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Abstract
In human face-to-face communication, speech is frequently accompanied by visual signals, especially communicative hand
gestures. Analyzing these visual signals requires detailed manual annotation of video data, which is often a labor-intensive
and time-consuming process. To facilitate this process, we here present SPUDNIG (SPeeding Up the Detection of Non-iconic
and Iconic Gestures), a tool to automatize the detection and annotation of hand movements in video data. We provide a detailed
description of how SPUDNIG detects hand movement initiation and termination, as well as open-source code and a short tutorial
on an easy-to-use graphical user interface (GUI) of our tool.We then provide a proof-of-principle and validation of our method by
comparing SPUDNIG’s output to manual annotations of gestures by a human coder.While the tool does not entirely eliminate the
need of a human coder (e.g., for false positives detection), our results demonstrate that SPUDNIG can detect both iconic and non-
iconic gestures with very high accuracy, and could successfully detect all iconic gestures in our validation dataset. Importantly,
SPUDNIG’s output can directly be imported into commonly used annotation tools such as ELAN and ANVIL. We therefore
believe that SPUDNIG will be highly relevant for researchers studying multimodal communication due to its annotations
significantly accelerating the analysis of large video corpora.
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Introduction

Spoken language is mostly used in multimodal, face-to-face
contexts. In addition to speech, face-to-face communication
involves a plethora of visual articulators, such as manual ges-
tures. Due to their close relation to speech, manual gestures
(henceforth: gestures) have often been the focus of multimod-
al research in the domains of psychology, anthropology, lin-
guistics and neuroscience (Goldin-Meadow, 2005; Kendon,
2004; McNeill, 1992). For example, gestures can be used to
refer to objects, events, locations and ideas, and can convey

semantic information integral to a speaker’s message (Holler
& Beattie, 2003; Holler & Wilkin, 2009; Hostetter, 2011;
McNeill, 1992). Previous work has demonstrated that this
information is integrated with the speech signal, processed
by the listener, and that it facilitates language comprehension
(Drijvers & Özyürek, 2017; Holler, Shovelton, & Beattie,
2009; Kelly, Barr, Church, & Lynch, 1999; Kelly, Kravitz,
& Hopkins, 2004; Kelly et al., 2010; Ozyurek, 2014).

One of the main challenges for studies on human commu-
nication in face-to-face contexts is the labor-intensive and
time-consuming manual annotation of the occurrence and
timing of such gestures. These manual analyses are often per-
formed on the basis of pre-defined coding schemes (e.g., Dael,
Mortillaro, & Scherer, 2012; McNeill, 1992; Zhao & Badler,
2001), and using annotation tools such as ANVIL (Kipp,
2001) or ELAN (Wittenburg, Brugman, Russel, Klassmann
& Sloetjes, 2006). These annotation tools log manually made
annotation entries time-stamped in relation to the video – an
extremely useful step – but they do not speed up or automatize
the annotation process itself. Gestures still need to be detected
based on the human eye and their begin and end points need to
be entered manually. Moreover, annotators need to be trained
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to perform this procedure, and multiple coders need to be
involved to establish inter-rater reliability. This results in an
extremely time-consuming process even for individual exper-
iments, and especially so for more large-scale, corpora-based
research projects. Facilitating the gesture annotation process
through the development of automated techniques thus would
advance multimodal communication research significantly.

Recent technological advances have opened up exciting
possibilities for the automatic analyses of movement parame-
ters (such as space, motion trajectories, size, distance, and
velocity). These automatic analyses are often performed on
the basis of device-based optic marker or markerless motion
tracking systems, such as Polhemus Liberty (Vermont, USA;
http://polhemus.com; Liberty Latus Brochure, 2012),
Optotrak (Northern Digital, Waterloo, Canada), Microsoft
Kinect (Zhang, 2012), and Leap Motion (San Francisco,
USA; http://leapmotion.com).

Alternatively, when motion capture systems are unavail-
able, video-based tracking systems can be used to automati-
cally track movements. These video-based analysis methods
include pixel differentiation methods (e.g., Paxton & Dale,
2013), computer-vision methods relying on deep learning,
(e.g., OpenPose; Cao, Hidalgo, Simon, Wei, & Sheikh,
2018; Cao, Simon, Wei, & Sheikh, 2016) and Deeplabcut
(Mathis et al., 2018); for an overview and discussion of the
different methods see Pouw, Trujillo, & Dixon, 2018). Recent
work has validated that video-based tracking systems perform
equally well in estimating gesture characteristics (such as
movement peaks) as device-based motion tracking systems
(Pouw et al., 2018).

The decision on what type of motion tracking method is
most suitable for a user’s research question is often dependent
on the user’s access to suchmethods. Access can be limited by
the cost level of motion capture systems or specific computer-
based hardware requirements (e.g., access to a graphics pro-
cessing unit (GPU), but also due to the requirement of techni-
cal expertise to apply existent video-based motion tracking
methods (first and foremost, expertise in specific program-
ming languages). Moreover, existing toolkits on (semi-)auto-
matic gesture and movement analyses still require, as a first
step, the manual identification of the gesture/movement
events that need to be analyzed (e.g., Pouw et al., 2018;
Trujillo, Vaitonyte, Simanova, & Özyürek, 2019), require mo-
tion capture data as input for detection of gesture initiation and
termination (e.g., by using EPAA, see Hassemer, 2015), or are
not suited to track fine-grained finger movements (e.g.,
Beugher, Brône, & Goedemé, 2018).

To overcome these limitations, we here present SPUDNIG
(SPeeding Up the Detection of Non-iconic and Iconic
Gestures), a newly developed open-source toolkit including
an easy-to-use graphical user interface (GUI) for the automatic
detection of hand movements and gestures. Similar to De
Beugher et al., (2018), we define ‘detection’ as segmenting

movement sequences from non-movement sequences (note
that recognition would involve distinguishing which of these
movements are gestures and which of these movements are
not gestures). SPUDNIG uses OpenPose as input for contin-
uous, video-based motion tracking of movements and ges-
tures, and subsequently uses observed changes in x/y coordi-
nates of user-defined key points in the body to automatically
detect movement initiation and termination. SPUDNIG does
not require the use of motion capture hardware devices, nor
does it require in-depth technical knowledge to adapt param-
eters used for gesture detection, or expertise in programming
languages. In what follows, we provide a proof-of-principle
and validation of our “off-the-shelf” gesture detection method
by comparing the output of SPUDNIG to manually annotated
gesture data in the ELAN annotation tool. We will test its
performance for both non-iconic and iconic gestures. Please
note that SPUDNIG, in its current form, was not designed to
entirely eliminate the need of a human coder. Its current ver-
sion is not able to recognize gestural from non-gestural move-
ment, but is able to detect movement initiation and termina-
tion. Our aim here is to evaluate its overlap with gestures
identified by a trained human coder, and to provide a toolkit
that significantly reduces the need of a human coder, limiting
it to the removal of false positives (i.e., non-gestural move-
ments) at the end of the machine-based annotation process.

Methods

SPUDNIG: speeding up the detection of non-iconic
and iconic gestures

OpenPose

SPUDNIG is partially based on output created by OpenPose
(https://github.com/CMU-Perceptual-Computing-Lab/
openpose). OpenPose is a video-based motion tracking meth-
od that uses computer-vision methods to estimate body parts
from 2D frames (e.g., body, face, and hands, see: Cao et al.,
2016, 2018). Specifically, it uses convolutional neural net-
works as a deep learning method to predict the location of
body parts and the occurrence of body part motion. This
makes OpenPose more robust to background noise than other
video-based tracking methods, such as pixel differentiation,
and therefore perhaps more suited to the study of human com-
munication in face-to-face contexts. Note that other methods,
such as AlphaPose (Fang et al., 2017), have demonstrated to
outperform OpenPose at the task of pose estimation.
However, AlphaPose can only estimate body pose, and cannot
detect key points in the hands. As SPUDNIG requires the
detection of fine-grained hand and finger movements,
OpenPose was chosen as the basis for SPUDNIG.
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Movement/no-movement detection

Per frame, OpenPose provides x- and y-coordinates of 25 key
points divided over the body, and 21 key points per hand.
SPUDNIG then extracts these coordinates per frame and out-
puts them in three .csv files (body key points / left-hand key
points / right-hand key points). Out of these files, it selects a
set of eight (default) key points to estimate the initiation and
termination of hand movements. The key points that are taken
into account from the body are both wrists, and the key point
between the wrist and elbow for each arm. Coordinate chang-
es in those points mainly reflect large hand movements. The
key points that are taken into account from the left- and right-
hand are the tip of the index finger and the tip of the thumb of
each hand. The selection of these key points, as well as the
number of key points, were the result of a careful piloting
phase in which we investigated the trade-off between false
positives and false negatives. Addingmore key points resulted
in more false positives, and removing key points resulted in
more false negatives. However, note that the user can edit the
number and selection of the key points for their own research
purposes to alter this weighting.

We have visualized our algorithm in a flow chart in Fig. 1.
For each frame, SPUDNIG calculates per key point whether a
movement is taking place or not. First, it checks whether the
reliability of the OpenPose output is above a certain threshold
(default = 0.3, which can be altered by the user). If the reli-
ability of a key point in a frame is below the reliability thresh-
old, the script stops checking for potential movement and
indicates that nomovement is detected in the respective frame,

before continuing to the next frame. If the reliability is above
the threshold, the script continues and determines whether the
key point in question is part of a rest state or part of a
movement.

Rest states (i.e., the hands not being engaged in movement)
are determined by checking the x/y-coordinates of a certain
manual key point over a span of 15 frames (corresponding to
600 ms when using 25 frames per second (fps), as one frame
corresponds to 40 ms (1000 ms/25 frames)), with the current
frame (k) being the midpoint (i.e., frame k-7 until frame k+7
are checked). If the x/y-coordinates of these frames differ less
than ten pixels from the coordinates of the current frame k,
with an overall certainty threshold of 0.7 (i.e., 70% of the
frames show less than ten pixels difference), SPUDNIG indi-
cates that frame k is part of a rest state and that nomovement is
occurring. It then continues to the next frame. If the certainty
threshold of 0.7 is not met, SPUDNIG continues to assess
whether frame k is part of a movement. It then first checks
whether frame k differs more than five pixels from the previ-
ous frame. If it does, it evaluates whether out of the five frames
following frame k, minimally three frames differ more than
five pixels from frame k. This extra check of the 5+ pixel
criterion is performed to ensure that a movement is not falsely
recognized due to slight shifts in the x/y-coordinates of a cer-
tain key point. Again, the particular criterion chosen was
based onminimizing false negatives and false positives during
our piloting, but can be altered in the code.

If movement is detected, SPUDNIG searches for a rest state
in the upcoming 300 frames (~12 s, when using 25 fps), ac-
cording to the method described above. If a new rest state

Fig. 1 Flowchart of the SPUDNIG algorithm
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cannot be found, SPUDNIG repeats this procedure with a
slightly larger range in order to increase the chance of finding
a rest state.

The above-mentioned process is repeated for all default
key points and results in a list that indicates per frame, per
key point, whether movement was detected or not. The
resulting lists are then merged for all key points to ensure all
manual movements are captured, evenwhen reliability for one
of the default key points is low. This approachminimized false
negatives, and ensured that when one or some of the key
points had lower reliability, movements could still be detected.

Post-processing

After SPUDNIG has determined which frames contain move-
ments, it removes movements smaller than four frames to
diminish the number of false positives. Additionally, move-
ments that occurred within four frames from each other are
merged into one to account for small pauses or holds in move-
ments. These settings are based on an extensive trial phase
with videos different from the ones we used to validate our
toolkit, with the aim to arrive at settings that would keep both
the number of false positives and false negatives at a mini-
mum. To most optimally determine the threshold for move-
ment detection, the parameters were set by, as a primary cri-
terion, keeping the number of false negatives as low as possi-
ble, combined with a secondary criterion that reduced the
number of false positives as much as possible, given criterion
one. Note that the user might want to consider changing these
settings, depending on their research goal or type of video.
These specific parameters can, if needed, easily be altered in
the source code.

Based on the fps, the timing of each movement is calculat-
ed by converting the frame number to hh:mm:ss.ms format.
This is used to create a .csv file containing all start and end
times of annotations, which is compatible with commonly
used annotation tools, such as ANVIL (Kipp, 2001) and
ELAN (Wittenburg et al., 2006).

Graphical user interface

SPUDNIG is implemented in an easy-to-use GUI, for which
no programming, specific technological knowledge, or GPU
hardware is needed. Below, we provide a short tutorial on how
to use the SPUDNIG GUI to analyze video data.

Brief SPUDNIG tutorial

Step 1 – Loading the video file After starting the application,
an .avi video file can be selected for analysis (see Fig. 1). A
frame of the selected video file will appear on the screen.

Step 2 – Video analysis & selecting analysis parameters The
‘Analyze’ button at the bottom of the screen will turn to
green, indicating that the video is ready to be analyzed
(see Fig. 2). Pressing the green ‘Analyze’ button will
display a parameter selection window (see Fig. 2).
After pressing the ‘Analyze’ button, a ‘Settings’ screen
appears (see Fig. 2). Here, the frames per second of the
video need to be defined (default: 25), as well as the
desired reliability threshold (default: 0.3, see above for
explanation), and whether the left, right or both hands
will be analyzed.

Step 3 – Launching analysis and exporting the data After
specifying the desired settings, pressing the green
‘Analyze’ button again will initiate the analysis.
Progress of the analysis can be monitored through the
green bar, which will fill up during the analysis (see Fig.
3). When finished, the resulting .csv file can be exported
by pressing the blue ‘Export’ button, which prompts a
window in which the desired save location can be se-
lected (see Fig. 3).

Usage notes

1. In addition to our GUI, the underlying source code of
SPUDNIG is available on https://github.com/jorrip/
SPUDNIG. The parameters described above can, if
the user desires, be altered in the source code.
Currently, implementation of these features in the
GUI is underway (e.g., selection of key points).
Additionally, we are planning to add a function that
outputs velocity plots per movement (following
existing methods, such as for Kinect data, as
described by Trujillo et al., 2019).

2. It should be noted that OpenPose performs best when
.avi files are used. Other, more complex formats, such
as mpeg, might cause OpenPose to skip some frames at
the start of videos. This will perturb the timing of the
frames and output x/y-coordinates and thus the timing
of the detected gestures. Therefore, SPUDNIG current-
ly only takes .avi files as input. Alternative formats can
be converted by using free video converters (see our
GitHub page for suggested links).

3. Although a GPU is not needed to run SPUDNIG, it
can speed up its analysis time. We therefore have a
GPU compatible version of our GUI that is available
on our Open Science Framework (OSF) repository.

4. Currently, SPUDNIG is designed to only output ges-
tures from a single individual. However, this could
easily be extended to analyses of multiple individuals
that are visible in a video, as OpenPose can track
multiple people.
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Fig. 3 Final screen after the video is analyzed. Users can follow the progress of the analysis in the green bar, and export the resulting .csv file by pressing
the blue button

Fig. 2 SPUDNIG's start screen. The user can select and load a file by
clicking 'File –> Open'. The 'Analyze' button will turn green when a file
has been loaded in the application. After clicking the green 'Analyze'

button, the user will be prompted by a 'Settings' screen. The default
settings are already filled out
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Validation analyses

We tested and validated SPUDNIG by comparing its automat-
ed annotations of handmovements to manual annotations by a
trained human coder. The focus of these analyses was on the
detection of gestures. Second, we examined how accurately
SPUDNIG could detect both non-iconic and iconic gestures.
Finally, we tested whether and how much SPUDNIG acceler-
ates the annotation process by comparing the time it takes to
manually annotate videos versus how long it takes to remove
false positives that are created by SPUDNIG and adjust,
where necessary, the timing of the annotations that are gener-
ated by SPUDNIG.

Corpus

As a test case for our validation analyses, we used 20 videos
that form part of a multimodal communication corpus (CoAct
corpus, ERC project #773079). All videos consisted of two
acquainted native Dutch speakers that were engaged in dyad-
ic, casual conversations. Participants were recorded while they
were having a 1-h conversation. Out of these 1-h conversa-
tions, we randomly selected three, 2-min segments per video.
These 2-min segments were used to (1) comparing
SPUDNIG’s automated annotations of hand movements to
manual annotations by a trained human coder to determine
how many gestures are detected by SPUDNIG, (2) to test
whether SPUDNIG indeed speeds up the annotation process,
by comparing how much time untrained and trained human
coders take to manually annotate data compared to adjust
annotations or remove annotations by SPUDNIG (see below
for more detail). All participants were filmed from a frontal
perspective while seated on a chair (see Fig. 4).

Note that SPUDNIG was not created by using these frontal
videos, that is, we did not use these frontal videos to optimize
our detection algorithm. Instead, we used other videos from
the same video corpus that included recordings of the speakers
seated at a ~ 45° angle (see Fig. 5). Note that the frontal angle
in the videos used for our validation analyses thus provides a
more optimal perspective for gesture detection, as the reliabil-
ity of the key points are likely to be higher in this orientation,
and movements can more easily be detected. Overlap with
annotations by our human coder might therefore be higher.

Gesture annotation

We first compared the automated annotations that SPUDNIG
made in these videos to manual annotations that were made by
a trained, human coder that was blind to the purpose of the
coding exercise. This coder was asked to manually annotate
the occurrence of gestural movements in the videos, and was
asked to include all manual movements that carried some form
of meaning. This included movements such as deictic

gestures, iconic and metaphoric gestures (depicting aspects
of actions, objects space, or abstract concepts), pragmatic ges-
tures (including beats), and interactive gestures (e.g., a palm-
up, open-hand gesture that relates to the addressee) (Bavelas,
Chovil, Coates, & Roe, 1995; Bavelas, Chovil, Lawrie, &
Wade, 1992; McNeill, 1992). The annotations our coder made
did not differentiate between these gesture types.

We asked our human coder to annotate all gesture strokes
(Kita, van Gijn, & van der Hulst, 1998), including holds and
superimposed beats, and to define the begin point of a gesture
as the first frame of when the hand left its rest state and its end
point as the last frame of the gesture retraction after which the
hand remained in rest state (or in the case of successive ges-
tures without retractions, the last frame of the gesture stroke).

Gestures were further annotated in two different ways, one
including form-based coding, and one including meaning-
based coding. In the form-based coding, every stroke of a
gesture was counted as a separate gesture annotation, regard-
less of whether repeated strokes depicted the same semantic
meaning they were part of the same semantic gesture or not
(thus, a swimming gesture with multiple successive strokes
depicting someone swimming would result in multiple stroke
annotations, for example). In the meaning-based coding, indi-
vidual strokes are combined into one gesture annotation if
they clearly depict the same semantic concept and are carried
out without perceptible pauses or changes in form (in this
case, repeated strokes depicting someone swimming would
be annotated as one gesture, for example). The rationale was
that both coding approaches seem to be used by gesture re-
searchers and we aimed to make our machine-human coder
comparison applicable to both.

For all gestures that were coded in the meaning-based cod-
ing tier, we also determined whether the gesture was iconic or
non-iconic. This was done to test whether iconic gestures
might be better or more easily detected by SPUDNIG than
non-iconic gestures. For example, iconic gestures might in-
clude fewer holds, which would result in easier detection (be-
cause holds cannot be distinguished from non-gesture-
embedded rest states by SPUDNIG), or iconic gestures might
be larger in size or space, which would result in more clear x/
y-coordinate changes than for non-iconic gestures.

SPUDNIG-human coder reliability analyses

Because SPUDNIG annotates all hand movements in the
videos and not just gestures, the question is how this compares
to a human coding for gestures. To establish this, we calculat-
ed the overlap between all hand movements that SPUDNIG
detected and all gestures that were detected by our human
coder, for both form-based and meaning-based annotations,
as well as distinguishing between iconic gesture and non-
iconic gesture annotations for the latter. We calculated a mod-
ified Cohen’s kappa between SPUDNIG and our human coder
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by using EasyDIAg (Holle & Rein, 2015), a standard method
for establishing reliability between two human coders.
EasyDIAg calculates a modified Cohen’s kappa by taking into
account the temporal overlap of the annotations, the categori-
zation of values, and the segmentation of behavior (e.g., when
an annotation starts and ends). As recommended, we used an
overlap criterion of 60%, indicating that there should be a
temporal overlap of 60% between events (i.e., indicating the
overlap in movements detected by SPUDNIG and gestures
detected by a human).

Gesture detection accuracy

In addition to trying to identify how many of the gestures the
human identified would also be captured by the machine’s
movement annotations, we also aimed to identify how much
movement detected by the machine was not gestural. Thus, as
a second step, we manually compared all raw output from
SPUDNIG (i.e., annotations containing all movements in the
video) to the output from our human coder to investigate how
many movements that were detected by SPUDNIG did not

Fig. 4 Upper panels: Frontal camera view used for data analysis in the SPUDNIG validation test. Lower panel: overview of set-up and distance between
participants in the corpus used

Fig. 5 Camera view used while designing and optimizing SPUDNIG.
Note that here the speaker’s hands and arms are less visible than from a
frontal perspective, and therefore overlap with a human coder might be

lower, as some of the key points might be less visible. This might result in
less accurate movement detection
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overlap with a gesture annotation. This approach indicated
how much of SPUDNIG’s output would have to be filtered
out to obtain annotations that solely overlap with gestures, and
also indicated how many gestures were not recognized by
SPUDNIG, but were recognized by our human coder.

Does SPUDNIG accelerate the annotation process?

As SPUDNIG annotates all hand movements in the videos and
not just gestures, we asked four additional human coders to com-
pare the time it takes to manually annotate the data compared to
checking SPUDNIG’s output for whether something is indeed a
gesture, and if so, whether the onset and offset of SPUDNIG’s
annotation needed to be altered. The human coders were present-
ed with forty, 2-min snippets of video data. Out of these, they
were asked to annotate 20 videos manually (i.e., not relying on
any pre-annotated data). For the remaining 20 videos, the human
coders were asked to use the SPUDNIG output as a basis. A
crucial element of this is that SPUDNIG’s algorithm and set
threshold result in a highly reliable detection rate of all move-
ments that may constitute gestures. This means that human
coders can by-pass the step of checking all frames of a video
for possible gestural movement. Instead, with the SPUDNIG
output, coders can jump to the already annotated parts and check
them for accuracy and then remove false positives and adjust
potentially misaligned onsets and offsets.

Results

Form-based annotations of gestures

We first compared the overlap between SPUDNIG’s move-
ment annotations and our human coder’s annotations to the
form-based gesture annotations by our human coder, and ob-
served 87% raw agreement and a modified Cohen’s kappa
maximum value of .86, indicating very high agreement
(Cohen, 1960; Landis & Koch, 1977).

Our manual analysis revealed that there were 207 gestures
that were identified by our human coder, and 206 by
SPUDNIG. Note however that this analysis does not take
the amount of overlap between SPUDNIG and the human
coder into account, whereas the modified Cohen’s Kappa val-
ue does (Holle & Rein, 2015).

Meaning-based annotations of gestures

We then compared the overlap between SPUDNIG’s move-
ment annotations and our human coder’s annotations to the
meaning-based gesture annotations by our coder.We observed
86% raw agreement, and a modified Cohen’s kappa maximum
value of .77, indicating a high level of agreement (Cohen,
1960; Landis & Koch, 1977).

Our manual analysis revealed that out of the 185 gestures
that were detected by our human coder, 184 were identified by
SPUDNIG.

Iconic gestures

As a next step, we investigated how many of the meaning-
based annotations of gestures were iconic gestures. Out of 185
gestures, 45 gestures were iconic. We then compared the over-
lap between SPUDNIG’s movement annotations and the icon-
ic gesture annotations. Here, we observed 93% raw agree-
ment, and a modified Cohen’s kappa maximum value of 1,
indicating almost perfect agreement (Cohen, 1960; Landis &
Koch, 1977).

Non-iconic gestures

Out of the 185 meaning-based annotations of gestures,
140 gestures were non-iconic gestures. We compared
the overlap between SPUDNIG’s movement annotations
and the non-iconic gesture annotations to the non-iconic
gesture annotations. We observed 84% raw agreement,
and a modified Cohen’s kappa maximum value of .74,
indicating a high level of agreement (Cohen, 1960;
Landis & Koch, 1977).

Movement detection/gesture detection

While SPUDNIG seems to detect movements that consti-
tute gesture highly reliably, it cannot currently recognize
gestural from non-gestural movements, leading to consid-
erably more annotations than those that result from a
human coding for gestures: SPUDNIG annotated 311
hand movements in the videos, of which 217 were not
part of a gesture (= 70%).

SPUDNIG accelerates the manual annotation process

The crucial test of whether SPUDNIG accelerates the
manual annotation process for gestures is based on this
high detection rate of movements that potentially consti-
tute gestures. This prerequisite means that our human
coders could by-pass the step of checking the videos for
false negatives (i.e., any movements SPUDNIG may have
overlooked). Instead, they could focus on all extant
SPUDNIG annotations to check these for accuracy.
Doing so, and correcting the output by removing false
positives and adjusting movement onsets and offsets
where necessary (in order to make them correspond to
gesture on and offsets, or the on and offsets of gesture
sequences), significantly sped up our human coders: On
average, they were almost twice as quick when using
SPUDNIG (mean = 19.3, SD = 12.6, median = 17.8,
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IQR = 18.4) as compared to manually annotating the data
(mean = 35.4, SD = 25.9, median = 33.2, IQR = 24.3), W
= 235, p = 0.02.1

Discussion

We presented SPUDNIG: SPeeding Up the Detection of Non-
iconic and Iconic Gestures, a toolkit for the automatic detec-
tion of hand movements and gestures in video data. We pro-
vided proof-of-principle of our toolkit, and introduced an
easy-to-use graphical user interface that researchers can use
to automatically annotate hand movements and gestures in
their video data.

To validate our method, we used video data containing
natural dyadic conversations, and compared SPUDNIG’s out-
put to form-based and meaning-based annotations of gestures,
as identified by a trained, human coder, as well as iconic and
non-iconic annotations of gestures. The results of our valida-
tion analyses demonstrated that our toolkit can very accurately
annotate the occurrence of movements that match onto ges-
tures in video data (> 99%) (compared to human generated
based on both form and meaning), and irrespective of whether
the gesture is iconic or non-iconic. We also note that
SPUDNIG leads to a ‘surplus’ of annotations (based on non-
gestural movements), meaning that if one is not only interest-
ed in annotating human movement per se but in identifying
communicative gestures, a human coder is still needed for
removing these false positives. However, we have demon-
strated that SPUDNIG advances current methods consider-
ably by speeding up the detection of movement that consti-
tutes gestures, the most laborious part of the process, requiring
a human coder only primarily for the removal of false posi-
tives. Removing such ‘surplus’ annotations is a comparatively
much easier and faster process than identifying gestures in a
video from scratch. Below we will discuss the performance of
SPUDNIG, its implications, and limitations.

Performance

For all types of gesture coding, SPUDNIG achieved high to
very high raw overlap and good to very good modified

Cohen’s kappa values (Cohen, 1960; Holle & Rein, 2015;
Landis & Koch, 1977). When comparing its performance for
iconic and non-iconic gestures, we observed higher raw over-
lap for iconic gestures than for non-iconic gestures. A possible
explanation for this is that iconic gestures might be larger in
space or size, and therefore have more easily detectable
changes in x/y-coordinates than non-iconic gestures. Non-
iconic gestures, for example, might be closer to the threshold
for x/y-coordinate changes, andmight therefore have less tem-
poral overlap with the annotations of our human coder.

In this regard, it should be noted that SPUDNIG detects all
hand movements in the videos, and not only gestures (similar
to other semi-automatic gesture detection algorithms, such as
Beugher et al., 2018). This means that many of the movements
that are part of SPUDNIG’s output need to be manually re-
moved. In all 20 videos that were used for our validation
analyses, a total of 311 movements were annotated by
SPUDNIG, of which 217 were not part of a gesture (=
70%). These annotations include non-gestural hand and arm
movements, such as fidgeting and self-grooming. This per-
centage is expected to be higher in videos containing natural
conversations than in more stimulus-induced or task-based
multimodal behavior. Although a substantial percentage of
annotations thus needs to be removed by the user,
SPUDNIG demonstrated very high gesture annotation over-
lap, meaning it can be used to save time to identify gestures.
By giving the human coder highly reliable annotations of
movements that are potentially gestures it can significantly
speed up the video data annotation process. This was con-
firmed in our validation analyses that compared the time it
takes human coders to manually annotate a dataset from
scratch compared to removing and altering annotations made
by SPUDNIG.

Which gesture did SPUDNIG not detect, and why?

In general, 185 gestures (meaning-based coding, 207 in form-
based coding) were detected by our human coder, and 184
gestures (meaning-based coding, 206 in form-based coding)
were detected by SPUDNIG. One non-iconic gesture was not
annotated by SPUDNIG, but was annotated by our human
coder (see Fig. 6). As can be observed from the three video
stills at different moments in time, the missed gesture remains
in approximately the same position from the moment that
SPUDNIG detects a movement to the moment that our human
coder detects a second gesture. Closer inspection of this ges-
ture, both in the generated .csv files by SPUDNIG and by
looking at the video data, revealed that the x/y-coordinates
of the key points do not differ much over the span of the
two identified gestures. Most probably, SPUDNIG therefore
does not detect the second gesture as a separate event, as it
consists of a very small change in x/y-coordinates.

1 As a comparison, we also asked our coders to use the SPUDNIG output
(with a different set of 20 video snippets) to check all non-annotated frames
for potential false negatives, in addition to making corrections for false posi-
tives and on and offsets. With such a procedure, we still see a benefit in terms
of average annotation time, but one that is less pronounced (with SPUDNIG
output: mean = 76.8 ms, SD = 83.4 vs. manually annotating the data without
SPUDNIG output: mean = 81.2 ms, SD = 77.06). This means that, even when
coders do not make full use of the tool by mistrusting SPUDNIG to detect
potential gestural movements with high accuracy, we observe a benefit in
terms of annotation time. However, note that the full benefit results from the
tool’s ability to maximize human coders’ efforts by focusing them on to-be-
checked pre-annotated segments.
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Importantly, this example illustrates that SPUDNIG might
not be optimal for detecting holds in gestures. In the above-
mentioned video, the speaker holds her hand in the same po-
sition for a prolonged time. This will be recognized as a rest
state by SPUDNIG, and would only be recognized as move-
ment when the pixel change threshold would be lowered.
This, on the other hand, would result in an increase of false
positives.

Second, SPUDNIG is not optimized for segmenting ges-
tures, as it merges annotations that are separated by four or less
frames, and it removes movements shorter than four frames to
reduce false positives and negatives. However, this threshold
can, if desired, be altered in the source code.

Third, Fig. 6 also shows that the timing of some annota-
tions might need to be adjusted to match the full length of the
gesture. As SPUDNIG does not include small movements
(i.e., very small changes in x-y coordinates) or very short
movements, the onset and offset of annotations might need
adjustments by a human coder.

Implications

In addition to SPUDNIG’s annotations capturing gestures an-
notated by a human extremely well, SPUDNIG’s main
strengths are that using the tool requires no knowledge of
programming, no use of motion capture systems, no GPU
hardware, and that it comes with an easy-to-use GUI. This
makes this tool highly accessible for a large community of
users. Moreover, it has the potential to be developed further
(based on open source code), with the ultimate aim being a
tool that can distinguish gestural from non-gestural

movements. While this still requires a big computational leap,
the current state of the tool provides the non-programming
user with a possibility to significantly speed up current gesture
annotation practices.

Finally, the community of users could also be extended to
researchers that investigate sign language. As SPUDNIG uses
OpenPose as input for its analyses, it would be possible to
study finer-grained hand movements and finger movements.
These finer-grained movements are usually not detectable by
other (semi-)automatic gesture detection systems that use oth-
er computer-vision methods (see for a discussion: Beugher
et al., 2018). Moreover, SPUDNIG does not require pre-
defined regions of interest to look for resting positions or
movement. We investigated whether adding user-defined
areas of interest for detecting rest states or movements im-
proved detection performance, but we observed that this in-
creased the chance of false negatives.

Limitations

Although SPUDNIG is highly accurate in detecting hand
movements and gestures, it cannot recognize different gesture
types or forms. Future work could use SPUDNIG’s open
source code to add functionalities to recognize gestures. A
good starting point would for example be to train SPUDNIG
on recurrent gestures (see, for example, Bressem & Müller,
2014, 2017; Ladewig, 2011; Müller, 2017), by which it rec-
ognizes certain regular changes in x/y-coordinates over time.
However, the recognition of gestures lies beyond the scope of
the current manuscript and toolkit.

Fig. 6 Upper three panels: video stills at different moments in time. On
the lower panel, the three vertical colored lines correspond to the colored
squares around the video. The top two tiers include manual annotations
from our human coder, indicating the occurrence of gestures. The lowest

tier represents movements recognized by SPUDNIG. The light-purple
shaded area covering the tiers represents the gesture that SPUDNIG
missed
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Second, SPUDNIG’s performance highly depends on how
well OpenPose performs on the video data. If the (hands of
the) speaker in videos are often occluded (e.g., the speaker sits
with their arms folded over each other, or sits on their hands),
or the video quality is too low, or the recording angle extreme,
it might be difficult to find enough reliable data points to
recognize movements. To some extent, these factors can be
addressed by altering the threshold for movement detection,
but the user should be aware that this has implications for the
false positives and negatives in the output.

Third, SPUDNIG can be used on 2D data, but does not
provide information on movements in three-dimensional
space. It therefore seems less suited to study complex move-
ment dynamics related to directionality or space (see for
example Trujillo et al., 2019, where 3D information is used
to study detailed kinematic features).

Finally, SPUDNIG uses pixel coordinates as thresholds for
detecting movements. An alternative way to analyze the
OpenPose output is by using millimeters as thresholds, which
can be achieved by using the camera calibration procedure
that is already part of OpenPose. This could result in a more
generic threshold when two different cameras capture the
same movements, and the resolution of these two cameras
differs. This option is currently not supported in SPUDNIG.

Conclusions

We demonstrated that SPUDNIG highly accurately detects
iconic and non-iconic gestures in video data. SPUDNIG aims
to accelerate and facilitate the annotation of hand movements
in video data, and provides an easy-to-use and quick alterna-
tive to the labor-intensive and time-consuming manual anno-
tation of gestures.
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