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We have recently proposed a Nonequilibrium Green’s Function (NEGF) approach to include
Auger decay processes in the ultrafast charge dynamics of photoionized molecules. Within the so
called Generalized Kadanoff-Baym Ansatz the fundamental unknowns of the NEGF equations are
the reduced one-particle density matrix of bound electrons and the occupations of the continuum
states. Both unknowns are one-time functions like the density in Time-Dependent Functional Theory
(TDDFT). In this work we assess the accuracy of the approach against Configuration Interaction
(CI) calculations in one-dimensional model systems. Our results show that NEGF correctly captures
qualitative and quantitative features of the relaxation dynamics provided that the energy of the
Auger electron is much larger than the Coulomb repulsion between two holes in the valence shells.
For the accuracy of the results dynamical electron-electron correlations or, equivalently, memory
effects play a pivotal role. The combination of our NEGF approach with the Sham-Schlüter equation
may provide useful insights for the development of TDDFT exchange-correlation potentials with a
history dependence.

I. INTRODUCTION

Photo-ionized many-body systems relax to lower en-
ergy states through nuclear rearrangement and charge
redistribution. Nuclear dynamics does typically play a
role on longer time scales, although there are situations
where electron-nuclear and electron-electron interactions
compete on the same timescale, e.g., in the vicinity of a
conical intersection. At the (sub)femtosecond timescale,
however, the most relevant relaxation channel of core-
ionized molecules is the Auger decay which is exclusively
driven by the Coulomb interaction [1].

Recent advances in pump-probe experiments made it
possible to follow the attosecond dynamics of atoms after
the sudden expulsion of a core electron [2–6]. Theoretical
frameworks describing the Auger decay have been pro-
posed, the more accurate being the ones based on many-
body wavefunctions, see also Ref. [7]. Although these
methods are in principle applicable to atoms as well as
molecules, they quickly become prohibitive for systems
with more than a few active electrons. For instance,
Auger decays in ionized small molecules or molecules of
biological interest are extremely difficult to cope with
wavefunction approaches due to the large number of
states involved in the process. Still, Auger decays con-
tribute to the relaxation dynamics of these more com-
plex systems, which are currently attracting an increas-
ing interest and attention [8–12]. It is therefore crucial to
develop first-principles approaches capable of capturing

the (sub)femtosecond relaxation mechanisms induced by
electronic correlations and applicable to atoms as well as
molecules.

The most widely used method for large scale real-time
simulations is Time-Dependent Density Functional The-
ory [13–15] (TDDFT), which gives an adequate and com-
putationally affordable tool for the description of systems
consisting of up to thousands of atoms. The most efficient
and extensively used functionals for TDDFT calculations
are the space-time local exchange-correlation (xc) func-
tionals. It has been shown numerically in Ref. [16] that
these approximate functionals fail in capturing Auger de-
cays, the fundamental reason being that they lack mem-
ory effects – the xc potential depends on the instanta-
neous density only.

We have recently proposed a first-principles NonEqui-
librium Green’s Function (NEGF) approach [17] which
overcomes the limitation of adiabatic functionals and
that may inspire new ideas for the inclusion of memory
effects in the TDDFT functionals. The method is ap-
plicable to molecules with up to tens of atoms and at its
core there is an equation to simulate the electron dynam-
ics in the parent cation without dealing explicitly with
the Auger electrons. The idea is similar in spirit to the
embedding scheme in time-dependent quantum transport
where the electron dynamics in the molecular junction is
simulated without dealing explicitly with the electrons in
the leads [18–22]. However, whereas in quantum trans-
port the integration out of electrons in the leads gives
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an embedding self-energy which is independent of the
density in the junction, the integration out of the Auger
electrons gives an Auger self-energy which is a functional
of the density in the molecule.

In order to assess the quality of the NEGF approach
in this work we use the time-dependent charge distri-
bution of the bound electrons to reconstruct the Auger
wavepacket in free space, and then benchmark the results
against exact configuration interaction (CI) calculations.
We perform NEGF and CI simulations in a model one-
dimensional (1D) system and study the real space-time
shape of the Auger wavepacket as well as the Auger spec-
trum. The main outcome of this investigation is that the
results of the NEGF approach are in excellent agreement
with those from CI provided that the repulsion between
the valence holes is much smaller than the energy of the
Auger electron.

II. DESCRIPTION OF THE SYSTEM AND
THEORY

Let us consider a 1D finite system described by the one-
particle Hartree-Fock (HF) basis {ϕi, ϕµ}, where roman
indices run over bound states and greek indices run over
continuum states. The equilibrium Hamiltonian can be
conveniently written as the sum of three terms

Ĥeq = Ĥbound + ĤAuger + Ĥcont, (1)

where Ĥbound is the bound electrons Hamiltonian, ĤAuger

is the Auger interaction and Ĥcont is the free-continuum
part. In our basis, these are written as

Ĥbound =
∑
ij

hij ĉ
†
i ĉj +

1

2

∑
ijmn

vijmnĉ
†
i ĉ
†
j ĉmĉn, (2a)

ĤAuger =
∑
ijm

∑
µ

(
vAijmµĉ

†
i ĉ
†
j ĉmĉµ + H.c.

)
, (2b)

Ĥcont =
∑
µ

εµĉ
†
µĉµ, (2c)

where c†i (ci) is the creation (annihilation) operator for
the state ϕi (the same convention applies to the con-
tinuum index µ), hij are the one-electron integrals, εµ
are the continuum single-particle HF energies and vijmn
(vAijmµ) are the two-electron Coulomb integrals respon-
sible for intra-molecular (Auger) scatterings. The one-
and two-electron integrals are defined as

hij ≡
∫
dxϕ?i (x)[−1

2
∇2
x + Vn(x)]ϕj(x), (3a)

vijmn ≡
∫
dxdx′ϕ?i (x)ϕ?j (x

′)Ve(x, x
′)ϕm(x′)ϕn(x),

(3b)

with Vn(x) and Ve(x, x
′) the nuclear and electron-

electron potential. Note that the Auger Coulomb inte-
grals vAijmµ are defined according to Eq. (3b) with n = µ.

In Eq. (1) we discard all the off-diagonal contribution hiµ,
hµµ′ as well as all Coulomb integrals with more than one
index in the continuum. This approximation does not af-
fect the physical description of the dynamics as demon-
stated by comparisons against full grid calculations in
Ref. [17]. In fact, in the HF basis both hiµ and hµµ′ are
much smaller than hij and εµ whereas Coulomb integrals
with two or more indices in the continuum are respon-
sible for scattering process that are highly suppressed
by phase-space arguments if the photoelectron energy is
much larger than the kinetic energy of the Auger electron.
Henceforth, this condition is assumed to be fulfilled.

The explicit simulation of the ionization process with
a laser field does not represent a complication for the
NEGF method. In fact, the general framework pre-
sented in Ref. [17] accounts for the coupling of exter-
nal fields with the bound-bound and bound-continuum
dipole matrix elements. Instead, the framework dis-
cards the coupling of external fields with the continuum-
continuum dipole matrix elements and, therefore, light-
field streaking experiments relevant to, e.g., attosecond
metrology [23], or multuphoton ionization processes are
left out.

In this work we focus on the dynamics induced by the
sudden removal of a core electron, thus the ionization
process is not simulated. An additional simplification
used for the simulations below (which is however not es-
sential for the approach) consists in keeping only inte-
grals of the form vAcµv1v2 , where c labels the state of the
suddenly created core hole, v1 and v2 label two valence
states and µ an arbitrary continuum state. We also ob-
serve that the HF wavefunctions are real since the Hamil-
tonian is invariant under time-reversal. This implies that
the Coulomb integrals have the following symmetries

vijmn = vjinm = vimjn = vnjmi (4)

and the like with n→ µ.

A. NEGF equations

The derivation of the NEGF equations within the so
called Generalized Kadanoff-Baym Ansatz [24] (GKBA)
has been presented elsewhere [17]; here we only describe
the structure of these equations without entering into the
complex mathematical and numerical details.

Let ρ be the one-particle reduced density matrix in the
bound sector and fµ be the occupations of the continuum
states. Then the NEGF equations read ρ̇ = −i [hHF[ρ], ρ]− I[ρ, f ]− I†[ρ, f ]

ḟµ = −J µ[ρ, f ]− J ∗µ[ρ, f ]
, (5)

where the single-particle HF Hamiltonian is defined ac-
cording to

hHF,ij = hij +
∑
mn

(vimnj − vimjn)ρnm. (6)
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The matrix I and the scalar J µ at time t are explicit
functionals of ρ and f at all previous times. They are
evaluated using the so-called second-Born (2B) approxi-
mation which has been shown to contain the fundamental
scattering of the Auger process [25, 26]. The dependence
on ρ and f occurs through the lesser and greater GKBA
Green’s functions [24]

G≶(t, t̄) = ∓
[
GR(t, t′)ρ≶(t′)− ρ≶(t)GA(t, t′)

]
, (7)

and the like for G≶ with indices in the continuum. Here,
the retarded (GR) and advanced (GA) Green’s functions
are evaluated in the HF approximation (and hence they
are functionals of ρ and f too). The functional I (J µ)

is linear in G≶ with indices in the continuum and quar-
tic (cubic) in G≶ with indices in the bound sector. Their
calculation requires to perform an integral from some ini-
tial time, say t = 0, up to time t. The implementation of
Eqs. (5) does therefore scale quadratically with the num-
ber of time steps. Notice that by setting I = J µ = 0
is equivalent to perform time-dependent HF simulations.
Like the adiabatic approximations in TDDFT, HF is lo-
cal in time and therefore it is unable to describe Auger
decays.

The scaling of the calculation of I and
J µ with the number of basis functions is
max[(Nbound)p, (Nbound)qNcont], where Nbound is
the number of bound states, Ncont the number of con-
tinuum states and the exponents 3 ≤ p ≤ 5, 2 ≤ q ≤ 4
depend on the number of nonvanishing Coulomb inte-
grals [17]. Currently, both I and J µ are implemented
in the CHEERS code [27] which, for J µ = 0, has been
recently used to study the charge transfer dynamics
in a donor-C60 model dyad [28] and the ultrafast
charge migration in the phenylalanine aminoacid up to
40 fs [29]. Since the calculation of J µ is not heavier
than the calculation of I, the NEGF approach can be
used to study time-dependent Auger processes driven
by XUV or X-ray pulses in molecules with up to tens of
atoms.

B. CI calculation

Let us consider the simplest possible case of a system
with one occupied core state, one occupied valence state
and a continuum of empty states. We are interested in
describing the evolution of the system starting from the
initial state

|φx〉 = c†c↑c
†
v↓c
†
v↑ |0〉 , (8)

representing a core-hole of down spin. The evolution op-
erator defined by the Hamiltonian in Eq. (1) mixes |φx〉
with (we recall that only Coulomb integrals of the form
vcµvv and the like related by symmetries are nonvanish-

ing, see Section II)

|φg〉 = c†c↑c
†
c↓c
†
v↑ |0〉 , (9a)

|φµ〉 = c†c↑c
†
c↓c
†
µ↑ |0〉 , (9b)

where |φg〉 is the “intermediate” state with the filled core,
i.e., the ground state of the parent cation, and |φµ〉 is the
state describing the dication with an Auger electron in
the continuum state µ. Carrying out the calculations
it is easy to show that these states are coupled by the
Hamitonian as follows

Ĥeq |φx〉 = Ex |φx〉+ T |φg〉+
∑

µ
Vµ |φµ〉 , (10a)

Ĥeq |φg〉 = Eg |φg〉+ T |φx〉 , (10b)

Ĥeq |φµ〉 = Eµ |φx〉+ Vµ |φx〉 , (10c)

where the energies Ex, Eg, Eµ, T and Vµ are given by

Ex = hcc + 2hvv + 2vcvvc + vvvvv − vcvcv, (11a)

Eg = 2hcc + hvv + 2vcvvc + vcccc − vcvcv, (11b)

Eµ = 2hcc + εµ + vcccc, (11c)

T = hcv + vccvc + vcvvv, (11d)

Vµ = vvvcµ. (11e)

The simplification brought about by the HF basis is
now evident. The HF Hamiltonian hHF,ij = hij +∑occ
k (2vikkj−vikjk) is diagonal in the HF basis, therefore

0 = hHF,cv =hcv + (2vcccv − vccvc) + (2vcvvv − vcvvv)
=hcv + vcccv + vcvvv ≡ T.

(12)

Thus the “intermediate” state |φg〉 decouples from the
dynamics.

We write the three-body wave function at time t as

|ψ(t)〉 = ax(t) |φx〉+
∑
µ

aµ(t) |φµ〉 , (13)

with initial condition |ψ(0)〉 = |φx〉. Taking into ac-
count Eqs. (10), the time-dependent Schrödinger equa-
tion yields a set of coupled equations for the coefficients
of the expansion{

iȧx(t) = Exax(t) +
∑
µ Vµaµ(t)

iȧµ(t) = Vµax(t) + Eµaµ(t)
(14)

to be solved with boundary conditions ax(0) = 1 and
ak(0) = 0.

From the definitions in Eqs. (11) it follows that for the
continuum three-body state to have the same energy of
the initial state, i.e., Eµ = Ex, the energy εµ of the Auger
electron has to be

εµ ≡ εCI
Auger = 2εHF

v − εHF
c − vvvvv, (15)
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where

εHF
c = hcc + vcccc + 2vcvvc − vcvcv, (16a)

εHF
v = hvv + vvvvv + 2vvccv + vvcvc, (16b)

are the core and valence HF energies, respectively. It is
therefore reasonable to expect a peak in the continuum
occupations fµ for the µ corresponding to an energy close
to the value in Eq. (15).

In the next Section we solve numerically Eqs. (14).
However, in order to get some physical insight into the so-
lution we here make a “wide-band-limit approximation”
(WBLA) and carry on the analytic treatment a bit fur-
ther. Integrating the second equation (14) we have

aµ(t) = −i
∫ t

0

dt′e−iEµ(t−t′)Vµax(t′), (17)

which correctly satisfies the boundary conditions aµ(0) =
0. Substituing this result into the first equation (14) we
get

iȧx(t) = Exax(t) +

∫ ∞
0

dt′K(t− t′)ax(t′), (18)

where

K(t− t′) = −iθ(t− t′)
∑
µ

V 2
µ e
−iEµ(t−t′)

≡
∫
dω

2π
e−iω(t−t′)

[
Λ(ω)− i

2
Γ(ω)

]
, (19)

and

Λ(ω)− i

2
Γ(ω) =

∑
µ

V 2
µ

ω − Eµ + i0+
. (20)

The real function Λ is connected to Γ through a Hilbert
transform, i.e.,

Λ(ω) =

∫
dω′

2π

Γ(ω′)

ω − ω′ , (21)

and from Eq. (20) it is easy to show that

Γ(ω) = 2π
∑

µ
V 2
µ δ(ω − Eµ). (22)

For systems in a box of lenght L the continuum wave-
functions are proportional to 1/

√
L and hence V 2

µ scales
like 1/L, see definition in Eq. (3b). In the limit L → ∞
the discrete sum in Eq. (22) becomes an integral and
Γ(ω) becomes a smooth function of ω. Assuming that
Ex is a few times larger than Γ(Ex) and that Γ(ω) is a
slowly varying function for ω ' Ex, we can then neglect
the frequency dependence in Γ:

Γ(ω) ' Γ(Ex) ≡ γ, (23)

which implies, see Eq. (21), that we can approximate Λ '
0, see Eq. (21). This is the so called WBLA, according

to which the kernel K in Eq. (19) can be approximated
as

K(t− t′) = − i
2
γ δ(t− t′). (24)

Substituing this result into Eq. (18) and then using
Eq. (17) it is straighforward to find the following ana-
lytic solution

ax(t) = e−iExt−
γ
2 t, (25a)

aµ(t) = −Vµ
e−i(Ex−

i
2γ)t − e−iEµt

Eµ − Ex + i
2γ

. (25b)

From Eqs. (25) we infer that the occupation of the con-
tinuum states is peaked at Eµ = Ex or, equivalently,
at εµ = εCI

Auger, in agreement with the discussion above

Eq. (15). We emphasize that this conclusion is based
on the WBLA. The exact solution contains a small cor-
rection which is proportional to the Hilbert transform of
Γ(ω) at frequency ω ' Ex.

C. Comparing NEGF with CI

In the NEGF approach at the 2B level of approxima-
tion two holes, in addition to feel an average (HF) po-
tential generated by all other electrons, scatter directly
once. However, for a strong enough repulsion vvvvv it
is necessary to include multiple valence-valence scatter-
ings to predict the correct energy of the Auger electron.
In fact, the red shift vvvvv in Eq. (15) can be captured
only by summing multiple scatterings to infinite order
(T-matrix approximation) [30, 31]. Since the 2B approx-
imation includes just a single scattering, the predicted
Auger energy is

ε2B
Auger = 2εHF

v − εHF
c . (26)

In 3D molecules the neglect of vvvvv has only a minor
impact on the internal (bound-electrons) dynamics since
vvvvv is typically less than 1 eV and Γ(ω) varies rather
slowly on this energy scales. In this work, however,
we are also interested in the description of the Auger
wavepacket. Taking into account that the repulsion vvvvv
in 1D systems is larger than in 3D ones, a sizable differ-
ence between the CI and 2B results has to be expected.
To demonstrate that such a difference does not affect
the overall physical picture nor the details of the Auger
wavepacket but only the speed at which the Auger elec-
tron is expelled, we isolate the effects of multiple valence-
valence scatterings from the CI formulation. Let us ex-
press the energy Ex defined in Eq. (16a) in terms of HF
energies

Ex = 2εHF
v + εHF

c − vcccc − 4vvccv + 2vvcvc − vvvvv. (27)

The HF energy εHF
v is blue shifted by vvvvv, see Eq. (16),

an effect captured by the 2B approximation. The effect
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of multiple scatterings manifests in the red shift given
by the last term of Eq. (27). In the next Section we
show that solving Eqs. (14) using for Ex the value in
Eq. (27) with vvvvv = 0 one recovers the NEGF results
(notice that this is not equivalent to set vvvvv = 0 in the
Hamiltonian since this Coulomb integral renormalizes the
HF energy εHF

v ). We will refer to this CI approximation
as CI2B.

III. RESULTS

We consider a one-dimensional (1D) atom with soft
Coulomb interactions. This particular example is a se-
vere test for the NEGF method since the continuum spec-
trum has a strong frequency dependence and the valence-
valence repulsion energy is of the same order of magni-
tude of the Auger energy.

The 1D atom is defined on the points xn = na of a
1D grid, with |n| ≤ Ngrid/2. In our model the Coulomb
interaction is different from zero only in a box of radius R
centered around the nucleus. The one-body Hamiltonian
on the grid reads

h(xn, xm) = δn,m[2κ+ Vn(xn)]− δ|n−m|,1κ (28)

with Vn(x) = Uen/
√
x2 + a2 the nuclear potential and κ

the hopping integral between neighbouring points. Elec-
trons interact through v(x, x′) = ZUee/

√
(x− x′)2 + a2.

We analyze the system using Ngrid = 1601 grid-points
and choose the parameters according to (atomic units
are used throughout): a = 0.5, κ = 2, Z = 4, Uen = 2,
Uee = Uen/2 and R = 10a. With four electrons the HF
spectrum has five bound states (per spin), the lowest
two of which are occupied. The energies of the occu-
pied levels are εHF

c = −4.33 and εHF
v = −1.65 for the

core and valence respectively, yielding a 2B Auger en-
ergy ε2B

Auger = 1.02. We work in the sudden creation ap-
proximation, according to which the system is perturbed
by suddenly removing a core electron. In the NEGF ap-
proach this is simulated by subtracting to the equilibrium
density matrix ρeq

ij an infinitesimal amount of charge from

the core, hence ρij(0) = ρeq
ij − δicδjcnh. In the results be-

low the hole density nh = 0.04.
Subsequently to the creation of the core hole, the

Auger process starts taking place, triggering an inter-
nal electron dynamics (refilling of the core state) and the
expulsion of charge toward the continuum states. The
time-dependent occupation of the core state nc(t) is pre-
dicted in both CI and 2B calculations to have the follow-
ing behavior nc(t) = 1 − nhe−Γt, where nh is the core
hole created and Γ is the inverse lifetime of the Auger
decay. Due to the neglect of multiple scatterings, the
Auger decay is faster in 2B and the corresponding Γ is
overestimated by a factor 1.5. As already pointed out,
this discrepancy is expected to be much smaller in 3D
molecules since the valence-valence repulsion is not as
large.

0.0

0.5

1.0

1.5

2.0

t = 50 a.u.
t = 100 a.u.
t = 150 a.u.
t = 200 a.u.
t = 250 a.u.
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1.0

1.5

n
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u
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r

0 100 200 300 400 500 600 700 800

x

0.0

0.5

1.0

1.5

FIG. 1: Snapshots of the density of the Auger wavepacket
leaving the atom (nucleus is situated in x = 0) calculated
using CI (top), NEGF approach (middle) and CI2B (bottom).
The vertical axes have been rescaled by a factor 104 for all
curves.

In Fig. 1 we display snapshots at different times of the
real-space density of the Auger wavepacket as obtained
by performing CI (top), NEGF (middle) and CI2B cal-
culations (bottom). The results in the NEGF approach
closely resemble the ones in the CI2B treatment, in agree-
ment with the discussion in Section II C. The CI calcula-
tion, as expected, shows a slower wavepacket. However,
the overall shape, i.e., asymmetric packet with superim-
posed accumulating ripples on the tail, is common to all
methods. We mention that the amplitude of the ripples
as well as the wavefront of the Auger wavepacket change
if, instead of the sudden creation of a core-hole, we would
have simulated the ionization process using an external
laser pulse. In fact, these features are not universal and
depend on the intensity and duration of the perturbing
field [17]. On the other hand, the time Tr elapsing be-
tween two consecutive maxima at any fixed position is
an intrinsic feature of the Auger decay, following the law

Tr =
2π

εAuger
. (29)

In the top panel of Fig. 2 we show the time-dependent
density nAuger(x0, t) of the Auger wavepacket at a certain
distance x0 from the nucleus. The densities exhibit rip-
ples of different frequency since the energy of the Auger
electron is different in CI, NEGF and CI2B. The small
discrepancy between NEGF and CI2B is due to the fact
that the solution in Eqs. (25) is valid only in the WBLA.
Taking into account the frequency dependence of Γ one
would find a small correction to Eµ−Ex proportional to
the Hilbert transform of Γ. From the top panel of Fig. 2
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εAuger ' 1.76 a.u.
εAuger ' 2.66 a.u.

εCI
Auger ' 0.51 a.u.
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Auger ' 1.02 a.u.

FIG. 2: The top panel shows the time-dependent density of
the Auger wavepacket at a fixed distance x0 = 30 from the
nucleus for NEGF, CI and CI2B. The bottom panel displays
the period of the ripples at x0 versus the number of elapsing
periods for the three calculations of the top panel and for two
more NEGF calculations, see main text.

we see that this correction is rather small and therefore
the WBLA is an excellent approximation in this case.

In the bottom panel of Fig. 2 we show the value
of the time Tr elapsing between two consecutive max-
ima of the wavepacket versus the number of maxima
(counted starting from the left most maximum in the
top panel). In the figure Tr is rescaled by the Auger
energy. In all cases, after a short transient phase, Tr
attains the value 2π. In addition to the values of Tr
corresponding to the three curves of the top panel, in
the bottom panel we also report the trend of Tr cal-
culated in Ref. [17] for two more NEGF simulations.
More specifically, we considered two different combina-
tions of range and strengths of the Coulomb interactions
(R,Uen, Uee) = (100a, 2.6, 2.08), (10a, 2.7, 2.025) yield-
ing Auger electrons at energies ε2B

Auger = 1.76, 2.66 re-
spectively. As we can see, the quantity Tr × εAuger re-
mains independent of the system.

Finally, in Fig. 3 we display the snapshots of the time-
dependent occupations fµ(t) of the continuum states ϕµ.
After the creation of the core-hole, occurring at t = 0,
the continuum states start to get populated and, as time
passes, gradually get peaked around the Auger energy
εCI
Auger ' 0.51 for the CI calculation and ε2B

Auger ' 1 for
the NEGF and CI2B calculation – the small deviation
between these two calculations has been discussed previ-
ously.

0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2
εµ

0.0

0.5

1.0

1.5

2.0

f µ

50 a.u.

150 a.u.

250 a.u.

FIG. 3: Snapshots of the occupations fµ of the continuum
states versus their energy εµ for CI (blue), CI2B (green) and
NEGF (orange). The times of the snapshots (from light to
dark) are given by the color bars.

IV. CONCLUSIONS

To summarize, we have benchmarked a recently pro-
posed NEGF approach [17] against configuration inter-
action calculations in a simple 1D model atom. With the
exception of the quantitative discrepancies due to the ne-
glect of multiple valence-valence scatterings, good agree-
ment is found for the qualitative features of the Auger
process. In fact, NEGF correctly predicts an exponential
law for the core-hole refilling and an asymmetric shape of
the Auger wavepacket characterized by a long tail with
superimposed ripples of period Tr = 2π/εAuger. The
quantitative difference is only related to the red shift of
the energy of the Auger electron, as demonstrated by the
agreement between NEGF and CI2B results. We point
out that for the systems that we are interested to study
in the future, i.e., organic molecules and molecules of bio-
logical interest, the valence-valence repulsion is less than
1 eV; therefore the neglect of multiple scatterings for the
description of the internal dynamics is expected to be less
relevant.

The NEGF equations (5) are equations of motion for
the one-particle density matrix in the bound sector and
for the occupations of the continuum states, not for the
Green’s function. Both quantities are one-time functions
like the charge density of TDDFT n(r, t). In particular,
in a real space basis ρ(r, r, t) = n(r, t). Given the tight
relation between ρ and n it would be interesting to use
the explicit form of the functionals I[ρ, f ] and Jµ[ρ, f ] as
a guide to generate approximate xc TDDFT potentials
with memory. One possibility would be to combine the
linearized Sham-Schlüter equation [32, 33] with NEGF
using the Generalized Kadanoff-Baym Ansatz [24].
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