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A B S T R A C T

In this work we use non-negative matrix factorization to identify patterns of microstructural variance in the
human hippocampus. We utilize high-resolution structural and diffusion magnetic resonance imaging data from
the Human Connectome Project to query hippocampus microstructure on a multivariate, voxelwise basis.
Application of non-negative matrix factorization identifies spatial components (clusters of voxels sharing similar
covariance patterns), as well as subject weightings (individual variance across hippocampus microstructure). By
assessing the stability of spatial components as well as the accuracy of factorization, we identified 4 distinct
microstructural components. Furthermore, we quantified the benefit of using multiple microstructural metrics by
demonstrating that using three microstructural metrics (T1-weighted/T2-weighted signal, mean diffusivity and
fractional anisotropy) produced more stable spatial components than when assessing metrics individually. Finally,
we related individual subject weightings to demographic and behavioural measures using a partial least squares
analysis. Through this approach we identified interpretable relationships between hippocampus microstructure
and demographic and behavioural measures. Taken together, our work suggests non-negative matrix factorization
as a spatially specific analytical approach for neuroimaging studies and advocates for the use of multiple metrics
for data-driven component analyses.
1. Introduction

The hippocampus is a medial temporal lobe structure of the brain
intimately linked with learning and memory. It is often described as a
curved cylindrical structure with a tapered tail, spanning the anterior-
posterior extent of the medial temporal lobe (Amaral, Scharfman and
Lavenex, 2007; Small, 2002; Strange et al., 2014). Variation in hippo-
campal function, anatomy, and degeneration have been implicated in a
variety of neurological disorders, including but not limited to
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uncu et al., 2011), schizophrenia (Heckers, 2001; Narr et al., 2004), and
depression (Bremner et al., 2000; Vythilingam et al., 2004). As a result,
examination of this structure has consistently been of significant interest,
particularly in the context of neuroimaging investigations. Structural
magnetic resonance imaging (MRI)-based studies typically investigate
the volume and shape of the hippocampus in relation to neuropsychiatric
disorders and cognitive function (Bremner et al., 2000; Crane and Milner,
2005; de Flores et al., 2015; Erickson et al., 2011; Fotuhi et al., 2012;
ity Institute, Verdun, Canada.
ity Institute, Verdun, Canada.
a (M.M. Chakravarty).

November 2019

ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

ion in the human hippocampus using non-negative matrix factorization,

mailto:mohammed.patel@mail.mcgill.ca
www.sciencedirect.com/science/journal/10538119
http://www.elsevier.com/locate/neuroimage
https://doi.org/10.1016/j.neuroimage.2019.116348
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1016/j.neuroimage.2019.116348


R. Patel et al. NeuroImage xxx (xxxx) xxx
Jack et al., 1999; Mielke et al., 2012; Sankar et al., 2017; Voineskos et al.,
2015; Vythilingam et al., 2004).

While these studies are undoubtedly important and effective, they are
limited by their ability to effectively probe the variance in overall ar-
chitecture of the hippocampus, a heterogeneous structure with distinct
subregions. To address concerns regarding the lack of spatial specificity
in traditional hippocampal volume estimates, previous work has
attempted to refine volumetric studies using subfield volumes (Amaral
et al., 2018; Khan et al., 2008; Small et al., 2011; Winterburn et al., 2013;
Wisse et al., 2014; Yushkevich et al., 2010). While this has proven to be
useful in several studies (Adler et al., 2018; de Flores et al., 2015; Small
et al., 2011; Voineskos et al., 2015; Yushkevich et al., 2015b), it still
relies on a priori definitions of a specific type of hippocampal architecture
that may be difficult to fully resolve using standard structural MRI
techniques. For example, parts of the cornu ammonis region may have
thickness under 1 mm (Amunts et al., 2005), and boundaries between the
cornu ammonis 1 and subiculum are still a topic of controversy (Yush-
kevich et al., 2015a). Furthermore, inter- and intra-subfield variation
based on well-characterized variation in genetics, function, and
anatomical connectivity patterns along the hippocampal long axis can
also be expected (Patel et al., 2017; Small, 2002; Strange et al., 2014;
Thompson et al., 2008; Whelan et al., 2016). A goal of this work is to
investigate the hippocampus using an approach which better captures
the demonstrated intra-hippocampal variation.

Volumetric analyses also fail to describe hippocampus microstructure
(defined here as alterations in tissue microstructure as described by MRI
accessible measures). Given the relative lack of microstructural analyses
of the hippocampus, a goal of the current manuscript is to examine the
hippocampus along microstructural dimensions. Previous studies have
used indices derived from diffusion MRI and/or quantitative MRI to
demonstrate that microstructural variation throughout the brain can be
reliably detected prior to volumetric change (Bartzokis, 2004; Callaghan
et al., 2014; Lebel et al., 2012; Lebel et al., 2008; Marner et al., 2003) and
in some cases may be more robustly related to variation in cognitive
performance (Charlton et al., 2006; Charlton et al., 2010; den Heijer
et al., 2012; Schiavone et al., 2009; Scott et al., 2017). These associations
have also been demonstrated in the hippocampus specifically, and
further motivate the investigation of hippocampal microstructure pre-
sented in the current manuscript (Carlesimo et al., 2010; den Heijer et al.,
2012; Müller et al., 2007; van Uden et al., 2016; Wolf et al., 2015).
Previous microstructural-based works have commonly focussed on the
use of diffusion MRI derived metrics such as fractional anisotropy (FA)
and mean diffusivity (MD) to describe axon geometry/organization and
axon density (Alexander et al., 2007; Jones et al., 2013; Tardif et al.,
2016). In addition to this, recent works have begun to use measures
derived using structural MRI, specifically the ratio of
T1-weighted/T2-weighted (T1w/T2w) signal as a correlate of myelin
(Ganzetti et al., 2014; Glasser et al., 2016; Glasser and Van Essen, 2011;
Grydeland et al., 2013; Tullo et al., 2019), as a means of further inter-
rogating brain microstructural characteristics and their relationship with
cognition (Grydeland et al., 2013) or age (Tullo et al., 2019). While each
metric aims to assess different aspects of brain microstructure, none of
them can be said to be specific to alterations of any unique biological
phenomena (Alexander et al., 2007; Tardif et al., 2016). There also exists
overlap in the phenomena to which each is sensitive (e.g. T1w/T2w, MD
and FA are all sensitive to myelin content (Alexander et al., 2007; Gry-
deland et al., 2013; Tardif et al., 2016)). Thus, multivariate methods
which assess multiple microstructural metrics simultaneously should
offer more insight, and it is conceivable that the variation in cognition
may be related to variation across microstructural indices and may not be
uniquely attributable to a specific index. Therefore, another goal of this
work is to explore the benefits of using multiple microstructural metrics
simultaneously.

Combining metrics from multiple modalities requires the use of
multivariate techniques. Within neuroimaging, techniques such as prin-
cipal component analysis (PCA) and independent component analysis
2

(ICA) are common choices (Arbabshirani et al., 2017; Beckmann and
Smith, 2005; Beckmann, DeLuca, Devlin and Smith, 2005; Calhoun et al.,
2001). These techniques are typically applied in a data-driven, explor-
atory fashion to identify dominant modes of variance in a given dataset
(Hansen et al., 1999). They can be limited, however, by outputs which
are difficult to interpret (Sotiras et al., 2015), due to the presence of
positive and negative valued component weightings. More recently,
neuroimaging studies have explored the use of non-negative matrix
factorization (NMF) (Lee and Seung, 1999; Nassar et al., 2018; Sotiras
et al., 2015; Thompson et al., 2008). Similar in some respects to standard
PCA or ICA, NMF decomposes a single input matrix into two matrices
whose product is an approximation of the original input. As described by
its name, the unique feature of NMF is a non-negative constraint, abol-
ishing negative output weightings. In the specific context of matrix
decomposition, this allows a purely additive reconstruction and the
ability to describe data as a sum of its parts. Thus, when interpreting
components and assigning features to brain regions, while similar con-
clusions may be obtained without a non negativity constraint, NMF may
allow more straightforward interpretation by removing the need to
cancel out effects of opposing direction. Importantly, NMF has been
shown to capture spatially contiguous and sensible patterns of genetic
(Thompson et al., 2008) and neuroanatomical (Sotiras et al., 2015)
variation.

In this work, we investigate MRI-accessible indices of microstructure
in the human hippocampus at the voxel level using multimodal and
multivariate approaches. Investigation at the voxel level allows us to
remain sensitive to intra- and inter-subfield level variation and
combining multiple modalities offers increased sensitivity and the po-
tential for improved representations of complex neuroanatomical pro-
cesses (Alexander et al., 2007; Tardif et al., 2016). Recent works have
capitalized on multiple modalities for a range of applications, including
cortical parcellation (Glasser et al., 2016), multifactorial modelling of
Alzheimer’s pathology (Iturria-Medina et al., 2017), and predicting an
individual’s ‘brain age’ (Liem et al., 2017). In the current work, we aim to
define a normative microstructural parcellation of the hippocampus
using NMF, a decomposition technique particularly suited to neuro-
imaging data due to its non negativity constraint. We also aim to assess
the benefit of using multiple microstructural metrics by comparing the
stability of microstructural parcellations using multiple metrics and a
single metric. Finally, we aimed to relate individual variation in micro-
structural patterns to variation in cognitive performance using behav-
ioural partial least squares analysis.

2. Methods

2.1. Overview

A subset of unrelated subjects from the Human Connectome Project
were selected for analysis (2.2 Data). Hippocampus segmentations were
obtained using the Multiple Automatically Generated Templates
(MAGeT) Brain algorithm. T1w and T2w images were used to create a
population average, and each subject’s T1w/T2w image and hippocam-
pus segmentation were warped to the population average (2.3 Image
Processing). Fractional anisotropy (FA) and mean diffusivity (MD) maps
were obtained for each subject, and warped to the population average
(2.3 Image Processing). In the population specific common space,
masking of T1w/T2w, MD and FA images (microstructural images) using
a whole hippocampus segmentation results in 3 vectors of voxel-wise
microstructural metrics for each subject, for both the left and right hip-
pocampus (6 vectors in total). These vectors were used to build an input
matrix for the NMF algorithm to perform a decomposition analysis. The
NMF output subject weightings were used to describe group and indi-
vidual level microstructural patterns, and output spatial components
were used to visualize the spatial specificity of these patterns (2.4 Non-
negative matrix factorization). Stability of output spatial components
was assessed using an iterative procedure in which all subjects at study



R. Patel et al. NeuroImage xxx (xxxx) xxx
are split into two groups, NMF is performed on microstructural data for
each group, and the similarity between the output components is
assessed (2.4.3 Stability Analysis). We also assessed stability of output
spatial components when using only one microstructural metric at a time
in comparison to three metrics (2.4.4 Unimodal Analysis). Finally, output
subject weightings were related to a set of demographic and cognitive
variables using a partial least squares analysis (2.5 Microstructure-
Behaviour Relationships).

2.2. Data

We used data from the Human Connectome Project (HCP) Young
Adult dataset (Van Essen et al., 2013), a publicly available dataset con-
sisting of multimodal MRI data for a total of 1200 healthy young adults
(age 22–35). Because this dataset contains twin and non-twin subjects, a
subset of 333 unrelated subjects were selected for analysis in order to
avoid any potential biases related to family structure. All MRI data were
acquired on a Siemens 3T Skyra with a custom 100 mT/m gradient (Van
Essen et al., 2013; Van Essen et al., 2012). We used T1-weighted (T1w)
and T2-weighted (T2w) structural (0.7 mm3 voxels) and diffusion
(1.25 mm3 voxels) weighted MRI data. Sequence parameters have been
published elsewhere (Andersson et al., 2012; Glasser et al., 2013; Sotir-
opoulos et al., 2013; U�gurbil et al., 2013; Van Essen et al., 2012), and can
be found in the Supplementary Materials.

T1w and T2w images used in this manuscript underwent pre-
processing conducted by the HCP including: gradient distortion correc-
tion, co-registration of repeated runs using a 6-DOF rigid body
transformation followed by averaging, ACPC alignment to MNI space,
brain extraction, and readout distortion correction. The corrected T2w
image was registered to the T1w image to allow for creation of the T1w/
T2w ratio image, and both T1w and T2w images were then corrected for
bias field inhomogeneities (Glasser et al., 2013; Glasser and Van Essen,
2011). In this work, we utilized the preprocessed T1w, T2w and
T1w/T2w images provided through the HCP informatics portal (htt
ps://db.humanconnectome.org/). In subsequent steps, a combination
of structural and diffusion MRI-based metrics was used to assess micro-
structure for each subject. Specifically, T1w/T2w, MD and FA images
were used as complementary measures of tissue microstructure.

2.3. Image Processing

The goal of image preprocessing in this work was to obtain hippo-
campus segmentations for each subject, compute a population average to
create a common space, and non-linearly warp structural (T1w/T2w
images) and diffusion (MD, FA images) to the common space.

2.3.1. Automatic hippocampus segmentation
Hippocampus segmentations for each subject were obtained using the

MAGeT Brain algorithm (Chakravarty et al., 2013; Pipitone et al., 2014).
This approach uses a variation of standard multi atlas procedures to
segment each image in a dataset. Five high resolution manually
segmented atlases were used as input (Winterburn et al., 2013). In these
atlases, cornus ammonis (CA) 1, CA2/CA3 (CA2CA3), CA4/dentate gyrus
(CA4DG), stratum radiatum/stratum lacunosum/stratum molecular
(SLRM), and subiculum are labelled as separate structures (Winterburn
et al., 2013). Twenty-one images from the subject set were then selected
as templates through which atlas-subject segmentations are boot-
strapped. The non linear registration of each of the 5 atlases to each of the
21 templates results in a study specific set of 21 atlases. Then, non linear
registration of each template to each subject creates 105 unique
atlas-template-subject transformations through which atlas segmenta-
tions are warped. At the subject level, a majority vote was used to fuse the
105 candidates to create the final segmentation. Non-linear registration
was performed using a minc-toolkit compatible version of the Automatic
Normalization Tools registration (Avants et al., 2008) (https://github.
com/vfonov/mincANTS). Each hippocampus segmentation was
3

manually quality controlled by author SP, with assistance from RP. While
the above workflow describes protocol for obtaining hippocampal sub-
field segmentations, subfields were subsequently fused together to create
a whole hippocampus segmentation required for this work, as we have
done in previous studies (Sankar et al., 2017; Voineskos et al., 2015).

2.3.2. Diffusion preprocessing
We downloaded preprocessed diffusion data from the HCP. The full

HCP diffusion preprocessing pipeline is described elsewhere (Glasser
et al., 2013). It includes EPI distortion correction using topup, eddy
current and motion correction for each volume using eddy. Further
diffusion preprocessing was performed with MRtrix (https://github.
com/MRtrix3/mrtrix3) (Tournier, Calamante and Connelly, 2012) in
order to obtain MD and FA maps for each subject. Briefly, this involved
computing the tensor image using iteratively reweighted linear least
squares (dwi2tensor) (Veraart et al., 2013) followed by estimation of MD
and FA maps (tensor2metric) (Basser et al., 1994; Westin et al., 1997).
Single shell (b ¼1000) data were supplied to dwi2tensor to compute the
tensor, in accordance with typical diffusion tensor approaches (Jones and
Basser, 2004; Tournier, Mori and Leemans, 2011; Veraart et al., 2013).

2.3.3. Population average creation
To obtain voxel-wise correspondence, a population average was

created for the 333 subjects included in the present study. First, each
subject’s T1w and T2w images were cropped using a bounding box with
limits derived from the subject’s hippocampal segmentation in order to
emphasize registration accuracy in the area of interest for this study
(Chakravarty et al., 2008). Then, the ANTs multivariate template con-
struction tool (Avants et al., 2010) was used to construct the population
average image, using each subject’s cropped T1w and T2w image as
input. Both T1w and T2w images were used to capitalize on the high
quality multimodal data available in the HCP and improve registration
through the use of complementary contrasts.

The resulting non linear transformations were used to warp each
subject’s T1w/T2w, MD and FA images to the population average using
antsApplyTransforms, with the population average as the reference
image and resampled with b-spline interpolation (this results in upsam-
pling MD and FA images to match the 0.7 mm resolution of the popula-
tion average). After resampling, T1w/T2w, MD and FA images were zero
bounded to remove any potential artifacts of b-spline interpolation. To
ensure abnormal T1w/T2w values did not remain, a filtering was also
applied similar to that used in previous works (Glasser and Van Essen,
2011), but replacing geodesic distance with Euclidean distance as this
work is in volumetric space as opposed to surface based. Briefly, the
T1w/T2w value at a given voxel was compared to it’s neighbourhood
(includes 12 voxels in each of x,y,z directions), and any T1w/T2w value
more than 2 standard deviations away from the neighbourhood mean
was replaced with a gaussian weighted average of the neighbourhood
(fwhm ¼5 mm). Each subject’s hippocampus segmentation was also
warped to the population template using the antsApplyTransforms tool
with GenericLabel resampling. In the template space, majority voting of
all hippocampus segmentations that passed quality control was used to
produce the hippocampus segmentation for the population template.

2.4. Non-negative matrix factorization

In this work we employ an orthogonal variant of NMF, orthogonal
projective NMF (OPNMF) (Sotiras et al., 2015; Yang and Oja, 2010) in
order to ensure output spatial components are non overlapping, and that
each output component represents a distinct pattern. This aids inter-
pretation and allows easy assignment of each voxel to a particular
component for a purely additive parts based representation.

2.4.1. OPNMF background
OPNMF decomposes a given input matrix of dimensions m x n into a

component matrix W (m x k), and a weight matrix H (k x n). The number

https://db.humanconnectome.org/
https://db.humanconnectome.org/
https://github.com/vfonov/mincANTS
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https://github.com/MRtrix3/mrtrix3
https://github.com/MRtrix3/mrtrix3


R. Patel et al. NeuroImage xxx (xxxx) xxx
of components, k, is defined a priori by the user. The component and
weight matrices are constructed such that their multiplication re-
constructs the input data as best as possible (Fig. 1) by minimizing the
reconstruction error between the original input and the reconstructed
input (W � H). As previously described (Sotiras et al., 2015; Varikuti
et al., 2018), OPNMF estimates W and H by solving the minimization
problem:

jjX � WWTXjj subject to WTW ¼ I; W � 0 (1)

Where kk represents the squared Frobenius norm. Note that I represents
the identity matrix, thus enforcing orthogonality among the columns of
W. W is initialized using non-negative double singular value decompo-
sition (Boutsidis and Gallopoulos, 2008). This choice of initialization
encourages sparsity in the output components. These key features ensure
sparse, non-overlapping output spatial components such that each voxel
can be easily assigned to an output component using a winner take all
strategy which eases the interpretability of the output spatial patterns.
Following initialization, W is updated using a multiplicative update rule:

W’

ij ¼Wij

ðXXTWÞij

ðWWTXXTWÞij

(2)

Finally, the weight matrix H is calculated by projecting the input X onto
W:

H ¼WTX (3)

The identified components can be interpreted as representing “parts”
of the original input, giving the method the ability to identify underlying
patterns of variance in multivariate data (Lee and Seung, 1999). The
weight matrix then describes the loading, or dependence, of each sample
on a given component in the reconstruction of the original input matrix.

2.4.2. OPNMF implementation
In this implementation, each column of the input matrix contained

voxel-wise data for a given subject-metric combination. 329 out of 333
selected subjects were analyzed with OPNMF, due to 3 subjects missing
cognitive data and 1 subject with abnormal DWI data. To begin, masked
extraction, using the fused template hippocampus segmentation, results
in a total of 6 vectors describing hippocampus microstructure for each
subject (3 microstructural metrics for each of left and right hippocam-
pus). Since microstructural metrics exist in scales of varying magnitude, a
normalization was required. First, a z-scoring was performed in a within-
metric, within-hemisphere fashion. Then, within each hemisphere, the
resulting z-scored values were all shifted by the minimum z-score in
order to align the histogram of each left/right hippocampus micro-
structural metric and ensure each metric is on the same scale (Supple-
mentary Material - Constructing the input matrix).

Given three microstructural metrics (T1w/T2w, FA, MD) and analysis
of 329 subjects, the input matrix contains 329 � 3 ¼987 columns for a
Fig. 1. A schematic representation of non-negative matrix factorization (NMF).
NMF and it’s variants decompose an input matrix into two matrices - a
component matrix W and weight matrix H. NMF aims to minimize the recon-
struction error between the original input and the reconstructed input (W � H).

4

given hemisphere. Columnar stacking was organized by metric, such that
the first 329 columns correspond to T1w/T2w data, the second 329
columns to MD data, followed by 329 columns of FA data. It follows that
the number of rows corresponds to the number of voxels in the hippo-
campus. Thus, each column of the input matrix represents microstruc-
tural characteristics of a given subject. For unimodal analyses, the
appropriate 329 columns were selected from the multimodal input ma-
trix. For example, in OPNMF analyses of only MD, the input matrix
consists of the second set of 329 columns from the multimodal input
matrix.

OPNMF was conducted separately on each of the left and right input
matrices, representing the left and right hippocampus. We used publicly
available code available at https://github.com/asotiras/brainparts
(Boutsidis and Gallopoulos, 2008; Halko et al., 2011; Sotiras et al.,
2015; Yang and Oja, 2010) and Matlab R2016a. OPNMF was run with
non-negative double singular value decomposition initialization, max
iterations ¼100000 and tolerance ¼0.00001.

2.4.3. Stability analysis
To select the optimal number of components to analyze, we assess

both accuracy and stability of a decomposition. Accuracy is measured by
observing the gradient in reconstruction error, enabling quantification of
the gain in accuracy provided by increasing the number of components
from one granularity to the next (Durran, 2013; Fornberg, 1988; Quar-
teroni et al., 2007). To assess stability, we look at the similarity of output
spatial components across varying splits of data. The 329 subjects at
study are randomly split into two groups (n_a ¼164, n_b ¼165). OPNMF
is performed on each split independently to produce two component
matrices Wa and Wb (with size ¼# of voxels x k). For each of these
outputs, we compute a similarity matrix c_W by computing the cosine
similarity between each row of W (c_W has size ¼# of voxels x # of
voxels). In other words, c_W is a matrix where each row contains the
cosine similarity of component scores between a given voxel and all other
voxels. Finally, we compute the correlation coefficient between corre-
sponding rows of c_Wa and c_Wb to quantify if the OPNMF decomposi-
tion groups a given voxel with the same subset of voxels in each split of
data. We take the mean correlation across all voxels to represent the
stability of a given granularity. A correlation coefficient of 1 represents
perfect stability, whereas � 1 would represent instability. We repeat the
above procedure for 10 random splits of data, for k ¼2 to 10.

2.4.4. Unimodal analysis
In order to assess the benefits of using multiple microstructural

metrics, we performed a series of unimodal analyses as well. For each of
the three microstructural metrics used, we conducted the previously
described stability analysis using only a single metric at a time (6 total
analyses - 3 metrics x 2 hemispheres), for granularities from 2 to 10.
OPNMF was performed as described in Section 2.4.2, but in this case the
input matrix has dimensions # of voxels x # of subjects.

2.4.5. Interpreting OPNMF output
The OPNMF analysis has two outputs - component matrix W contains

the component scores of each voxel; weight matrix H describes the
weightings of each subject-metric combination onto each component.
Together, these two outputs are used to interpret three main results:
group level microstructural patterns of each identified component (e.g.
T1w/T2w signal is higher compared to MD), individual/subject level
microstructural variation (e.g. Subject 1 shows higher T1w/T2w
compared to Subject 2), and the spatial location of each identified
component (e.g. T1w/T2w signal is higher compared to MD in these
voxels).

W and H are computed so as to optimize the similarity of the original
input and the reconstructed input (W � H). Thus, the pairing of a high
voxel component score in W and high weighting in H results in a sig-
nificant contribution to the value of the corresponding element of the
original input matrix. In the context of this study, Wik is the component

https://github.com/asotiras/brainparts
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score of voxel i in component k. A high score suggests this voxel is a part
of the identified variance pattern. Hkj describes the weight of the subject-
metric j for component k. If this is high, this indicates that the given
metric is present in voxel i, for subject j. For high Wik, an observed
general pattern of H1:329;k > H330:658;k suggests that across the group,
T1w/T2w signal is more pronounced in voxel i than MD (group level).
Concurrently, we may also observe subject-wise, within-metric variance
in H: if H1j is higher than H2j, this suggests that Subject 1 has higher T1w/
T2w signal in voxel i than Subject 2 (individual level).

Given the orthogonality constraint employed, voxels can be assigned
to a component using a simple winner take all strategy in which a voxel is
assigned to a component based on the highest component score
(maxðWi;:Þ). Assignments are then mapped back to the population
average in order to visualize the spatial location of each component. In a
final step, the properties and patterns of the weight matrix were used to
interpret the patterns in each spatial component as described above.
2.5. Microstructure-behaviour relationships

To capitalize on the ability of OPNMF to identify individual level
variability in addition to bulk group level patterns, we related individual
subject weightings to performance on cognitive tasks assessed by the
HCP. We considered 13 cognitive tests that spanned 7 cognitive sub-
domains (Barch et al., 2013; Van Essen et al., 2013) which have been
linked to hippocampal function - episodic memory (Dickerson and
Eichenbaum, 2009; Terry et al., 2015), executive function (cognitive
flexibility) (O’Shea et al., 2016; Papp et al., 2014), fluid intelligence
(Reuben et al., 2011), processing speed (O’Shea et al., 2016; Papp et al.,
2014), impulsivity (Lebreton et al., 2013; Peters and Büchel, 2010),
spatial orientation (Burgess, Jeffery, & O’Keefe, 1999; O’Keefe and
Dostrovsky, 1971), and verbal episodic memory (Ezzati et al., 2016;
Fletcher et al., 1997; Nyberg et al., 1996). Specific instruments used to
assess each domain can be found in the Supplementary Materials
(Table S1) as well as in (Barch et al., 2013). Histograms displaying the
range of scores and demographic data for the subjects at study can also be
found in the supplementary (Fig. S2).

2.5.1. Partial least squares analysis
To investigate any relationships between individual subject OPNMF

weightings and individual variability in cognitive performance, we used
partial least squares analysis (PLS). PLS is a multivariate technique which
seeks to find patterns of covariance between two sets of variables
(Krishnan et al., 2011; McIntosh and Lobaugh, 2004; McIntosh and Mi�si�c,
2013). Here, we employ a behavioural PLS in which the brain data is a
329 � 12 matrix containing output OPNMF weights for each subject from
the 4 component solution, and the behavioural data corresponds to a
329 � 16 matrix containing age, sex, years of education and cognitive
performance across 13 tests (as described above) for each subject. PLS
analysis outputs latent variables (LV), each of which describe linear
combinations of the brain and behavioural data which maximally covary.
Thus, each LV describes a pattern of associated microstructural and
behavioural characteristics. For each LV, PLS computes a singular value
which is used to compute the proportion of total covariance accounted
for by a given LV.

Statistical significance of each LV is assessed via permutation testing.
The rows of the brain data matrix are permuted 10000 times, with each
permuted matrix used to compute a null distribution of singular values
under the assumption that the permutations remove any existing brain-
behaviour correlations. From this, a non parametric P value can be
computed for each LV in the original, non permuted data. A threshold of
P < 0.05 was used, corresponding to 95% or greater chance that the
singular value of the non permuted data exceeds that of a permuted
singular value. Bootstrap resampling is used to assess the contribution of
each brain variable to a given LV. Random sampling with replacement of
the rows of X and Y is conducted to generate 10000 resampled sets of
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brain and behaviour data which are then used to generate a distribution
of the singular vector weight of each brain variable in each LV. When
analyzing the original brain and behaviour data, the ratio of the singular
vector weight over the standard error of the weight from the bootstrap
distribution (bootstrap ratio, BSR) is used to assess the contribution and
reliability of a given brain variable. We used a BSR threshold of 2.58,
analogous to a p-value of 0.01 (Krishnan et al., 2011; McIntosh and
Lobaugh, 2004; Nordin et al., 2018; Persson et al., 2014; Zeighami et al.,
2017).

3. Results

3.1. Data

The final sample size included 329 subjects from the Human Con-
nectome Project (Mean Age: 28.44 years � 3.70 years; F/M: 185/144;
Handedness: 63.57 � 45.97).

3.2. Image Processing

318 of 329 MAGeT Brain hippocampus segmentations passed quality
control. Thus, 318 segmentations were majority voted to create the
population template hippocampus segmentation used to extract micro-
structural metrics (a failed hippocampus segmentation did not exclude a
subject from OPNMF microstructural analysis). Fig. 2 shows the T1w
population average created using the ANTs multivariate template con-
struction tool.

3.3. Stability analysis

The results of the stability analysis are shown in Fig. 3. Fig. 3A plots
both the stability coefficient (red) and gradient of the reconstruction
error (blue) for k ¼2 to 10, for each of the left and right hippocampus. In
both hemispheres stability is shown to have an inverse relationship with
k. At k � 4, stability coefficients are above 0.8 in both hemispheres. In the
left hippocampus, notable drop offs in stability are observed when
moving from k ¼4 to both k ¼5 and k ¼6, after which stability levels off.
In the right hippocampus, a sharp drop is seen when moving from k ¼4
to k ¼5. These results suggest k ¼4 as a suitable choice for observing
complex yet stable spatial patterns.

The gradient of the reconstruction error shows a positive relationship
with k, as more components allow the decomposition to recover an
increasing number of patterns. In both hemispheres, a sharp decrease in
the magnitude of the reconstruction error gradient is observed when
moving from k ¼4 to k ¼5. Recalling that, for each k, the value plotted
represents the change in reconstruction error when moving from k-1 to k,
these results show that the gain in accuracy when moving from k ¼4 to
k ¼5 is much less than when moving from k ¼3 to k ¼4. For k > 5, there
is less change in the gradient from one component to the next, as each
added component adds a smaller, more stable gain to the reconstruction
error. These observations suggest that at k ¼4, the most prominent
patterns have been captured and any added complexity has a diminishing
return on reconstruction accuracy. Together with the results of the sta-
bility analysis, these results show k ¼4 as a suitable selection for
extended analysis.

3.3.1. Unimodal stability analysis
Fig. 3B plots stability coefficients for granularities from k ¼2 to

k ¼10 when analyzing each metric individually as well as when using all
three microstructural metrics together (red line in Fig. 3A is the same as
the red line in Fig. 3B). In both the left and right hippocampus, stability of
the unimodal spatial components was found to be lower than the
multimodal components. In the multimodal analysis, stability coefficient
was above 0.8 for k ¼2–4, but only k ¼2 in the right hippocampus
reaches this (arbitrary) threshold. It follows that none of the unimodal
analyses offered spatial components with stability matching that of the



Fig. 2. Coronal, sagittal, and axial views of a single T1w image (top row) and T1w population average (bottom row). Both T1w and T2w images were used to drive
registration between all subjects, in order to capitalize on the high quality multimodal data available.

Fig. 3. Stability coefficient and gradient of the reconstruction error for granularities from 2 to 10 for the multimodal analysis (3A) and a comparison of stability
coefficients of granularities from 2 to 10 for multimodal (“Multimodal”/red line) vs unimodal (“T1T2”, “MD”, “FA”/blue, green, black lines) analyses (3B). 3A: For
both the left and right hippocampus, k ¼4 was chosen a suitable balance of stability and reconstruction accuracy as stability (red line) drops off at k� 5, and the
change in reconstruction error (blue line) from k ¼4 to k ¼5 is much less than from k ¼3 to k ¼4. 3B: For both the left and right hippocampus, unimodal de-
compositions (“T1T2”, “MD”, “FA”/blue, green, black lines) had notably lower stability than multimodal decompositions (“Multimodal”/red line).
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k ¼4 solution selected from the multimodal analysis. These results show
that the use of multiple microstructural metrics enables finer scale, more
stable parcellations to be created. Due to the notably lower stability, we
do not present components or PLS analysis for any of the unimodal
approaches.

3.4. Neuroanatomical description of 4 component solution

Fig. 4 displays the 4 component solution of both the left and right
hippocampus, including both a 3-dimensional volumetric rendering
6

(Fig. 4A) and coronal views of representative slices (Fig. 4B). Fig. 4C
displays the subject weight matrix, used to describe both the group and
individual level microstructural patterns associated with each compo-
nent. Each row has been z-scored in order to better compare the prom-
inence of each metric within each component (raw subject weight
matrices can be found in the Supplementary Materials Fig. S3). For
simplicity, only the weight matrix for the left hippocampus is shown as
the right weight matrix draws similar conclusions (Supplementary Ma-
terials Fig. S3).

We characterize each component by describing it’s microstructural



Fig. 4. The 4 component solution for both the left and right hippocampus, including 3-dimensional volumetric rendering (4A), coronal views of representative slices
(4B), and z-scored weight matrix for the left hippocampus (4C). In 4A, the top row corresponds to superior views of the left and right hippocampus and the bottom row
shows inferior views. In 4B, coronal slices are shown for the left and right hippocampus along with corresponding unlabelled anatomical slice. The hippocampal figure
along with horizontal red line denotes where the slice resides along the anterior-posterior hippocampus. Red lettering i through vii describes specific anatomical
features of each component. i) component 1 spans the majority of the lateral-medial extent in the hippocampal head, except for the lateral band occupied by
component 4; ii, iii) component 1 spans only the mid portions of the superior-inferior axis of the hippocampal head; iv) component 2 resembles the subiculum along
with medial aspects of the SLRM and CA1 subfields; v) superior band of component 2 is more prominent in the left hippocampus than in the right; vi) in the posterior
hippocampus, component 3 occupies a wedge shaped cluster of voxels; vii) component 4 thickens from a thin band in the anterior hippocampus to a wedge shaped
cluster of voxels along the lateral edge. 4C shows the normalized weight matrix which can be used to visualize comparative microstructural features of each
component. Coloured boxes specify the corresponding component in 4A and 4B of each row, and text along the x axis denotes ordering of microstructural features.
Volumetric rendering created using Mango (http://ric.uthscsa.edu/mango/index.html).
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features as well as its anatomical location along each of the three axes
(anterior-posterior, lateral-medial, superior-inferior). While the resolu-
tion of the data preclude us from making conclusions regarding subfields,
where appropriate we use hippocampal subfields to help describe loca-
tion in a purely descriptive, qualitative manner. The identified micro-
structural patterns are bilateral, though the ordering varies slightly
between hemispheres. Left component 2 corresponds to right component
3 and vice versa. For simplicity, we adopt the ordering from the left
hippocampus throughout the rest of the paper and discussion. Note that
this adjustment was made prior to creation of Fig. 4, such that do not
need to consider this when viewing Fig. 4.
7

Component 1 is characterized by high MD, low T1w/T2w, and low FA
(Fig. 4C, row 1). It spans the full length of the anterior-posterior axis, but
is more prominent in the anterior half of the hippocampus (Fig. 4A and B,
orange). In the hippocampal head, component 1 spans the majority of the
lateral-medial extent of the hippocampus (with the exception of the thin
lateral band occupied by component 4, Fig. 4B, i), but along the superior-
inferior axis it is present only in the mid portions (resembling the CA4DG
subfield along this axis, Fig. 4B, ii, iii).

Component 2 is characterized by low MD, high T1w/T2w and low FA
(Fig. 4C, row 2). This component spans the full anterior-posterior extent,
but is largely confined to the superior and inferior regions of the

http://ric.uthscsa.edu/mango/index.html
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hippocampus (Fig. 4A and B, pink). Inferiorly, component 2 often re-
sembles the subiculum along with medial aspects of the SLRM and CA1
subfields (Fig. 4B, iv). In the hippocampal head, component 2 is also
found in a thin horizontal band of voxels in the superior hippocampus.
This superior band of component 2 is more prominent in the left hip-
pocampus than in the right (Fig. 4B, v).

Component 3 is characterized by low MD, marginal T1w/T2w), and
high FA (Fig. 4C, row 3). Similar to component 2, it spans the full
anterior-posterior extent but only in superior and inferior regions
(Fig. 4A and B, green). Inferiorly, it typically occupies a thin band of
voxels sitting inferior and lateral to component 2 (localized to the sub-
iculum and inferior CA1 subfields). In the posterior portion of the hip-
pocampus, component 3 occupies a wedge shaped cluster of voxels found
separating the superior portions of components 1 and 4 (Fig. 4B, vi). In
anterior portions of the hippocampus, component 3 can be described as a
thin horizontal band sitting superior to component 1 and is more
prominent in the right hippocampus than the left (Fig. 4B, v).

Component 4 has a similar microstructural profile to component 1,
with high MD, low T1w/T2w and low FA (Fig. 4C, row 4). However,
while MD is high in comparison to T1w/T2w and FA in this component,
we note that it’s overall magnitude is lower than that of component 1
(Supplementary Material). It is found exclusively in the lateral hippo-
campus, throughout most of the anterior-posterior extent (Fig. 4A and B,
light purple). In the anterior portion of the hippocampus, component 4 is
seen as a thin vertical band located along the lateral edge of the hippo-
campus (Fig. 4B, i). In the posterior portion of the hippocampus however,
it thickens from a thin band to a wedge shaped cluster of voxels while
maintaining its location along the lateral edge (Fig. 4B, vii).
Fig. 6. The variance explained by each latent variable for both the left and right
hippocampus. Only the first two latent variables were considered significant via
permutation testing for both the left and right hippocampus (% variance
explained < 20% for all non significant latent variables).
3.5. Microstructure-behaviour relationships

To investigate any relationships between individual subject OPNMF
weightings and individual variability in cognitive performance, we per-
formed a behavioural PLS analysis where the brain variables correspond
to the output OPNMF weightings from the 4 component decomposition,
and behaviour variables corresponded to a set of demographic and hip-
pocampus specific cognitive variables (Section 2.5). PLS analysis
revealed four statistically significant latent variables (LV), two for each of
Fig. 5. The behavioural (5A, top row) and microstructural (5B, bottom row) patterns
Right LV1, Right LV2). In 5A, the y-axis the demographic/behavioural measure whil
component/microstructure metric while the x-axis denotes the bootstrap ratio. The bl
correct responses; SI: Skipped items; RTCR: Median reaction time for correct respons
trials; OFF: Total positions off for all trials.
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the left (ps < 0.001) and right (ps < 0.05) hippocampus. Each LV dis-
played a unique pattern of microstructural and cognitive correlation
(Fig. 5).

3.5.1. Left LV1
Left LV1 accounted for 49% of variance explained (Fig. 6). The

cognitive and demographic variables contributing to left LV1 included
older age (R ¼0.128, 95% CI ¼ [0.022,0.233]), female sex (R ¼0.347,
95% CI ¼ [0.27,0.423]), increased episodic memory performance
(R ¼0.211, 95% CI ¼ [0.133,0.297]), increased delay discounting per-
formance (R ¼0.107, 95% CI ¼ [0.017,0.203]), and slower reaction time
in spatial orientation tests (R ¼0.121, 95% CI ¼ [0.038,0.205])
(Fig. 5A). The correlating microstructural features included decreased
MD in components 1–3 (Fig. 5B). While the females in the sample at
study do have slightly increased age in comparison to males (mean fe-
male age ¼29.01 � 3.62, mean male age ¼27.71 � 3.67) the notably
larger contribution of sex to left LV1 does suggest a unique contribution
of sex to this microstructure-behaviour pattern.
of each latent variable (ordered by column from left to right: Left LV1, Left LV2,
e the x-axis denotes correlation within a given LV. In 5B, the y-axis denotes the
ack lines in 5B correspond to the BSR threshold of 2.58. Abbreviations: TC: Total
es; CRTE: Median reaction time divided by expected number of clicks for correct



R. Patel et al. NeuroImage xxx (xxxx) xxx
3.5.2. Left LV2
Left LV2 accounted for 25% of variance explained (Fig. 6). The

cognitive and demographic variables contributing to left LV2 included
older age (R ¼0.167, 95% CI ¼ [0.084,0.274]), increased delay dis-
counting performance (R ¼0.082, 95% CI ¼ [0.005,0.180]), and
decreased verbal episodic memory performance (R ¼ � 0.089, 95%
CI ¼ [-0.188,-0.006]) (Fig. 5A). The correlating microstructural features
included increased T1w/T2w in components 2 and 3, and increased FA in
components 3 and 4 (Fig. 5B).

3.5.3. Right LV1
Right LV1 accounted for 43% of variance explained (Fig. 6). The

cognitive and demographic variables contributing to right LV1 included
young age (R ¼ � 0.128, 95% CI ¼ [-0.225,-0.013]), increased education
(R ¼0.104, 95% CI ¼ [0.020,0.223]), and increased performance on
tests of episodic memory (R ¼0.105, 95% CI ¼ [0.022,0.222]), executive
function (R ¼0.099, 95% CI ¼ [0.025,0.200]), and fluid intelligence in
terms of both correct items (R ¼0.102, 95% CI ¼ [0.048,0.217]) and
fewer items skipped (R ¼ � 0.104, 95% CI ¼ [-0.219,-0.046]) (Fig. 5A).
The correlating microstructural features included decreased T1w/T2w in
components 1 and 4 (Fig. 5B).

3.5.4. Right LV2
Right LV2 accounted for 21% of variance explained (Fig. 6). The

cognitive and demographic variables contributing to right LV2 included
younger age (R ¼ � 0.124, 95% CI ¼ [-0.234,-0.026]) and decreased
processing speed (R ¼ � 0.131, 95% CI ¼ [-0.234,-0.062]) (Fig. 5A). The
correlating microstructural features included increased MD in compo-
nents 1 and 2 (Fig. 5B).

4. Discussion

In this work, we used OPNMF to study patterns of hippocampus
microstructure, as assessed by structural and diffusion MRI. At the group
level, we identified k ¼4 as a suitable choice for decomposing the hip-
pocampus into microstructural parts, based on measures of stability and
accuracy. We also compared the stability of a multimodal decomposition
to that of a unimodal analysis to show that the use of three microstructure
metrics increases OPNMF stability at a range of granularities, better
allowing the algorithm to define boundaries between regions of varying
microstructure. At the individual level, we related OPNMF weights to
demographic and cognitive measures to identifying microstructure-
behaviour relationships.

4.1. Group level microstructure

Component 1 described increased MD in a large portion of the hip-
pocampal head, mostly corresponding with voxels in the CA4DG sub-
field. Recent work conducted using polarized light imaging described the
CA4 region as hypointense, corresponding to a lack of myelin and/or less
densely packed cell bodies (Zeineh et al., 2017). Furthermore, the au-
thors used an in vitro receptor autoradiography analysis to visualize
kainate receptor density and localize the unmyelinated mossy fibers as
projecting from the DG, through the CA4 and to the CA3 region (Zeineh
et al., 2017). Component 4 described similar microstructural character-
istics as component 1 and included the lateral most aspects of the hip-
pocampus, mostly spanning portions of the CA2CA3 and lateral CA1. It
described increased MD in comparison to T1w/T2w and FA, albeit with
less magnitude overall in comparison to component 1. Thus, we posit that
this component is an extension of component 1 and may be capturing
portions of the unmyelinated mossy fibers as well as the pyramidal layers
of CA1 and CA2CA3.

Component 2 describes increased T1w/T2w in voxels overlapping
with the subiculum and medial portions of the SLRM, potentially indi-
cating increased myelination in these regions (Glasser and Van Essen,
2011). This may be representing the presence of the perforant pathway,
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the major hippocampal fiber bundle, known to travel from the entorhinal
cortex through the subiculum via the angular bundle (Andersen et al.,
2007; Duvernoy and Bourgouin, 1998). Zeineh et al. described the
sigmoidal fibers of the angular bundle travelling through the subiculum
(Zeineh et al., 2017). While the presence of these fibers would also
suggest increased FA due to a preferred fiber orientation, component 2
shows low FA. We believe the presence of crossing fibers and the reso-
lution of the data at study results in component 2 displaying character-
istics of increased myelination but being unable to capture any increases
in FA.

Other superior portions of components 2 as well of all of component 3
showed increased T1w/T2w and FA in the ‘outer rim’ of the hippocam-
pus, corresponding to deepest parts of the CA1 and CA2/CA3 subfields.
With reference to Zeineh et al., these findings correspond to the stratum
oriens region of these subfields, which, in CA1, houses fibers from the
alvear path and in CA3 contains the endfolial pathway (Zeineh et al.,
2017). We also note that, at the resolution of diffusion MRI, adjacent
structures including the alveus and fimbria which display white matter
characteristics are likely playing a role through partial volume effects.

4.2. Individual microstructural variability

In addition to group level spatial patterns, we also investigated
microstructure - behaviour relationships at the individual level. While
group level analysis may provide insight to overall, normative patterns,
analyses of individual variability move towards classifying or predicting
outcomes for a given individual, while accounting for their unique
characteristics. This difference is analogous to a group difference vs.
classification distinction (Arbabshirani et al., 2017), and is perhaps more
clear in the context of disease. Description of the pathological differences
between health and disease, despite being a necessary precursor, may be
less impactful than prediction of health vs. disease on an individual basis.

Our PLS analysis identified two significant LVs in each of the left and
right hippocampus. Left LV1 and right LV2 both describe a pattern where
MD was inversely correlated with age and some measure of cognitive
performance (episodic memory and spatial orientation in the left, pro-
cessing speed in the right). MD throughout most of left hippocampus was
inversely related with age, female sex, episodic memory performance and
reaction time in a spatial orientation task. Similarly, MD throughout
much of the right hippocampus was inversely related with age and pro-
cessing speed. The inverse relationship between MD and age may
correspond to previously described developmental effects where MD
increases with age. In particular, results from Lebel et al. showed the
same age related trend across the early adulthood age range in deep grey
matter structures (Lebel et al., 2008). In terms of behaviour, decreased
performance of females in spatial orientation tasks (Gur et al., 2012; van
der Linden et al., 2017) and increased performance in verbal episodic
memory (Asperholm et al., 2019; van der Linden et al., 2017) have both
been previously established.

Left LV2 describes a largely age related pattern in which older par-
ticipants show increased T1w/T2w in the subicular and superior CA1 and
superior CA2/CA3 regions, as well as increased FA in the subicular and
lateral portions of the hippocampus. Behaviourally, this LV also included
increased performance on delay discounting tasks and decreased verbal
episodic memory performance. Previous works have identified non linear
relationships between FA and age in white (Kochunov et al., 2012) and
grey matter (Lebel et al., 2008). In particular, Lebel et al. identify these
relationships in deep grey matter structures as well as cerebral white
matter regions (Lebel et al., 2008). In work by Nazeri et al., orientation
dispersion in the hippocampus was found to decrease slightly between
the ages of 20 and 40, which would correlate with a similar increase in FA
as shown here (Nazeri et al., 2015). Increases in cortical T1w/T2w within
the age range at study have also been reported, with Grydeland et al.
reporting an increase in T1w/T2w until the late 30s followed by a plateau
and later decline, and Shafee et al. reporting a linear relationship be-
tween T1w/T2w and age (Grydeland et al., 2013; Shafee et al., 2015). In
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this context, this LV potentially suggests an extension of maturational
patterns previously described in the cortex and other subcortical regions
to the hippocampus.

Finally, right LV1 contains widespread behavioural effects along with
a maturational, age-related T1w/T2w pattern. Behaviourally, this LV
describes a link between increased performance on a range of cognitive
areas, including episodic memory, executive function and fluid intelli-
gence, with increased years of education and younger age. That MRI
derived measurements of the hippocampus relate to each of these
behavioural measures is not surprising, as properties of the hippocampus
have been related to each of episodic memory (Dickerson and Eichen-
baum, 2009; Terry et al., 2015; Tulving and Markowitsch, 1998), exec-
utive function (O’Shea et al., 2016; Papp et al., 2014), and fluid
intelligence (Reuben et al., 2011). Similarly, higher educational attain-
ment has been linked to better performance on these measures as well (as
described here) (Bilker et al., 2012; de Wit et al., 2007; Gur et al., 2010;
Kaufman et al., 2009; Reimers et al., 2009). As previously discussed, the
directionality of the age-T1wT2w relationship is in accordance with
previous work (Grydeland et al., 2013; Shafee et al., 2015), suggesting
that this LV links previously described demographic relationships with a
hippocampal microstructural determinant. Interestingly this LV involves
MD features localized to a large portion of the right hippocampus but
tends to exclude subicular and CA1 regions.

The aim of this approach is to provide a behavioural characterization
of the identified microstructural components. Interpretation of identified
brain-behaviour relationships requires careful consideration. Kharabian
Masouleh et al. showed that using mass univariate testing to relate brain
structure to behaviour in healthy adults revealed few associations, and
that the few identified relationships had low replicability (Kharabian
Masouleh, Eickhoff, Hoffstaedter, Genon, & Alzheimer’s Disease Neuro-
imaging Initiative, 2019). Conversely, relationships between age and
behaviour were much more consistent (Kharabian Masouleh et al.,
2019).

We attempt to combat these issues by using a combination of OPNMF
and PLS. In comparison to univariate testing at every voxel, OPNMF
identifies spatial components in which variance occurs, thus helping to
narrow the search space from all voxels to a potentially more relevant set
of voxels (see Section 4.3 for more). PLS is a multivariate approach which
considers relationships across multiple variables as opposed to univariate
testing (McIntosh and Mi�si�c, 2013). PLS assesses significance of the
identified latent variables through permutation testing, enabling an
assessment of a latent variable’s effect size against a null distribution. By
identifying spatial regions of variance and assessing multiple behav-
ioural/demographic variables simultaneously, we hope to account for
some of the difficulties involved with interpreting univariate
brain-behaviour relationships in healthy adults. Nonetheless, we caution
that these results remain exploratory and requires further replication.

While the directionality of our results is in the expected direction, we
also observed laterality effects - with the left hippocampus being related
to delay discounting, verbal episodic memory and spatial orientation, the
right hippocampus being related to executive function, processing speed
and fluid intelligence, and the bilateral hippocampi being related to age
and episodic memory. This is in accordance with some, but not all, pre-
vious works on the lateralization of hippocampal function. As found here,
verbal episodic memory (Ezzati et al., 2016; Fletcher et al., 1997; Nyberg
et al., 1996) has been predominantly associated with the left hippo-
campus. Episodic memory has been predominantly linked to the left
hippocampus (Burgess, Maguire, & O’Keefe, 2002; Ezzati et al., 2016),
but here was found to be related to the bilateral hippocampus. Perfor-
mance in spatial tasks has been mainly linked to the right hippocampus
(Burgess et al., 2002; Ezzati et al., 2016; Gur et al., 2000, 1982) but here
was linked only to left hippocampus microstructure. Zhu et al. found
correlations between bilateral hippocampi and fluid intelligence,
although relationships with right hippocampus were stronger than left
(Zhu et al., 2017). The role of the hippocampus in delay discounting tasks
is typically discussed bilaterally (Lebreton et al., 2013; Peters and Büchel,
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2010), but here was only implicated in the left hippocampus. Overall, it is
unclear why some of our brain-behaviour relationships are lateralized as
described above. We note the dataset at study is a young healthy popu-
lation with minimal expected variation in cognitive performance
(Kharabian Masouleh et al., 2019) and the observed correlational re-
lationships are subtle in magnitude which may hinder our ability to
observe specific laterality properties but still allow us to describe more
gross microstructural-behavioural relationships. Overall, we feel that
interpretations on laterality specifically here are inconclusive.

4.3. Identifying regions of variability

While less common than other techniques, this is not the first instance
of NMF or its variants used in a neuroimaging context. Thompson et al.
utilized NMF to assess patterns of genetic expression in the mouse hip-
pocampus, parcellating the hippocampus into regions showing similar
patterns of expression (Thompson et al., 2008). More recently, Sotiras
et al. applied OPNMF to analyze FA in a mouse dataset, and separately
used OPNMF to analyze grey matter data in a healthy aging cohort
(Sotiras et al., 2015). In both cases they found that individual loading
weights linked to age related variance, analogous here to our relation of
subject weightings to cognitive performance. Importantly, this work also
analyzed OPNMF in comparison to more commonly used decomposition
techniques (Principal Component Analysis and Independent Component
Analysis) to explicitly demonstrate the increased interpretation due to
the non-negative restriction and resulting additive, parts based repre-
sentation. On the other end of the developmental spectrum, Nassar et al.
examined structural covariance patterns of grey matter in a young human
dataset (some of which were born preterm). This approach identified
biologically interpretable spatial clusters which shared covariance, and
which resembled notable networks such as the visual and somatosensory
networks (Nassar et al., 2018). Furthermore, the volume of certain output
components was found to relate to an individual’s gestational age (Nassar
et al., 2018).

The works discussed above both contributed a similar analytical
contribution which our work supports - the ability of OPNMF to identify
regions in which relevant variation is occurring. This is especially helpful
in a region such as the hippocampus, which has complex neuroanatom-
ical structure and defining the subfields has become the topic of an in-
ternational consortium tasked to reconcile existing differences in
anatomical definitions and establish a standardized protocol for manual
segmentation (Wisse et al., 2017). Indeed, the spatial components which
were found to contain microstructural variation relevant to cognitive
performance overlapped only partially with some subfields.

4.3.1. Data driven hippocampal clustering
Within recent years a number of studies have employed data driven

clustering approaches to study the structural and functional architecture
of the hippocampus. Each of these studies takes advantage of recent
advances in data availability and quality, and a variety of algorithms and
input data types have been applied in the specific case of the hippo-
campus (we focus here on hippocampal clustering for scope). K means
clustering has been a popular choice, having been applied to hippo-
campal features derived from functional (Chase et al., 2015; Plachti et al.,
2019; Robinson et al., 2016), structural (Plachti et al., 2019), and
diffusion (Adnan et al., 2016) MRI. Spectral clustering has also been
employed to cluster patterns of grey matter covariance (Ge et al., 2019).
Other matrix decomposition approaches (ICA) have also been applied,
more typically when analyzing functional MRI data (Beissner et al., 2018;
Blessing et al., 2016; Zhao et al., 2019) but in some cases structural data
as well (Ge et al., 2019).

For group level parcellations one method may not have distinct ad-
vantages over another. In fact, achieving widely varying results across
methods may be driven by artifacts. Instead, we suggest each study
consider their specific goals. The simplicity of k means may be prefer-
ential for purely group level parcellation. However if the goal is also to
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analyze individual variability, the subject weightings from a decompo-
sition would confer a notable utility as in the current work. Furthermore,
in the case of functional analyses techniques such as ICA have been
adapted to extend to analysis at the subject level (eg. using dual regres-
sion (Beissner et al., 2018; Blessing et al., 2016; Zhao et al., 2019). As
described by Eickhoff et al., decomposition techniques offer flexibility to
model data with varying distributions in comparison to the k means aim
of deriving spherical clusters. Conversely, the hard cluster assignment of
k means may be preferential to the continuous nature and potential
overlap of output spatial components from a factorization approach
(Eickhoff et al., 2018). In this approach, we aimed to capitalize on the
orthogonal nature of OPNMF to easily assign voxels to distinct compo-
nents using a winner take all approach while maintaining the flexibility
of factorization approaches to generate a purely additive parts based
representation of the hippocampus. For reference, nifti files of our
microstructural parcellation has been made available at: https://gith
ub.com/raihaan/hc-nmf-micro.

4.4. OPNMF stability

Like other decomposition and clustering techniques, use of NMF and
it’s variants requires the user to select the granularity of choice for
further analysis (Nassar et al., 2018; Sotiras et al., 2015, 2017; Varikuti
et al., 2018). Our stability assessment approach splits the subjects at
study, performs OPNMF on each subset, then assesses the spatial simi-
larity of the outputs. This approach is based on previous cluster stability
approaches (Ben-Hur et al., 2002) also used in current applications of
OPNMF (Nassar et al., 2018; Sotiras et al., 2017). While assessing the
same conceptual question, our approach compares vectors of component
scores between voxels as opposed to comparing a hard cluster assign-
ment. Thus, it can be seen as a continuous analog to the existing ap-
proaches which may have extended utility to NMF applications without
strong orthogonality or sparsity constraints. We also employ multiple
iterations, assessing stability between 10 different splits of data for each
granularity. This iterative approach allows us to look at the variability of
stability at a given granularity when making a selection, which may be
highly relevant to datasets with large variability in demographics or
diagnosis.

4.4.1. Stability vs. accuracy
Similar to related works, as granularity increases we observe a

decrease in stability and an opposing increase in reconstruction error. In
an analysis of adults age 49–85, Sotiras et al. applied OPNMF to voxel
wise grey matter volume estimates and found that reproducibility of the
spatial patterns was highest for lower number of components (< 5), while
age prediction accuracy using a support vector machine regression model
with decomposition weights as input stabilized around 20 components
(Sotiras et al., 2015). Varikuti et al. performed an age prediction using
decomposition weights derived from an OPNMF decomposition of voxel
wise grey matter volume estimates obtained from data across the life-
span. Analyzing a high range of granularity (50–690), they found their
prediction accuracy stabilized only at k ¼300, and spatial similarity of
components between two datasets used peaked around k ¼150 with a
gradual decrease as complexity increased (Varikuti et al., 2018). Sotiras
et al. used OPNMF to analyze cortical thickness data of a large sample of
individuals aged 8–20 years. Reproducibility generally decreased as
granularity increased, but showed peaks at k ¼2, 7, and 18 (though
reproducibility at k ¼2 was much larger than that at k ¼7 or 18), and the
18 component solution was selected for further analysis (Sotiras et al.,
2017). Nassar et al., used OPNMF to analyze voxel wise grey matter
volume estimates of individuals aged 8–22 at granularities from 2 to 30,
finding that reconstruction error stabilized at 26 and reproducibility was
high and stable for granularities from 6 to 30 (Nassar et al., 2018). Taken
together, these studies, as well as ours, confirm the expectation that an
increase in complexity comes with a trade off of accuracy vs. stabili-
ty/reproducibility. Interestingly, in some cases the most stable solutions
11
are at a lower granularity than that which gives best prediction accuracy
(Sotiras et al., 2015; Varikuti et al., 2018). Similarly, as shown in our
work, stability and reconstruction accuracy often have opposing trajec-
tories with stability decreasing and reconstruction accuracy increasing
with complexity. This important distinction highlights that while group
level parcellations may describe general overall patterns, there still exists
significant individual variation of the same patterns when considering an
individual. We believe the framework proposed here, wherein we use
OPNMF to assess individual variability within a group level description,
may be a useful intermediary between group and individual level anal-
ysis. Thus, future work should always consider accuracy, stability, as well
as their own specific goals in selecting a granularity for extensive
analysis.

4.4.2. Multimodal vs unimodal
Using the stability approach described above, we found that the sta-

bility of unimodal OPNMF decompositions was notably lower than that
of a multimodal decomposition. This validates a logical assertion that by
providing more input information, OPNMF is better able to define fine
scale spatial borders in a stable fashion. Based on this, we encourage
future analyses employing OPNMF or other methods to utilize multiple
metrics where possible in order to delineate more specific regions. This is
especially relevant with the increasing prevalence of large scale multi-
modal datasets such as the Human Connectome Project (Van Essen et al.,
2013), the Adolescent Brain Cognitive Development (ABCD) study
(Casey et al., 2018; Jernigan, Brown, & ABCD Consortium Coordinators,
2018), and the UK Biobank (Alfaro-Almagro et al., 2018; Miller et al.,
2016).

4.5. Limitations

The main limitation of this work lies in the confounds associated with
structural and diffusion MRI as used in this study. Structural and diffu-
sion MRI, even at the resolutions offered by the HCP, contain a mixture of
numerous tissue types and associated structures in each voxel, resulting
in each metric having uncertain physiological origin. Each of the four MR
signals (T1w, T2w, MD, FA) utilized in this work can be described as
‘sensitive but not specific’. Numerous biological phenomena, from
myelination to axon degradation to changes in axonal orientation, may
result in alterations in each of these signals (Jones et al., 2013; Tardif
et al., 2016; Zatorre et al., 2012). Thus, although our use of multiple
metrics may aid interpretation in comparison to a single metric analysis,
at best we may still only hypothesize about the potential underlying
cellular changes. Furthermore, at the resolutions used, partial voluming
effects are a limitation of this approach. In particular, the hippocampus is
bordered by white matter structures such as the alveus which have
sharply different diffusion characteristics compared to the hippocampus.
Given the adjacency of these structures to the region of interest at study,
it can be expected that T1w/T2w, MD, and FA values of voxels in the
deepest portions of the hippocampus are all impacted by partial
voluming to some degree.

In this work, we employed the ratio of T1w and T2w signal (T1w/
T2w) with the aim of using this metric as a correlate of myelin. This was
based on previous studies that demonstrated correspondence between
neocortical patterns of T1w/T2w and myelin (Glasser et al., 2016;
Glasser and Van Essen, 2011). However, we acknowledge the more
recent works suggesting T1w/T2w to be a less than optimal index of
subcortical myelin (Arshad et al., 2017; Uddin, Figley, Marrie, Figley, &
CCOMS Study Group, 2018). While the hippocampus is not a subcortical
region, these recent works raise the possibility that correspondence be-
tween T1w/T2w and myelin is less than optimal in other non neocortical
regions as well. Nonetheless, significant relationships between age and
subcortical T1w/T2w have been reported (Tullo et al., 2019). Future use
of quantitative MRI techniques, such as magnetization transfer or myelin
water imaging to measure myelin instead of T1w/T2w, would help
address this limitation (Tardif et al., 2016). We analyzed a population of

https://github.com/raihaan/hc-nmf-micro
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healthy young adults with a limited age range. While it is worth noting
that OPNMF was able to capture the subtle variations of hippocampal
microstructure (in relation to age related decline for example), a more
impactful analysis would include data from a full age range and poten-
tially identify critical points of change through the course of healthy
aging. The use of longitudinal data in place of cross sectional data would
enable more accurate mapping of any causal or sequential relationships
between the brain and behaviour.

5. Conclusion

We used non-negative matrix factorization to analyze hippocampal
microstructure, measured using multimodal data, in a young healthy
population. Application of this technique identified spatial components
of microstructural variance within the hippocampus, with 4 components
being selected as a suitable balance between stability and accuracy.
Importantly, spatial components derived from multimodal data were
shown to be more stable across subsets of participants than those derived
from unimodal data. Finally, we used partial least squares to identify
relationship between hippocampus microstructure and behaviour. This
work supports the use of non-negative matrix factorization as a tool for
identifying spatial components in which relevant variance occurs
without being constrained by existing anatomical delineations, and ad-
vocates for continued use of multimodal data when defining boundaries.
Declaration of competing interest

Authors report no conflicts of interest.

Acknowledgements

This work was supported by funding from the Fonds de Recherche du
Qu�ebec Sant�e, CIHR, NSERC and McGill University (Shuk-Tak Liang
Fellowship). RP receives salary support from the Fonds de Recherche du
Qu�ebec Sant�e. Dr. Chakravarty receives salary support from the Fonds de
Recherche du Qu�ebec Sant�e. We would like to thank Dr. Ragini Verma
(Professor in Section of Biomedical Image Analysis, Department of
Radiology, University of Pennsylvania) for her discussion and consulta-
tions regarding diffusion processing. Data were provided by the Human
Connectome Project, WU-Minn Consortium (Principal Investigators:
David Van Essen and Kamil Ugurbil; 1U54MH091657). Data processing
was performed in part using the General Purpose Cluster resources of the
SciNet HPC Consortium (Loken et al., 2010).

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.
org/10.1016/j.neuroimage.2019.116348.

References

Adler, D.H., Wisse, L.E.M., Ittyerah, R., Pluta, J.B., Ding, S.-L., Xie, L., et al., 2018.
Characterizing the human hippocampus in aging and Alzheimer’s disease using a
computational atlas derived from ex vivo MRI and histology. Proc. Natl. Acad. Sci.
U.S.A. 115 (16), 4252–4257.

Adnan, A., Barnett, A., Moayedi, M., McCormick, C., Cohn, M., McAndrews, M.P., 2016.
Distinct hippocampal functional networks revealed by tractography-based
parcellation. Brain Struct. Funct. 221 (6), 2999–3012.

Alexander, A.L., Lee, J.E., Lazar, M., Field, A.S., 2007. Diffusion tensor imaging of the
brain. Neurotherapeutics: The Journal of the American Society for Experimental
NeuroTherapeutics 4 (3), 316–329.

Alfaro-Almagro, F., Jenkinson, M., Bangerter, N.K., Andersson, J.L.R., Griffanti, L.,
Douaud, G., et al., 2018. Image processing and Quality Control for the first 10,000
brain imaging datasets from UK Biobank. Neuroimage 166, 400–424.

Amaral, D.G., Scharfman, H.E., Lavenex, P., 2007. The dentate gyrus: fundamental
neuroanatomical organization (dentate gyrus for dummies). Prog. Brain Res. 163,
3–22.

Amaral, R.S.C., Park, M.T.M., Devenyi, G.A., Lynn, V., Pipitone, J., Winterburn, J., et al.,
2018. Manual segmentation of the fornix, fimbria, and alveus on high-resolution 3T
12
MRI: application via fully-automated mapping of the human memory circuit white
and grey matter in healthy and pathological aging. Neuroimage 170, 132–150.

Amunts, K., Kedo, O., Kindler, M., Pieperhoff, P., Mohlberg, H., Shah, N.J., et al., 2005.
Cytoarchitectonic mapping of the human amygdala, hippocampal region and
entorhinal cortex: intersubject variability and probability maps. Anat. Embryol. 210
(5–6), 343–352.

Andersen, P., Morris, R., Amaral, D., O’Keefe, J., Division of Neurophysiology, Bliss, T.,
2007. The Hippocampus Book. Oxford University Press, USA.

Andersson, J., Xu, J., Yacoub, E., Auerbach, E., Moeller, S., Ugurbil, K., 2012.
A comprehensive Gaussian process framework for correcting distortions and
movements in diffusion images. Proceedings of the 20th Annual Meeting of ISMRM
2426.

Arbabshirani, M.R., Plis, S., Sui, J., Calhoun, V.D., 2017. Single subject prediction of brain
disorders in neuroimaging: promises and pitfalls. Neuroimage 145 (Pt B), 137–165.

Arshad, M., Stanley, J.A., Raz, N., 2017. Test-retest reliability and concurrent validity of
in vivo myelin content indices: myelin water fraction and calibrated T1 w/T2 w
image ratio. Hum. Brain Mapp. 38 (4), 1780–1790.

Asperholm, M., Nagar, S., Dekhtyar, S., Herlitz, A., 2019. The magnitude of sex
differences in verbal episodic memory increases with social progress: data from 54
countries across 40 years. PLoS One 14 (4), e0214945.

Avants, B.B., Epstein, C.L., Grossman, M., Gee, J.C., 2008. Symmetric diffeomorphic
image registration with cross-correlation: evaluating automated labeling of elderly
and neurodegenerative brain. Med. Image Anal. 12 (1), 26–41.

Avants, B.B., Yushkevich, P., Pluta, J., Minkoff, D., Korczykowski, M., Detre, J., Gee, J.C.,
2010. The optimal template effect in hippocampus studies of diseased populations.
Neuroimage 49 (3), 2457–2466.

Barch, D.M., Burgess, G.C., Harms, M.P., Petersen, S.E., Schlaggar, B.L., Corbetta, M.,
et al., 2013. Function in the human connectome: task-fMRI and individual differences
in behavior. Neuroimage 80, 169–189.

Bartzokis, G., 2004. Age-related myelin breakdown: a developmental model of cognitive
decline and Alzheimer’s disease. Neurobiol. Aging 25 (1), 5–18.

Basser, P.J., Mattiello, J., LeBihan, D., 1994. MR diffusion tensor spectroscopy and
imaging. Biophys. J. 66 (1), 259–267.

Beckmann, C.F., DeLuca, M., Devlin, J.T., Smith, S.M., 2005. Investigations into resting-
state connectivity using independent component analysis. Philos. Trans. R. Soc. Lond.
Ser. B Biol. Sci. 360 (1457), 1001–1013.

Beckmann, C.F., Smith, S.M., 2005. Tensorial extensions of independent component
analysis for multisubject FMRI analysis. Neuroimage 25, 294–311. https://doi.org/
10.1016/j.neuroimage.2004.10.043.

Beissner, F., Preibisch, C., Schweizer-Arau, A., Popovici, R.M., Meissner, K., 2018.
Psychotherapy with somatosensory stimulation for endometriosis-associated pain:
the role of the anterior Hippocampus. Biol. Psychiatry 84, 734–742. https://doi.org/
10.1016/j.biopsych.2017.01.006.

Ben-Hur, A., Elisseeff, A., Guyon, I., 2002. A stability based method for discovering
structure in clustered data. Paci� c Symposium on Biocomputing. Pacific Symposium on
Biocomputing 6–17.

Bilker, W.B., Hansen, J.A., Brensinger, C.M., Richard, J., Gur, R.E., Gur, R.C., 2012.
Development of abbreviated nine-item forms of the Raven’s standard progressive
matrices test. Assessment 19, 354–369. https://doi.org/10.1177/
1073191112446655.

Blessing, E.M., Beissner, F., Schumann, A., Brünner, F., B ar, K.-J., 2016. A data-driven
approach to mapping cortical and subcortical intrinsic functional connectivity along
the longitudinal hippocampal axis. Hum. Brain Mapp. 37 (2), 462–476.

Boutsidis, C., Gallopoulos, E., 2008. SVD based initialization: a head start for nonnegative
matrix factorization. Pattern Recognit. 41 (4), 1350–1362.

Braak, H., Braak, E., 1991. Neuropathological stageing of Alzheimer-related changes. Acta
Neuropathol. 82 (4), 239–259.

Bremner, J.D., Narayan, M., Anderson, E.R., Staib, L.H., Miller, H.L., Charney, D.S., 2000.
Hippocampal volume reduction in major depression. Am. J. Psychiatry 157 (1),
115–118.

Burgess, N., Jeffery, K.J., O’Keefe, J. (Eds.), 1999. The Hippocampal and Parietal
Foundations of Spatial Cognition, p. 490. Retrieved from. https://psycnet.apa.or
g/fulltext/1999-02910-000.pdf.

Burgess, N., Maguire, E.A., O’Keefe, J., 2002. The human hippocampus and spatial and
episodic memory. Neuron 35 (4), 625–641.

Calhoun, V.D., Adali, T., Pearlson, G.D., Pekar, J.J., 2001. A method for making group
inferences from functional MRI data using independent component analysis. Hum.
Brain Mapp. 14 (3), 140–151.

Callaghan, M.F., Freund, P., Draganski, B., Anderson, E., Cappelletti, M., Chowdhury, R.,
et al., 2014. Widespread age-related differences in the human brain microstructure
revealed by quantitative magnetic resonance imaging. Neurobiol. Aging 35 (8),
1862–1872.

Carlesimo, G.A., Cherubini, A., Caltagirone, C., Spalletta, G., 2010. Hippocampal mean
diffusivity and memory in healthy elderly individuals: a cross-sectional study.
Neurology 74 (3), 194–200.

Casey, B.J., Cannonier, T., Conley, M.I., Cohen, A.O., Barch, D.M., Heitzeg, M.M., ABCD
Imaging Acquisition Workgroup, 2018. The adolescent brain cognitive development
(ABCD) study: imaging acquisition across 21 sites. Developmental Cognitive
Neuroscience 32, 43–54.

Chakravarty, M.M., Sadikot, A.F., Germann, J., Bertrand, G., Collins, D.L., 2008. Towards
a validation of atlas warping techniques. Med. Image Anal. 12 (6), 713–726.

Chakravarty, M.M., Steadman, P., van Eede, M.C., Calcott, R.D., Gu, V., Shaw, P., et al.,
2013. Performing label-fusion-based segmentation using multiple automatically
generated templates. Hum. Brain Mapp. 34 (10), 2635–2654.

https://doi.org/10.1016/j.neuroimage.2019.116348
https://doi.org/10.1016/j.neuroimage.2019.116348
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref1
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref1
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref1
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref1
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref1
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref2
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref2
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref2
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref2
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref3
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref3
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref3
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref3
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref4
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref4
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref4
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref4
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref5
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref5
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref5
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref5
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref6
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref6
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref6
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref6
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref6
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref7
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref7
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref7
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref7
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref7
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref7
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref8
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref8
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref9
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref9
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref9
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref9
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref10
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref10
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref10
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref11
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref11
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref11
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref11
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref12
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref12
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref12
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref13
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref13
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref13
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref13
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref14
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref14
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref14
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref14
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref15
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref15
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref15
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref15
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref16
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref16
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref16
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref17
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref17
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref17
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref18
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref18
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref18
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref18
https://doi.org/10.1016/j.neuroimage.2004.10.043
https://doi.org/10.1016/j.neuroimage.2004.10.043
https://doi.org/10.1016/j.biopsych.2017.01.006
https://doi.org/10.1016/j.biopsych.2017.01.006
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref21
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref21
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref21
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref21
https://doi.org/10.1177/1073191112446655
https://doi.org/10.1177/1073191112446655
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref23
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref23
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref23
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref23
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref23
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref24
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref24
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref24
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref25
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref25
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref25
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref26
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref26
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref26
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref26
https://psycnet.apa.org/fulltext/1999-02910-000.pdf
https://psycnet.apa.org/fulltext/1999-02910-000.pdf
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref28
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref28
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref28
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref29
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref29
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref29
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref29
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref30
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref30
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref30
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref30
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref30
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref31
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref31
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref31
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref31
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref32
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref32
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref32
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref32
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref32
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref33
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref33
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref33
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref34
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref34
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref34
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref34


R. Patel et al. NeuroImage xxx (xxxx) xxx
Charlton, R.A., Barrick, T.R., McIntyre, D.J., Shen, Y., O’Sullivan, M., Howe, F.A., et al.,
2006. White matter damage on diffusion tensor imaging correlates with age-related
cognitive decline. Neurology 66 (2), 217–222.

Charlton, R.A., Schiavone, F., Barrick, T.R., Morris, R.G., Markus, H.S., 2010. Diffusion
tensor imaging detects age related white matter change over a 2 year follow-up which
is associated with working memory decline. J. Neurol. Neurosurg. Psychiatry 81 (1),
13–19.

Chase, H.W., Clos, M., Dibble, S., Fox, P., Grace, A.A., Phillips, M.L., Eickhoff, S.B., 2015.
Evidence for an anterior-posterior differentiation in the human hippocampal
formation revealed by meta-analytic parcellation of fMRI coordinate maps: focus on
the subiculum. Neuroimage 113, 44–60.

Crane, J., Milner, B., 2005. What went where? Impaired object-location learning in
patients with right hippocampal lesions. Hippocampus 15 (2), 216–231.

de Flores, R., La Joie, R., Ch�etelat, G., 2015. Structural imaging of hippocampal subfields
in healthy aging and Alzheimer’s disease. Neuroscience 309, 29–50.

den Heijer, T., der Lijn, van, F., Vernooij, M.W., de Groot, M., Koudstaal, P.J., van der
Lugt, A., et al., 2012. Structural and diffusion MRI measures of the hippocampus and
memory performance. Neuroimage 63 (4), 1782–1789.

de Wit, H., Flory, J.D., Acheson, A., McCloskey, M., Manuck, S.B., 2007. IQ and
nonplanning impulsivity are independently associated with delay discounting in
middle-aged adults. Personal. Individ. Differ. 42 (1), 111–121.

Dickerson, B.C., Eichenbaum, H., 2009. The Episodic Memory System: Neurocircuitry and
Disorders, vol. 35. Neuropsychopharmacology: Official Publication of the American
College of Neuropsychopharmacology, p. 86.

Durran, D.R., 2013. Numerical Methods for Wave Equations in Geophysical Fluid
Dynamics. Springer Science & Business Media.

Duvernoy, H.M., Bourgouin, P., 1998. The Human hippocampus : Functional Anatomy,
Vascularization and Serial Sections with MRI. Springer, Berlin; New York.

Eickhoff, S.B., Yeo, B.T.T., Genon, S., 2018. Imaging-based parcellations of the human
brain. Nat. Rev. Neurosci. 19 (11), 672–686.

Erickson, K.I., Voss, M.W., Prakash, R.S., Basak, C., Szabo, A., Chaddock, L., et al., 2011.
Exercise training increases size of hippocampus and improves memory. Proc. Natl.
Acad. Sci. U.S.A. 108 (7), 3017–3022.

Ezzati, A., Katz, M.J., Zammit, A.R., Lipton, M.L., Zimmerman, M.E., Sliwinski, M.J.,
Lipton, R.B., 2016. Differential association of left and right hippocampal volumes
with verbal episodic and spatial memory in older adults. Neuropsychologia 93 (Pt B),
380–385.

Fletcher, P.C., Frith, C.D., Rugg, M.D., 1997. The functional neuroanatomy of episodic
memory. Trends Neurosci. 20, 213–218. https://doi.org/10.1016/s0166-2236(96)
01013-2.

Fornberg, B., 1988. Generation of finite difference formulas on arbitrarily spaced grids.
Math. Comput. 51 (184), 699–706.

Fotuhi, M., Do, D., Jack, C., 2012. Modifiable factors that alter the size of the
hippocampus with ageing. Nat. Rev. Neurol. 8 (4), 189–202.

Ganzetti, M., Wenderoth, N., Mantini, D., 2014. Whole brain myelin mapping using T1-
and T2-weighted MR imaging data. Front. Hum. Neurosci. 8 (September), 671.

Ge, R., Kot, P., Liu, X., Lang, D.J., Wang, J.Z., Honer, W.G., Vila-Rodriguez, F., 2019.
Parcellation of the human hippocampus based on gray matter volume covariance:
Replicable results on healthy young adults. Human Brain Mapping. https://doi.org/
10.1002/hbm.24628.

Glasser, M.F., Coalson, T.S., Robinson, E.C., Hacker, C.D., Harwell, J., Yacoub, E., et al.,
2016. A multi-modal parcellation of human cerebral cortex. Nature 536 (7615),
171–178.

Glasser, M.F., Sotiropoulos, S.N., Wilson, J.A., Coalson, T.S., Fischl, B., Andersson, J.L.,
et al., 2013. The minimal preprocessing pipelines for the Human Connectome Project.
Neuroimage 80, 105–124.

Glasser, M.F., Van Essen, D.C., 2011. Mapping human cortical areas in vivo based on
myelin content as revealed by T1- and T2-weighted MRI. J. Neurosci.: The Official
Journal of the Society for Neuroscience 31 (32), 11597–11616.

Grydeland, H., Walhovd, K.B., Tamnes, C.K., Westlye, L.T., Fjell, A.M., 2013. Intracortical
myelin links with performance variability across the human lifespan: results from T1-
and T2-weighted MRI myelin mapping and diffusion tensor imaging. J. Neurosci.:
The Official Journal of the Society for Neuroscience 33 (47), 18618–18630.

Gur, R.C., Alsop, D., Glahn, D., Petty, R., Swanson, C.L., Maldjian, J.A., et al., 2000. An
fMRI study of sex differences in regional activation to a verbal and a spatial task.
Brain Lang. 74 (2), 157–170.

Gur, R.C., Gur, R.E., Obrist, W.D., Hungerbuhler, J.P., Younkin, D., Rosen, A.D., et al.,
1982. Sex and handedness differences in cerebral blood flow during rest and
cognitive activity. Science 217 (4560), 659–661.

Gur, R.C., Richard, J., Calkins, M.E., Chiavacci, R., Hansen, J.A., Bilker, W.B., et al., 2012.
Age group and sex differences in performance on a computerized neurocognitive
battery in children age 8� 21. Neuropsychology 26, 251–265. https://doi.org/
10.1037/a0026712.

Gur, R.C., Richard, J., Hughett, P., Calkins, M.E., Macy, L., Bilker, W.B., et al., 2010.
A cognitive neuroscience-based computerized battery for efficient measurement of
individual differences: standardization and initial construct validation. J. Neurosci.
Methods 187 (2), 254–262.

Halko, N., Martinsson, P., Tropp, J., 2011. Finding structure with Randomness:
probabilistic algorithms for constructing approximate matrix decompositions. SIAM
Rev. 53 (2), 217–288.

Hansen, L.K., Larsen, J., Nielsen, F.A., Strother, S.C., Rostrup, E., Savoy, R., et al., 1999.
Generalizable patterns in neuroimaging: how many principal components?
Neuroimage 9 (5), 534–544.

Heckers, S., 2001. Neuroimaging studies of the hippocampus in schizophrenia.
Hippocampus 11 (5), 520–528.
13
Iturria-Medina, Y., Carbonell, F.M., Sotero, R.C., Chouinard-Decorte, F., Evans, A.C.,
Alzheimer’s Disease Neuroimaging Initiative, 2017. Multifactorial causal model of
brain (dis)organization and therapeutic intervention: application to Alzheimer’s
disease. Neuroimage 152, 60–77.

Jack Jr., C.R., Petersen, R.C., Xu, Y.C., O’Brien, P.C., Smith, G.E., Ivnik, R.J., et al., 1999.
Prediction of AD with MRI-based hippocampal volume in mild cognitive impairment.
Neurology 52 (7), 1397–1403.

Jernigan, T.L., Brown, S.A., ABCD Consortium Coordinators, 2018. Introduction.
Developmental Cognitive Neuroscience 32, 1–3.

Jones, D.K., Basser, P.J., 2004. “Squashing peanuts and smashing pumpkins”: how noise
distorts diffusion-weighted MR data. Magn. Reson. Med.: Official Journal of the
Society of Magnetic Resonance in Medicine / Society of Magnetic Resonance in
Medicine 52 (5), 979–993.

Jones, D.K., Kn osche, T.R., Turner, R., 2013. White matter integrity, fiber count, and
other fallacies: the do’s and don’ts of diffusion MRI. Neuroimage 73, 239–254.

Kaufman, A.S., Kaufman, J.C., Liu, X., Johnson, C.K., 2009. How do educational
attainment and gender relate to fluid intelligence, crystallized intelligence, and
academic skills at ages 22-90 years? Arch. Clin. Neuropsychol.: The Official Journal
of the National Academy of Neuropsychologists 24 (2), 153–163.

Khan, A.R., Wang, L., Beg, M.F., 2008. FreeSurfer-initiated fully-automated subcortical
brain segmentation in MRI using large deformation diffeomorphic metric mapping.
Neuroimage 41 (3), 735–746.

Kharabian Masouleh, S., Eickhoff, S.B., Hoffstaedter, F., Genon, S., Alzheimer’s Disease
Neuroimaging Initiative, 2019. Empirical examination of the replicability of
associations between brain structure and psychological variables. eLife 8. https://
doi.org/10.7554/eLife.43464.

Kochunov, P., Williamson, D.E., Lancaster, J., Fox, P., Cornell, J., Blangero, J.,
Glahn, D.C., 2012. Fractional anisotropy of water diffusion in cerebral white matter
across the lifespan. Neurobiol. Aging 33 (1), 9–20.

Krishnan, A., Williams, L.J., McIntosh, A.R., Abdi, H., 2011. Partial Least Squares (PLS)
methods for neuroimaging: a tutorial and review. Neuroimage 56 (2), 455–475.

Lebel, C., Gee, M., Camicioli, R., Wieler, M., Martin, W., Beaulieu, C., 2012. Diffusion
tensor imaging of white matter tract evolution over the lifespan. Neuroimage 60 (1),
340–352.

Lebel, C., Walker, L., Leemans, A., Phillips, L., Beaulieu, C., 2008. Microstructural
maturation of the human brain from childhood to adulthood. Neuroimage 40 (3),
1044–1055.

Lebreton, M., Bertoux, M., Boutet, C., Lehericy, S., Dubois, B., Fossati, P., Pessiglione, M.,
2013. A critical role for the hippocampus in the valuation of imagined outcomes.
PLoS Biol. 11 (10), e1001684.

Lee, D.D., Seung, H.S., 1999. Learning the parts of objects by non-negative matrix
factorization. Nature 401 (6755), 788–791.

Liem, F., Varoquaux, G., Kynast, J., Beyer, F., Kharabian Masouleh, S., Huntenburg, J.M.,
et al., 2017. Predicting brain-age from multimodal imaging data captures cognitive
impairment. Neuroimage 148, 179–188.

Loken, C., Gruner, D., Groer, L., Peltier, R., Bunn, N., Craig, M., et al., 2010. SciNet:
lessons learned from building a power-efficient top-20 system and data centre.
J. Phys. Conf. Ser. 256 (1), 012026.

Marner, L., Nyengaard, J.R., Tang, Y., Pakkenberg, B., 2003. Marked loss of myelinated
nerve fibers in the human brain with age. J. Comp. Neurol. 462 (2), 144–152.

McIntosh, A.R., Lobaugh, N.J., 2004. Partial least squares analysis of neuroimaging data:
applications and advances. Neuroimage 23 (Suppl. 1), S250–S263.

McIntosh, A.R., Mi�si�c, B., 2013. Multivariate statistical analyses for neuroimaging data.
Annu. Rev. Psychol. 64, 499–525.

Mielke, M.M., Okonkwo, O.C., Oishi, K., Mori, S., Tighe, S., Miller, M.I., et al., 2012.
Fornix integrity and hippocampal volume predict memory decline and progression to
Alzheimer’s disease. Alzheimer’s Dementia: The Journal of the Alzheimer’s
Association 8 (2), 105–113.

Miller, K.L., Alfaro-Almagro, F., Bangerter, N.K., Thomas, D.L., Yacoub, E., Xu, J., et al.,
2016. Multimodal population brain imaging in the UK Biobank prospective
epidemiological study. Nat. Neurosci. 19 (11), 1523–1536.

Müller, M.J., Greverus, D., Weibrich, C., Dellani, P.R., Scheurich, A., Stoeter, P.,
Fellgiebel, A., 2007. Diagnostic utility of hippocampal size and mean diffusivity in
amnestic MCI. Neurobiol. Aging 28 (3), 398–403.

Narr, K.L., Thompson, P.M., Szeszko, P., Robinson, D., Jang, S., Woods, R.P., et al., 2004.
Regional specificity of hippocampal volume reductions in first-episode schizophrenia.
Neuroimage 21 (4), 1563–1575.

Nassar, R., Kaczkurkin, A.N., Xia, C.H., Sotiras, A., Pehlivanova, M., Moore, T.M., et al.,
2018. Gestational age is dimensionally associated with structural brain network
abnormalities across development. Cerebral Cortex. https://doi.org/10.1093/cercor/
bhy091.

Nazeri, A., Chakravarty, M.M., Rotenberg, D.J., Rajji, T.K., Rathi, Y., Michailovich, O.V.,
Voineskos, A.N., 2015. Functional consequences of neurite orientation dispersion and
density in humans across the adult lifespan. J. Neurosci.: The Official Journal of the
Society for Neuroscience 35 (4), 1753–1762.

Nordin, K., Persson, J., Stening, E., Herlitz, A., Larsson, E.-M., S oderlund, H., 2018.
Structural whole-brain covariance of the anterior and posterior hippocampus:
associations with age and memory. Hippocampus 28 (2), 151–163.

Nyberg, L., McIntosh, A.R., Cabeza, R., Habib, R., Houle, S., Tulving, E., 1996. General
and specific brain regions involved in encoding and retrieval of events: what, where,
and when. Proc. Natl. Acad. Sci. U.S.A. 93 (20), 11280–11285.

O’Keefe, J., Dostrovsky, J., 1971. The hippocampus as a spatial map. Preliminary
evidence from unit activity in the freely-moving rat. Brain Res. 34 (1), 171–175.

O’Shea, A., Cohen, R.A., Porges, E.C., Nissim, N.R., Woods, A.J., 2016. Cognitive aging
and the Hippocampus in older adults. Front. Aging Neurosci. 8, 298.

http://refhub.elsevier.com/S1053-8119(19)30939-5/sref35
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref35
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref35
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref35
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref36
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref36
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref36
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref36
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref36
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref37
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref37
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref37
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref37
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref37
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref38
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref38
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref38
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref39
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref39
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref39
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref39
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref40
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref40
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref40
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref40
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref41
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref41
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref41
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref41
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref42
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref42
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref42
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref43
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref43
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref43
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref44
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref44
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref45
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref45
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref45
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref46
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref46
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref46
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref46
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref47
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref47
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref47
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref47
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref47
https://doi.org/10.1016/s0166-2236(96)01013-2
https://doi.org/10.1016/s0166-2236(96)01013-2
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref49
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref49
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref49
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref50
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref50
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref50
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref51
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref51
https://doi.org/10.1002/hbm.24628
https://doi.org/10.1002/hbm.24628
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref53
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref53
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref53
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref53
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref54
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref54
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref54
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref54
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref55
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref55
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref55
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref55
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref56
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref56
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref56
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref56
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref56
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref57
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref57
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref57
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref57
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref58
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref58
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref58
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref58
https://doi.org/10.1037/a0026712
https://doi.org/10.1037/a0026712
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref60
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref60
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref60
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref60
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref60
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref61
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref61
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref61
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref61
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref62
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref62
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref62
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref62
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref63
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref63
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref63
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref64
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref64
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref64
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref64
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref64
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref65
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref65
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref65
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref65
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref66
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref66
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref66
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref67
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref67
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref67
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref67
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref67
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref68
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref68
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref68
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref68
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref69
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref69
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref69
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref69
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref69
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref70
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref70
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref70
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref70
https://doi.org/10.7554/eLife.43464
https://doi.org/10.7554/eLife.43464
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref72
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref72
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref72
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref72
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref73
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref73
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref73
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref74
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref74
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref74
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref74
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref75
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref75
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref75
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref75
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref76
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref76
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref76
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref77
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref77
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref77
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref78
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref78
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref78
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref78
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref79
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref79
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref79
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref80
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref80
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref80
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref81
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref81
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref81
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref82
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref82
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref82
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref82
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref82
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref83
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref83
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref83
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref83
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref83
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref84
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref84
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref84
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref84
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref85
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref85
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref85
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref85
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref86
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref86
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref86
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref86
https://doi.org/10.1093/cercor/bhy091
https://doi.org/10.1093/cercor/bhy091
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref88
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref88
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref88
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref88
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref88
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref89
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref89
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref89
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref89
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref89
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref90
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref90
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref90
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref90
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref91
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref91
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref91
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref92
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref92


t

,

.

,

s

-

l.,

st

.,

.,

e

R. Patel et al. NeuroImage xxx (xxxx) xxx
Papp, K.V., Kaplan, R.F., Springate, B., Moscufo, N., Wake� eld, D.B., Guttmann, C.R.G.,
Wolfson, L., 2014. Processing speed in normal aging: effects of white matter
hyperintensities and hippocampal volume loss. Neuropsychology, Development, and
Cognition. Section B, Aging, Neuropsychology and Cognition 21 (2), 197–213.

Patel, S., Park, M.T.M., Devenyi, G.A., Patel, R., Masellis, M., Knight, J.,
Chakravarty, M.M., 2017. Heritability of hippocampal sub � eld volumes using a twin
and non-twin siblings design. Hum. Brain Mapp. 38 (9), 4337–4352.

Persson, J., Spreng, R.N., Turner, G., Herlitz, A., Morell, A., Stening, E., et al., 2014. Sex
differences in volume and structural covariance of the anterior and posterior
hippocampus. Neuroimage 99, 215–225.

Peters, J., Büchel, C., 2010. Episodic future thinking reduces reward delay discounting
through an enhancement of prefrontal-mediotemporal interactions. Neuron 66 (1),
138–148.

Pipitone, J., Park, M.T.M., Winterburn, J., Lett, T.A., Lerch, J.P., Pruessner, J.C., et al.,
2014. Multi-atlas segmentation of the whole hippocampus and sub� elds using
multiple automatically generated templates. Neuroimage 101, 494–512.

Plachti, A., Eickhoff, S.B., Hoffstaedter, F., Patil, K.R., Laird, A.R., Fox, P.T., et al., 2019.
Multimodal parcellations and extensive behavioral pro � ling tackling the
Hippocampus gradient. Cerebr. Cortex.https://doi.org/10.1093/cercor/bhy336 .

R�esolution des �equations et des syst�emes non lin�eaires. In: Quarteroni, A., Sacco, R.,
Saleri, F. (Eds.), 2007. M�ethodes Num�eriques: Algorithmes, analyse et applications.
Springer Milan, Milano, pp. 211 –257.

Reimers, S., Maylor, E.A., Stewart, N., Chater, N., 2009. Associations between a one-sho
delay discounting measure and age, income, education and real-world impulsive
behavior. Personal. Individ. Differ. 47 (8), 973 –978.

Reuben, A., Brickman, A.M., Muraskin, J., Steffener, J., Stern, Y., 2011. Hippocampal
atrophy relates to � uid intelligence decline in the elderly. J. Int. Neuropsychol. Soc.:
JINS 17 (1), 56–61.

Robinson, J.L., Salibi, N., Deshpande, G., 2016. Functional connectivity of the left and
right hippocampi: evidence for functional lateralization along the long-axis using
meta-analytic approaches and ultra-high � eld functional neuroimaging. Neuroimage
135, 64–78.

Sabuncu, M.R., Desikan, R.S., Sepulcre, J., Yeo, B.T.T., Liu, H., Schmansky, N.J., et al.
2011. The dynamics of cortical and hippocampal atrophy in Alzheimer disease. Arch.
Neurol. 68 (8), 1040 –1048.

Sankar, T., Park, M.T.M., Jawa, T., Patel, R., Bhagwat, N., Voineskos, A.N., et al., 2017
Your algorithm might think the hippocampus grows in Alzheimer ’s disease: caveats
of longitudinal automated hippocampal volumetry. Hum. Brain Mapp. 38 (6),
2875–2896.

Schiavone, F., Charlton, R.A., Barrick, T.R., Morris, R.G., Markus, H.S., 2009. Imaging
age-related cognitive decline: a comparison of diffusion tensor and magnetization
transfer MRI. J. Magn. Reson. Imaging: JMRI 29 (1), 23–30.

Scott, J.A., Tosun, D., Braskie, M.N., Maillard, P., Thompson, P.M., Weiner, M., et al.,
2017. Independent value added by diffusion MRI for prediction of cognitive function
in older adults. NeuroImage. Clinical 14, 166–173.

Shafee, R., Buckner, R.L., Fischl, B., 2015. Gray matter myelination of 1555 human brains
using partial volume corrected MRI images. Neuroimage 105, 473–485.

Small, S.A., 2002. The longitudinal axis of the hippocampal formation: its anatomy,
circuitry, and role in cognitive function. Rev. Neurosci. 13 (2), 183 –194.

Small, S.A., Schobel, S.A., Buxton, R.B., Witter, M.P., Barnes, C.A., 2011.
A pathophysiological framework of hippocampal dysfunction in ageing and disease.
Nat. Rev. Neurosci. 12 (10), 585–601.

Sotiras, A., Resnick, S.M., Davatzikos, C., 2015. Finding imaging patterns of structural
covariance via Non-Negative Matrix Factorization. Neuroimage 108, 1–16.

Sotiras, A., Toledo, J.B., Gur, R.E., Gur, R.C., Satterthwaite, T.D., Davatzikos, C., 2017.
Patterns of coordinated cortical remodeling during adolescence and their associations
with functional specialization and evolutionary expansion. Proc. Natl. Acad. Sci.
U.S.A. 114 (13), 3527–3532.

Sotiropoulos, S.N., Jbabdi, S., Xu, J., Andersson, J.L., Moeller, S., Auerbach, E.J., et al.
2013. Advances in diffusion MRI acquisition and processing in the human
connectome Project. Neuroimage 80, 125–143.

Strange, B.A., Witter, M.P., Lein, E.S., Moser, E.I., 2014. Functional organization of the
hippocampal longitudinal axis. Nat. Rev. Neurosci. 15 (10), 655–669.

Tardif, C.L., Gauthier, C.J., Steele, C.J., Bazin, P.-L., Sch afer, A., Schaefer, A., et al., 2016.
Advanced MRI techniques to improve our understanding of experience-induced
neuroplasticity. Neuroimage 131, 55–72.

Terry, D.P., Sabatinelli, D., Nicolas, P.A., Lazar, N.A., Miller, S.L., 2015. A meta-analysis of
fMRI activation differences during episodic memory in Alzheimer ’s disease and mild
cognitive impairment. J. Neuroimaging: Of � cial Journal of the American Society of
Neuroimaging 25 (6), 849–860.

Thompson, C.L., Pathak, S.D., Jeromin, A., Ng, L.L., MacPherson, C.R., Mortrud, M.T.,
et al., 2008. Genomic anatomy of the Hippocampus. Neuron 60 (6), 1010–1021.

Tournier, J.-D., Calamante, F., Connelly, A., 2012. MRtrix: diffusion tractography in
crossing � ber regions. Int. J. Imaging Syst. Technol. 22 (1), 53–66.

Tournier, J.-D., Mori, S., Leemans, A., 2011. Diffusion tensor imaging and beyond. Magn.
Reson. Med.: Of� cial Journal of the Society of Magnetic Resonance in Medicine /
Society of Magnetic Resonance in Medicine 65 (6), 1532–1556.

Tullo, S., Patel, R., Devenyi, G.A., et al., 2019. MR-based age-related effects on the
striatum, globus pallidus, and thalamus in healthy individuals across the adult
lifespan. Hum Brain Mapp 40, 5269–5288. https://doi.org/10.1002/hbm.24771 .

Tulving, E., Markowitsch, H.J., 1998. Episodic and declarative memory: role of the
hippocampus. Hippocampus 8 (3), 198–204.

Uddin, M.N., Figley, T.D., Marrie, R.A., Figley, C.R., CCOMS Study Group, 2018. Can T1
w/T2 w ratio be used as a myelin-speci� c measure in subcortical structures?
14
Comparisons between FSE-based T1 w/T2 w ratios, GRASE-based T1 w/T2 w ratio
and multi-echo GRASE-based myelin water fractions. NMR Biomed. 31 (3)https://
doi.org/10.1002/nbm.3868 .

U�gurbil, K., Xu, J., Auerbach, E.J., Moeller, S., Vu, A.T., Duarte-Carvajalino, J.M., et al.,
2013. Pushing spatial and temporal resolution for functional and diffusion MRI in the
Human Connectome Project. Neuroimage 80, 80–104.

van der Linden, D., Dunkel, C.S., Madison, G., 2017. Sex differences in brain size and
general intelligence (g). Intelligence 63, 78–88.

Van Essen, D.C., Smith, S.M., Barch, D.M., Behrens, T.E.J., Yacoub, E., Ugurbil, K., WU
Minn HCP Consortium, 2013. The Wu-minn human connectome Project: an
overview. Neuroimage 80, 62–79.

Van Essen, D.C., Ugurbil, K., Auerbach, E., Barch, D., Behrens, T.E.J., Bucholz, R., et a
2012. The Human Connectome Project: a data acquisition perspective. Neuroimage
62 (4), 2222–2231.

van Uden, I.W.M., Tuladhar, A.M., van der Holst, H.M., van Leijsen, E.M.C., van
Norden, A.G.W., de Laat, K.F., et al., 2016. Diffusion tensor imaging of the
hippocampus predicts the risk of dementia; the RUN DMC study. Hum. Brain Mapp.
37 (1), 327–337.

Varikuti, D.P., Genon, S., Sotiras, A., Schwender, H., Hoffstaedter, F., Patil, K.R., et al.,
2018. Evaluation of non-negative matrix factorization of grey matter in age
prediction. Neuroimage 173, 394–410.

Veraart, J., Sijbers, J., Sunaert, S., Leemans, A., Jeurissen, B., 2013. Weighted linear lea
squares estimation of diffusion MRI parameters: strengths, limitations, and pitfalls.
Neuroimage 81, 335–346.

Voineskos, A.N., Winterburn, J.L., Felsky, D., Pipitone, J., Rajji, T.K., Mulsant, B.H.,
Chakravarty, M.M., 2015. Hippocampal (sub� eld) volume and shape in relation to
cognitive performance across the adult lifespan. Hum. Brain Mapp. 36 (8),
3020–3037.

Vythilingam, M., Vermetten, E., Anderson, G.M., Luckenbaugh, D., Anderson, E.R.,
Snow, J., et al., 2004. Hippocampal volume, memory, and cortisol status in major
depressive disorder: effects of treatment. Biol. Psychiatry vol. 56 (2), 101–112.

Westin, C.-F., Peled, S., Gudbjartsson, H., Kikinis, R., Jolesz, F.A., 1997. Geometrical
diffusion measures for MRI from tensor basis analysis. ISMRM’97, 1742 (Vancouver
Canada).

Whelan, C.D., Hibar, D.P., van Velzen, L.S., Zannas, A.S., Carrillo-Roa, T., McMahon, K
et al., 2016. Heritability and reliability of automatically segmented human
hippocampal formation subregions. Neuroimage 128, 125–137.

Winterburn, J.L., Pruessner, J.C., Chavez, S., Schira, M.M., Lobaugh, N.J.,
Voineskos, A.N., Chakravarty, M.M., 2013. A novel in vivo atlas of human
hippocampal sub� elds using high-resolution 3 T magnetic resonance imaging.
Neuroimage 74, 254–265.

Wisse, L.E.M., Biessels, G.J., Heringa, S.M., Kuijf, H.J., Koek, D.H.L., Luijten, P.R., et al
2014. Hippocampal sub� eld volumes at 7T in early Alzheimer’s disease and normal
aging. Neurobiol. Aging 35 (9), 2039 –2045.

Wisse, L.E.M., Daugherty, A.M., Olsen, R.K., Berron, D., Carr, V.A., Stark, C.E.L., et al.,
2017. A harmonized segmentation protocol for hippocampal and parahippocampal
subregions: why do we need one and what are the key goals? Hippocampus 27 (1),
3–11.

Wolf, D., Fischer, F.U., de Flores, R., Ch�etelat, G., Fellgiebel, A., 2015. Differential
associations of age with volume and microstructure of hippocampal sub� elds in
healthy older adults. Hum. Brain Mapp. 36 (10), 3819 –3831.

Yang, Z., Oja, E., 2010. Linear and nonlinear projective nonnegative matrix factorization.
IEEE Trans. Neural Netw./a Publication of the IEEE Neural Networks Council 21 (5),
734–749.

Yushkevich, P.A., Amaral, R.S.C., Augustinack, J.C., Bender, A.R., Bernstein, J.D.,
Boccardi, M., et al., 2015a. Quantitative comparison of 21 protocols for labeling
hippocampal sub� elds and parahippocampal subregions in in vivo MRI: towards a
harmonized segmentation protocol. Neuroimage 111, 526–541.

Yushkevich, P.A., Pluta, J.B., Wang, H., Xie, L., Ding, S.-L., Gertje, E.C., et al., 2015b.
Automated volumetry and regional thickness analysis of hippocampal sub� elds and
medial temporal cortical structures in mild cognitive impairment. Hum. Brain Mapp.
36 (1), 258–287.

Yushkevich, P.A., Wang, H., Pluta, J., Das, S.R., Craige, C., Avants, B.B., et al., 2010.
Nearly automatic segmentation of hippocampal sub� elds in in vivo focal T2-weighted
MRI. Neuroimage 53 (4), 1208–1224.

Zatorre, R.J., Fields, R.D., Johansen-Berg, H., 2012. Plasticity in gray and white:
neuroimaging changes in brain structure during learning. Nat. Neurosci. 15 (4),
528–536.

Zeighami, Y., Fereshtehnejad, S.-M., Dadar, M., Collins, D.L., Postuma, R.B., Mi�si�c, B.,
Dagher, A., 2017. A clinical-anatomical signature of Parkinson’s disease identi� ed
with partial least squares and magnetic resonance imaging. Neuroimage.https://
doi.org/10.1016/j.neuroimage.2017.12.050 .

Zeineh, M.M., Palomero-Gallagher, N., Axer, M., Gr aßel, D., Goubran, M., Wree, A., et al.,
2017. Direct visualization and mapping of the spatial course of � ber tracts at
microscopic resolution in the human Hippocampus. Cerebr. Cortex 27 (3),
1779–1794.

Zhao, R., Zhang, X., Zhu, Y., Fei, N., Sun, J., Liu, P., et al., 2019. Disrupted resting-stat
functional connectivity in hippocampal subregions after sleep deprivation.
Neuroscience 398, 37–54.

Zhu, B., Chen, C., Dang, X., Dong, Q., Lin, C., 2017. Hippocampal sub� elds’ volumes are
more relevant to � uid intelligence than verbal working memory. Intelligence 61,
169–175.

http://refhub.elsevier.com/S1053-8119(19)30939-5/sref93
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref93
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref93
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref93
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref93
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref94
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref94
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref94
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref94
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref95
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref95
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref95
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref95
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref96
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref96
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref96
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref96
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref97
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref97
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref97
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref97
https://doi.org/10.1093/cercor/bhy336
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref99
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref99
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref99
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref99
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref99
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref99
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref99
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref99
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref99
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref99
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref100
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref100
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref100
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref100
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref101
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref101
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref101
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref101
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref102
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref102
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref102
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref102
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref102
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref103
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref103
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref103
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref103
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref104
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref104
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref104
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref104
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref104
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref105
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref105
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref105
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref105
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref106
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref106
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref106
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref106
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref107
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref107
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref107
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref108
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref108
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref108
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref109
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref109
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref109
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref109
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref110
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref110
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref110
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref111
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref111
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref111
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref111
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref111
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref112
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref112
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref112
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref112
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref113
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref113
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref113
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref114
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref114
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref114
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref114
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref114
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref115
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref115
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref115
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref115
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref115
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref116
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref116
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref116
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref117
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref117
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref117
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref118
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref118
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref118
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref118
https://doi.org/10.1002/hbm.24771
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref120
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref120
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref120
https://doi.org/10.1002/nbm.3868
https://doi.org/10.1002/nbm.3868
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref122
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref122
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref122
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref122
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref122
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref123
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref123
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref123
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref124
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref124
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref124
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref124
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref125
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref125
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref125
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref125
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref126
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref126
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref126
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref126
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref126
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref127
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref127
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref127
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref127
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref128
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref128
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref128
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref128
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref129
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref129
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref129
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref129
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref129
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref130
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref130
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref130
http://refhub.elsevier.com/S1053-8119(19)30939-5/sref130

	Investigating microstructural variation in the human hippocampus using non-negative matrix factorization
	1. Introduction
	2. Methods
	2.1. Overview

	3. Results


