µ + κµκ
µ
)

= φ2∂µ
(√
|g|κµ

)
+
√
|g|φ2κµκ

µ

=
√
|g|
(
− κµ∂µφ2 + φ2κµκ

µ + ∂µφ∂
µφ− ∂µφ∂µφ

)
=
√
|g|
(
− 2κµφ2∂µ lnφ+ φ2κµκ

µ − ∂µφ∂µφ+ φ2∂µ lnφ∂µ lnφ
)

=
√
|g|
(
− ∂µφ∂µφ+ φ2(κµ − ∂µ lnφ)(κµ − ∂µ lnφ)

)
(3.22)

Now we make the canonically normalizing rede�nitions

κ′µ =
√

12α
(
κµ − ∂µ lnφ

)
φ′ =

√
24βφ λ =

1

24β
, (3.23)

while noting that Fµν = 1√
12α
F ′µν . Finally, we write the action for Weyl quadratic

gravity as

SWQG =

ˆ
d4x
√
|g|
(
− αCµνρσCµνρσ − φ′2

12
R− 1

2
∂µφ

′∂µφ′ − λφ
′4

4!

− 1

4
F ′µνF

′µν +
λ

12α
φ′2κ′µκ

′µ
)
. (3.24)

It is important to note that the kinetic term for the dilaton has appeared as a natural
consequence of its interactions with the Weyl gauge �eld κµ which indicates that φ′

is actually a physical propagating degree of freedom. It is possible to introduce a
dilaton via its equations of motion in standard quadratic gravity, but no kinetic term
comes about for free like it does in this version. The dilaton in standard quadratic
gravity is non-dynamical in the Jordan frame. However, we should immediately
notice that φ′ is a ghost since its kinetic term has the same sign as its interaction
term. This is direct consequence of how we extracted φ via its equation of motion
and it is unavoidable. As we saw in the last section, this would normally be a cause
for concern, but we will see shortly that our ghost will be eaten up as a result of the
Stückelberg mechanism, so we have nothing to fear.

One can easily check that the theory described by this action (3.24) is Weyl-
invariant and so we have succeeded in deriving a locally scale-invariant theory by
gauging global scale symmetry alone. Additionally, due to its quadratic dependence
on the Weyl tensor, WQG is power-counting renormalizable for the same reasons
that conformal gravity and standard quadratic gravity are. This means it also has
the potential to serve as a theory of quantum gravity. However, this model contains
even more interesting features, and to see them we must �rst make a short detour
into the world of particle physics.

3.3.1 Dimensional transmutation in WQG

WQG as presented in (3.24) is classically Weyl-invariant, but that does not guar-
antee that it is also invariant at the quantum level. In fact, it is common for classical
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theories to exhibit spontaneous symmetry breaking upon the inclusion of quantum
corrections [Weinberg, 1973]. To see how this works, let us consider a dynamical
scalar σ with classical action S[σ]. We can expand σ as small quantum �uctuations
ϕ around a classical background

σ → σc + ϕ , (3.25)

and employ the the path integral formalism to de�ne the e�ective action Γ[σc].

Γ[σc] = S[σc] + ~K[σc] ≡ S[σc]− i~
( ˆ

Dϕe
i
~

(
1
2
ϕ· δ

2S

δσ2c
·ϕ−~ δK

δσc
·ϕ+O(ϕ3)

))
(3.26)

Γ[σc] represents contributions from the classical action with the addition of quantum
e�ects in K[σc] and describes the full quantum theory. K[σc] encodes all of the loop-
order interactions in powers of ~ and must be solved for perturbatively. If we assume
a constant background σc = const, then we can compute the integral and de�ne an
e�ective potential Veff [Weigand].

Γ[σc] = −
ˆ
d4xVeff (σc) = −

ˆ
d4x
(
Vc(σc) + V

(1-loop)
eff (σc) + ...

)
(3.27)

This tells us how quantum e�ects contribute to the classical theory with tree-level
potential Vc on an order-by-order basis. Given only the Lagrangian for some quan-
tum �eld theory, one can use this formalism to calculate the Coleman-Weinberg
e�ective potential Veff to any loop order. Of course with the addition of loop-order
contributions, this e�ective potential will have a di�erent shape than its classical
counterpart. When this new shape has a local minimum at σ 6= 0, σ picks up a
non-zero vacuum expectation value (〈σ〉) which can cause a symmetry of the theory
to be violated at energies below 〈σ〉. This process by which a classically symmet-
ric theory exhibits spontaneous symmetry breaking after the inclusion of quantum
corrections is known as the Coleman-Weinberg mechanism.

An interesting consequence of this mechanism occurs when we apply it in the
context of renormalization. When we include renormalizing counter-terms in the
action, the e�ective potential comes with dimensionless constants that need to be
solved for using the renormalization conditions. These conditions usually look like

V
(n-loop)
eff (σc)

∣∣∣∣
σc=〈σ〉

= ∂2
σcV

(n-loop)
eff

∣∣∣∣
σc=〈σ〉

= ∂4
σcV

(n-loop)
eff

∣∣∣∣
σc=〈σ〉

= 0 , (3.28)

and when we see dependencies like V
(1-loop)
eff (σc) ∝ ln σ2

c

〈σ〉2 we cannot evaluate the con-

ditions at 〈σ〉 = 0 since the log would be unde�ned. Thus, we must introduce the
dimensionful 〈σ〉 6= 0 when we solve for the dimensionless renormalization constants.
We are forced to trade dependence on a dimensionless parameter for a dimensionful
one; a phenomenon known as dimensional transmutation [Peskin and Schroeder,
1995]. This is of particular importance in theories with scale-invariance (such as

40



ours) because the introduction of a scale via the renormalization conditions intro-
duces e�ective terms with dimensionful parameters that violate scale invariance. In
short, the inclusion of quantum e�ects via the Coleman-Weinberg potential can lead
to the unavoidable introduction of dimensionful parameters to a classically scale-
invariant theory which causes a spontaneous breakdown of scale symmetry at the
quantum level.

This process turns out to be crucial for our theory because, as was recently shown
by Oda [2019], the Weyl symmetry in Weyl quadratic gravity breaks down spon-
taneously as a result of the Coleman-Weinberg mechanism to produce a non-zero
vacuum expectation value (VEV) for φ. We refer the reader to Oda's paper for the
details, but in summary, after expanding the dilaton and metric in the action (3.21)
as small quantum �uctuations around their classical background �elds

φ → φ+ ϕ gµν → ηµν + hµν , (3.29)

we can compute the one-loop e�ective potential for φ by integrating out ϕ and
hµν . With the inclusion of renormalizing counter-terms, we �nd that the e�ective
potential takes the form

V
(1-loop)
eff (φ) = ξφ4 ln

(
φ2

〈φ〉2
− 1

2

)
. (3.30)

Here, ξ is a positive constant and there is an obvious non-zero minimum at φ = 〈φ〉.
After renormalization, the dependence on the dimensionless coupling λ that we see
in (3.24) is replaced by dependence on the dimensionful 〈φ〉. Weyl-invariance is lost
as a result of dimensional transmutation. If we match constants in this setup so
that Einstein gravity is reproduced at low energies we �nd that

〈φ〉2 = O(M2
pl) . (3.31)

The fact that φ picks up non-zero VEV turns out to be very important. To see
why, we return to (3.21) and note that it is written in the Jordan frame characterized
by LJ ⊃ (φR, gµν). There always exists conformal transformations from the Jordan

frame to the Einstein frame, which is characterized by LE ⊃ (R̂, φĝµν), and it will
be instructive to see what form our theory takes there. Since, by construction,
our Lagrangian is Weyl-symmetric, a conformal transformation will not a�ect the
physics. We should mention that there is not a unanimous consensus among experts
on the physical equivalence of these two frames in general. However, the controversy
arises only in speci�c examples where one can show that an additional interaction
term appears when certain theories that are coupled to matter are rotated between
frames. We will not go into further details here since it does not a�ect our present
discussion, but this is an interesting problem in its own right and we refer the reader
to publications such as the review by Quiros [2019] for more details.

Turning back the matter at hand, we select the following Weyl transformation
which will take us to the Einstein frame.

ω = ln Ω , Ω ≡ 2
√
β

〈φ〉
φ (3.32)
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Obviously this is only well-de�ned for a nonzero 〈φ〉. It acts on our �elds as

gµν → ĝµν = Ω2gµν φ → φ̂ =
φ

Ω
κµ → κ̂µ = κµ − ∂µ ln Ω ,

(3.33)

and so under this particular Weyl transformation, (3.21) becomes

L(E)
WQG =

√
|ĝ|
(
− αĈµνρσĈµνρσ − 〈φ〉

2

2
R̂− 〈φ〉

4

16β2
− 3αF̂µνF̂

µν

− 12βκ̂µ∂
µ
(φ

Ω

)2

+
〈φ〉2

4β
κ̂µκ̂

µ

)
. (3.34)

Here, R̂ and Ĉµνρσ are computed with the conformally transformed metric ĝµν . With
a bit of algebra it is easy to show that the second to last term above drops out after
expanding the derivative and inserting our choice of Ω.

12βκ̂µ∂
µ
(φ

Ω

)2

= 6κ̂µ

(
〈φ〉2∂µ lnφ− 〈φ〉2∂µ ln Ω

)
= 0 (3.35)

As in (3.23) we are still free to perform a canonical normalizing �eld rede�nition;
κ̂µ →

√
12ακ̂µ. We are only free to do this �eld rede�nition since we have yet to �x

the magnitude of κ̂µ relative to the other �elds. Doing this rede�nition is nothing
more than introducing a coupling constant for κ̂µ and solving for it relative to α
all in one step. With all of this in mind, our �nal expression for the Lagrangian of
Weyl quadratic gravity in the Einstein frame is the following.

S
(E)
WQG =

ˆ
d4x
√
|ĝ|
(
− αĈµνρσĈµνρσ − 〈φ〉

2

2
R̂− 〈φ〉

4

16β2

− 1

4
F̂µνF̂

µν +
〈φ〉2

48αβ
κ̂µκ̂

µ

)
(3.36)

This rotation to Einstein frame yields some very interesting features. First o�,
we see that our theory contains the Proca action for a spin-1 boson with mass m2

κ̂ =
〈φ〉2
24αβ

, while the �eld φ no longer appears anywhere. Selecting (3.32) in particular
has caused the massless κµ to swallow the dynamical ghost degree of freedom φ and
become the massive κ̂µ as a side e�ect of dimensional transmutation in the scalar
sector [Ghilencea, 2019a].

κ̂µ = κµ − ∂µ ln Ω = κµ − ∂µ lnφ (3.37)

The phenomenon by which a massless Abelian gauge boson acquires a mass from
interactions with a scalar that picks up a non-zero VEV is known as the Stückelberg
mechanism and is well known in the world of particle physics [Ruegg and Ruiz-
Altaba, 2004]. In addition to the massive dynamical κ̂µ, we also see the Einstein
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action (with a negative cosmological constant) as well as the squared Weyl tensor
action familiar to us from conformal gravity.

The fact that κµ acquires a large mass is extremely signi�cant because it dispels
the long-held reservations about theories with a dynamical Weyl boson. Weyl's orig-
inal formulation of the theory [Weyl, 1929] was an attempt to identify the massless
κµ as the photon and provide a purely geometric derivation of electromagnetism,
but it ran into some unavoidable contradictions. Among others, Einstein himself
pointed out that, due to the conformal origin of such a boson, parallel-transported
spacetime vectors in this setup would change not only their direction, but also their
length. An interesting corollary of this e�ect is what is known as the �second clock
problem� where it is possible to show that a traveler who visits some distant galaxy
and returns to Earth �nds that not only has he aged di�erently than his comrades
on Earth (as predicted by GR), but also that his clock is now running a di�erent
rate than theirs. In general, the very notion of length becomes path-dependent in
a setup with unbroken conformal symmetry, and we know from countless experi-
ments that this is not physical. There have been many attempts to get around this
issue by, for example, assuming that κµ is �pure-gauge� so that it can be written
as the divergence of a scalar �eld κµ = ∂µϕ. This renders κµ non-dynamical since
Fµν = ∂µ∂νϕ− ∂ν∂µϕ = 0. Our setup is in a way the best of both worlds, since κ̂µ
is dynamical, but decoupled at low energies due to its large mass. This means that
the second clock problem only shows up at energies above the level of dynamical
Weyl symmetry breaking, which is far out of the reach of modern experiments. As
we will see, having a massive gauge boson in the spectrum can lead to some inter-
esting phenomena. Indeed, it is about time we investigate the physical implications
of Weyl quadratic gravity.

3.4 Phenomenology of WQG

WQG presented in this form is a relatively new theory and though it has not been
studied to the degree that conformal gravity has, some very interesting work has
recently been published on the topic. Due to the presence of the Weyl tensor term,
we can expect many of the same cosmological features of conformal gravity to be
present in WQG as well. For this reason, we will focus on the e�ects of including φ
and κµ in the spectrum.

The �rst interesting consequence of κµ picking up a large mass, is that it has the
potential to serve as a dark matter candidate. Beltran Jimenez and Koivisto [2014]
have completed a nice preliminary study of this possibility in a similar model that
does not include the Weyl tensor term. They were able to show that if we consider
κ̂µ as normal matter and move its contribution into the energy-momentum tensor,
then in a FLRW universe, we arrive at the following equations constraining κ̂µ

κ̂0 = 0 ¨̂κi +H ˙̂κi +m2
κ̂κ̂i = 0 , (3.38)

where the subscript i indicates only the spatial components of κ̂µ. This second equa-

43



tion is precisely that of a harmonic oscillator with frequency ω = mκ̂ = 〈φ〉/
√

24αβ.
Thus, provided that mκ̂ is large enough (m2

κ̂ & H2), κ̂µ will oscillate rapidly in
the early universe and has the potential to contribute a signi�cant fraction of the
observed dark matter, provided of course that κ̂µ receives a small primordial ampli-
tude which the authors argue may arise from quantum �uctuations. Now one should
wonder, why do we care about possible dark matter contributions when we have a
conformal gravity term that has the potential to negate the need for dark matter
entirely? The answer is of course that the observed e�ects of dark matter may be
a result of the e�ects from both the linear potential term in conformal gravity and
from un-observable particles. Rather than enforcing all of the constraints from ob-
servations on one or the other contribution, they can both �share the load� in this
model. It may be that one or the other is dominant, but in any case, having both
options broadens the parameter space for cosmologies that employ WQG. In princi-
ple, we should be able to draw up a model that takes both phenomena into account
and allows us to put constraints on the constants α and β. To our knowledge, no
such study has yet been performed in depth, and we look forward to pursuing this
option in the future.

Next, let us consider in detail the rami�cations of dimensional transmutation in
WQG. As we saw in the previous section, this theory contains all of the neces-
sary ingredients to generate scale dependence all on its own without the addition of
any other �elds into the spectrum. This is in contrast to conformal gravity where
we must consider interactions with the Higgs (or in principle any other scalar) in
order to spontaneously break conformal symmetry. In WQG however, the scalar
degree of freedom comes directly from the metric when we make the replacement
R̃2 → −2φ2R̃ − φ4. In essence, here we have a theory of gravity that is Weyl-
invariant at high energies that, through self-interactions alone, dynamically breaks
that symmetry and generates the very notion of physical scale. While this is quite
remarkable in its own right, the generation of the Planck scale through dimensional
transmutation appears to have even farther-reaching consequences. If we also con-
sider interactions with the Higgs Φ, then the e�ective potential in equation (3.30)
becomes

Veff (φ,Φ) = ξφ4 ln

(
φ2

〈φ〉2
− 1

2

)
+ λΦφ

(
Φ†Φ

)
φ2 + λΦ

(
Φ†Φ

)2
, (3.39)

where λΦφ is a portal coupling constant and λΦ is the Higgs self-coupling [Oda,
2019]. If we now insert φ = 〈φ〉 and do some algebra this expression becomes

Veff (〈φ〉,Φ) = λΦ

(
Φ†Φ +

2λΦφ

λΦ

〈φ〉2
)2

− 1

4

(λ2
Φφ

λΦ

+ ξ
)
〈φ〉4 . (3.40)

Provided that λΦ > 0, this exactly �ts the form of the Higgs potential in the
Standard Model. So, if we take it to be such and proceed with the standard Higgs
mechanism procedure of going to unitary gauge, etc., we �nd that the Higgs mass
is given by

m2
Φ = 2|λΦφ|〈φ〉2 . (3.41)
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Thus, the dimensional transmutation that occurs in Weyl quadratic gravity can
generate not only the Planck scale, but also the electro-weak scale after we include
the Higgs in our spectrum and properly tune λΦφ [Oda, 2019].

Now, we must mention that despite all of the very attractive features listed here,
WQG also su�ers from the same theoretical di�culties as conformal gravity i.e. the
higher derivatives still give us reason to be concerned about ghost states. However,
the ghosts in WQG take a slightly di�erent form.

3.4.1 Degrees of freedom

In order to see exactly what type of ghost we are dealing with in WQG, we need to
analyze the propagating degrees of freedom. Instead of using the same method that
we used to look at conformal gravity, we will take another route by �rst considering
the DOFs in standard quadratic gravity. Transforming the action (3.4) from the
Jordan to Einstein frame, we have

S
(J )
QG =

ˆ
d4x
√
|g|
(
− αCµνρσCµνρσ + βR2 −

M2
pl

2
R− Λ

)
→ S

(E)
QG =

ˆ
d4x
√
|g|
(
− αCµνρσCµνρσ +

1

2
∂µS∂

µS − V (S)−
M2

pl

2
R− Λ

)
,

(3.42)

where S is a scalar �eld with potential V (S). It has been shown by Julve and Tonin
[1978], among others, that this action has eight propagating degrees of freedom - a
spin-2 massless graviton, a spin-2 massive ghost, and a spin-0 massive boson. With
this, we note that our action (3.36) has a similar form except that it lacks the scalar
DOF and contains the additional Proca terms for κ̂µ. Thus, a cursory glance tells
us that Weyl quadratic gravity propagates ten degrees of freedom (8− 1 + 3 = 10).

This statement is hardly a proof, so we will con�rm our count of the degrees
of freedom and go a step further by directly diagonalizing the linear perturbations
of the metric. This type of calculation, in the style of Stelle [1978], is called an
oscillator variable decomposition. We will only go over the theoretical ideas and
conclusion here; the details are shown in appendix B. The general idea is that we
introduce an auxiliary spin-2 �eld Xµν via an ansatz Lagrangian that, after being
integrated out, leaves us with two separate spin-2 �elds with canonical second-order
kinetic terms corresponding to the graviton and massive ghost that we expect to be
hidden inside of the metric perturbation hµν .

We begin by making the separation LWQG = Lgrav + Lmatter since it will end
up being much simpler to consider κ̂µ and 〈φ〉 as part of a separate matter sector,
despite their geometric origin.

Lgrav =
√
|ĝ|
(
− αĈµνρσĈµνρσ − 〈φ〉

2

2
R̂

)
(3.43)
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Lmatter =
√
|ĝ|
(
− 1

4
F̂µνF̂

µν +
〈φ〉2

48αβ
κ̂µκ̂

µ − 〈φ〉
4

16β2

)
(3.44)

The equation of motion here is of course δLWQG = δLgrav + δLmatter = 0. We can
recast this in the canonical ��eld coupled to a source� form by �rst de�ning

Tµν ≡ −
1√
|g|
∂Lmatter
∂gµν

=− 1

2
F̂µρ F̂

ρ
ν +

1

8
gµνF̂ρσ F̂

ρσ + gµν
〈φ〉4

32β2

+
〈φ〉2

48αβ

(
κ̂µκ̂ν − 2gµν κ̂ρκ̂

ρ
)
, (3.45)

so that the equation of motion is δLgrav = Tµν . Now when we expand the metric as
small perturbations2 around a �at background

gµν = ηµν + hµν , (3.46)

we can write the whole linearized Lagrangian as

LWQG[hµν ] = Lgrav[hµν ] + Lmatter[ηµν ] + hµνTµν , (3.47)

where Lmatter[ηµν ] is the same matter Lagrangian after sending gµν → ηµν .

Turning back to Lgrav, it is convenient to write the linearized curvature tensors
in this type of setup in terms of the rank-4 spin projectors

P (2)
µν,ρσ =

1

2

(
θµρθνσ + θµσθνρ

)
− P (0,s)

µν,ρσ P (0,s)
µν,ρσ =

1

3
θµνθρσ , (3.48)

where θµν ≡ ηµν − ∂µ∂ν
∂2

. There is a whole set of these projectors that form a
complete basis on the spin decomposition of generic symmetric rank-2 tensor �elds
[Van Nieuwenhuizen, 1973], but we will not list them all here. It is straightforward
to check by direct computation that they allow us to write√

|g|ĈµνρσĈµνρσ = hµνP (2)
µν,ρσ∂

4hρσ

√
|g|R̂ =

1

2
hµν
(
P (2)
µν,ρσ − 2P (0,s)

µν,ρσ

)
∂2hρσ , (3.49)

which means we can express our linearized gravitational Lagrangian in the following
compact form.

Lgrav[hµν ] = −αhµνP (2)
µν,ρσ∂

4hρσ − 〈φ〉
2

4
hµν
(
P (2)
µν,ρσ − 2P (0,s)

µν,ρσ

)
∂2hρσ (3.50)

2One could also de�ne this expansion in terms of a small dimensionful parameter ξ as gµν =
ηµν + ξhµν so that hµν picks up a mass dimension, if one so desired. The natural choice in this
case would be ξ = 〈φ〉−1. For our purposes we will simply assume that hµν is small.
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Our next step is to de�ne the auxiliary �eld Xµν as the diagonal counterpart to
hµν , and write them both in terms of the physically propagating oscillator variables,
σµν and Σµν .

hµν =
1

2

(
σµν + Σµν

)
Xµν =

1

2

(
σµν − Σµν

)
(3.51)

To see how these oscillator variables separate when plugged into (3.50), we must
�rst consider the following ansatz for the auxiliary Lagrangian.

LX [hµν , Xµν ] = 2Xµν ∂
ν∂ρh

µρ +
1

6

(
− 3 + i

√
3
)
X ρ
ρ ∂µ∂νh

µν −Xµν ∂ρ∂
ρhµν

−Xµν ∂
µ∂νh ρ

ρ +
1

6

(
3 + i

√
3
)
X µ
µ ∂ρ∂

ρh ν
ν +

〈φ〉2

α

(
1

4
hµνh

µν

+
1

4
XµνX

µν − 1

2
Xµνh

µν − 1

4
h µ
µ h

ν
ν +

1

8

(
1 + i

√
3
)
X µ
µ h ν

ν

)
(3.52)

The prefactors in front of each term here have been precisely chosen so that we
get our original Lagrangian back when Xµν is integrated out using its equation of
motion.

LX [hµν ] = Lgrav[hµν ] (3.53)

At this point we also �x our gauge freedom by imposing the standard transverse-
traceless conditions on our gravitational radiation.

∂µσµν = ∂µΣµν = 0 σ µ
µ = Σ µ

µ = 0 (3.54)

When we plug (3.51) into (3.52) with these gauge conditions, we see that all of the
degrees of freedom buried inside hµν separate nicely into two canonical spin-2 �elds.

LX [σµν ,Σµν ] = Lgrav[σµν ,Σµν ]

= −1

2
σµν∂ρ∂

ρσµν +
1

2
Σµν∂ρ∂

ρΣµν +
〈φ〉2

16α
ΣµνΣ

µν (3.55)

As expected, we have a massless spin-2 particle σµν that we can identify as the
graviton, along with a massive spin-2 particle Σµν whose kinetic term has the wrong
sign, making it a ghost. With this we can �nally express the entire linearized
Lagrangian for Weyl quadratic gravity in canonical form.

LWQG =− 1

2
σµν∂ρ∂

ρσµν +
1

2
Σµν∂ρ∂

ρΣµν +
〈φ〉2

16α
ΣµνΣ

µν

− 1

4
F̂µνF̂

µν +
〈φ〉2

48αβ
κ̂µκ̂

µ − 〈φ〉
4

16β2
+

1

2

(
σµν + Σµν

)
T µν (3.56)
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From this it is easy to count ten total propagating DOFs - two graviton, �ve massive
ghost, and three massive gauge boson. We also note that the mass of the ghost is
dependent on both 〈φ〉 and the conformal coupling constant α.

At �rst glance it would appear that the ghost problem is even worse in Weyl
quadratic gravity than it is in conformal gravity. There we have only the two spin-2
ghost DOFs while here we have �ve, all of them of the same Ostrogradsky nature.
Of course if the proponents of conformal gravity are correct in their assertions that
this type of ghost disappears from the asymptotic spectrum, then we have nothing
to worry about here either. However, as we will see in the next part of this work,
there may be another way around the ghost problem in Weyl quadratic gravity.
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Part II

Connections
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4 Conformal Gravity vs. Weyl Quadratic

Gravity

A natural question to ask at this point would be, what is the connection between
CG and WQG? We have seen that both theories are de�ned on a conformal class of
manifolds, quadratic in curvature, torsionless, and locally Weyl-invariant. There is
an important di�erence however in the fact that WQG propagates four more degrees
of freedom than CG, and this di�erence is directly related to the role that κµ plays
in each theory. In the conformal gravity derivation, it is possible to set κµ = 0
from the start in what is essentially a gauge �xing. The constraints we imposed in
Section 2.1 and the subsequent mixing of gauge �elds between the curvatures lead
to cancellations that preserve the invariance of the theory. In fact, even if we don't
�x the gauge in this way, the terms containing κµ end up dropping out anyway as a
result of the anti-symmetry of the Rµν tensor. In Weyl quadratic gravity however,
setting κµ = 0 just brings us back to standard quadratic gravity, which we know to
explicitly break local Weyl symmetry. What makes conformal gravity special in that
it can maintain conformal invariance without explicit κµ dependence? If our end
goal is the same before deriving both theories, then why do we pick up additional
degrees of freedom by taking the WQG route as opposed to the CG route? In
this chapter we present a resolution to these puzzling questions by making contact
between CG and WQG using a process known as �Ricci gauging�.

4.1 Ricci-gauging

Ricci gauging is a clever process that was �rst laid out by Iorio et al. [1997]
and expanded on by Karananas [2016] in an e�ort to show that a theory with
global Weyl invariance can be made locally invariant without introducing extra
degrees of freedom into the spectrum. The general idea is to �nd a relation between
the standard curvature tensors and the gauge �eld κµ so that κµ can be removed
from the action and replaced with functions of the metric. We could expect that
such a relationship may exist given that κµ is associated with a gauged spacetime
symmetry. Indeed, we can already see a relation in the non-metricity condition
∇̃λgµν = −2κλgµν .

Speci�cally, we choose to search for a relation between κµ and the Ricci curvature
Rµν . To this end, we need all possible local rank-two tensors made out of κµ. We
can construct three such objects: ∇µκν , κµκν , and gµνκλκ

λ. Their variations under
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a Weyl transformation are

δ
(
∇µκν

)
= ∇µων − gµν

(
κλω

λ − ωλωλ
)

+ 2
(
ωµων − κ(µων)

)
,

δ
(
κµκν

)
= ωµων − 2κ(µων) ,

δ
(
gµνκλκ

λ
)

= gµν
(
ωλω

λ − 2κλω
λ
)
, (4.1)

where ω is the local scale factor de�ned as part of the Weyl transformation in
(3.5) and we have de�ned ωµ ≡ ∂µω. From these variations we can construct a
combination of the three tensors whose variation is totally independent of κµ. We
call it Θµν .

Θµν ≡ ∇µκν − κµκν +
1

2
gµνκλκ

λ (4.2)

δΘµν = −∇µων + ωµων −
1

2
gµνωλω

λ (4.3)

ω is the parameter of a spacetime transformation, so we can expect that some
combination of curvature tensors transforms under a Weyl transformation in the
same way as Θµν . To �nd this combination, we �rst calculate the variation of the
Ricci tensor

δRµν = gµν∇λ∇λω + (n− 2)
(
∇µων − ωµων + gµνωλω

λ
)
, (4.4)

where n is the spacetime dimension. This is clearly not equal to δΘµν , however, we
can also calculate that

δ
(
gµνR

)
= (n− 1)

(
2gµν∇λ∇λω + (n− 2)

(
4∇µων − 4ωµων + 3gµνωλω

λ
))

= 2(n− 1)
(
δRµν − (n− 2)δΘµν

)
, (4.5)

and so it turns out that the correct combination of Rµν and R is none other than
the well-known Schouten tensor Sµν .

Sµν ≡
1

(n− 2)

(
Rµν −

1

2(n− 1)
gµνR

)
(4.6)

Thus, we have arrived at our desired relation.

δSµν = δΘµν (4.7)

This is a signi�cant result. It tells us that as long as κµ appears in the action
only in the combination Θµν or Θ λ

λ , it can be replaced by terms proportional to
Sµν and S

µ
µ without spoiling gauge invariance. Making this substitution is what we

call �Ricci gauging�. One might think that this only applies to very speci�c actions
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where κµ appears only in the exact combination Θµν . However, it turns out that in
any theory that is conformally invariant in the �at space limit, one can write the
κµ dependence entirely in terms of Θµν and Θ λ

λ [Iorio et al., 1997]. These types
of Weyl-invariant actions then also admit Ricci gauging and allow us to make the
replacements

Θµν → Sµν Θ λ
λ → S λ

λ =
R

3(n− 2)
. (4.8)

Of course this is not valid for n = 2 spacetime dimensions. We should also note that
the reverse replacement is not valid since Sµν is subject to the Bianchi identity

∇µSµν −∇νS
µ

µ = 0 , (4.9)

which Θµν does not satisfy.

To see how Ricci gauging works in practice, let us consider the globally scale-
invariant Lagrangian describing a massless scalar in curved four dimensional space.

Lglobal =
1

2

√
|g|∂µφ∂µφ (4.10)

To Weyl gauge this expression and make it locally Weyl-invariant, we use the Weyl
connection and promote the partial derivatives to covariant derivatives.

Llocal =
1

2

√
|g|∇̃µφ∇̃µφ =

1

2

√
|g|
(
∇µ + κµ

)
φ
(
∇µ + κµ

)
φ

=
1

2

√
|g|
(
∂µφ∂

µφ−
(
∇µκ

µ − κµκµ
)
φ2
)

(4.11)

In the second line above, we have performed an integration by parts and used that
∇µφ = ∂µφ, which is true even in curved space1. This theory is now invariant under
local Weyl transformations thanks to the κµ terms whose transformation properties
compensate for the extra terms that arise when locally transforming ∂µφ∂

µφ. Ricci
gauging tells us that we can replace the κµ compensator with a di�erent compensator
containing only functions of the metric. Writing our Lagrangian in terms of (4.2)
and performing a Ricci gauging we �nd the following.

Llocal =
1

2

√
|g|
(
∂µφ∂

µφ−Θ µ
µ φ

2
)

→ 1

2

√
|g|
(
∂µφ∂

µφ− 1

6
Rφ2

)
(4.12)

This is precisely the well known Lagrangian for a �conformally coupled� scalar. It
is locally Weyl-invariant just like its Weyl-gauged counterpart, even though it does
not contain any κµ's. The Ricci scalar term transforms in just the right way to serve
as a compensator.

1This is just the statement that scalar �elds carry no direction (they are not vectors), so they are
always invariant under parallel transport. However, they do change under scale transformations
since they have a magnitude, so the κµ part of the Weyl connection does not drop out.
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4.1.1 Ricci-gauged Weyl space

We now have a way to replace dependence on κµ with dependence on gµν while
still maintaining local Weyl invariance, so let's see if we can apply this knowledge to
WQG by Ricci gauging the Weyl space tensors de�ned in (3.10) - (3.13). First, we
need to write these tensors in terms of Θµν . As expected, we can express all of their
κµ dependence in this way if we note that the �eld strength Fµν is proportional to
the anti-symmetric part of Θµν .

Fµν = 2Θ[µν] (4.13)

R̃ = R− 6Θ λ
λ (4.14)

R̃µν = Rµν − 3Θµν + Θνµ − gµνΘ λ
λ (4.15)

R̃µνρσ = Rµνρσ + gµσΘνρ + gνρΘµσ − 2gρσΘ[µν] − gµρΘνσ − gνσΘµρ (4.16)

C̃µνρσ = Cµνρσ − 2gρσΘ[µν] + gµρΘ[νσ] + gνσΘ[µρ] − gµσΘ[νρ] − gνρΘ[µσ] (4.17)

Something very interesting occurs when we perform a Ricci gauging of these tensors.
Setting n = 4, we have the following.

Fµν → 0 (4.18)

R̃ → 0 (4.19)

R̃µν → 0 (4.20)

R̃µνρσ → Cµνρσ (4.21)

C̃µνρσ → Cµνρσ (4.22)

We see here that employing Ricci gauging in Weyl space renders all measures of
curvature equal to zero or to the standard Weyl tensor and so we are left with the
following conclusion.

If λi are arbitrary dimensionless constants that parameterize (globally scale-invariant)
quadratic gravity with the action

SQG =

ˆ
d4x
√
|g|
(
λ1RµνρσR

µνρσ + λ2RµνR
µν + λ3R

2
)
, (4.23)

then we can make this theory Weyl-invariant by introducing κµ via the Weyl con-
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nection, which promotes this action to that of Weyl-quadratic gravity.

SWQG =

ˆ
d4x
√
|g|
(
λ1R̃µνρσR̃

µνρσ + λ2R̃µνR̃
µν + λ3R̃

2
)

=

ˆ
d4x
√
|g|
(
λ1RµνρσR

µνρσ + λ2RµνR
µν + λ3R

2

−
(
4λ2 + 8λ3

)
RµνΘ

µν −
(
12λ1 + 2λ2

)
RΘ µ

µ

+
(
10λ2 + 16λ3

)
ΘµνΘ

µν −
(
6λ2 + 8λ3

)
ΘµνΘ

νµ

+
(
36λ1 + 8λ2 + 4λ3

)
Θ µ
µ Θ ν

ν

)
(4.24)

Using Ricci gauging, we can trade dependence on Θµν in this action for dependence
on Sµν . Thus, in n = 4 spacetime dimensions, this seemingly complicated action
reduces to none other than the action for conformal gravity2.

SWQG →
ˆ
d4x
√
|g|
(
λ1RµνρσR

µνρσ + λ2RµνR
µν + λ3R

2

−
(
λ2 + λ3

)
RµνR

µν − 1

3

(
3λ1 − λ3

)
R2
)

=

ˆ
d4x
√
|g|λ1

(
RµνρσR

µνρσ − 2RµνR
µν +

1

3
R2
)

=

ˆ
d4x
√
|g|λ1CµνρσC

µνρσ = SCG (4.25)

It appears that the two Weyl-invariant theories we studied in the last section are
intimately related after all. However, it is perhaps not immediately clear how to
interpret the nature of their relationship. If we had found an algebraic expression
of the form Θµν = Sµν , that would be one thing; we could simply say that the two
theories are equivalent. This is not the case however, since it is the variations of
these objects that are equivalent. To better understand what is going on here, we
need to take a step back and investigate what is actually happening from the gauge
theory perspective.

4.2 Gauge �xing Weyl quadratic gravity

Let us put Ricci gauging aside for a moment and recast the relationship between
SWQG and SCG in a more canonical light. The whole point of introducing com-
pensating terms in a gauge theory is so that, for any local gauge parameter ω(x),

2There is no need to exploit the Gauss-Bonnet invariant in this calculation, it works in general.
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our theory remains invariant. This means we can arrive at a relation between the
compensator and ω(x) by equating L′QG and LWQG.

LQG[gµν ] → L′QG[gµν ]

= LQG[gµν ] + δLQG[gµν , ω]
!

= LQG[gµν ] +K[gµν , κµ] = LWQG

δLQG[gµν , ω]
!

= K[gµν , κµ] , (4.26)

where K[gµν , κµ] is the compensator familiar from equation (4.24).

K[gµν , κµ] ≡
√
|g|
(
−
(
4λ2 + 8λ3

)
RµνΘ

µν −
(
12λ1 + 2λ2

)
RΘ µ

µ

+
(
10λ2 + 16λ3

)
ΘµνΘ

µν −
(
6λ2 + 8λ3

)
ΘµνΘ

νµ

+
(
36λ1 + 8λ2 + 4λ3

)
Θ µ
µ Θ ν

ν

)
(4.27)

δLQG[gµν , ω] is very lengthy when expanded out and its form is not particularly
enlightening, so we do not show it here. Su�ce to say that after some simpli�cations,
(4.26) simpli�es to the following.

∇µ∂
µω + ∂µω∂

µω
!

= Θ µ
µ (4.28)

This equation tells us exactly how the extra degrees of freedom, κµ, must relate to
the transformation parameter ω so that our theory always remains locally Weyl-
invariant.

Now, as an un�xed gauge theory, LWQG necessarily contains redundant degrees of
freedom. We introduced them in order to make Weyl symmetry local. In order to get
any interesting physical predictions out of a gauge theory, we must choose a gauge
in order to select a particular physical con�guration out of the whole equivalence
class of theories characterized by our gauge �eld. For example, in electrodynamics
we often select the Coulomb gauge ∇ · A(t, ~r) = 0 in order to reduce the full �eld

equations to A(t, ~r) = 1
2
~B×~r and identify the photon as electromagnetic radiation.

We have a large amount of freedom in how to select a gauge, but selecting one
that actually simpli�es calculations is not a trivial task. However, we can make
an educated guess as to what a useful gauge choice will be based on the identical
transformations of Θµν and Sµν . So, let us select a particular con�guration of LWQG

by selecting the gauge Θ µ
µ = S µ

µ = R
6
.

LQG[gµν ] + δLQG[gµν , ω]
∣∣∣
∇µ∂µω+∂µω∂µω=R

6

= LQG[gµν ]−
√
|g|
((
λ2 + λ3

)
RµνR

µν +
1

3

(
3λ1 − λ3

)
R2
)

=

ˆ
d4x
√
|g|λ1

(
RµνρσR

µνρσ − 2RµνR
µν +

1

3
R2
)

= LCG[gµν ] (4.29)
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This is precisely the end result of Ricci gauging, thus, it is easy to see the whole
process is nothing more than selecting a particular gauge where the resulting gauge-
�xed theory (conformal gravity) happens to maintain all of the same symmetry as
its un-gauged predecessor (Weyl quadratic gravity). Fundamentally, �xing a gauge
means that we impose a constraint on the redundant gauge boson degrees of freedom
that we introduced and this is precisely what we have done by setting the particular
combination Θµν [κµ] equal to the combination Sµν [gµν ], which is composed of �elds
that we already had in our spectrum (gµν). The reverse operation does not constitute
a gauge �xing since we increase degrees of freedom when we go from conformal
gravity to Weyl quadratic gravity.
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5 Discussion and Prospects

The connection between conformal and Weyl quadratic gravity that we discovered
in the last chapter still needs some interpretation. Traditionally, if we want to
promote a theory from globally to locally invariant, we must introduce extra degrees
of freedom in the form of gauge �elds. We have seen that this also works in our
case; we can make standard quadratic gravity locally Weyl-invariant by using the
Weyl connection and introducing κµ into the covariant derivative. This amounts to
adding the compensator K[gµν , κµ] to the Lagrangian, which gives us two additional
degrees of freedom. However, there is in fact another procedure for making quadratic
gravity locally Weyl-invariant. Instead of adding degrees of freedom, we can also
remove them - this is the end result of Ricci gauging. This type of behavior does
not appear in more traditional gauge theories. For example, there is no way to make
a globally U(1)-invariant theory locally invariant by removing fermionic degrees of
freedom. It is the combination of fourth order derivatives and the fact that we are
dealing with an external symmetry that makes our theory a special case.

As we demonstrated in equations (4.10) - (4.12), Ricci gauging in the form pre-
sented by its author is meant to allow one to replace dependence on κµ with de-
pendence on gµν when gauging Weyl invariance. There is no di�erence between the
number of degrees of freedom added to a matter theory when it is Weyl-gauged or
Ricci-gauged, the two procedures simply present the choice between using the gravi-
ton or κµ as a gauge �eld. What we have done is use Ricci gauging in a situation that
it was not originally designed for. Our theory already contained graviton degrees
of freedom, and replacing κµ with �elds that were already present in our theory led
to cancellations and the appearance of the conformal gravity action. Rather than
swapping dependence on di�erent gauge �elds as Ricci gauging was intended to do,
we instead used it to exploit the fact that δSµν = δΘµν and identify a consistent
gauge choice that brought us fromWeyl quadratic to conformal gravity. We can view
this whole process as another derivation of the conformal gravity action. Conformal
gravity is not only the unique theory of the gauged conformal group (as claimed by
Kaku et al. [1977]), it is also a particular physical con�guration of Weyl quadratic
gravity.

It is interesting that, as con�rmed by direct computation, conformal gravity is
still locally Weyl-invariant. No symmetry has been lost by gauge �xing WQG, yet
we were able to remove degrees of freedom. This is just another indication that
WQG contains redundant degrees of freedom, but it also tells us that our gauge
choice is �incomplete�. This is not a problem, in fact this is a common feature of
more traditional gauge theories. If one �xes the Lorenz gauge in electrodynamics,
the resulting �eld equations are still Lorentz-invariant for example.
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The fact that we have redundant degrees of freedom is signi�cant, because it
means that we still have the freedom to select a gauge that corresponds to a di�erent
convenient physical con�guration. This is particularly interesting in the case of Weyl
quadratic gravity. We have seen that it is possible to maintain local Weyl-invariance
in a theory through the inclusion of κµ or gµν , and WQG already contains both �elds.
We have just found a gauge that allowed us to drop our dependence on κµ, so in
principle, it should be possible to identify a di�erent gauge that removes the extra
spin-2 degrees of freedom instead. The resulting theory would essentially serve as a
dual to conformal gravity.

Figure 5.1: The paths to local Weyl invariance

This theoretical �dual gauge� is attractive for a few reasons. First, by removing
spin-2 two degrees of freedom, we would necessarily remove some of the ghost states
from our spectrum, without the need to rely on the PT/anti-Hermitian proofs that
are used in conformal gravity. Of course it may turn out that these di�erent ways
around the ghost problem are related in some way as well. Additionally, assuming
that we can still use the same type of tricks with the dilaton that we used in Section
3.3, the �dual conformal� theory would have all of the bene�ts of having a massive
κ̂µ in the spectrum that we saw in Section 3.4. Most notably, it would have the
ability to dynamically generate the Planck mass and electro-weak scale, as well as
put forth a dark matter candidate. It is in this sense that we call this theory a dual.
It corresponds nicely to the low-energy regime after the spontaneous breakdown of
scale symmetry, while regular conformal gravity represents the high-energy regime
with di�erent degrees of freedom and intact conformal symmetry.

It is no trivial task to identify such a dual gauge however, and even the existence
of such an alluring theory is not guaranteed. Physics is notorious for shooting down
even the most promising theories. At the end of the day, it is Nature who makes
the �nal call on what is correct and physical, not us. However, this author is very
excited about the prospects of the Weyl-symmetric setups that we have presented
here and looks forward to pursuing them in much greater detail.
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6 Conclusion

The main focus of this thesis has been to investigate modi�cations to our current
understanding of gravitation, under the guiding principle of local scale invariance,
so that it might better �t into our modern understanding of physics as described
by quantum �eld theory. Despite the fact that we do not see scale invariance in our
everyday low-energy regime, there is still very good reason to expect that physics
becomes insensitive to changes in scale as the energies involved move into the UV. In
line with standard theories of gravity that are symmetric under the Poincaré group,
we chose to consider its natural extension to the conformal group. This group
includes the well-tested set of Poincaré spacetime symmetries as well as scale and
special conformal symmetry, so it serves as a perfect way to formalize our desired goal
of scale invariance. It is also the largest symmetry group of the light cone ds2 = 0
and of Maxwell's equations, which makes it an even more aesthetic choice for the
foundation of a theory of gravity. Finally, by also using the fact that we can express
conformal transformations as Weyl transformations, which are transformations that
act directly on the �elds, we established the starting point for our search.

With a brief review of Einstein's General Relativity and Yang-Mills gauge theory,
we acquired the necessary tools to construct the type of theory we were after. The
�rst such theory was based on a formal gauging of the conformal group, and is
known as conformal gravity. CG has many attractive features including the ability
to account for dark energy and dark matter without the addition of extra matter
�elds, but perhaps most notably, it has the potential to serve as a theory of quantum
gravity due to the fact that it is UV-complete and power-counting renormalizable.
However, we also saw that this theory may contain Ostrogradsky ghosts and that
more research needs to be done before we can determine how large of an issue this
actually presents.

Next, we adopted a slightly di�erent procedure to show that a locally Weyl-
invariant theory of quadratic gravity can be constructed by gauging the global Weyl
symmetry present in the well-studied theories of quadratic gravity. By introducing
compensating terms containing the gauge boson κµ into the spacetime connection,
we were able to de�ne the notion of Weyl space and the theory of Weyl quadratic
gravity. We saw that this theory shares many features with conformal gravity,
including renormalizability and the fourth order derivatives that lead to ghost states.
However, unlike conformal gravity, Weyl quadratic gravity also exhibits spontaneous
symmetry breaking as a result of dimensional transmutation and we saw that this
dynamical breaking can generate the very notion of scale itself.

In the �nal part of this thesis, we chose to search for a connection between our two
theories. After all, given that Weyl invariance always implies conformal invariance,
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it only seems natural that a gauge theory of the conformal group would be intimately
related to a theory based on gauged Weyl symmetry. The Ricci gauging procedure
ended up providing exactly the type of relationship that we were looking for and we
used its key result, δΘµν = δSµν , to �nd that conformal gravity can be viewed as a
gauge-�xed version of Weyl quadratic gravity. By spending some redundant gauge
degrees of freedom, we showed that our �rst theory was just a particular physical
con�guration of the second.

The nature of the relationship between conformal gravity and Weyl quadratic
gravity has some exciting implications. We speculate that there exists a di�erent
physical con�guration of Weyl quadratic gravity that could serve as a dual to con-
formal gravity. This is based on the fact that either the metric gµν or the gauge
boson κµ can be utilized to ensure the Weyl invariance of a theory. Weyl quadratic
gravity contains both of these, and we saw that by gauging away the bosons we
arrived at conformal gravity. In principle then, we should instead be able to gauge
away redundant metric degrees of freedom in Weyl quadratic gravity, to land at a
new theory containing κµ and only second derivatives of gµν . It is too early to say
for sure, but the existence of such a theory could help to dispel the currently known
issues with both conformal and Weyl quadratic gravity.
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A The vierbein formalism

While theories of curved space are often formulated in the metric formalism that
we introduced in Section 1.2, this is not the only option. The vierbein formalism
that we used to de�ne gravitational gauge �elds in Section 2.1 is perhaps even
more powerful, though often less convenient than the metric formalism when doing
a classical treatment of gravity. In this chapter we present a short overview of
the vierbein formulation of curved space and its ability to consistently describe the
behavior of spinor �elds on a curved background. We follow the works by Yepez
[2011] and Shapiro [2016].

Given a curved Riemannian manifoldM with metric gµν(x), we begin by assigning
an additional �at Minkowski metric ηab to every point x ∈ M. As usual, this
�at metric is de�ned as the inner product of basis vectors ηab = ~ea · ~eb. These
vectors parameterize the tangent manifold TxM at each point to which we assign
the coordinates ξa. Since the curved space metric is de�ned as an inner product of
basis vectors onM, gµν(x) = ~eµ(x) · ~eν(x), we now de�ne the vierbein e a

µ (x) as a
function that translates between the local basis onM and the basis on the tangent
manifold TxM at each point x.

~eµ(x) = e a
µ (x)~ea (A.1)

In this sense, the vierbein and its inverse are nothing more than a change of basis1.

e a
µ =

∂ξa

∂xµ
eµa =

∂xµ

∂ξa
(A.2)

Just as we use the metric to raise or lower indices, we can now use the vierbein to
convert indices back and forth from �at space (Latin indices) to spacetime (Greek
indices). This allows us to derive the following relations.

gµν = e a
µ e

b
ν ηab = e a

µ eνa ηab = eµae
ν
bgµν = eµaeµb

δµν = eµae
a
ν δab = e a

µ e
µ
b

√
|g| = det(eµa) ≡ |e| (A.3)

Any vector ~V can be written in terms of either basis as ~V = V a~ea = V µ~eµ, and we
can use the vierbein to relate the di�erent components.

V a = e a
µ V

µ V µ = eµaV
a (A.4)

1From here on out we suppress dependence on xµ to reduce clutter, but we should always remem-
ber that gµν(x) and e

a
µ (x) are functions that depend on spacetime coordinates, while ηab is a

constant.
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As we have seen throughout this work, we often run across objects that carry both
types of indices. We are not able to use the standard covariant derivative on these
type of objects, since the standard Christo�el symbols only carry spacetime indices,
so we need some new kind of connection. The new connection coe�cients need to �ll
the same role as the Christo�el symbols, namely, if the standard covariant derivative
looks like ∇µV

ν = ∂µV
ν + ΓνµλV

λ, then our new coe�cients χ a
µ b must satisfy

∇µV
a = ∂µV

a + χ a
µ bV

b . (A.5)

Unfortunately, �nding an expression for these coe�cients in terms of known quanti-
ties is not as simple as multiplying by a few vierbeins since the chain rule will come
into play. This is directly related to the fact that the Christo�el symbols do not
transform covariantly. However, we can solve for χ a

µ b by matching the covariant

derivative of a vector ~V in the mixed and non-mixed bases.

∇~V =
(
∇µV

a
)
dxµ ⊗ ~ea

=
(
∂µV

a + χ a
µ bV

b
)
dxµ ⊗ ~ea

=
(
∂µ
(
e a
λ V

λ
)

+ χ a
µ be

b
σ V

σ
)
dxµ ⊗ eνa~eν

=
(
eνaV

λ∂µe
a
λ + eνae

a
λ ∂µV

λ + eνaχ
a
µ σV

σ
)
dxµ ⊗ ~eν

=
(
∂µV

ν +
(
eνa∂µe

a
λ + χ ν

µ λ

)
V λ
)
dxµ ⊗ ~eν (A.6)

∇~V =
(
∂µV

ν + ΓνµλV
λ
)
dxµ ⊗ ~eν (A.7)

While the three-index coe�cients do not match up directly, we can easily spot the
relation

Γνµλ = eνa∂µe
a
λ + χ ν

µ λ

= eνa∂µe
a
λ + eνae

b
λ χ

a
µ b , (A.8)

and solve for the connection coe�cients.

χ a
µ b = e a

ν e
λ
bΓ

ν
µλ − eλb∂µe a

λ (A.9)

These new coe�cients de�ne what we call the spin connection, and we use it to
calculate the covariant derivative of tensors with mixed indices in the following way.

∇µV
a

ν = ∂µV
a

ν − ΓλµνV
a

λ + χ a
µ bV

b
ν (A.10)

If we use this to take the covariant derivative of the vierbein and insert (A.8), we
arrive at the vierbein postulate.

∇µe
a
ν = ∂µe

a
ν − e a

λ Γλµν + e b
ν χ

a
µ b

= ∂µe
a
ν −

(
δab∂µe

b
ν + δab e

b
ν χ

a
µ b

)
+ e b

ν χ
a
µ b = 0 (A.11)
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It is easy to show that this is equivalent to the metricity condition we �nd in GR.

∇λgµν = ∇λ

(
e a
µ e

b
ν ηab

)
= ηab

(
e b
ν ∇λe

a
µ + e a

µ ∇λe
b
ν

)
= 0 (A.12)

In another parallel to GR, we can write the spin connection coe�cients as a function
of the vierbein if we enforce that the connection is torsion-free.

χ ab
µ = eνa∂[µe

b
ν] − eνb∂[µe

a
ν] − eρaeσbeµc∂[ρe

c
σ] (A.13)

With a bit of algebra one can show that this is just the same as saying we can write
the Christo�el symbols as a functional of the metric given the same condition.

The Riemann tensor (and its contractions) transform covariantly, so writing its
mixed-index counterpart is as simple as applying a few vierbeins.

R ab
µν = eρaeσbRµνρσ (A.14)

This is simple enough to prove using the Levi-Cevita de�nition of the Riemann
tensor, equation (A.5), and a bunch of algebra. The enlightening part of this calcu-
lation is that the spin connection coe�cients follow the exact same pattern as the
Christo�el symbols when de�ning their respective versions of the Riemann tensor.[

∇µ,∇ν

]
V α =

(
∂µΓαβν − ∂νΓαβµ + ΓαλµΓλνβ − ΓανλΓ

λ
βµ

)
V β

= Rα
βµνV

β (A.15)[
∇µ,∇ν

]
V a =

(
∂µχ

a
ν b − ∂νχ a

µ b + χ a
µc χ

c
ν b − χ a

νc χ
c
µ b)V

b

= R a
µν bV

b (A.16)

The vierbein formalism becomes particularly useful when gravity is formulated as
a gauge theory because it allows us to decompose the full a�ne connection corre-
sponding to the Poincaré group into its translation and Lorentz-symmetric pieces.
We consider the vierbein and spin connection as separate potentials, each belonging
to their own symmetry; translations and spacetime rotations (Lorentz transforma-
tions) respectively. This is useful because, as we saw in Section 2.1, we often see
constraints that correspond to only one or the other symmetry. These constraints
allow us to �nd algebraic relationships between our gauge �elds and eliminate the
non-propagating �elds from the action. This would not be possible in the standard
metric formalism where translation and Lorentz potentials are mixed up together in
the a�ne connection.

In order to extend all of the results above to Weyl space, we just need to promote
all of the partial derivatives as we did in Section 3.2 [Drechsler and Tann, 1999].

∂µe
a
ν → Dµe

a
ν = ∂µe

a
ν + κµe

a
ν (A.17)

64



We de�ne the full Weyl space connection as ∇̃µΨ =
(
∇µ + q[Ψ]κµ

)
Ψ and use it to

derive the Weyl space non-metricity condition

∇̃µe
a
ν =

(
∇µ + κµ

)
e a
ν = κµe

a
ν , (A.18)

the Weyl space spin connection

χ̃ a
µ b = χ a

µ b +
(
eλaeµb − eλbe a

µ

)
κλ + δabκµ , (A.19)

and the Weyl space Riemann tensor

R̃ ab
µν = ∂µχ̃

ab
ν − ∂νχ̃ ab

µ + χ̃ a
µc χ̃

cb
ν − χ̃ a

νc χ̃
cb
µ . (A.20)

Of course this all �ts nicely into the gauge theory picture as well since can view κµ
as the gauge potential associated with the new Weyl symmetry.

A.1 Fermions in curved space

The vierbein formalism allows us to describe gravity as a gauge theory, but is
also necessary if we want to properly describe the coupling between fermions and
curvature. As we know, a consistent theory of gravity must remain invariant under
di�eomorphisms, which is most generally described by the symmetry group GL(4).
However, the gl(4) algebra does not admit any spinor representations, so there is
no way to couple metric-formulated-gravity to fermions without making additional
assumptions2 [Brill and Wheeler, 1957]. In other words, we run into a problem when
we try to compute the metric version of the covariant derivative of a spinor because
the a�ne connection is that of the whole GL(4) group, of which there are no spinor
representations. We can get around this issue by using the spin connection instead.
Since it is the connection on only the tangent manifold TM → SO(1, 3), it can
couple to spinors since the Lorentz group does allow for spinor representations. To
put this in another light, we observe that while the �at space Dirac equation is
symmetric under the Lorentz group, it is not symmetric under the full GL(4). Thus
when we promote the partial derivative to a covariant derivative, the associated
connection must also be related to just the Lorentz group. Of course this where the
name �spin connection� comes from; it is the spacetime connection used for spinors.

Let us proceed by promoting the �at space Lagrangian for a free fermion to its
curved space counterpart.

Lψ = ψ̄
(
iγa∂a +m

)
ψ →

√
|g|ψ̄

(
iγµ∇µ +m

)
ψ (A.21)

Here, γµ = γaeµa is the curved space version of the standard Dirac gamma matrices
which satis�es a curved space version of the Cli�ord algebra, {γµ, γν} = gµν . Now

2An example of such an assumption is given in an interesting paper by Woodard [1984]. Here it
is shown that the metric formulation is su�cient provided that we �x the Lorentz gauge and
stick to perturbation theory.
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we follow Shapiro [2016] and consider the relation

∇µ

(
ψ̄γνψ

)
= ∂µ

(
ψ̄γνψ

)
+ Γνµλψ̄γψ . (A.22)

A few applications of the chain rule along and clever use of some γ matrix identi-
ties allows us to isolate the covariant derivative of a single fermion in the vierbein
language.

∇µψ = ∂µψ +
i

2
χ ab
µ Σabψ , Σab =

i

2
[γa, γb] , (A.23)

where Σab is a representation of the Lorentz algebra that arises naturally as part of
the calculation. With this covariant derivative, we �nally have all the machinery we
need to describe spinors, that necessarily live in �at space, on a curved background.

Finally, we conclude this section by examining how a fermion couples to curvature
in Weyl space after κµ comes into play. After gauging Weyl symmetry (∇µ → ∇̃µ),
(A.21) becomes

L̃ψ = |e|ψ̄
[
iγaeµa

(
∂µ +

i

2
χ̃ ab
µ Σab +

3

2
κµ

)
+m

]
ψ . (A.24)

If we plug (A.19) into this expression in order to re-express things in the Riemannian
language, we see that something quite interesting occurs3.

i

2
χ̃ ab
µ Σab =

i

2

(
χ ab
µ +

(
eνae b

µ − eνbe a
µ

)
κν + ηabκµ

) i
2

[γa, γb]

=
i

2
χ ab
µ Σab +

1

4

((
e a
µ − γaγµ

)
eλa +

(
e b
µ − γbγµ

)
eλb

)
κλ

=
i

2
χ ab
µ Σab +

1

2

(
δλµ − γcγµeλc

)
κλ

=
i

2
χ ab
µ Σab −

3

2
κµ (A.25)

The Weyl space spin connection χ̃ ab
µ contributes an extra κµ term that perfectly

cancels the other term introduced as part of the full Weyl connection. Practically,
this means that the κµ-ψ minimal coupling drops out and we need only consider
the standard a�ne spin connection term [de Cesare et al., 2017]. We conclude
that fermions are essentially una�ected by the gauging of Weyl invariance (at least
at tree level) and that the Weyl space Lagrangian L̃ψ is exactly equivalent to the
Riemannian space version in (A.21).

3The identities {γa, γb} = 2ηab, γaγ
a = 4, and γbγ

aγb = −2γa are invaluable here.
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B Oscillator variable decomposition

Here we present the details of the oscillator variable decomposition calculations
described in Section 3.4.1. The (metric) gravitational part of the Einstein frame
WQG Lagrangian is

Lgrav = −
√
|g|
(
αCµνρσC

µνρσ +
〈φ〉2

2
R
)
. (B.1)

We can expand this expression up to second order in terms of the metric perturba-
tions hµν by writing

gµν = ηµν + hµν (B.2)

and using the spin projectors

P (2)
µν,ρσ =

1

2

(
θµρθνσ + θµσθνρ

)
− P (0,s)

µν,ρσ P (0,s)
µν,ρσ =

1

3
θµνθρσ , (B.3)

where θµν ≡ ηµν − ∂µ∂ν
∂2

. This yields

Lgrav[hµν ] = −αhµνP (2)
µν,ρσ∂

4hρσ − 〈φ〉
2

4
hµν
(
P (2)
µν,ρσ − 2P (0,s)

µν,ρσ

)
∂2hρσ

= α
(
− 2

3
hµν∂µ∂ν∂ρ∂σh

ρσ + 2hµν∂ν∂ρ∂σ∂
σh ρ

µ

− 2

3
hµµ∂ν∂ρ∂σ∂

σhνρ − hµν∂ρ∂ρ∂σ∂σhµν

+
1

3
hµµ∂ρ∂

ρ∂σ∂
σhνν

)
+
〈φ〉
4

(
2hµν∂ν∂ρh

ρ
µ − 2hµµ∂ν∂ρh

νρ

− hµν∂ρ∂ρhµν + hµµ∂ρ∂
ρhνν

)
. (B.4)

Now we de�ne the auxiliary �eld Xµν and make the following ansatz for its La-
grangian.

LX [hµν , Xµν ] =λ1Xµν ∂
ν∂ρh

µρ + λ2X
ρ
ρ ∂µ∂νh

µν + λ3Xµν ∂ρ∂
ρhµν

+ λ4Xµν ∂
µ∂νh ρ

ρ + λ5X
µ

µ ∂ρ∂
ρh ν

ν +
〈φ〉2

α

(
λ6hµνh

µν

+ λ7XµνX
µν + λ8Xµνh

µν + λ9h
µ
µ h

ν
ν + λ10X

µ
µ h ν

ν

)
(B.5)
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Xµν 's equation of motion is then δLX = 0, which gives us the algebraic expression

Xµν = − 1

2λ7

[
α

4〈φ〉

(1

2
λ1

(
∂µ∂

ρhνρ + ∂ν∂
ρhµρ

)
+ λ2ηµν∂ρ∂σh

ρσ + λ3∂ρ∂
ρhµν

+ λ4∂µ∂νh
ρ
ρ + λ5ηµν∂ρ∂

ρh σ
σ

)
+ λ8hµν + λ10ηµνh

µ
µ

]
. (B.6)

Next, we plug this de�nition for Xµν back into (B.5) and set LX = Lgrav. By
matching the coe�cients in front of each term in LX with the correct coe�cients in
Lgrav, we arrive at the following system of equations

λ6 −
λ2

8

4λ7

= 0
1

λ7

(
λ2

10 +
1

2
λ10λ8 − λ7λ9

)
= 0

− λ1λ8

2λ7

= 2 − 1

2λ7

(
λ1λ10 + 4λ10λ2 + λ8

(
λ2 + λ4

))
= −2

− λ3λ8

2λ7

= −1 − 1

2λ7

(
λ10

(
λ3 + λ4 + 4λ5

)
+ λ5λ8

)
= 1

− 1

8λ7

(
λ2

1 + 4λ1λ2 + 8λ2
2

)
= −2

3
− 1

8λ7

(
4λ1λ3 + λ2

1

)
= 2

− 1

2λ7

(
λ4

(
λ1 + λ2 + λ3

)
+ λ2λ3 + λ1λ5 + 4λ2λ5

)
= −2

3

− λ2
3

4λ7

= −1 − 1

2λ7

(
λ2

4

2
+ λ5

(
λ3 + λ4 + 2λ5

))
=

1

3
, (B.7)

which has the two solutions

λi =

{
λ1 ,

λ1

12

(
− 3± i

√
3
)
, −λ1

2
, −λ1

2
,
λ1

12

(
3± i

√
3
)
,

1

4
,
λ2

1

16
, −λ1

4
, −1

4
,
λ1

16

(
1± i

√
3
)}

. (B.8)

Interestingly, it appears that we still have the freedom to choose λ1 as we like.
Now that we have justi�ed our ansatz for LX given this λi, we can perform the
diagonalizing change of variables

hµν = ρ
(
σµν + Σµν

)
Xµν = ρ

(
σµν − Σµν

)
, (B.9)

where σµν and Σµν will be our physically propagating spin-2 �elds and ρ is an
arbitrary normalization constant. We also �x our gauge freedom by imposing the
transverse-traceless conditions

∂µσµν = ∂µΣµν = 0 σ µ
µ = Σ µ

µ = 0 . (B.10)
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Plugging (B.9) back into LX with these conditions and either the plus or minus
version of λi yields the same result.

LX [σµν ,Σµν ] = Lgrav[σµν ,Σµν ]

= ρ2λ1

(
− σµν∂ρ∂ρσµν + Σµν∂ρ∂

ρΣµν

)
+
ρ2〈φ〉
64α

(
2
(
4− λ2

1

)
σµνΣ

µν +
(
λ1 − 2

)2
σµνσ

µν +
(
λ1 + 2

)2
ΣµνΣ

µν

)
(B.11)

We still have the freedom to choose λ1 and ρ, so we set λ1 = 2 in order to kill
the cross term and ρ = 1/2 to normalize, which gives us our �nal decomposed
gravitational Lagrangian for Weyl quadratic gravity in the Einstein frame.

Lgrav[σµν ,Σµν ] = −1

2
σµν∂ρ∂

ρσµν +
1

2
Σµν∂ρ∂

ρΣµν +
〈φ〉2

16α
ΣµνΣ

µν (B.12)

Note that while we could have also chosen λ1 = −2, the particle content would have
been the same with only the names reversed.
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