
Fachet et al. BMC Bioinformatics            (2020) 21:1 
https://doi.org/10.1186/s12859-019-3325-0

RESEARCH ARTICLE Open Access

Reconstruction and analysis of a
carbon-core metabolic network for
Dunaliella salina
Melanie Fachet1, Carina Witte1, Robert J. Flassig2, Liisa K. Rihko-Struckmann1*, Zaid McKie-Krisberg3,
Jürgen E. W. Polle3 and Kai Sundmacher1,4

Abstract

Background: The green microalga Dunaliella salina accumulates a high proportion of β-carotene during abiotic
stress conditions. To better understand the intracellular flux distribution leading to carotenoid accumulation, this work
aimed at reconstructing a carbon core metabolic network for D. salina CCAP 19/18 based on the recently published
nuclear genome and its validation with experimental observations and literature data.

Results: The reconstruction resulted in a network model with 221 reactions and 212 metabolites within three
compartments: cytosol, chloroplast and mitochondrion. The network was implemented in the MATLAB toolbox
CellNetAnalyzer and checked for feasibility. Furthermore, a flux balance analysis was carried out for different
light and nutrient uptake rates. The comparison of the experimental knowledge with the model prediction revealed
that the results of the stoichiometric network analysis are plausible and in good agreement with the observed
behavior. Accordingly, our model provides an excellent tool for investigating the carbon core metabolism of D. salina.

Conclusions: The reconstructed metabolic network of D. salina presented in this work is able to predict the
biological behavior under light and nutrient stress and will lead to an improved process understanding for the
optimized production of high-value products in microalgae.
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Introduction
Microalgae received increased attention over recent years
due to their ability to produce high-value compounds
such as polyunsaturated fatty acids and carotenoids
[1–3]. Optimizing microalgal growth and product com-
positions in order to facilitate economically feasible mass
production is still challenging. A better understanding of
the complex algal metabolism is an important prerequisite
overcoming this hurdle. In regards to algal metabolism,
the halophilic unicellular green alga Dunaliella salina is
an excellent model organism to investigate changes in
metabolism [4] as the physiology of the switch from pri-
mary growth to secondary stress metabolism with glycerol
and carotenoid accumulation is very well known [5–7]. In
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addition, D. salina remains one of the few microalgae cur-
rently being commercialized for β-carotene production
on a large scale [8].

The construction of dynamic-kinetic growth models
using ordinary differential equations (ODEs) is a well-
established formalism in bioprocess engineering. These
models allow for prediction of biomass growth, nutri-
ent uptake and metabolite production and enable the
identification of bottlenecks in the process setup for
both lab-scale and large-scale outdoor cultivation systems
[9–11]. Simplified growth models are robust and compu-
tationally inexpensive. However, they might be only valid
for a certain range of environmental conditions, thus lim-
iting predictive capabilities for extrapolation outside the
experimental region [12].

It is known that metabolic processes are based on com-
plex reaction pathways throughout different subcellular
compartments and its integration into a metabolic model
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is a prerequisite to get insight into the formation and reg-
ulation of metabolites [13]. Several flux-balance models of
different plant and algal species have already been pub-
lished. These include models for higher plants Arabidopsis
[14], barley [15], Brassica napus seeds [16] and green
microalgae such as Chlamydomonas [17–21], Chlorella
[22–26] and Ostreococcus [27].

Currently, the productivities of microalgae are still
below their actual potential. However, metabolic network
reconstructions are the basis for stoichiometric model-
ing efforts and they have the ability to provide theoretical
maximal substrate and product yields as well as calcula-
tion of internal metabolic rates. Furthermore, they enable
in silico identification of genetic intervention strategies
that guarantee a specified product yield, e.g. by engineer-
ing of the carotenoid or lipid synthesis pathways [28].
Usually, methods such as flux balance analysis (FBA) are
used to determine the steady-state flux distribution in
a metabolic network under given input conditions by
maximization of an objective function. Moreover, exten-
sions for FBA methods such as dynamic flux balance
analysis (DFBA) exist, accounting for unbalanced growth
conditions and dynamic extracellular effects on intracel-
lular metabolism [21, 29]. This enables exploration of
metabolic flux distributions consistent with stoichiomet-
ric and thermodynamic constraints as well as constraints
formulated according to experimental data [30].

Since D. salina is the richest known source of natural
β-carotene, a metabolic network model is highly benefi-
cial to fully exploit the biotechnological potential of this
alga. So far, for D. salina some metabolic profiling infor-
mation is available [31, 32], and the first growth models
have recently been created [11, 33, 34]. In addition, the
genome of D. salina has been released (http://genome.jgi.
doe.gov/DunsalCCAP1918/DunsalCCAP1918.info.html)
[35]. However, the annotation of the nuclear genome
is challenging since it contains a high number of long
introns and extensive repeats, complicating proper gene
model construction. Therefore, a genome scale metabolic
reconstruction for the industrially relevant microalga
D. salina is still missing. Based on the nuclear genome
of strain CCAP19/18 [35], a manual reconstruction of
a carbon-core metabolic network was performed. The
aim of the reconstructed stoichiometric network is to
describe the metabolic flux distribution leading to the
accumulation of the major biomass constituents in D.
salina under fluctuating light and nutrient conditions.

Results
Reconstruction of a stoichiometric network for the
carbon-core metabolism
By linking the annotated genetic information from
[35] with bioinformatic knowledge from databases (e.g.
KEGG, Kyoto Encyclopedia of Genes and Genomes), a

stoichiometric network for the carbon-core metabolism
with interfaces to the amino acid metabolism of D. salina
CCAP19/18 that comprises 221 reactions and 213
metabolites in three different compartments (chloro-
plast, cytosol and mitochondrion) was reconstructed. A
comprehensive list of reactions and compounds in the
metabolic network can be found in the Additional file 1.
All entries in the list of reactions carrying an EC number
(Enzyme commission number) and KEGG ID are anno-
tated enzymes of the D. salina genome. Although more
extensive metabolic networks exist for a variety of unicel-
lular algae [20, 36, 37], the purpose of our work was to
create the first reduced network that would still be capable
of predicting biomass composition and productivities.

Figure 1, 2 and 3 show the network maps for the cytosol,
the chloroplast and the mitochondrion respectively. To
create the metabolic map with subcellular localization
of enzymes, the prediction program PredAlgo was used.
The prediction tool had been developed and designed to
determine the subcellular localization of nuclear-encoded
enzymes in C. reinhardtii [38]. Consequently, PredAlgo
distinguishes between the following three compartments:
the mitochondrion, the chloroplast, and the cytosol. The
study of [38] showed that the application of PredAlgo
led to an improved discrimination between plastidal and
mitochondrial-localized proteins. As stated by its authors,
PredAlgo works most accurately for the genus of Chlamy-
domonas and related green algal species (Chlorophyta).

Algae of the genus Dunaliella and Chlamydomonas are
closely related, because they both belong to the order
of Volvocales [39], a comparison of annotated enzymes
for the calvin cycle, the carbon-core metabolism and
the isoprenoid biosynthesis of D. salina and C. rein-
hardtii showed a high degree of similarity [40]. In addi-
tion, there is a broad consensus that the carbon core
metabolisms of green microalgae are conserved along
several lineages since almost 90% of the functional anno-
tated proteins of C. reinhardtii and of other microalgal
proteins are homologs of Arabidopsis thaliana proteins
[41]. For instance, similar to C. reinhardtii, the enzyme
triose-phosphate isomerase (EC 5.3.1.1) is only present
as one gene within the genome of D. salina. PredAlgo
predicted a chloroplast localization, thus confirming the
expected localization with the Calvin-Benson-Bassham
cycle for carbon acquisition in the plastid of photosyn-
thetic organisms. Moreover, multiple green algal species
(Chlorophyta) share the presence of a glycolytic enolase
(EC 4.2.1.11) with cytosolic localization rather than a
plastid-localized enolase enzyme [42].

A major difference between the model alga C. rein-
hardtii and D. salina is the adaptation of D. salina to
life under high salinities, whereas C. reinhardtii exclu-
sively lives in soil and freshwater. Therefore, metabolism
of D. salina was expected to reveal not only similarities,
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Fig. 1 Network map of carbon core metabolism in the cytosol and mitochondrion. For reasons of simplicity linear reactions were merged. The
arrows display the direction and reversibility of the reactions. The blue font color refers to metabolites modeled as biomass compounds and the red
font color refers to key reaction components such as energy and reduction equivalents

but also differences in subcellular localization of some
of the annotated enzymes. For example, the enzyme the
carbonic anhydrase (CA, EC 4.2.1.1) was included in the
network to ensure carbon acquisition under high salt
conditions. The genome of C. reinhardtii contains three
α-type, six β-type and three γ -type CAs [43]. In con-
trast to freshwater species, [44] identified five α-type CAs
and three γ -type CAs, but no β-type CAs in D. salina
CCAP19/18. The newly identified α-type CA (DsCA2b)
is suggested to improve CO2 assimilation under hyper-
saline conditions [44]. Based on results of [45], a plasma
membrane localization acting on the extracellular side was
assumed. Although a variety of genes code for different
classes of carbonic anhydrases [44], we only considered

the extracellular version in our model, because it is spe-
cific to Dunaliella.

In contrast, multiple green algal species (Chloro-
phyta) share the presence of a glycolytic enolase (EC
4.2.1.11) with cytosolic localization rather than a plastid-
localized enolase enzyme [42]. The glycerol cycle is ini-
tiated by the formation of glycerol-3-phosphate from
dihydroxyacetone-phosphate, either provided through
glycolytic reactions in the cytosol or through the reductive
pentose phosphate pathway in the chloroplast [46]. This
reversible reaction is catalyzed by the glyceraldehyde-3-
phosphate dehydrogenase (GPDH), which exists as two
different enzymes, Nicotinamide-adenine dinucleotide
(NAD+)-dependent enzyme (EC 1.1.1.8) with plastidal
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Fig. 2 Network map of carbon core metabolism in the chloroplast. For reasons of simplicity linear reactions were merged. The arrows indicate the
direction and reversibility of the reactions. The gray boxes indicate shuttling of metabolites between the considered compartments. The blue font
color refers to metabolites modeled as biomass compounds and the red font color refers to key reaction components such as energy and reduction
equivalents

and cytosolic localization and the ubiquinone-dependent
enzyme (EC 1.1.5.3) with cytosolic localization bound
to the mitochondrial membrane. The following forma-
tion of glycerol from glycerol-3-phosphate was considered
to be performed by the glycerol kinase (EC 2.7.1.30).
The presented hypothesis of the glycerol cycle within

the cytosol also includes the removal of glycerol by con-
version to dihydroxyacetone via the dihydroxyacetone
reductase (EC 1.1.1.156) and subsequent phosphorylation
to dihydroxyacetone-phosphate by the glycerone kinase
(EC 2.7.1.29), thus connecting the glycerol cycle back
to the glycolysis. Another option for cells to dispose of
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