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Sensory Modality-Independent Activation of the Brain
Network for Language
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The meaning of a sentence can be understood, whether presented in written or spoken form. Therefore, it is highly probable that brain
processes supporting language comprehension are at least partly independent of sensory modality. To identify where and when in the
brain language processing is independent of sensory modality, we directly compared neuromagnetic brain signals of 200 human subjects
(102 males) either reading or listening to sentences. We used multiset canonical correlation analysis to align individual subject datain a
way that boosts those aspects of the signal that are common to all, allowing us to capture word-by-word signal variations, consistent
across subjects and at a fine temporal scale. Quantifying this consistency in activation across both reading and listening tasks revealed a
mostly left-hemispheric cortical network. Areas showing consistent activity patterns included not only areas previously implicated in
higher-level language processing, such as left prefrontal, superior and middle temporal areas, and anterior temporal lobe, but also parts
of the control network as well as subcentral and more posterior temporal-parietal areas. Activity in this supramodal sentence-processing
network starts in temporal areas and rapidly spreads to the other regions involved. The findings indicate not only the involvement of a
large network of brain areas in supramodal language processing but also that the linguistic information contained in the unfolding

sentences modulates brain activity in a word-specific manner across subjects.
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ignificance Statement

including and extending beyond the core network for language.

The brain can extract meaning from written and spoken messages alike. This requires activity of both brain circuits capable of
processing sensory modality-specific aspects of the input signals as well as coordinated brain activity to extract modality-
independent meaning from the input. Using traditional methods, it is difficult to disentangle modality-specific activation from
modality-independent activation. In this work, we developed and applied a multivariate methodology that allows for a direct
quantification of sensory modality-independent brain activity, revealing fast activation of a wide network of brain areas, both
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Introduction

Language can be realized in different modalities: among others,
through writing or speech. Depending on whether the sensory
input modality is visual or auditory, different networks of brain
areas are activated to derive meaning from the stimulus. In addi-
tion to different brain circuits being recruited to process low-level
sensory information, differences in linguistic features across sen-
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sory modalities prompt a differential activation of brain areas
involved in higher-order processing as well. For instance, speech
is enriched with meaningful prosodic cues but also requires co-
articulated signals to be parsed into individual words. Written
text has the advantage of instantaneous availability of full informa-
tion compared with the temporally unfolding nature of speech.
These differences are paralleled in the brain’s response, and thus
the sensory modality in which language stimuli are presented
determines the dominant spatiotemporal patterns that will be
elicited (Hagoort and Brown, 2000).

Regardless of low-level differences, the same core message can
be conveyed in either modality. Therefore, language-processing
models of the past and present (Geschwind, 1979; Hickok and
Poeppel, 2007; Hagoort, 2017) not only include early sensory (up
to 200 ms) processing steps but also contain late (200-500 ms),
more abstract, and supposedly supramodal processing steps.
Whereas early processing is largely unimodal and supported by
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brain regions in the respective primary and associative sensory
areas, later processes (for instance, lexical retrieval and integra-
tion) that activate several areas within the temporofrontal lan-
guage network are assumed to do so independent of modality.

To gain insight into the location and timing of brain processes
representing this latter, higher-order processing of the linguistic
content, researchers so far have relied on carefully manipulated
experimental conditions. As a result, our current understanding
of how the brain processes language across different modalities
reflects a large variety of tasks [semantic decision task (Chee et al.,
1999), error detection task (Carpentier et al., 2001; Constable et
al., 2004), passive hearing/listening (Jobard et al., 2007), size judg-
ment (Marinkovic et al., 2003)] and stimulus material [words (Chee
et al., 1999), sentences (Bemis and Pylkkdnen, 2013), and stories
(Berl et al., 2010; Regev et al., 2013; Deniz et al., 2019)]. Despite
this wealth of experimental findings and resulting insights, an
important interpretational limitation stems from the fact that the
majority of studies use modality-specific low-level baseline con-
ditions (tone pairs and lines, spectrally rotated speech and false
fonts, nonwords, white noise; Lindenberg and Scheef, 2007) to
remove the sensory component of the processing. It is difficult to
assess how far such baselines are comparable across auditory and
visual experiments. Recent fMRI work has demonstrated sensory
modality-independent brain activity by directly comparing the
BOLD response across visual and auditory presentations (Regev
etal.,2013; Denizetal., 2019). Yet, fMRI signals lack the temporal
resolution to allow for a temporally sufficiently fine-grained in-
vestigation of the response to individual words.

Few studies have used magnetoencephalography (MEG) to
study supramodal brain activity, and all were based on event-
related averaging (Marinkovic et al., 2003; Vartiainen et al., 2009;
Bemis and Pylkkdnen, 2013; Papanicolaou et al., 2017). Averaged
measures capture only generic components in the neural re-
sponse. Although generic components make a large contribution
to the neural activity measured during language processing, there
also exists meaningful variability in the neural response that is
stimulus-specific and robust (Ben-Yakov et al., 2012). A com-
plete analysis of the supramodal language network needs to tap
into these subtle variations as well.

Here, we overcome previous limitations by achieving a direct
comparison without relying on modality-specific baseline condi-
tions, leveraging word-by-word variation in the brain response.
Using MEG signals from 200 subjects, we performed a quantita-
tive assessment of the sensory modality-independent brain activ-
ity following word onset during sentence processing. The MEG
data form part of a large publicly available dataset (Schoffelen et
al., 2019) and have been used in other publications (Lam et al.,
2016, 2018; Schoffelen et al., 2017; Hultén et al., 2019). We iden-
tified widespread left-hemispheric involvement, starting from
325 ms after word onset in the temporal lobe and rapidly spread-
ing to anterior areas. These findings provide a quantitative con-
firmation of earlier findings in a large study sample. Importantly,
they also indicate that supramodal linguistic information con-
veyed by the individual words in sentence context leads to subtle
fluctuations in brain activation patterns that are correlated across
different subjects.

Materials and Methods

Subjects. A total of 204 native Dutch speakers (102 males), with an age
range of 18—33 years (mean of 22 years), participated in the experiment.
In the current analysis, data from 200 subjects were included. Exclusion
of four subjects was due to technical issues during acquisition, which
made their datasets not suitable for our analysis pipeline. All subjects
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were right-handed; had normal or corrected-to-normal vision; and re-
ported no history of neurological, developmental, or language deficits.
The study was approved by the local ethics committee (Central Commit-
tee on Research involving Human Subjects the local “Committee on
Research Involving Human Participants” in the Arnhem—Nijmegen re-
gion) and followed the guidelines of the Helsinki declaration. All subjects
gave written informed consent before participation and received mone-
tary compensation for their participation.

Experimental design. The subjects were seated comfortably in a mag-
netically shielded room and presented with Dutch sentences. From the
total stimulus set of 360 sentences, six subsets of 120 sentences were
created. This resulted in six different groups of subjects who were pre-
sented with the same subset of stimuli, although in a different (random-
ized) order with some overlap of items between groups. Within each
group of subjects, half of them performed the task in only the visual
modality, the other half in only the auditory modality. In the visual
modality, words were presented sequentially on a back-projection screen
and placed in front of them (vertical refresh rate of 60 Hz) at the center of
the screen within a visual angle of 4°, in a black monospaced font on a
gray background. Each word was separated by an empty screen for 300
ms, and the intersentence interval was jittered between 3200 and 4200
ms. Mean duration of words was 351 ms (minimum 300 ms and maxi-
mum 1400 ms), depending on word length. The median duration of
whole sentences was 8.3 s (range 6.2—12 s). Auditory sentences had a
median duration of 4.2 s (range 2.8—6.0 s) and were spoken at a natural
pace. The duration of each visual word was determined by the following
quantities: (i) the total duration of the audio version of the sentence/
word list (audiodur), (ii) the number of words in the sentence (nwords),
(iii) the number of letters per word (nletters), and (iv) the total number
of letters in the sentence (sumnletters). Specifically, the duration (in ms)
of a single word was defined as follows: (nletters/sumnletters) * (audio-
dur + 2000 — 150 * nwords), where item-independent parameters were
chosen for the optimal balance between readability and “natural” reading
pace. In the auditory task, the stimuli were presented via plastic tubes and
ear pieces to both ears. Before the experiment, the hearing threshold
was determined individually, and the stimuli were then presented at
an intensity of 50 dB above the hearing threshold. A female native
Dutch speaker recorded the auditory versions of the stimuli. The
audio files were recorded in stereo at 44,100 Hz. During postprocess-
ing, the audio files were low-pass filtered at 8500 Hz and normalized
so that all audio files had the same peak amplitude and same peak
intensity. All stimuli were presented using the Presentation software
(version 16.0, Neurobehavioral Systems). Sentences were presented
in small blocks of five sentences each, along with blocks containing
scrambled sentences, which were not used here. See Lam et al. (2016)
for more details about the stimulus material used. To check for com-
pliance, 20% of the trials were randomly followed by a yes/no question
about the content of the previous sentence/word list. Half of the questions
addressed the content of the sentence (e.g., “Did grandma give a cookie to the
girl?”), whereas the other half addressed one of the main content words (e.g.,
“Was the word ‘grandma’ mentioned?”). Subjects answered the question by
pressing a button for “yes”/“no” with their left index and middle fingers,
respectively.

MEG data acquisition and structural imaging. MEG data were collected
with a 275 axial gradiometer system (CTF). The signals were analog
low-pass filtered at 300 Hz and digitized at a sampling frequency of 1200
Hz. The subject’s head was registered to the MEG sensor array using three
coils attached to the subject’s head (nasion, and left and right ear canals).
Throughout the measurement, the head position was continuously mon-
itored using custom software (Stolk et al., 2013). During breaks, the
subject was allowed to reposition to the original position if needed.
Participants were able to maintain a head position within 5 mm of
their original position. Three bipolar Ag/AgCl electrode pairs were
used to measure the horizontal and vertical electrooculograms and
the electrocardiogram.

A T1-weighted magnetization-prepared rapid acquisition gradient
echo pulse sequence was used for the structural images, with the follow-
ing parameters: volume TR = 2300 ms, TE = 3.03 ms, 8° flip angle, 1 slab,
slice matrix size = 256 X 256, slice thickness = 1 mm, field of view = 256
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mm, isotropic voxel size = 1.0 X 1.0 X 1.0
mm. A vitamin E capsule was placed as a fidu-
cial marker behind the right ear to allow a vi- toen
sual identification of left—right consistency.
Preprocessing. Data were bandpass filtered
between 0.5 and 20 Hz and epoched according
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A Temporal alignment procedure
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to sentence onset, each epoch varying in length
depending on the number of words within
each sentence. Samples contaminated by arti-
facts due to eye movements, muscular activity,
and superconducting quantum interference
device jumps were replaced by Not a Number
before further analysis. Because all sentences
had been presented in random order, we reor-
dered sentences for each subject to yield the
same order across subjects. Subsequently, the
signals of the auditory subjects were temporally
aligned to the signals of the visual subjects, en-
suring coincidence of the onset of the individ-
ual words across modalities (Fig. 1A). This

MEG audio

MEG signal
remapped

1 split parcel-based signals 5-fold

T T T T T T T
2 3 4 5 6 7 8 9 10

$ bt o A e i
time (s)
o T 1

B Cross-validated multiset canonical correlation analysis

l 4Correlate

alignment was needed to accommodate for dif-

ferences in word presentation rate. The align-

ment was achieved by first epoching the

auditory subject’s signals into smaller overlap-

ping segments. Each segment’s first sample

samples #
corresponded to one of the word onsets as an-

across time

2 Training data: find unmixing matrix
5 x subj#

o samples #
2, =
; 2
288 corr(?

*

subj#

notated manually according to the audio file,

whereas each segment’s length depended on
the duration of the visual presentation of the
corresponding word. Finally, all segments
were concatenated again in the original order.
By defining segments that were longer than the
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corresponding auditory word duration, the
neural response to each word was fully taken

into account and matched to the visual signal,  Figure1.

Analysis pipeline. 4, Temporal alignment procedure. MEG signals of auditory and visual subjects differed in length due

even in the case of short words where the re-
sponse partly coincided with the next word
presentation. MEG data were then down sam-
pled to 120 Hz.

Source reconstruction. We used linearly con-
strained minimum variance beamforming
(Van Veen et al., 1997) to reconstruct activity
onto a parcellated cortically constrained source
model. For this, we computed the covariance
matrix between all MEG sensor pairs as the
average covariance matrix across the cleaned
single-trial covariance estimates. This covari-
ance matrix was used in combination with the
forward model, defined on a set of 8196 loca-

to different presentation rates. To achieve alignment between signals of auditory and visual subjects, auditory signals were
epoched into overlapping segments. Each segment’s first sample corresponds to the auditory word onset, but each segment’s
length depends on the duration of the equivalent visual stimulus. Segments were then concatenated in original order to recover
signal for the full sentence length. This way, the neural response to each word is fully taken into account in further comparisons,
includingin the case of short words for which stimulus late processing coincided with the next word presentation. B, Starting points
for the multiset canonical correlation analysis were parcel-based neural signals for all subjects, consisting of five spatial compo-
nents each. 1, Signals for all sentence trials were split into five subsets, and for cross-validation one subset of sentences was left out
as test data, whereas the remaining four subsets served as training data. 2, Based on the training dataset, only an unmixing matrix
was found, per parcel, defining the linear combination of the five spatial components so that the correlation across sets (subjects)
and time samples was maximized. The cross-covariance was computed between all subjects’ spatial components and across time
collapsing over sentence trials. 3, The projection was applied to the test data to compute canonical variables for the left-out
sentence trials (purple outline) for all subjects. Steps 2 and 3 were repeated for all folds until each sentence subset had been left out
once, and the resulting canonical variables were concatenated until the entire signal was transformed. 4, Canonical variables were
epoched according to word onsets, and for each time point a subject-by-subject correlation matrix was computed across words.

tions on the subject-specific reconstruction of
the cortical sheet to generate a set of spatial
filters, one filter per dipole location. Individual
cortical sheets were generated with the FreeSurfer package (version 5.1,
http://surfer.nmr.mgh.harvard.edu; Dale et al., 1999), coregistered to a
template with a surface-based coregistration approach using Caret soft-
ware (Van Essen Laboratory at the Washington University School of
Medicine) (Van Essen et al., 2001), and subsequently down sampled to 8196
nodes using the MNE software (https://mne.tools/stable/index.html; Gramfort
etal,, 2014). The forward model was computed using the FieldTrip single-
shell method (Nolte, 2003), where the required brain—skull boundary
was obtained from the subject-specific T1-weighted anatomical images. We
further reduced the dimensionality of the data to 191 parcels per hemisphere
(Schoffelen et al., 2017). For each parcel, we obtained a parcel-specific
spatial filter as follows. We concatenated the spatial filters of the dipoles
comprising the parcel and used the concatenated spatial filter to obtain a
set of time courses of the reconstructed signal at each parcel. Next, we
performed a principal component analysis and selected for each parcel

Correlation between cross-modal subjects (pink outline) was interpreted as quantifying supramodal activation.

the first five spatial components explaining most of the variance in the
signal.

Multiset canonical correlation analysis. Multiset canonical correlation
analysis (MCCA; de Cheveigné et al., 2019; Parra, 2018) was applied to
find projections of those five spatial components that would transform
the subject-specific signals so as to boost similarities between them. Ca-
nonical correlation analysis (CCA) is a standard multivariate statistical
method often used to investigate underlying relationships between two
sets of variables. Classically, canonical variates are estimated by trans-
forming the two sets in a way that optimizes their correlation. We applied
a generalized version of the classical approach (MCCA; Kettenring,
1971), which extends the method to multiple sets— here, multiple sub-
jects. In our case, we found linear combinations of the five spatial com-
ponents for each of two subjects, so that the correlation across time
between those subjects was maximized. Because we had more than two
subjects, we found each subject’s own linear combination, which maxi-
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mized the correlation across time between all subjects from both modal-
ity groups (auditory and visual stimulation). Following Parra (2018), we
obtained the optimal projection as the eigenvector with the largest eigen-
value of a square matrix D~ IR, where R and D are square matrices:
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Where a'* are cross-covariance matrices between subject pairs, and D
contains only the diagonal blocks of within-subject covariances (Parra,
2018). In our case, the cross-covariance matrices were of size 5 X 5,
containing the cross-covariance between all five spatial components for a
given subject (pair). The cross-correlation was computed across time
points for each sentence and subsequently averaged across sentences. It is
important to note here that the canonical variates resulting from the
optimal projection do not reflect sentence averages anymore but have the
same temporal resolution as the original source signals. CCA is prone to
overfitting and known to be unstable (Dinga et al., 2019). For reliable
CCA estimates, the number of samples should be much larger than the
number of features (i.e., a sample-to-feature ratio of 20/1 is recommend-
ed; Stevens, 2012). We estimated the canonical variables over concate-
nated data, which included between 756 and 1453 samples per sentence
compared with only five features (spatial components), which provides a
decent sample-to-feature ratio. Further, we estimated our canonical vari-
ables out of sample using fivefold cross-validation to limit overfitting.
We randomly split all sentences into five subsets, estimating projections
on 96 sentences and applying them to the 24 left out sentences (Fig. 1B).

Statistical analysis. As per the study design, the subjects were assigned
to one of six stimulus sets. Different groups of subjects were presented
with different sets of sentences. Because MCCA relies on commonalities
across datasets, we could only combine data from subjects who received
the exact same stimulation. We therefore applied MCCA for each sub-
group of subjects who listened to or saw the same stimuli separately.
Initially, we constrained our analysis to the first set of 33 subjects (hence-

05 1
Visual

Specificity of the within-modality correlated activity patterns. A, Time-resolved correlation values averaged across all
visual subject pairings for a parcel in the left primary visual cortex (top) and all auditory subject pairings for a parcel in the left
primary auditory cortex (bottom) before (dark-gray line) and after MCCA (blue and red lines). Light-gray lines show recomputed
correlation values for 1000 random permutations of word order across subjects. Notably, signals of auditory subjects highly
correlate even before word onset. This is likely due to a more varied distribution of information in the auditory signal caused by the
continuous nature of auditory stimulation and, as a result, differing time points at which individual words become uniquely
recognizable. The MCCA i blind to the stimulus timing and will thus find canonical variables that yield maximal correlations at any
time point if possible. B, Cortical map of the spatial distribution of correlations, comparing visual modality subject pairs (red) with
auditory modality subject pairs (blue). Correlation strength is expressed as the Pearson correlation coefficient averaged over a time
window from 150 to 200 ms after word onset and normalized by the maximum value of that window.
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forth exploratory dataset). After applying the
projection to the data, we computed a time-
resolved Pearson correlation between all possi-
ble subject pairings. To this end, we first
epoched the resulting canonical components
according to individual word onsets and se-
lected only content words (nouns, adjectives,
and verbs) for subsequent steps. Before com-
puting the correlation, we subtracted the mean
across samples. For each pair of subjects, we
computed the correlation between two sets of
observations [i.e., a pair of vectors with each
data point reflecting the subject-specific neural
signal for each of the individual words (lexical
items), at a given time point relative to word
onset, and at a given cortical location]. Corre-
lation coefficients of cross-modality pairings—
that is, correlations between subjects reading
and subjects listening to the sentences—were
interpreted as capturing supramodal process-
ing. We used a permutation test with clustering
over time and space (parcels) for familywise
error rate correction for statistical inference
(Maris and Oostenveld, 2007). We used 1000
randomizations of the epoched words, the de-
fault maximum-sum cluster statistic, and a
minimum spatial neighbor count of 0 and esti-
mated individual thresholds from the random-
ization distribution for each parcel time point
based on a cluster-forming o 0f 0.01 and a one-sided test. To this end, we
randomized word order for the source-reconstructed parcel time series
of the auditory subjects to test for exchangeability of the exact word
pairing across sensory modalities. By destroying the one-to-one mapping
of individual lexical items, the null distribution allowed for a distinction
between individual item-specific shared variance and shared variance
due to a more generic response. We also computed modality-specific
responses as a quality check of the analysis pipeline given the well known
spatiotemporal activity patterns of early sensory brain areas. For this, we
averaged correlation across either only pairs of subjects reading or only
pairs of subjects listening. These correlations were not constrained to
content words but computed across all words. For statistical inference,
we again used a permutation test with the same parameters as described
earlier. This time, however, we randomized word order for the source-
reconstructed parcel time series of both auditory and visual subjects,
thereby destroying the one-to-one mapping of individual items within
both modalities.

Finally, we analyzed the remaining sets of subjects (confirmatory da-
taset) using the analysis pipeline described earlier. We evaluated the over-
lap in the results across all six subgroups using information prevalence
inference (Allefeld et al., 2016). Prevalence inference allows formulation
of a complex null hypothesis (i.e., that the prevalence of the effect is
smaller than or equal to a threshold prevalence, where the threshold can
be realized by different values). For each of the six sets of data, we ob-
tained spatial maps of time-resolved supramodal correlations, as well as
1000 permutation estimates after word order shuffling (see above). We
used the smallest observed average correlation across subgroups as the
second-level test statistic. We then tested the majority null hypothesis of
the prevalence of the effect being smaller than or equal to a threshold
prevalence. For this, we computed the largest threshold such that the
corresponding null hypothesis could still be rejected at the given signifi-
cance level, a. This was done after concatenating the minimum statistic
from all parcels and time points, using the maximum statistic to correct
for multiple comparisons in time and space (parcels). For each parcel, we
evaluated the highest threshold at which the prevalence null hypothesis
could be rejected at a level of & = 0.05 (see Figs. 7 and 8 for cortical maps
showing thresholds averaged and per time point).

To ensure that MCCA as a preprocessing step did not artificially in-
crease correlations between cross-modality subjects, we conducted an
additional control analysis on the exploratory dataset. For this, we addi-
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Supramodal correlated activity patterns. Time-resolved spatial maps of supramodal correlated activity patterns (averaged over all possible cross-modal subject pairings) in the left

hemisphere. Medial views of the brain surface are depicted in the first and third rows, lateral views in the second and fourth rows. Color codes are for strength of correlation. Colored parcels were most
strongly correlated between cross-modal subject pairs (nonparametric permutation test, corrected for multiple comparisons).

tionally tested the observed correlation patterns computed on all words
(both function and content words) against a null distribution obtained
by permuting sentence order 500 times and, importantly, doing this
before MCCA. This permutation was not fully unconstrained, because
we aimed at aligning sentences across modalities with the same number
of words to avoid loss of data and to preserve ordinal word position.
Thus, we did a random pairing between sentences with the same number
of words after binning the sentences according to their word count.
Sentences consisting of 9, 14, or 15 words were infrequent, with fewer
than five occurrences each. After each permutation, we performed the
temporal alignment between sensory modalities (aligning the word on-
sets), followed by cross-validated MCCA and computation of the time-
resolved correlations of cross-modal subject pairs. Due to the long
computation time of the canonical variates, we created this null distribu-
tion for the exploratory data only. Results from this additional, conser-
vative permutation test can be found in Figure 4.

Code accessibility. All analyses were performed with custom-written
MATLAB scripts (MathWorks) and FieldTrip (Oostenveld et al., 2011),
and the corresponding code is available upon request.

Results

Modality-specific activation

We first quantified the similarity between different subjects’
brain response within only the exploratory dataset (33 subjects)
by correlating word-by-word fluctuations in brain activity be-
tween all possible pairs of subjects. Averaging the correlations
across those subject pairings for which subjects were stimulated
either in the same sensory modality or each in a different modal-
ity allowed us to evaluate the modality-specific brain response
and the supramodal response, respectively. As displayed in Figure
2, early sensory cortical areas only showed correlated activity for
the group of subjects receiving the stimuli in the corresponding
sensory modality, for the visual (red) and auditory (blue) modal-
ities. We found that MCCA is a crucial analysis step to reveal
meaningful intersubject correlations. Only after MCCA does cor-
tical activity in visual and auditory areas become significantly
correlated (cluster-based permutation test, p = 0.001 for both)
across those subjects performing the task in the visual or auditory
domain, respectively (Fig. 2A).

Supramodal activation patterns

We averaged between-subject correlations over all cross-modal
subject pairings as a metric for supramodal activity. We observed
significant supramodal correlated activation patterns in mostly
left-lateralized cortical areas (Fig. 3; cluster-based permutation
test, p = 0.001). The effect had alarge spatial and temporal extent,
becoming apparent as early as 250 ms and lasting until 700 ms
after word onset. Parcels in the middle superior temporal gyrus
(STG) contributed to the effect at the earliest time points, fol-
lowed by the posterior and anterior part of the STG and, ~50 ms
later, the anterior temporal pole. Supramodal correlated activa-
tion in the ventral temporal cortex followed a similar temporal
and spatial pattern, with supramodal correlations starting out
more posterior at ~292 ms and evolution toward the middle
anterior temporal lobe at 308 ms. Other areas that expressed
supramodal activity at relatively early time points were the medial
prefrontal cortex and primary auditory cortex (250 ms), followed
by subcentral parietal regions and supramarginal gyrus at ~300
ms, and finally the dorsolateral frontal cortex (DLFC; 325 ms). By
the time 375 ms had passed, the entire orbitofrontal cortex, an-
terior frontal cortex and DLFC, as well as inferior frontal gyrus
(IFG) showed strong supramodal subject correlation. Supra-
modal activation in the frontal lobe further extended toward pos-
terior regions, including the precentral and postcentral gyrus. At
~400 ms, supramodal subject correlation in the anterior tempo-
ral pole reached its peak. In addition to the lateral cortical areas,
correlated activity also extended to the left dorsal and ventral
anterior cingulate cortex (ACC) as well as the left fusiform gyrus.
The spatiotemporal patterns of supramodal activation described
so far are robust, also when ordinal word position and MCCA
overfitting were controlled for in the statistical evaluation (Fig. 4;
cluster-based permutation test, p = 0.002).

Prevalence inference

Our confirmatory analysis combined all six datasets and tested
whether the spatiotemporal patterns observed in the exploratory
dataset would generalize to the population. For those parcels at
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Significant supramodal correlated activity patterns as assessed by an additional permutation test. Time-resolved spatial maps of supramodal correlated activity patterns were estimated

across all words (both function and content words) and masked by significance as evaluated by a more conservative shuffling procedure. We permuted sentence order 500 times before MCCA to
control for artificially increased correlations due to overfitting. Shown here are correlations at several time points for the left hemisphere. Medial views of the brain surface are depicted in the first,
third, and fifth rows, lateral views in the second, fourth, sixth, and seventh rows. Color codes are for strength of correlation. Colored parcels were most strongly correlated between cross-modal

subject pairs.

which the global null hypothesis could be rejected, we infer that at
least in one of the datasets, an effect of supramodal processing
was present (Fig. 5). In addition, we evaluated the majority null
hypothesis of whether, in the majority of subgroups in the pop-
ulation, the data contain an effect (threshold > 0.5, significant
parcels under the majority null hypothesis outlined in black in
Fig. 5B).

The global null hypothesis (no information in any set of sub-
jects in the population) could be rejected at a level of & = 0.05 in
40 parcels per time point on average (between 325 and 617 ms
after onset, SD = 31.48). For those parcels for which the largest
bound 70 is larger than or equal to 0.5, we can infer that in the
majority of datasets, the activity patterns were similar across sub-
jects, independent of modality.

This majority null hypothesis could be rejected (at a level of
a = 0.05) in 90% of parcels that also showed a global effect (Fig.
5, black outline; see also Fig. 6 for results in the right medial
hemisphere). For parcels at which the global null hypothesis

could be rejected, the average largest lower bound 0 at which the
prevalence null hypothesis can be rejected is shown in Figures 7
and 8. Compared with the temporal pattern of the largest nomi-
nal suprathreshold cluster from the cluster-based permutation
test conducted on the exploratory dataset, the effect became sig-
nificant in the majority of datasets later in time and was less
long-lasting (325—-608 ms). Given this time span, the majority
null hypothesis was rejected in 42%, on average, of those parcels
contributing most to the largest cluster. The orbitofrontal cortex
and IFG showed an involvement in supramodal processing in
both analyses, but the effect there was much more temporally
sustained in the exploratory dataset. In addition, according to the
exploratory dataset, supramodal activation of the STG occurred
almost 100 ms earlier as compared with the IFG. Based on the
confirmatory dataset, however, supramodal correlated activation
in the IFG and STG appeared almost simultaneously. Finally, the
exploratory analysis revealed supramodal activation in primary



2920 - J. Neurosci., April 1, 2020 - 40(14):2914-2924 Arana et al. @ Modality-Independent Brain Activation

A IFG : Supramarginal Gyrus
| | mean for each subgroup 0.02 | ' 2 i 1

— aVerage over subgroups m& R

B 0.025

0.015

0.005

Pearson correlation

525 542 558 575 592 608

Figure5. Supramodal correlated activity patterns consistent across the majority of datasets. Supramodal correlated activity patterns of word-specific activity were consistent across the majority
of datasets. A, Averaged correlation time courses (mean over all possible cross-modal subject pairings) are shown for selected parcels in the IFG (green), supramarginal gyrus (red), subcentral cortex
(orange), ACC (pink), anterior middle temporal gyrus (aMTG; purple), and middle superior temporal gyrus (mSTG; blue). Time courses are shown for each dataset individually (light-colored lines) as
well as averaged (dark lines). Gray shaded areas mark statistically significant time points. B, Time-resolved spatial maps of cross-modal correlations in the left hemisphere. Medial views of the brain
surface are depicted in the first, third, and fifth rows, lateral views in the second, fourth, and sixth rows. For those parcels that were part of the largest nominal suprathreshold cluster tested on only
the exploratory dataset, the mean correlation over all six datasets is shown. Color codes are for strength of correlation. In addition, the parcels at which the majority null hypothesis according to
prevalence inference could be rejected are outlined in black.
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Time-resolved spatial maps of cross-modal correlations for the right hemisphere. The average correlation over all six datasets is shown. Color codes are for strength of correlation. In

addition, the parcels at which the majority null hypothesis according to prevalence inference could be rejected are outlined in black.
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Figure7.  Cortical map of maximum prevalence threshold -y0 per parcel. For those parcels at
which the global null hypothesis could be rejected, the mean (over time) maximum threshold is
plotted, for which the null hypothesis can be rejected (c = 0.05). Given the sample size of six
datasets, the number of second-level permutations, and a significance level of v = 0.05, the
maximal possible threshold that can be reached is 0.5633.

and premotor areas extending over the entire left dorsolateral
surface, of which only the most ventral parcels close to the Sylvian
fissure were significantly supramodal in the majority of data-
sets. Thus, the spatial extent of the effect was partly reduced
for prevalence inference compared with the cluster-based per-
mutation approach on the exploratory data. Nevertheless,
widely overlapping anatomical regions were indicated by both
analyses, encompassing the dorsolateral frontal gyrus and the
middle and superior parts of the temporal lobe at first, and the
inferior frontal and orbitofrontal cortex as well as the anterior
temporal lobe later.

Discussion

Our aim was to quantify similarities of the brain response across
reading and listening at a fine temporal scale. To this end, we
correlated word-by-word fluctuations in the neural activity
across subjects receiving either auditory or visual stimulation. We
identified a widespread left-lateralized brain network, activated
independently of modality starting 325 ms after word onset. Im-
portantly, dividing our large study sample into six subsets, we
could directly quantify the consistency and generalizability of
these activity patterns. The spatial distribution of the supramodal
activation is in line with the known involvement of left-hemis-
pheric areas, including parts of the left temporal cortex, left infe-
rior parietal lobe, as well as the prefrontal cortex (Chee et al.,
1999; Homae et al., 2002; Constable et al., 2004; Spitsyna et al.,
2006; Lindenberg and Scheef, 2007; Vigneau et al., 2011; Braze et
al., 2011; Liuzzi et al., 2017). The involvement of both the STG
and IFG fits predictions from the memory, unification, and con-

trol model (MUC), in which activity reverberating within a
posterior-frontal network (Baggio and Hagoort, 2011; Hagoort,
2017) is thought to be crucial for language processing. According
to the MUC model, temporal and parietal areas support the re-
trieval of lexical information, whereas unification processes are
supported by the inferior frontal cortex. Bidirectional communi-
cation (Schoffelen et al., 2017) between these areas is facilitated
by white matter connections. We observe that temporal areas are
supramodally activated at the earliest time points and sustain
activation the longest compared with other regions. Over time,
supramodal activation spreads from the middle and posterior left
STG to the anterior temporal pole. This rapid progression of
activity from posterior to anterior regions mirrors previous ob-
servations (Marinkovic et al., 2003; Vartiainen et al., 2009), add-
ing to those findings a direct quantitative comparison of the
supramodal brain activity.

Beyond the core language network and the single word level
We observed modality-independent activity in the dorsal frontal
cortex in addition to more widely reported inferior parts of the
frontal cortex (Michael et al., 2001; Homae et al., 2002; Marink-
ovic et al., 2003; Constable et al., 2004; Jobard et al., 2007; Lin-
denberg and Scheef, 2007). This could be because we used
linguistically rich sentence material of varying syntactic complex-
ity as opposed to single words (Chee et al., 1999; Booth et al.,
2002; Marinkovic et al., 2003; Vartiainen et al., 2009; Liuzzi et al.,
2017) or short phrases (Carpentier et al., 2001; Braze et al., 2011;
Bemis and Pylkkinen, 2013). Indeed, discrepancies with respect
to frontal lobe involvement in modality-independent processing
seem to mainly arise from differences in stimulus material and
task demands (Braze et al., 2011). A recent meta-analysis has
identified that more complex syntax robustly activates dorsal
parts of the left IFG (Hagoort and Indefrey, 2014). Further, a
previously published analysis of these MEG data showed the
DLEC to be sensitive to sentence progression effects (Hultén et
al., 2019). Two previous fMRI studies using narratives (Regev et
al., 2013; Deniz et al., 2019) added to the debate. Regev et al.
(2013) correlated BOLD responses evoked by different modali-
ties. They reported supramodal activation in the left frontal lobe,
extending beyond inferior frontal regions. Deniz et al. (2019)
studied modality-independent brain areas by modeling semantic
features of the stimulus in one modality and used the model to
predict the BOLD signal in the other modality. They reported
BOLD signals in the prefrontal cortex to be well predicted across
modalities. In summary, although complex stimuli consistently
activate prefrontal areas beyond the inferior frontal cortex, the
exact stimulus features which cause this supramodal activation
are still debated.



2922 - J. Neurosci., April 1,2020 - 40(14):2914-2924

0.56

0.50

1)

Prevalence threshold
N

0.40
2

@
SOPD

4 ( . .// *\

Arana et al. @ Modality-Independent Brain Activation

392 408 425 442

358

./' ./'.

Time
inms

458 475 492 508 525

Cortical map of prevalence threshold 0. For those parcels at which the global null hypothesis could be rejected, the maximum threshold is plotted, for which the null hypothesis can

Figure 8.
be rejected at a level of & = 0.05.

Some previous studies using narratives and fMRI reported
that supramodal activation was not restricted to the left hemi-
sphere (Jobard et al., 2007; Regev et al., 2013; Deniz et al., 2019).
It could be that the previously observed bilateral involvement is
due to differences in context-based semantic processing during
narratives, compared with the processing of isolated sentences in
our experiment. Menenti et al. (2009) specifically contrasted
BOLD activity in response to sentences presented within a neu-
tral or a local context. The authors indeed reported the right
frontal cortex to be more sensitive to local discourse context
compared with its left-hemispheric homolog. Further research is
needed to determine whether this effect of presence and absence
of narrative thread similarly affects lateralization of brain activity
in MEG.

Even though mostly restricted to the left hemisphere, our re-
sults also implicate extralinguistic areas in supramodal process-
ing. Specifically, we find bilateral supramodal activation within
the ACC. The ACC is a midline structure, forming part of a
domain-general executive control network supporting language
processing (Cattinelli et al., 2013; Hagoort, 2017). It is sensitive to
statistical contingencies in the language input and thus might
play a role in mediating learning and adaptation in response to
predictive regularities in both local experimental as well as global
environment (Weber et al., 2016). It should be noted that deep
sources are normally poorly detectable in MEG (Hillebrand and
Barnes, 2002), and we thus consider any interpretations with
respect to the midline structures as tentative.

Supramodal orthography—phonology mapping

We observed supramodal activation in the postcentral and sub-
central gyrus as well as the supramarginal gyrus, which coincides
temporally with supramodal activation of the primary auditory
cortex. Activity in the supramarginal gyrus has been repeatedly
elicited by cross-modal tasks (Sliwinska et al., 2012), such as
rhyming judgments to visually presented words (Booth et al.,
2002), for which conversion between orthographic and phono-
logical representations is likely needed. At the same time, post-

558 608

542

central and subcentral areas partly span articulatory motor and
somatosensory areas for the mouth and tongue. Together, the
supramodal activation of these areas suggests that retrieval of
phonetic and articulatory mappings is not limited to speech per-
ception only but also occurs during passive reading.

Leveraging word-by-word variability of the neural response
Neuroelectric brain signals exhibit strong moment-to-moment
variability. Whereas some of this variability is related to the ex-
perimental stimulation, and is therefore associated with specific
cognitive activity, some of it is unrelated, ongoing neural activity.
By applying MCCA across subjects, we reduced this type of noise
and made subtle word-by-word fluctuations in the MEG signal
interpretable. Comparing neural activity across subjects is chal-
lenging due to differing position or orientation of neuronal
sources relative to the MEG sensors. We used parcellated MEG
source reconstruction in combination with exact temporal align-
ment of individual sentences across subjects. This allowed for the
extraction of signal components that are shared across subjects,
thus reducing the intersubject spatial variability, which is com-
monly observed in more traditional (for instance, dipole fitting)
procedures (Vartiainen et al., 2009). MCCA thus allowed us to
more directly investigate time-resolved intersubject correlations
and move beyond event-related averages (Marinkovic et al.,
2003). Importantly, our analysis approach allows us to conclude
that the identified supramodal activity is word-specific. Our find-
ings therefore go beyond showing a general activation of those
areas compared with baseline and rather reveal consistent word-
by-word fluctuations of activation within the recruited areas.

Latency of supramodal processing

The temporal alignment procedure, as a necessary preparation
step for the MCCA procedure, followed by the estimation of
time-resolved intersubject correlations, focused on common sig-
nal aspects that are exactly synchronized across subjects. The
differences in sensory modality-specific characteristics of the in-
put signal require dedicated processing with likely different pro-
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cessing latencies, which may also lead to latency differences in the
activation of supramodal areas. For example, Marinkovic et al.
(2003) reported shorter reaction times during the visual task, yet
found earlier activity peaks for the auditory task in corresponding
early sensory cortex and left anterior temporal lobe. In contrast,
other work observed earlier anterior temporal lobe activation for
visual compared with auditory stimulation (Bemis and Pylk-
kidnen, 2013). Our results indicate a certain degree of overlap
across modalities in the temporal window, within which supra-
modal cortical areas are activated. It is possible that we observed
more temporally extensive activation—for instance, related to
unification processes—because we used longer sentences. In
addition, any overlap may have been amplified as a necessary
consequence of the MCCA procedure. Evidently, correlations be-
tween signals from auditory subjects were boosted with less tem-
poral specificity compared with visual subjects (Fig. 2B). This
observation was unexpected and may be due to more continuous
stimulation in the auditory experiment. As the sound of a spoken
word unfolds, the timing at which it becomes uniquely recogniz-
able will vary across the word. Thus, the distribution of informa-
tion in the auditory signal is much more varied compared with
the visual signal. MCCA will pick up on any common relation-
ship across subjects, regardless of timing. In our specific applica-
tion, projections were estimated on concatenated data, effectively
making the method blind to word onset boundaries.

In conclusion, this study provides direct neurophysiological
evidence for sensory modality-independent processes supporting
language comprehension in multiple left-hemispheric brain ar-
eas. We identified a network of areas including domain general
control areas as well as phonological mapping circuits over and
above traditional higher-level language areas in frontal and
temporal-parietal regions by quantifying between-subject con-
sistency of their respective word-specific activation patterns.
These consistent activation patterns were word-specific, and thus
likely reflect more than just generic activation during language
processing. Finally, we show that alignment of individual subject
data through MCCA is a promising tool for investigating subtle
word-in-context-specific modulations of brain activity in the
language system.
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