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Abstract

With the rise in popularity of social media, im-
ages accompanied by contextual text form a
huge section of the web. However, search and
retrieval of documents are still largely depen-
dent on solely textual cues. Although visual
cues have started to gain focus, the imperfec-
tion in object/scene detection do not lead to
significantly improved results. We hypothe-
size that the use of background commonsense
knowledge on query terms can significantly
aid in retrieval of documents with associated
images. To this end we deploy three different
modalities - text, visual cues, and common-
sense knowledge pertaining to the query - as a
recipe for efficient search and retrieval.

1 Introduction

Motivation: Image retrieval by querying visual con-
tents has been on the agenda of the database, infor-
mation retrieval, multimedia, and computer vision
communities for decades (Liu et al., 2007; Dattal
ket al., 2008). Search engines like Baidu, Bing or
Google perform reasonably well on this task, but
crucially rely on textual cues that accompany an im-
age: tags, caption, URL string, adjacent text etc.

In recent years, deep learning has led to a boost
in the quality of visual object recognition in images
with fine-grained object labels (Simonyan and Zis-|
[serman, 2014} [LeCun et al., 2015; Mordvintsev et|
lal., 2015). Methods like LSDA
are trained on more than 15,000 classes of Im-
ageNet (Deng et al., 2009) (which are mostly leaf-
level synsets of WordNet (Miller, 1995)), and anno-

tate newly seen images with class labels for bound-

Detected visual objects:
traffic light, car, person,
bicycle, bus, car, grille,

radiator grille

(a) Good object detection

Detected visual objects:
tv or monitor, cargo

door, piano

(b) Poor object detection

Figure 1: Example cases where visual object detec-
tion may or may not aid in search and retrieval.

ing boxes of objects. For the image in Figure[Ta] for
example, object labels traffic light, car, person, bi-
cycle and bus have been recognized making it easily
retrievable for queries with these concepts. How-
ever, these labels come with uncertainty. For the
image in Figure [TB] there is much higher noise in
its visual object labels; so querying by visual labels
would not work here.

Opportunity and Challenge: These limitations of
text-based search, on one hand, and visual-object
search, on the other hand, suggest combining the
cues from text and vision for more effective re-
trieval. Although each side of this combined feature
space is incomplete and noisy, the hope is that the
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“downsides of moun-
taineering”

“street-side soulful mu-

ER]

S1C

Figure 2: Sample queries containing abstract con-
cepts and expected results of image retrieval.

combination can improve retrieval quality.

Unfortunately, images that show more sophisti-
cated scenes, or emotions evoked on the viewer are
still out of reach. Figure [2] shows three examples,
along with query formulations that would likely con-
sider these sample images as relevant results. These
answers would best be retrieved by queries with ab-
stract words (e.g. ‘“‘environment friendly”) or ac-
tivity words (e.g. “traffic”’) rather than words that
directly correspond to visual objects (e.g. “car” or
“bike”). So there is a vocabulary gap, or even con-
cept mismatch, between what users want and ex-
press in queries and the visual and textual cues that
come directly with an image. This is the key prob-
lem addressed in this paper.

Approach and Contribution: To bridge the con-
cepts and vocabulary between user queries and im-
age features, we propose an approach that har-
nesses commonsense knowledge (CSK). Recent ad-
vances in automatic knowledge acquisition have
produced large collections of CSK: physical (e.g.
color or shape) as well as abstract (e.g. abili-
ties) properties of everyday objects (e.g. bike, bird,
sofa, etc.) (Tandon et al., 2014}, subclass and part-
whole relations between objects (Tandon et al.,

2016), activities and their participants (Tandon et
lal., 2015), and more. This kind of knowledge al-

lows us to establish relationships between our ex-
ample queries and observable objects or activities
in the image. For example, the following CSK
triples establish relationships between ‘backpack’,
‘tourist’ and ‘travel map’:

(backpacks, are

carried by, tourists), (tourists, use,
travel maps). This allows for retrieval of images
with generic queries like “travel with backpack”.

This idea is worked out into a query expansion
model where we leverage a CSK knowledge base
for automatically generating additional query words.
Our model unifies three kinds of features: textual
features from the page context of an image, visual
features obtained from recognizing fine-grained ob-
ject classes in an image, and CSK features in the
form of additional properties of the concepts re-
ferred to by query words. The weighing of the dif-
ferent features is crucial for query-result ranking. To
this end, we have devised a method based on statis-
tical language models (Zhai, 2008).

The paper’s contribution can be characterized as
follows. We present the first model for incorporat-
ing CSK into image retrieval. We develop a full-
fledged system architecture for this purpose, along
with a query processor and an answer-ranking com-
ponent. Our system KnowZ2Look, uses common-
sense knowledge to look for images relevant to a
query by looking at the components of the images
in greater detail. We further discuss experiments
that compare our approach to state-of-the-art image
search in various configurations. Our approach sub-

stantially improves the query result quality.

2 Related Work

Existing Commonsense Knowledge Bases: Tra-
ditionally commonsense knowledge bases were cu-
rated manually through experts or
through crowd-sourcing (Singh et al., 2002). Mod-
ern methods of CSK acquisition are automatic, ei-
ther from test corpora (Liu and Singh, 2004) or from
the web (Tandon et al., 2014).

Vision and NLP: Research at the intersection of
Natural Language Processing and Computer Vision
is in limelight in the recent past. There have been

work on automatic image annotations (Wang et al.,



2014)), description generation (Vinyals et al., 2014;
Ordonez et al., 2011} Mitchell et al., 2012), scene
understanding (Farhadi et al., 2010), image retrieval
through natural language queries (Malinowski and
Fritz, 2014)) etc.

Commonsense knowledge from text and vision:
There have been attempts for learning CSK from
real images (Chen et al., 2013) as well as from non-
photo-realistic abstractions (Vedantam et al., 2015)).
Recent work have also leveraged CSK for visual ver-
ification of relational phrases (Sadeghi et al., 2015)
and for non-visual tasks like fill-in-the-blanks by
intelligent agents (Lin and Parikh, 2015). Learn-
ing commonsense from visual cues continue to be
a challenge in itself. The CSK used in our work is
motivated by research on CSK acquisition from the
web (Tandon et al., 2014).

3 Multimodal document retrieval

Adjoining text of images may or may not explic-
itly annotate their visual contents. Search engines
relying on only textual matches ignore information
which may be solely available in the visual cues.
Moreover, the intuition behind using CSK is that hu-
mans innately interpolate visual or textual informa-
tion with associated latent knowledge for analysis
and understanding. Hence we believe that leverag-
ing CSK in addition to textual and visual informa-
tion would take results closer to human users’ pref-
erences. In order to use such background knowl-
edge, curating a CSK knowledge base is of pri-
mary importance. Since automatic acquisition of
canonicalized CSK from the web can be costly, we
conjecture that noisy subject-predicate-object (SPO)
triples extracted through Open Information Extrac-
tion (Banko et al., 2007) may be used as CSK. We
hypothesize that the combination of the noisy ingre-
dients — CSK, object-classes, and textual descrip-
tions — would create an ensemble effect providing
for efficient search and retrieval. We describe the
components of our architecture in the following sec-
tions.

3.1 Data, Knowledge and Features

We consider a document x from a collection X with
two kinds of features:

o Visual features xv;: labels of object classes rec-
ognized in the image, including their hypernyms
(e.g., king cobra, cobra, snake).

e Textual features xz;: words that occur in the
text that accompanies the image, for example
image caption.

We assume that the two kinds of features can
be combined into a single feature vector x =
(x1...xp) with hyper-parameters o, and oy to
weigh visual vs. textual features.

CSK is denoted by a set Y of triples yi(k = 1..5)
with components ys, ypx, yor. (s - subject, p - pred-
icate, o - object). Each component consists of one or
more words. This yields a feature vector yyj(j =
1..M) for the triple yy.

3.2 Language Models for Ranking

We study a variety of query-likelihood language
models (LM) for ranking documents x with regard
to a given query q. We assume that a query is simply
a set of keywords ¢;(i = 1..L). In the following we
formulate equations for unigram LLMs, which can be
simply extended to bigram LMs by using word pairs
instead of single ones.

Basic LM:
Pyasiclalz] = ] [ Plail] )

where we set the weight of word ¢; in x as follows:

Plgila] = g Plgilwe] Pleaj|e]+ay Plgi|zv] Plrvs|]

2
Here, zx; and zv; are unigrams in the textual or
visual components of a document; «, and «, are
hyper-parameters to weigh the textual and visual
features respectively.

Smoothed LM:

Psmoothed{ﬂli] = anasic[q‘x]+(1_a)P[q’B] 3)
where B is a background corpus model and
Plq|B] = I, Plgi|B]. We use Flickr tags from
the YFCC100M dataset (Thomee et al., 2015) along
with their frequency of occurrences as a background
corpus.

Commonsense-aware LM (a translation LM):

Peslala] = ] [Zk P[Qinzl‘c]P[yk‘x] @

i



The summation ranges over all y; that can bridge
the query vocabulary with the image-feature vo-
cabulary; so both of the probabilities P[q;|yx]
and Plyx|r] must be non-zero. For example,
when the query asks for “electric car” and an
image has features “vehicle” (visual) and “‘en-
ergy saving” (textual), triples such as (car, is a
type of, vehicle) and (electric engine,
saves, energy) would have this property. That
is, we consider only commonsense triples that over-
lap with both the query and the image features.

The probabilities P[g;|yx| and Plyg|z] are esti-
mated based on the word-wise overlap between ¢;
and y; and y; and z, respectively. They also con-
sider the confidence of the words in y; and x.

Mixture LM (the final ranking LM):

Since a document = can capture a query term or its
commonsense expansion, we formulate a mixture
model for the ranking of a document with respect
to a query:

Plqlz] = BesPes(qlx] + (1 — Bes) Psmoothedld|z]
®)

where Bog is a hyper-parameter weighing the com-

monsense features of the expanded query.

3.3 Feature Weights

By casting all features into word-level unigrams, we
have a unified feature space with hyper-parameters
(aiz, oy, and Beg). For this submission the hyper-
parameters are manually chosen.

For weights of visual object class zv; of doc-
ument x, we consider the confidence score from
LSDA (Hoffman et al., 2014). We extend these
object classes with their hypernyms from WordNet
which are set to the same confidence as their de-
tected hyponyms. Although not in common par-
lance this kind of expansion can also be considered
as CSK. We define the weight for a textual uni-
gram xx; as its informativeness — the inverse docu-
ment frequency with respect to a background corpus
(Flickr tags with frequencies).

The words in a CSK triple y; have non-uniform
weights proportional to their similarity with the
query words, their idf with respect to a background
corpus, and the salience of their position — boost-
ing the weight of words in s and o components of

y. The function computing similarity between two
unigrams favors exact matches to partial matches.

3.4 Example

Query string: travel with backpack

Commonsense triples to expand query:
tl: (tourists,
t2: (tourists,
t3: (backpack,

use, travel maps)

carry, backpacks)

is a type of, bag)

Say we have a document x with features:
Textual - “A tourist reading a map by the road.”
Visual - person, bag, bottle, bus

The query will now successfully retrieve the above
document, whereas it would have been missed by
text-only systems.

4 Datasets

For the purpose of demonstration we choose a top-
ical domain — Tourism. Our CSK knowledge base
and image dataset obey this constraint.

CSK acquisition through OpenlE: We consider a
slice of Wikipedia pertaining to the domain tourism
as the text corpus to extract CSK from. Nouns from
the Wikipedia article titled ‘Tourism’(seed docu-
ment) constitute our basic language model. We col-
lect articles by traversing the Wiki Category hier-
archy tree while pruning out those with substantial
topic drift. The Jaccard Distance (Equation [6)) of a
document from the seed document is used as a met-
ric for pruning.

JaccardDistance = 1—WeightedJaccardSimilarity

(6)
where,
WeightedJaccardSimilarity =
Spmin[f (di, wn), f (D, wy)]
Enmaz[f(di, wn), f(D,wn)]
(N

In Equation [/} acquired Wikipedia articles d; are
compared to the seed document D; f(d’,w) is the
frequency of occurrence of word w in document d’'.
For simplicity only articles with Jaccard distance of
1 from the seed document are pruned out. The cor-
pus of domain-specific pages thus collected consti-
tute ~5000 Wikipedia articles.



Table 1: Query Benchmark for evaluation

Table 2: Comparison of Know2Look with baselines

aircraft international | diesel transport
airport vehicle dog park
backpack travel fish market
ball park housing town
bench high lamp home
bicycle road old clock
bicycle trip road signal
bird park table home
boat tour tourist  bus
bridge road van road

The OpenlE tool ReVerb (Fader et al., 2011) run
against our corpus produces around 1 million noisy
SPO triples. After filtering with our basic language
model we have ~22,000 moderately clean assertions.

Image Dataset: For the purpose of experiments
we construct our own image dataset. ~50,000 im-
ages with descriptions are collected from the follow-
ing datasets: Flickr30k (Young et al., 2014)), Pas-
cal Sentences (Rashtchian et al., 2010), SBU Cap-
tioned Photo Dataset (Ordonez et al., 2011, and
MSCOCO (Lin et al., 2014). The images are col-
lected by comparing their textual descriptions with
our basic language model for Tourism. An existing
object detection algorithm — LSDA (Hoffman et al.,
2014) — is used for object detection in the images.
The detected object classes are based on the 7000
leaf nodes of ImageNet (Deng et al., 2009). We also
expand these classes by adding their super-classes or
hypernyms with the same confidence score.

Query Benchmark: We construct a benchmark of
20 queries from co-occurring Flickr tags from the
YFCC100M dataset (Thomee et al., 2015). This
benchmark is shown in Table [I} Each query con-
sists of two keywords that have appeared together
with high frequency as user tags in Flickr images.

5 Experiments

Baseline Google search results on our image dataset
form the baseline for the evaluation of Know2Look.
We consider the results in two settings — search
only on original image caption (Vanilla Google),
and on image captions along with detected object
classes (Extended Google). The later is done to aid

Average Precision@ 10

Vanilla Google 0.47
Extended Google 0.64
Know2Look 0.85

Google in its search by providing additional visual
cues. We exploit the domain restriction facility of
Google search (query string site:domain name) to
get Google search results explicitly on our dataset.

Know2Look In addition to the setup for Extended
Google, Know2Look also performs query expansion
with CSK. In most cases we win over the baseline
since CSK captures additional concepts related to
query terms enhancing latent information that may
be present in the images. We consider the top 10 re-
trieval results of the two baselines and Know2Look
for the 20 queries in our query benchmarkﬂ We
compare the three systems by Precision@10. Ta-
ble [2] shows the values of Precision@10 averaged
over 20 queries for each of the three systems —
Know?2Look performs better than the baselines.

6 Conclusion

In this paper we propose the incorporation of com-
monsense knowledge for image retrieval. Our
architecture, Know2Look, expands queries by re-
lated commonsense knowledge and retrieves im-
ages based on their visual and textual contents. By
utilizing the visual and commonsense modalities
we make search results more appealing to the hu-
mans than traditional text-only approaches. We sup-
port our claim by comparing Know2Look to Google
search on our image data set. The proposed concept
can be easily extrapolated to document retrieval.
Moreover, in addition to using noisy OpenlE triples
as commonsense knowledge, we aim to leverage
existing commonsense knowledge bases for future
evaluations of Know2Look.

Acknowledgment: We would like to thank Anna
Rohrbach for her assistance with visual object de-
tection of our image data set using LSDA. We also
thank Ali Shah for his help with visualization of the
evaluation results.
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Appendix

The mathematical formulas, function definitions and details about hyper-parameters used are listed in tables

BBl and 6

Formula Description
. idf (xxj) . . .
Textual feature weight Plxxjlx] = S idf (e The informativeness or weight of a
>, idf (wwy) word/phrase xx; in a document is cap-
tured by calculating it’s idf in a large
background corpus v.
. id .

Visual feature weight Plzvjlz] = conf(zv,) X e fc(ixvj ) The weight of a object class zv, in a doc-
> conf(zvy) 32, idf (zvy) ument is calculated by the product of it’s
confidence (from LSDA) and it’s infor-

mativeness.

S sim(Yr, i) sal(yr; )in ;

CSK feature weight Plyg|z] = 2id (W, 7i)s0l(g; inf (91;) The relevance of a commonsense triple y

div

to a document is decided by the similar-
ity of its words/phrases yy, to the features
of the document, the salience (or impor-
tance) of the match, and the informative-
ness of the word/phrase.

Table 3: Mathematical formulations of Feature Weights

Hyper-parameter

Description

«

Qg

Ay

Bcs

Weight of the basic document features; (1 — «)

being

the weight for smoothing.

Weight associated with the textual features of a
document.

Weight associated with the visual features of a
document.

Weight pertaining to the commonsense knowledge

features of an expanded document.

Table 4: Definition of Hyper-parameters



Formula

Description

Basic LM

Smoothed LM

Commonsense-aware LM

Mixture LM

Pyasiclalr] = [, Plailz];

oy .
m Zj sim(q;, xx;)Plax|z] +
Qv )

W > sim(gqq, xvy) Plav|x];

Plgi|z] =

Psmoothed[q‘x] = anasic[q‘x] + (1 - O‘)P[Q|B]7
Plq|B] = I1; Pla:| B]

[ 25 Plaslye] Plywl]]

Peslglz] =] 7 ;

Plagilyx] = 32, sim(qi, yr;)

Plq|z] = BesPeslqlz] + (1 — B) Psmoothed[q|x]

A unigram/bigram LM described by the
probability of generation of a query ¢
from a document x. The weight of the
it" word in ¢ is given by P[g;|z]. The
product over all words of the query en-
sures a conjunctive query.

A word in the query may match with the
textual or visual features of a document
weighted by «, and «,, and normalised
with number of matches |j| and || re-
spectively.

The Basic LM after smoothing on back-
ground corpus B. The relative frequency
of ¢; in B (P[¢;|B)) is used for smooth-
ing the LM.

A translation LM describing the proba-
bility of generation of a query from the k&
commonsense knowledge triples y. The
summation over k includes all triples
bridging the gap between the query vo-
cabulary and the document vocabulary;
it is normalized by the total number of
such triples.

The probability that the query word
q; has been generated from the CSK
triple yj, is the sum of similarity scores
between the two words/phrases, nor-
malised by the number of words/phrases
(7)) in the CSK triples.

Combination of  the weighted
Commonsense-aware LM and Smoothed
LM for ranking a document x for a query

q.

Table 5: Mathematical formulations of Language Models for Ranking



Function

Description

Confidence

Informative-ness

Similarity

Salience

conf(w)

inf(w) =idfg(w)

|substring(w, ws)|

sim(wi, wz) = maz[length(w ), length(ws)]

sal(w) = Ag if w € subject
=X if w € predicate
=X if w € object

where t s = (subject, predicate, object)

A score output by the LSDA to depict
the confidence of detection of an object
class. The hypernyms of the detected vi-
sual object classes are assigned the same
confidence score.

We measure informative-ness of a word
by its idf value in a larger corpus, such
that common terms are penalised.

This function calculates the amount of
string overlap between w; and ws.

The importance of the string match posi-
tion in a commonsense knowledge triple
tesk 1S captured by this function. Intu-
itively, the textual features in the subject
and the object are more important that
those in the predicate. Therefor we as-
sigh Ag = Ao > Apand As+ XA, + X, =1

Table 6: Function definitions
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